max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
experiments/specialization/main.py
mit-han-lab/inter-operator-scheduler
140
58633
<filename>experiments/specialization/main.py import json import argparse import numpy as np import os from ios.ir import Graph from ios.visualizer import draw, draw_block from ios.cost_model import IOSCostModel argparser = argparse.ArgumentParser() argparser.add_argument('--edir', type=str, required=True) argparser.add_argument('--ename', type=str, required=True) argparser.add_argument('--device', type=str, required=True, choices=['k80', 'v100']) argparser.add_argument('--graph', type=str, required=True) argparser.add_argument('--bs', type=int, required=True) argparser.add_argument('--warmup', type=int, required=False, default=2) argparser.add_argument('--number', type=int, required=False, default=6) argparser.add_argument('--repeat', type=int, required=False, default=6) args = argparser.parse_args() expr_dir = f'./outputs/{args.edir}/{args.ename}-{args.device}-g{args.graph}-bs{args.bs}-{args.warmup}-{args.number}-{args.repeat}' #os.makedirs("./outputs", exist_ok=True) #os.makedirs(f"./outputs/{args.ename}", exist_ok=True) os.makedirs(expr_dir, exist_ok=True) def summary_str(latency): if args.edir == 'batchsize': g, e = args.ename.split('_') g = g[3:] e = e[3:] return f'Optimized for BS {g:<3} Execute with BS {e:<3} Latency: {latency:.2f} ms' elif args.edir == 'device': g, e = args.ename.split('_on_') return f'Optimized for {g:<4} Execute with {e:<4} Latency: {latency:.2f} ms' else: raise ValueError def main(): logs = {} with open(f'schedules/{args.graph}.json', 'r') as f: graph = Graph.from_config(json.load(f)) cost_model = IOSCostModel() name = graph.name graph_latency = cost_model.get_graph_latency(graph, args.bs, warmup=args.warmup, number=args.number, repeat=args.repeat) block_latency = [np.mean(cost_model.get_block_latency(block, args.bs, args.warmup, args.number, args.repeat)) for block in graph.blocks] logs[name] = {} logs[name]['latency'] = graph_latency logs[name]['mean'] = float(np.mean(graph_latency)) logs[name]['std'] = float(np.std(graph_latency)) logs[name]['block_latency'] = block_latency summary = summary_str(np.mean(graph_latency)) print(summary) for bindex, block in enumerate(graph.blocks): block_dir = f'{expr_dir}/{name}_blocks' os.makedirs(block_dir, exist_ok=True) draw_block(block, f'{block_dir}/{bindex}.png', f'{name} block {bindex}, latency {block_latency[bindex]:.3f}') draw(graph, f"{expr_dir}/{name}.png", label=f'{name}, latency {float(np.mean(graph_latency)):.3f}') with open(f"{expr_dir}/{name}.json", "w") as f: json.dump(graph.export_config(), f, indent=2) with open(f'{expr_dir}/latency.json', 'w') as f: json.dump(logs, f, indent=2) with open(f'{expr_dir}/summary.txt', 'w') as f: f.write(summary + "\n") with open(f'{expr_dir}/arguments.txt', 'w') as f: json.dump(args.__dict__, f, indent=2) main()
data_managers/data_manager_diamond_database_builder/data_manager/data_manager_diamond_database_builder.py
supernord/tools-iuc
142
58670
#!/usr/bin/env python import bz2 import gzip import json import optparse import os import shutil import subprocess import sys import tarfile import tempfile import urllib.error import urllib.parse import urllib.request import zipfile from ftplib import FTP CHUNK_SIZE = 2**20 # 1mb def cleanup_before_exit(tmp_dir): if tmp_dir and os.path.exists(tmp_dir): shutil.rmtree(tmp_dir) def _get_files_in_ftp_path(ftp, path): path_contents = [] ftp.retrlines('MLSD %s' % (path), path_contents.append) return [line.split(';')[-1].lstrip() for line in path_contents] def _get_stream_readers_for_tar(file_obj, tmp_dir): fasta_tar = tarfile.open(fileobj=file_obj, mode='r:*') return [fasta_tar.extractfile(member) for member in fasta_tar.getmembers()] def _get_stream_readers_for_zip(file_obj, tmp_dir): fasta_zip = zipfile.ZipFile(file_obj, 'r') rval = [] for member in fasta_zip.namelist(): fasta_zip.extract(member, tmp_dir) rval.append(open(os.path.join(tmp_dir, member), 'rb')) return rval def _get_stream_readers_for_gzip(file_obj, tmp_dir): return [gzip.GzipFile(fileobj=file_obj, mode='rb')] def _get_stream_readers_for_bz2(file_obj, tmp_dir): return [bz2.BZ2File(file_obj.name, 'rb')] def download_from_ncbi(data_manager_dict, params, target_directory, database_id, database_name): NCBI_FTP_SERVER = 'ftp.ncbi.nlm.nih.gov' NCBI_DOWNLOAD_PATH = '/blast/db/FASTA/' COMPRESSED_EXTENSIONS = [('.tar.gz', _get_stream_readers_for_tar), ('.tar.bz2', _get_stream_readers_for_tar), ('.zip', _get_stream_readers_for_zip), ('.gz', _get_stream_readers_for_gzip), ('.bz2', _get_stream_readers_for_bz2)] ncbi_identifier = params['reference_source']['requested_identifier'] ftp = FTP(NCBI_FTP_SERVER) ftp.login() path_contents = _get_files_in_ftp_path(ftp, NCBI_DOWNLOAD_PATH) ncbi_file_name = None get_stream_reader = None ext = None for ext, get_stream_reader in COMPRESSED_EXTENSIONS: if "%s%s" % (ncbi_identifier, ext) in path_contents: ncbi_file_name = "%s%s%s" % (NCBI_DOWNLOAD_PATH, ncbi_identifier, ext) break if not ncbi_file_name: raise Exception('Unable to determine filename for NCBI database for %s: %s' % (ncbi_identifier, path_contents)) tmp_dir = tempfile.mkdtemp(prefix='tmp-data-manager-ncbi-') ncbi_fasta_filename = os.path.join(tmp_dir, "%s%s" % (ncbi_identifier, ext)) # fasta_base_filename = "%s.fa" % database_id # fasta_filename = os.path.join(target_directory, fasta_base_filename) # fasta_writer = open(fasta_filename, 'wb+') tmp_extract_dir = os.path.join(tmp_dir, 'extracted_fasta') os.mkdir(tmp_extract_dir) tmp_fasta = open(ncbi_fasta_filename, 'wb+') ftp.retrbinary('RETR %s' % ncbi_file_name, tmp_fasta.write) tmp_fasta.flush() tmp_fasta.seek(0) fasta_readers = get_stream_reader(tmp_fasta, tmp_extract_dir) data_table_entry = _stream_fasta_to_file(fasta_readers, target_directory, database_id, database_name, params) _add_data_table_entry(data_manager_dict, data_table_entry) for fasta_reader in fasta_readers: fasta_reader.close() tmp_fasta.close() cleanup_before_exit(tmp_dir) def download_from_url(data_manager_dict, params, target_directory, database_id, database_name): # TODO: we should automatically do decompression here urls = list(filter(bool, [x.strip() for x in params['reference_source']['user_url'].split('\n')])) fasta_reader = [urllib.request.urlopen(url) for url in urls] data_table_entry = _stream_fasta_to_file(fasta_reader, target_directory, database_id, database_name, params) _add_data_table_entry(data_manager_dict, data_table_entry) def download_from_history(data_manager_dict, params, target_directory, database_id, database_name): # TODO: allow multiple FASTA input files input_filename = params['reference_source']['input_fasta'] if isinstance(input_filename, list): fasta_reader = [open(filename, 'rb') for filename in input_filename] else: fasta_reader = open(input_filename, 'rb') data_table_entry = _stream_fasta_to_file(fasta_reader, target_directory, database_id, database_name, params) _add_data_table_entry(data_manager_dict, data_table_entry) def copy_from_directory(data_manager_dict, params, target_directory, database_id, database_name): input_filename = params['reference_source']['fasta_filename'] create_symlink = params['reference_source']['create_symlink'] == 'create_symlink' if create_symlink: data_table_entry = _create_symlink(input_filename, target_directory, database_id, database_name) else: if isinstance(input_filename, list): fasta_reader = [open(filename, 'rb') for filename in input_filename] else: fasta_reader = open(input_filename) data_table_entry = _stream_fasta_to_file(fasta_reader, target_directory, database_id, database_name, params) _add_data_table_entry(data_manager_dict, data_table_entry) def _add_data_table_entry(data_manager_dict, data_table_entry): data_manager_dict['data_tables'] = data_manager_dict.get('data_tables', {}) data_manager_dict['data_tables']['diamond_database'] = data_manager_dict['data_tables'].get('diamond_database', []) data_manager_dict['data_tables']['diamond_database'].append(data_table_entry) return data_manager_dict def _stream_fasta_to_file(fasta_stream, target_directory, database_id, database_name, params, close_stream=True): fasta_base_filename = "%s.fa" % database_id fasta_filename = os.path.join(target_directory, fasta_base_filename) temp_fasta = tempfile.NamedTemporaryFile(delete=False, suffix=".fasta") temp_fasta.close() fasta_writer = open(temp_fasta.name, 'wb+') if not isinstance(fasta_stream, list): fasta_stream = [fasta_stream] last_char = None for fh in fasta_stream: if last_char not in [None, '\n', '\r']: fasta_writer.write('\n') while True: data = fh.read(CHUNK_SIZE) if data: fasta_writer.write(data) last_char = data[-1] else: break if close_stream: fh.close() fasta_writer.close() args = ['diamond', 'makedb', '--in', temp_fasta.name, '--db', fasta_filename] if params['tax_cond']['tax_select'] == "history": for i in ["taxonmap", "taxonnodes", "taxonnames"]: args.extend(['--' + i, params['tax_cond'][i]]) elif params['tax_cond']['tax_select'] == "ncbi": if os.path.isfile(os.path.join(params['tax_cond']['ncbi_tax'], 'prot.accession2taxid.FULL.gz')): args.extend(['--taxonmap', os.path.join(params['tax_cond']['ncbi_tax'], 'prot.accession2taxid.FULL.gz')]) elif os.path.isfile(os.path.join(params['tax_cond']['ncbi_tax'], 'prot.accession2taxid.FULL')): args.extend(['--taxonmap', os.path.join(params['tax_cond']['ncbi_tax'], 'prot.accession2taxid.FULL')]) elif os.path.isfile(os.path.join(params['tax_cond']['ncbi_tax'], 'prot.accession2taxid.gz')): args.extend(['--taxonmap', os.path.join(params['tax_cond']['ncbi_tax'], 'prot.accession2taxid.gz')]) elif os.path.isfile(os.path.join(params['tax_cond']['ncbi_tax'], 'prot.accession2taxid')): args.extend(['--taxonmap', os.path.join(params['tax_cond']['ncbi_tax'], 'prot.accession2taxid')]) else: raise Exception('Unable to find prot.accession2taxid file in %s' % (params['tax_cond']['ncbi_tax'])) args.extend(['--taxonnodes', os.path.join(params['tax_cond']['ncbi_tax'], 'nodes.dmp')]) args.extend(['--taxonnames', os.path.join(params['tax_cond']['ncbi_tax'], 'names.dmp')]) tmp_stderr = tempfile.NamedTemporaryFile(prefix="tmp-data-manager-diamond-database-builder-stderr") proc = subprocess.Popen(args=args, shell=False, cwd=target_directory, stderr=tmp_stderr.fileno()) return_code = proc.wait() if return_code: tmp_stderr.flush() tmp_stderr.seek(0) print("Error building diamond database:", file=sys.stderr) while True: chunk = tmp_stderr.read(CHUNK_SIZE) if not chunk: break sys.stderr.write(chunk.decode('utf-8')) sys.exit(return_code) tmp_stderr.close() os.remove(temp_fasta.name) return dict(value=database_id, name=database_name, db_path="%s.dmnd" % fasta_base_filename) def _create_symlink(input_filename, target_directory, database_id, database_name): fasta_base_filename = "%s.fa" % database_id fasta_filename = os.path.join(target_directory, fasta_base_filename) os.symlink(input_filename, fasta_filename) return dict(value=database_id, name=database_name, db_path=fasta_base_filename) REFERENCE_SOURCE_TO_DOWNLOAD = dict(ncbi=download_from_ncbi, url=download_from_url, history=download_from_history, directory=copy_from_directory) def main(): # Parse Command Line parser = optparse.OptionParser() parser.add_option('-d', '--dbkey_description', dest='dbkey_description', action='store', type="string", default=None, help='dbkey_description') (options, args) = parser.parse_args() filename = args[0] with open(filename) as fp: params = json.load(fp) target_directory = params['output_data'][0]['extra_files_path'] os.mkdir(target_directory) data_manager_dict = {} param_dict = params['param_dict'] database_id = param_dict['database_id'] database_name = param_dict['database_name'] if param_dict['tax_cond']['tax_select'] == "ncbi": param_dict['tax_cond']['ncbi_tax'] = args[1] # Fetch the FASTA REFERENCE_SOURCE_TO_DOWNLOAD[param_dict['reference_source']['reference_source_selector']](data_manager_dict, param_dict, target_directory, database_id, database_name) # save info to json file open(filename, 'w').write(json.dumps(data_manager_dict, sort_keys=True)) if __name__ == "__main__": main()
deep-rl/lib/python2.7/site-packages/OpenGL/raw/GL/VERSION/GL_4_4.py
ShujaKhalid/deep-rl
210
58707
'''Autogenerated by xml_generate script, do not edit!''' from OpenGL import platform as _p, arrays # Code generation uses this from OpenGL.raw.GL import _types as _cs # End users want this... from OpenGL.raw.GL._types import * from OpenGL.raw.GL import _errors from OpenGL.constant import Constant as _C import ctypes _EXTENSION_NAME = 'GL_VERSION_GL_4_4' def _f( function ): return _p.createFunction( function,_p.PLATFORM.GL,'GL_VERSION_GL_4_4',error_checker=_errors._error_checker) GL_BUFFER_IMMUTABLE_STORAGE=_C('GL_BUFFER_IMMUTABLE_STORAGE',0x821F) GL_BUFFER_STORAGE_FLAGS=_C('GL_BUFFER_STORAGE_FLAGS',0x8220) GL_CLEAR_TEXTURE=_C('GL_CLEAR_TEXTURE',0x9365) GL_CLIENT_MAPPED_BUFFER_BARRIER_BIT=_C('GL_CLIENT_MAPPED_BUFFER_BARRIER_BIT',0x00004000) GL_CLIENT_STORAGE_BIT=_C('GL_CLIENT_STORAGE_BIT',0x0200) GL_DYNAMIC_STORAGE_BIT=_C('GL_DYNAMIC_STORAGE_BIT',0x0100) GL_LOCATION_COMPONENT=_C('GL_LOCATION_COMPONENT',0x934A) GL_MAP_COHERENT_BIT=_C('GL_MAP_COHERENT_BIT',0x0080) GL_MAP_PERSISTENT_BIT=_C('GL_MAP_PERSISTENT_BIT',0x0040) GL_MAP_READ_BIT=_C('GL_MAP_READ_BIT',0x0001) GL_MAP_WRITE_BIT=_C('GL_MAP_WRITE_BIT',0x0002) GL_MAX_VERTEX_ATTRIB_STRIDE=_C('GL_MAX_VERTEX_ATTRIB_STRIDE',0x82E5) GL_MIRROR_CLAMP_TO_EDGE=_C('GL_MIRROR_CLAMP_TO_EDGE',0x8743) GL_PRIMITIVE_RESTART_FOR_PATCHES_SUPPORTED=_C('GL_PRIMITIVE_RESTART_FOR_PATCHES_SUPPORTED',0x8221) GL_QUERY_BUFFER=_C('GL_QUERY_BUFFER',0x9192) GL_QUERY_BUFFER_BARRIER_BIT=_C('GL_QUERY_BUFFER_BARRIER_BIT',0x00008000) GL_QUERY_BUFFER_BINDING=_C('GL_QUERY_BUFFER_BINDING',0x9193) GL_QUERY_RESULT_NO_WAIT=_C('GL_QUERY_RESULT_NO_WAIT',0x9194) GL_STENCIL_INDEX=_C('GL_STENCIL_INDEX',0x1901) GL_STENCIL_INDEX8=_C('GL_STENCIL_INDEX8',0x8D48) GL_TEXTURE_BUFFER_BINDING=_C('GL_TEXTURE_BUFFER_BINDING',0x8C2A) GL_TRANSFORM_FEEDBACK_BUFFER=_C('GL_TRANSFORM_FEEDBACK_BUFFER',0x8C8E) GL_TRANSFORM_FEEDBACK_BUFFER_INDEX=_C('GL_TRANSFORM_FEEDBACK_BUFFER_INDEX',0x934B) GL_TRANSFORM_FEEDBACK_BUFFER_STRIDE=_C('GL_TRANSFORM_FEEDBACK_BUFFER_STRIDE',0x934C) GL_UNSIGNED_INT_10F_11F_11F_REV=_C('GL_UNSIGNED_INT_10F_11F_11F_REV',0x8C3B) @_f @_p.types(None,_cs.GLenum,_cs.GLuint,_cs.GLsizei,arrays.GLuintArray) def glBindBuffersBase(target,first,count,buffers):pass @_f @_p.types(None,_cs.GLenum,_cs.GLuint,_cs.GLsizei,arrays.GLuintArray,ctypes.POINTER(_cs.GLintptr),ctypes.POINTER(_cs.GLsizeiptr)) def glBindBuffersRange(target,first,count,buffers,offsets,sizes):pass @_f @_p.types(None,_cs.GLuint,_cs.GLsizei,arrays.GLuintArray) def glBindImageTextures(first,count,textures):pass @_f @_p.types(None,_cs.GLuint,_cs.GLsizei,arrays.GLuintArray) def glBindSamplers(first,count,samplers):pass @_f @_p.types(None,_cs.GLuint,_cs.GLsizei,arrays.GLuintArray) def glBindTextures(first,count,textures):pass @_f @_p.types(None,_cs.GLuint,_cs.GLsizei,arrays.GLuintArray,ctypes.POINTER(_cs.GLintptr),arrays.GLsizeiArray) def glBindVertexBuffers(first,count,buffers,offsets,strides):pass @_f @_p.types(None,_cs.GLenum,_cs.GLsizeiptr,ctypes.c_void_p,_cs.GLbitfield) def glBufferStorage(target,size,data,flags):pass @_f @_p.types(None,_cs.GLuint,_cs.GLint,_cs.GLenum,_cs.GLenum,ctypes.c_void_p) def glClearTexImage(texture,level,format,type,data):pass @_f @_p.types(None,_cs.GLuint,_cs.GLint,_cs.GLint,_cs.GLint,_cs.GLint,_cs.GLsizei,_cs.GLsizei,_cs.GLsizei,_cs.GLenum,_cs.GLenum,ctypes.c_void_p) def glClearTexSubImage(texture,level,xoffset,yoffset,zoffset,width,height,depth,format,type,data):pass
tools/benchmark/asaga_spase_url.py
sumau/tick
411
58715
<filename>tools/benchmark/asaga_spase_url.py import os from tick.array.serialize import tick_double_sparse2d_from_file, \ tick_double_array_from_file from tick.linear_model.model_logreg import ModelLogReg from tick.prox.prox_elasticnet import ProxElasticNet from tick.solver.saga import SAGA # Create this dataset with benchmark_util dirpath = os.path.dirname(__file__) features_path = os.path.join(dirpath, "data", "url.3.features.cereal") labels_path = os.path.join(dirpath, "data", "url.3.labels.cereal") N_ITER = 200 n_samples = 196000 ALPHA = 1. / n_samples BETA = 1e-10 STRENGTH = ALPHA + BETA RATIO = BETA / STRENGTH THREADS = 8 features = tick_double_sparse2d_from_file(features_path) labels = tick_double_array_from_file(labels_path) model = ModelLogReg().fit(features, labels) prox = ProxElasticNet(STRENGTH, RATIO) saga = SAGA( max_iter=N_ITER, tol=0, rand_type="unif", step=0.00257480411965, n_threads=THREADS, verbose=False, record_every=20, ) saga.history.print_order += ['time'] saga.set_model(model).set_prox(prox) saga.solve() saga.print_history()
Python/HelloWorld_Spanish.py
saurabhcommand/Hello-world
1,428
58718
print("Hola, el mundo!")
exercises/de/test_04_11_01.py
Jette16/spacy-course
2,085
58760
<gh_stars>1000+ def test(): assert ( len(TRAINING_DATA) == 3 ), "Irgendetwas scheint mit deinen Daten nicht zu stimmen. Erwartet werden 3 Beispiele." assert all( len(entry) == 2 and isinstance(entry[1], dict) for entry in TRAINING_DATA ), "Die Trainingsdaten haben nicht das richtige Format. Erwartet wird eine Liste von Tuples, bestehend aus Text und einem Dictionary als zweites Element." ents = [entry[1].get("entities", []) for entry in TRAINING_DATA] assert len(ents[0]) == 2, "Das erste Beispiel sollte zwei Entitäten enhalten." ent_0_0 = (0, 6, "WEBSITE") ent_0_1 = (11, 18, "WEBSITE") assert ( ents[0][0] == ent_0_0 ), "Überprüfe nochmal die erste Entität im ersten Beispiel." assert ( ents[0][1] == ent_0_1 ), "Überprüfe nochmal die zweite Entität im ersten Beispiel." assert len(ents[1]) == 1, "Das zweite Beispiel sollte eine Entität enthalten." assert ents[1] == [ (28, 35, "WEBSITE",) ], "Überprüfe nochmal die Entität im zweiten Beispiel." assert len(ents[2]) == 1, "Das dritte Beispiel sollte eine Entität enthalten." assert ents[2] == [ (15, 21, "WEBSITE",) ], "Überprüfe nochmal die Entität im dritten Beispiel." __msg__.good("Sehr schön!")
