text
stringlengths
54
260
06-11 05:34 - modeling.trainer - INFO - train - iter 1705900: loss 2.8460, time 6.62s
06-11 05:34 - modeling.trainer - INFO - train - iter 1705950: loss 2.8495, time 6.70s
06-11 05:34 - modeling.trainer - INFO - train - iter 1706000: loss 2.8443, time 6.63s
06-11 05:34 - modeling.trainer - INFO - train - iter 1706050: loss 2.8460, time 6.66s
06-11 05:34 - modeling.trainer - INFO - train - iter 1706100: loss 2.8468, time 6.67s
06-11 05:35 - modeling.trainer - INFO - train - iter 1706150: loss 2.8553, time 6.80s
06-11 05:35 - modeling.trainer - INFO - train - iter 1706200: loss 2.8556, time 6.87s
06-11 05:35 - modeling.trainer - INFO - train - iter 1706250: loss 2.8435, time 6.80s
06-11 05:35 - modeling.trainer - INFO - train - iter 1706300: loss 2.8455, time 6.65s
06-11 05:35 - modeling.trainer - INFO - train - iter 1706350: loss 2.8508, time 6.81s
06-11 05:35 - modeling.trainer - INFO - train - iter 1706400: loss 2.8441, time 6.74s
06-11 05:35 - modeling.trainer - INFO - train - iter 1706450: loss 2.8435, time 6.78s
06-11 05:35 - modeling.trainer - INFO - train - iter 1706500: loss 2.8546, time 6.87s
06-11 05:35 - modeling.trainer - INFO - train - iter 1706550: loss 2.8559, time 6.79s
06-11 05:36 - modeling.trainer - INFO - train - iter 1706600: loss 2.8512, time 6.78s
06-11 05:36 - modeling.trainer - INFO - train - iter 1706650: loss 2.8442, time 6.77s
06-11 05:36 - modeling.trainer - INFO - train - iter 1706700: loss 2.8400, time 6.70s
06-11 05:36 - modeling.trainer - INFO - train - iter 1706750: loss 2.8410, time 6.75s
06-11 05:36 - modeling.trainer - INFO - train - iter 1706800: loss 2.8511, time 6.73s
06-11 05:36 - modeling.trainer - INFO - train - iter 1706850: loss 2.8544, time 6.71s
06-11 05:36 - modeling.trainer - INFO - train - iter 1706900: loss 2.8486, time 6.70s
06-11 05:36 - modeling.trainer - INFO - train - iter 1706950: loss 2.8501, time 6.60s
06-11 05:36 - modeling.trainer - INFO - train - iter 1707000: loss 2.8578, time 6.70s
06-11 05:37 - modeling.trainer - INFO - train - iter 1707050: loss 2.8559, time 6.70s
06-11 05:37 - modeling.trainer - INFO - train - iter 1707100: loss 2.8532, time 7.67s
06-11 05:37 - modeling.trainer - INFO - train - iter 1707150: loss 2.8511, time 6.56s
06-11 05:37 - modeling.trainer - INFO - train - iter 1707200: loss 2.8456, time 6.74s
06-11 05:37 - modeling.trainer - INFO - train - iter 1707250: loss 2.8536, time 6.67s
06-11 05:37 - modeling.trainer - INFO - train - iter 1707300: loss 2.8511, time 6.64s
06-11 05:37 - modeling.trainer - INFO - train - iter 1707350: loss 2.8511, time 6.56s
06-11 05:37 - modeling.trainer - INFO - train - iter 1707400: loss 2.8516, time 6.58s
06-11 05:37 - modeling.trainer - INFO - train - iter 1707450: loss 2.8497, time 6.67s
06-11 05:38 - modeling.trainer - INFO - train - iter 1707500: loss 2.8532, time 6.69s
06-11 05:38 - modeling.trainer - INFO - train - iter 1707550: loss 2.8510, time 6.69s
06-11 05:38 - modeling.trainer - INFO - train - iter 1707600: loss 2.8539, time 6.69s
06-11 05:38 - modeling.trainer - INFO - train - iter 1707650: loss 2.8453, time 6.60s
06-11 05:38 - modeling.trainer - INFO - train - iter 1707700: loss 2.8405, time 6.64s
06-11 05:38 - modeling.trainer - INFO - train - iter 1707750: loss 2.8531, time 6.71s
06-11 05:38 - modeling.trainer - INFO - train - iter 1707800: loss 2.8554, time 6.66s
06-11 05:38 - modeling.trainer - INFO - train - iter 1707850: loss 2.8596, time 6.57s
06-11 05:38 - modeling.trainer - INFO - train - iter 1707900: loss 2.8405, time 6.62s
06-11 05:39 - modeling.trainer - INFO - train - iter 1707950: loss 2.8327, time 6.63s
06-11 05:39 - modeling.trainer - INFO - train - iter 1708000: loss 2.8472, time 6.72s
06-11 05:39 - modeling.trainer - INFO - train - iter 1708050: loss 2.8440, time 6.59s
06-11 05:39 - modeling.trainer - INFO - train - iter 1708100: loss 2.8526, time 6.66s
06-11 05:39 - modeling.trainer - INFO - train - iter 1708150: loss 2.8529, time 6.76s
06-11 05:39 - modeling.trainer - INFO - train - iter 1708200: loss 2.8464, time 6.69s
06-11 05:39 - modeling.trainer - INFO - train - iter 1708250: loss 2.8476, time 6.63s
06-11 05:39 - modeling.trainer - INFO - train - iter 1708300: loss 2.8495, time 6.67s
06-11 05:39 - modeling.trainer - INFO - train - iter 1708350: loss 2.8494, time 6.61s
