text
stringlengths 54
260
|
---|
06-07 07:51 - modeling.trainer - INFO - train - iter 105600: loss 3.1094, time 5.10s
|
06-07 07:51 - modeling.trainer - INFO - train - iter 105650: loss 3.1091, time 5.10s
|
06-07 07:51 - modeling.trainer - INFO - train - iter 105700: loss 3.1087, time 5.11s
|
06-07 07:51 - modeling.trainer - INFO - train - iter 105750: loss 3.1096, time 5.10s
|
06-07 07:51 - modeling.trainer - INFO - train - iter 105800: loss 3.1164, time 5.09s
|
06-07 07:51 - modeling.trainer - INFO - train - iter 105850: loss 3.1215, time 5.77s
|
06-07 07:51 - modeling.trainer - INFO - train - iter 105900: loss 3.1099, time 5.07s
|
06-07 07:51 - modeling.trainer - INFO - train - iter 105950: loss 3.1082, time 5.09s
|
06-07 07:51 - modeling.trainer - INFO - train - iter 106000: loss 3.1069, time 5.08s
|
06-07 07:51 - modeling.trainer - INFO - train - iter 106050: loss 3.0975, time 5.08s
|
06-07 07:51 - modeling.trainer - INFO - train - iter 106100: loss 3.1027, time 5.09s
|
06-07 07:52 - modeling.trainer - INFO - train - iter 106150: loss 3.1144, time 5.09s
|
06-07 07:52 - modeling.trainer - INFO - train - iter 106200: loss 3.1203, time 5.09s
|
06-07 07:52 - modeling.trainer - INFO - train - iter 106250: loss 3.1131, time 5.08s
|
06-07 07:52 - modeling.trainer - INFO - train - iter 106300: loss 3.0995, time 5.07s
|
06-07 07:52 - modeling.trainer - INFO - train - iter 106350: loss 3.0924, time 5.08s
|
06-07 07:52 - modeling.trainer - INFO - train - iter 106400: loss 3.1004, time 5.09s
|
06-07 07:52 - modeling.trainer - INFO - train - iter 106450: loss 3.1068, time 5.09s
|
06-07 07:52 - modeling.trainer - INFO - train - iter 106500: loss 3.1049, time 5.08s
|
06-07 07:52 - modeling.trainer - INFO - train - iter 106550: loss 3.1053, time 5.09s
|
06-07 07:52 - modeling.trainer - INFO - train - iter 106600: loss 3.1098, time 5.08s
|
06-07 07:52 - modeling.trainer - INFO - train - iter 106650: loss 3.1131, time 5.08s
|
06-07 07:53 - modeling.trainer - INFO - train - iter 106700: loss 3.1053, time 5.07s
|
06-07 07:53 - modeling.trainer - INFO - train - iter 106750: loss 3.1087, time 5.08s
|
06-07 07:53 - modeling.trainer - INFO - train - iter 106800: loss 3.1127, time 5.07s
|
06-07 07:53 - modeling.trainer - INFO - train - iter 106850: loss 3.1075, time 5.07s
|
06-07 07:53 - modeling.trainer - INFO - train - iter 106900: loss 3.1161, time 5.07s
|
06-07 07:53 - modeling.trainer - INFO - train - iter 106950: loss 3.1140, time 5.08s
|
06-07 07:53 - modeling.trainer - INFO - train - iter 107000: loss 3.1023, time 5.08s
|
06-07 07:53 - modeling.trainer - INFO - train - iter 107050: loss 3.1065, time 5.08s
|
06-07 07:53 - modeling.trainer - INFO - train - iter 107100: loss 3.1107, time 5.07s
|
06-07 07:53 - modeling.trainer - INFO - train - iter 107150: loss 3.1043, time 5.07s
|
06-07 07:53 - modeling.trainer - INFO - train - iter 107200: loss 3.1098, time 5.08s
|