PWGJE/EMCALJetTasks/Tracks/analysis/plots/TriggerEfficiencyPlotMC.py
maroozm/AliPhysics
114
58801
<filename>PWGJE/EMCALJetTasks/Tracks/analysis/plots/TriggerEfficiencyPlotMC.py #************************************************************************** #* Copyright(c) 1998-2014, ALICE Experiment at CERN, All rights reserved. * #* * #* Author: The ALICE Off-line Project. * #* Contributors are mentioned in the code where appropriate. * #* * #* Permission to use, copy, modify and distribute this software and its * #* documentation strictly for non-commercial purposes is hereby granted * #* without fee, provided that the above copyright notice appears in all * #* copies and that both the copyright notice and this permission notice * #* appear in the supporting documentation. The authors make no claims * #* about the suitability of this software for any purpose. It is * #* provided "as is" without express or implied warranty. * #************************************************************************** """ Comparison plot of trigger efficiencies in MC in different pt-hat bins including underlying data structure @author: <NAME> """ from PWG.PWGJE.EMCALJetTasks.Tracks.analysis.base.Graphics import SinglePanelPlot, GraphicsObject, Frame, Style from PWG.PWGJE.EMCALJetTasks.Tracks.analysis.base.ComparisonData import ComparisonData, ComparisonObject, ComparisonPlot from ROOT import TFile,kBlack class TriggerEfficiencyClassPtHat(ComparisonObject): def __init__(self, pthatbin, triggerdata, style): ComparisonObject.__init__(self, triggerdata, style) self.__pthatbin = pthatbin def GetLegendTitle(self): return "p_{t}-hat bin %d" %(self.__pthatbin) def GetObjectName(self): return "pthat%d" %(self.__pthatbin) class TriggerEfficiencyClassTriggerType(ComparisonObject): def __init__(self, triggername, triggerdata, style): ComparisonObject.__init__(self, triggerdata, style) self.__triggername = triggername def GetLegendTitle(self): return self.__triggername def GetObjectName(self): return self.__triggername class TriggerEfficiencyContainer(ComparisonData): """ Underlying data structure for the comparison plot """ def __init__(self): """ Initialise container """ ComparisonData.__init__(self) def AddEfficiency(self, trclasstype, key, efficiencyCurve, style): """ Add new trigger ifno """ triggerdata = None if trclasstype == "pthat": triggerdata = TriggerEfficiencyClassPtHat(key, efficiencyCurve, style) elif trclasstype == "triggertype": triggerdata = TriggerEfficiencyClassTriggerType(key, efficiencyCurve, style) self.AddEntry(triggerdata) class TriggerEfficiencyFrame(Frame): """ Frame class for trigger efficiency plots """ def __init__(self, name): """ Constructor """ Frame.__init__(self, name, 0., 100., 0., 1.) self.SetXtitle("p_{t} (GeV/c)") self.SetYtitle("Trigger efficiency") class TriggerEfficiencyPlotMC(ComparisonPlot): """ Comparison plot of trigger efficiencies in different pt-hat bins """ def __init__(self): """ Constructor """ ComparisonPlot.__init__(self) self._comparisonContainer = TriggerEfficiencyContainer() self.SetFrame(TriggerEfficiencyFrame("tframe")) self.SetLegendAttributes(0.65, 0.15, 0.89, 0.5) self.__triggername = "" def SetTriggerName(self, trname): """ Set triggername for the label """ self.__triggername = trname def AddEfficiency(self, pthatbin, efficiency, style): """ Add new efficiency container to the data structure """ self._comparisonContainer.AddEfficiency("pthat", pthatbin, efficiency, style) def Create(self): """ Create the plot """ self._Create("triggerEfficiencyMC", "MC trigger efficiency plot") if len(self.__triggername): pad = self._GetFramedPad() pad.DrawLabel(0.15, 0.8, 0.5, 0.85, self.__triggername) class TriggerEfficiencyPlotClasses(ComparisonPlot): """ Plot comparing the trigger efficiency of different trigger types """ def __init__(self): """ Constructor """ ComparisonPlot.__init__(self) self._comparisonContainer = TriggerEfficiencyContainer() self.SetFrame(TriggerEfficiencyFrame("tframe")) self.SetLegendAttributes(0.65, 0.15, 0.89, 0.5) def AddTriggerEfficiency(self, triggername, efficiency, style): """ Add trigger class to the comparison data """ self._comparisonContainer.AddEfficiency("triggertype", triggername, efficiency, style) def Create(self): self._Create("triggerclasses", "Trigger efficiencies") class TriggerEfficiencySumPlot(SinglePanelPlot): """ Plot the summed trigger efficiency from different pt-hard bins """ def __init__(self, triggername, triggerefficiency): """ Constructor """ SinglePanelPlot.__init__(self) self.__triggername = triggername self.__triggereff = triggerefficiency def Create(self): """ Create the plot """ self._OpenCanvas("trgEffSumm", "Summed trigger efficiency") pad = self._GetFramedPad() pad.DrawFrame(TriggerEfficiencyFrame("tframe")) pad.DrawGraphicsObject(GraphicsObject(self.__triggereff.GetEfficiencyCurve(), Style(kBlack, 20)), False, "Trigger Eff") pad.DrawLabel(0.5, 0.2, 0.89, 0.25, "Trigger: %s" %(self.__triggername))