06-11 05:40 - modeling.trainer - INFO - train - iter 1708400: loss 2.8528, time 6.61s
06-11 05:40 - modeling.trainer - INFO - train - iter 1708450: loss 2.8493, time 6.73s
06-11 05:40 - modeling.trainer - INFO - train - iter 1708500: loss 2.8416, time 6.74s
06-11 05:40 - modeling.trainer - INFO - train - iter 1708550: loss 2.8488, time 6.60s
06-11 05:40 - modeling.trainer - INFO - train - iter 1708600: loss 2.8456, time 6.63s
06-11 05:40 - modeling.trainer - INFO - train - iter 1708650: loss 2.8384, time 6.71s
06-11 05:40 - modeling.trainer - INFO - train - iter 1708700: loss 2.8420, time 6.73s
06-11 05:40 - modeling.trainer - INFO - train - iter 1708750: loss 2.8481, time 6.66s
06-11 05:40 - modeling.trainer - INFO - train - iter 1708800: loss 2.8506, time 6.58s
06-11 05:41 - modeling.trainer - INFO - train - iter 1708850: loss 2.8402, time 7.40s
06-11 05:41 - modeling.trainer - INFO - train - iter 1708900: loss 2.8507, time 6.76s
06-11 05:41 - modeling.trainer - INFO - train - iter 1708950: loss 2.8596, time 6.64s
06-11 05:41 - modeling.trainer - INFO - train - iter 1709000: loss 2.8583, time 6.58s
06-11 05:41 - modeling.trainer - INFO - train - iter 1709050: loss 2.8557, time 6.69s
06-11 05:41 - modeling.trainer - INFO - train - iter 1709100: loss 2.8445, time 6.74s
06-11 05:41 - modeling.trainer - INFO - train - iter 1709150: loss 2.8392, time 6.68s
06-11 05:41 - modeling.trainer - INFO - train - iter 1709200: loss 2.8452, time 6.77s
06-11 05:41 - modeling.trainer - INFO - train - iter 1709250: loss 2.8576, time 6.65s
06-11 05:42 - modeling.trainer - INFO - train - iter 1709300: loss 2.8571, time 6.72s
06-11 05:42 - modeling.trainer - INFO - train - iter 1709350: loss 2.8508, time 6.70s
06-11 05:42 - modeling.trainer - INFO - train - iter 1709400: loss 2.8463, time 6.68s
06-11 05:42 - modeling.trainer - INFO - train - iter 1709450: loss 2.8507, time 6.63s
06-11 05:42 - modeling.trainer - INFO - train - iter 1709500: loss 2.8478, time 6.67s
06-11 05:42 - modeling.trainer - INFO - train - iter 1709550: loss 2.8405, time 6.71s
06-11 05:42 - modeling.trainer - INFO - train - iter 1709600: loss 2.8495, time 6.66s
06-11 05:42 - modeling.trainer - INFO - train - iter 1709650: loss 2.8427, time 6.69s
06-11 05:42 - modeling.trainer - INFO - train - iter 1709700: loss 2.8390, time 6.66s
06-11 05:43 - modeling.trainer - INFO - train - iter 1709750: loss 2.8490, time 6.63s
06-11 05:43 - modeling.trainer - INFO - train - iter 1709800: loss 2.8497, time 6.51s
06-11 05:43 - modeling.trainer - INFO - train - iter 1709850: loss 2.8494, time 6.59s
06-11 05:43 - modeling.trainer - INFO - train - iter 1709900: loss 2.8524, time 6.66s
06-11 05:43 - modeling.trainer - INFO - train - iter 1709950: loss 2.8546, time 6.70s
06-11 05:43 - modeling.trainer - INFO - val - iter 1710000: lm_loss 1.3615, value_loss 0.7364, time_loss 0.6655, loss 2.7634, time 6.50s
06-11 05:43 - modeling.trainer - INFO - saved checkpoint to models/medium/last.pt
06-11 05:43 - modeling.trainer - INFO - train - iter 1710000: loss 2.8527, time 16.97s
06-11 05:43 - modeling.trainer - INFO - train - iter 1710050: loss 2.8498, time 6.65s
06-11 05:44 - modeling.trainer - INFO - train - iter 1710100: loss 2.8424, time 6.61s
06-11 05:44 - modeling.trainer - INFO - train - iter 1710150: loss 2.8419, time 6.72s
06-11 05:44 - modeling.trainer - INFO - train - iter 1710200: loss 2.8470, time 6.63s
06-11 05:44 - modeling.trainer - INFO - train - iter 1710250: loss 2.8444, time 6.65s
06-11 05:44 - modeling.trainer - INFO - train - iter 1710300: loss 2.8418, time 6.66s
06-11 05:44 - modeling.trainer - INFO - train - iter 1710350: loss 2.8438, time 6.65s
06-11 05:44 - modeling.trainer - INFO - train - iter 1710400: loss 2.8524, time 6.60s
06-11 05:44 - modeling.trainer - INFO - train - iter 1710450: loss 2.8407, time 6.63s
06-11 05:44 - modeling.trainer - INFO - train - iter 1710500: loss 2.8362, time 6.55s
06-11 05:45 - modeling.trainer - INFO - train - iter 1710550: loss 2.8500, time 7.34s
06-11 05:45 - modeling.trainer - INFO - train - iter 1710600: loss 2.8476, time 6.66s
06-11 05:45 - modeling.trainer - INFO - train - iter 1710650: loss 2.8439, time 6.59s
06-11 05:45 - modeling.trainer - INFO - train - iter 1710700: loss 2.8466, time 6.59s
06-11 05:45 - modeling.trainer - INFO - train - iter 1710750: loss 2.8425, time 6.64s