06-07 07:53 - modeling.trainer - INFO - train - iter 107250: loss 3.1147, time 5.07s
|
06-07 07:54 - modeling.trainer - INFO - train - iter 107300: loss 3.1057, time 5.08s
|
06-07 07:54 - modeling.trainer - INFO - train - iter 107350: loss 3.1049, time 5.08s
|
06-07 07:54 - modeling.trainer - INFO - train - iter 107400: loss 3.1123, time 5.07s
|
06-07 07:54 - modeling.trainer - INFO - train - iter 107450: loss 3.1105, time 5.07s
|
06-07 07:54 - modeling.trainer - INFO - train - iter 107500: loss 3.1053, time 5.08s
|
06-07 07:54 - modeling.trainer - INFO - train - iter 107550: loss 3.1116, time 5.15s
|
06-07 07:54 - modeling.trainer - INFO - train - iter 107600: loss 3.1165, time 5.69s
|
06-07 07:54 - modeling.trainer - INFO - train - iter 107650: loss 3.1095, time 5.10s
|
06-07 07:54 - modeling.trainer - INFO - train - iter 107700: loss 3.1097, time 5.09s
|
06-07 07:54 - modeling.trainer - INFO - train - iter 107750: loss 3.1088, time 5.08s
|
06-07 07:54 - modeling.trainer - INFO - train - iter 107800: loss 3.1102, time 5.09s
|
06-07 07:54 - modeling.trainer - INFO - train - iter 107850: loss 3.1118, time 5.09s
|
06-07 07:55 - modeling.trainer - INFO - train - iter 107900: loss 3.1058, time 5.09s
|
06-07 07:55 - modeling.trainer - INFO - train - iter 107950: loss 3.1104, time 5.09s
|
06-07 07:55 - modeling.trainer - INFO - train - iter 108000: loss 3.1147, time 5.10s
|
06-07 07:55 - modeling.trainer - INFO - train - iter 108050: loss 3.1138, time 5.10s
|
06-07 07:55 - modeling.trainer - INFO - train - iter 108100: loss 3.1107, time 5.09s
|
06-07 07:55 - modeling.trainer - INFO - train - iter 108150: loss 3.1014, time 5.10s
|
06-07 07:55 - modeling.trainer - INFO - train - iter 108200: loss 3.1028, time 5.13s
|
06-07 07:55 - modeling.trainer - INFO - train - iter 108250: loss 3.1066, time 5.08s
|
06-07 07:55 - modeling.trainer - INFO - train - iter 108300: loss 3.1047, time 5.09s
|
06-07 07:55 - modeling.trainer - INFO - train - iter 108350: loss 3.1158, time 5.10s
|
06-07 07:55 - modeling.trainer - INFO - train - iter 108400: loss 3.1142, time 5.08s
|
06-07 07:55 - modeling.trainer - INFO - train - iter 108450: loss 3.1049, time 5.09s
|
06-07 07:56 - modeling.trainer - INFO - train - iter 108500: loss 3.1059, time 5.09s
|
06-07 07:56 - modeling.trainer - INFO - train - iter 108550: loss 3.1172, time 5.09s
|
06-07 07:56 - modeling.trainer - INFO - train - iter 108600: loss 3.1244, time 5.08s
|
06-07 07:56 - modeling.trainer - INFO - train - iter 108650: loss 3.1108, time 5.10s
|
06-07 07:56 - modeling.trainer - INFO - train - iter 108700: loss 3.1054, time 5.08s
|
06-07 07:56 - modeling.trainer - INFO - train - iter 108750: loss 3.1139, time 5.10s
|
06-07 07:56 - modeling.trainer - INFO - train - iter 108800: loss 3.1127, time 5.09s
|
06-07 07:56 - modeling.trainer - INFO - train - iter 108850: loss 3.1045, time 5.09s
|
06-07 07:56 - modeling.trainer - INFO - train - iter 108900: loss 3.1017, time 5.10s
|