tests/physicalvalidation/physical_validation/data/gromacs_parser.py
hejamu/gromacs
384
58812
<reponame>hejamu/gromacs ########################################################################### # # # physical_validation, # # a python package to test the physical validity of MD results # # # # Written by <NAME> <<EMAIL>> # # <NAME> <<EMAIL>> # # # # Copyright (C) 2012 University of Virginia # # (C) 2017 University of Colorado Boulder # # # # This library is free software; you can redistribute it and/or # # modify it under the terms of the GNU Lesser General Public # # License as published by the Free Software Foundation; either # # version 2.1 of the License, or (at your option) any later version. # # # # This library is distributed in the hope that it will be useful, # # but WITHOUT ANY WARRANTY; without even the implied warranty of # # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # # Lesser General Public License for more details. # # # # You should have received a copy of the GNU Lesser General Public # # License along with this library; if not, write to the # # Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, # # Boston, MA 02110-1301 USA # # # ########################################################################### r""" gromacs_parser.py """ import warnings import numpy as np from . import parser # py2.7 compatibility from .simulation_data import SimulationData from .unit_data import UnitData from .ensemble_data import EnsembleData from .system_data import SystemData from .observable_data import ObservableData from .trajectory_data import TrajectoryData # replace lines above by this when py2.7 support is dropped: # from . import SimulationData, UnitData, EnsembleData, SystemData, ObservableData, TrajectoryData from ..util.gromacs_interface import GromacsInterface from ..util import error as pv_error class GromacsParser(parser.Parser): """ GromacsParser """ @staticmethod def units(): # Gromacs uses kJ/mol return UnitData( kb=8.314462435405199e-3, energy_str='kJ/mol', energy_conversion=1.0, length_str='nm', length_conversion=1.0, volume_str='nm^3', volume_conversion=1.0, temperature_str='K', temperature_conversion=1.0, pressure_str='bar', pressure_conversion=1.0, time_str='ps', time_conversion=1.0) def __init__(self, exe=None, includepath=None): r""" Create a GromacsParser object Parameters ---------- exe: str, optional Path to a gmx executable (or simply the executable name, if it is in the path) Default: Looks for `gmx`, then for `gmx_d` in the path. If neither is found, `exe` is set to None, and any parsing including simulation trajectories (`edr`, `trr` and `gro` arguments in `get_simulation_data()`) will fail. includepath: str or List[str], optional Path or list of paths to location(s) of topology file. Is used for the lookup of `#include` statements in topologies. Default: None - no additional topology location. Lookup will be restricted to current directory and location of the `top` file given to `get_simulation_data()`, plus any include locations added to the `mdp` file. """ super(GromacsParser, self).__init__() self.__interface = GromacsInterface(exe=exe, includepath=includepath) # gmx energy codes self.__gmx_energy_names = {'kinetic_energy': 'Kinetic-En.', 'potential_energy': 'Potential', 'total_energy': 'Total-Energy', 'volume': 'Volume', 'pressure': 'Pressure', 'temperature': 'Temperature', 'constant_of_motion': 'Conserved-En.'} def get_simulation_data(self, mdp=None, top=None, edr=None, trr=None, gro=None): r""" Parameters ---------- mdp: str, optional A string pointing to a .mdp file top: str, optional A string pointing to a .top file edr: str, optional A string pointing to a .edr file trr: str, optional A string pointing to a .trr file gro: str, optional A string pointing to a .gro file (Note: if also trr is given, gro is ignored) Returns ------- result: SimulationData A SimulationData filled with the results of the simulation as described by the provided GROMACS files. """ result = SimulationData() result.units = self.units() # trajectories (might be used later for the box...) trajectory_dict = None if trr is not None: if gro is not None: warnings.warn('`trr` and `gro` given. Ignoring `gro`.') trajectory_dict = self.