06-07 07:56 - modeling.trainer - INFO - train - iter 108950: loss 3.1028, time 5.09s
|
06-07 07:56 - modeling.trainer - INFO - train - iter 109000: loss 3.1070, time 5.09s
|
06-07 07:57 - modeling.trainer - INFO - train - iter 109050: loss 3.1119, time 5.09s
|
06-07 07:57 - modeling.trainer - INFO - train - iter 109100: loss 3.1049, time 5.09s
|
06-07 07:57 - modeling.trainer - INFO - train - iter 109150: loss 3.1053, time 5.09s
|
06-07 07:57 - modeling.trainer - INFO - train - iter 109200: loss 3.1095, time 5.10s
|
06-07 07:57 - modeling.trainer - INFO - train - iter 109250: loss 3.1126, time 5.10s
|
06-07 07:57 - modeling.trainer - INFO - train - iter 109300: loss 3.1208, time 5.09s
|
06-07 07:57 - modeling.trainer - INFO - train - iter 109350: loss 3.1109, time 5.76s
|
06-07 07:57 - modeling.trainer - INFO - train - iter 109400: loss 3.1049, time 5.09s
|
06-07 07:57 - modeling.trainer - INFO - train - iter 109450: loss 3.1088, time 5.08s
|
06-07 07:57 - modeling.trainer - INFO - train - iter 109500: loss 3.1154, time 5.09s
|
06-07 07:57 - modeling.trainer - INFO - train - iter 109550: loss 3.1128, time 5.10s
|
06-07 07:57 - modeling.trainer - INFO - train - iter 109600: loss 3.1032, time 5.08s
|
06-07 07:58 - modeling.trainer - INFO - train - iter 109650: loss 3.0983, time 5.09s
|
06-07 07:58 - modeling.trainer - INFO - train - iter 109700: loss 3.1000, time 5.08s
|
06-07 07:58 - modeling.trainer - INFO - train - iter 109750: loss 3.1070, time 5.09s
|
06-07 07:58 - modeling.trainer - INFO - train - iter 109800: loss 3.1062, time 5.08s
|
06-07 07:58 - modeling.trainer - INFO - train - iter 109850: loss 3.1108, time 5.07s
|
06-07 07:58 - modeling.trainer - INFO - train - iter 109900: loss 3.1124, time 5.08s
|
06-07 07:58 - modeling.trainer - INFO - train - iter 109950: loss 3.1099, time 5.08s
|
06-07 07:58 - modeling.trainer - INFO - val - iter 110000: lm_loss 1.5363, value_loss 0.7565, time_loss 0.7072, loss 2.9999, time 4.23s
|
06-07 07:58 - modeling.trainer - INFO - new best val loss 2.9999
|
06-07 07:58 - modeling.trainer - INFO - saved checkpoint to models/ablations/half/best.pt
|
06-07 07:58 - modeling.trainer - INFO - saved checkpoint to models/ablations/half/last.pt
|
06-07 07:58 - modeling.trainer - INFO - train - iter 110000: loss 3.1026, time 16.81s
|
06-07 07:58 - modeling.trainer - INFO - train - iter 110050: loss 3.1086, time 5.08s
|
06-07 07:58 - modeling.trainer - INFO - train - iter 110100: loss 3.1145, time 5.09s
|
06-07 07:59 - modeling.trainer - INFO - train - iter 110150: loss 3.1011, time 5.09s
|
06-07 07:59 - modeling.trainer - INFO - train - iter 110200: loss 3.1011, time 5.07s
|
06-07 07:59 - modeling.trainer - INFO - train - iter 110250: loss 3.1066, time 5.07s
|
06-07 07:59 - modeling.trainer - INFO - train - iter 110300: loss 3.1107, time 5.07s
|
06-07 07:59 - modeling.trainer - INFO - train - iter 110350: loss 3.1092, time 5.07s
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.