__interface.read_trr(trr) result.trajectory = TrajectoryData( trajectory_dict['position'], trajectory_dict['velocity']) elif gro is not None: trajectory_dict = self.__interface.read_gro(gro) result.trajectory = TrajectoryData( trajectory_dict['position'], trajectory_dict['velocity']) # simulation parameters & system if mdp is not None and top is not None: mdp_options = self.__interface.read_mdp(mdp) define = None include = None if 'define' in mdp_options: define = mdp_options['define'] if 'include' in mdp_options: include = mdp_options['include'] molecules = self.__interface.read_system_from_top(top, define=define, include=include) if 'dt' in mdp_options: result.dt = float(mdp_options['dt']) natoms = 0 mass = [] constraints_per_molec = [] angles = ('constraints' in mdp_options and mdp_options['constraints'] == 'all-angles') angles_h = (angles or 'constraints' in mdp_options and mdp_options['constraints'] == 'h-angles') bonds = (angles_h or 'constraints' in mdp_options and mdp_options['constraints'] == 'all-bonds') bonds_h = (bonds or 'constraints' in mdp_options and mdp_options['constraints'] == 'h-bonds') molecule_idx = [] next_molec = 0 molec_bonds = [] molec_bonds_constrained = [] for molecule in molecules: natoms += molecule['nmolecs'] * molecule['natoms'] for n in range(0, molecule['nmolecs']): molecule_idx.append(next_molec) next_molec += molecule['natoms'] mass.extend(molecule['mass'] * molecule['nmolecs']) constraints = 0 constrained_bonds = [] all_bonds = molecule['bonds'] + molecule['bondsh'] if molecule['settles']: constraints = 3 constrained_bonds = all_bonds else: if bonds: constraints += molecule['nbonds'][0] constrained_bonds.extend(molecule['bonds']) if bonds_h: constraints += molecule['nbonds'][1] constrained_bonds.extend(molecule['bondsh']) if angles: constraints += molecule['nangles'][0] if angles_h: constraints += molecule['nangles'][1] constraints_per_molec.extend([constraints] * molecule['nmolecs']) molec_bonds.extend([all_bonds] * molecule['nmolecs']) molec_bonds_constrained.extend([constrained_bonds] * molecule['nmolecs']) system = SystemData() system.natoms = natoms system.mass = mass system.molecule_idx = molecule_idx system.nconstraints = np.sum(constraints_per_molec) system.nconstraints_per_molecule = constraints_per_molec system.ndof_reduction_tra = 3 system.ndof_reduction_rot = 0 if 'comm-mode' in mdp_options: if mdp_options['comm-mode'] == 'linear': system.ndof_reduction_tra = 3 elif mdp_options['comm-mode'] == 'angular': system.ndof_reduction_tra = 3 system.ndof_reduction_rot = 3 if mdp_options['comm-mode'] == 'none': system.ndof_reduction_tra = 0 system.bonds = molec_bonds system.constrained_bonds = molec_bonds_constrained result.system = system thermostat = ('tcoupl' in mdp_options and mdp_options['tcoupl'] and mdp_options['tcoupl'] != 'no') stochastic_dyn = ('integrator' in mdp_options and mdp_options['integrator'] in ['sd', 'sd2', 'bd']) constant_temp = thermostat or stochastic_dyn temperature = None if constant_temp: ref_t = [float(t) for t in mdp_options['ref-t'].split()] if len(ref_t) == 1 or np.allclose(ref_t, [ref_t[0]]*len(ref_t)): temperature = ref_t[0] else: raise pv_error.InputError('mdp', 'Ensemble definition ambiguous: Different t-ref values found.') constant_press = ('pcoupl' in mdp_options and mdp_options['pcoupl'] and mdp_options['pcoupl'] != 'no') volume = None pressure = None if constant_press: ref_p = [float(p) for p in mdp_options['ref-p'].split()] if len(ref_p) == 1 or np.allclose(ref_p, [ref_p[0]]*len(ref_p)): pressure = ref_p[0] else: raise pv_error.InputError('mdp', 'Ensemble definition ambiguous: Different p-ref values found.') else: if trajectory_dict is not None: box = trajectory_dict['box'][0] # Different box shapes? volume = box[0]*box[1]*box[2] else: warnings.warn('Constant volume simulation with undefined volume.') if constant_temp and constant_press: ens = 'NPT' elif constant_temp: ens = 'NVT' else: ens = 'NVE' if ens == 'NVE': self.__gmx_energy_names['constant_of_motion'] = 'Total-Energy' else: self.__gmx_energy_names['constant_of_motion'] = 'Conserved-En.' result.ensemble = EnsembleData( ens, natoms=natoms, volume=volume, pressure=pressure, temperature=temperature ) if edr is not None: observable_dict = self.__interface.get_quantities(edr, self.__gmx_energy_names.values(), args=['-dp']) # constant volume simulations don't write out the volume in .edr file if (observable_dict['Volume'] is None and result.ensemble is not None and result.ensemble.volume is not None): nframes = observable_dict['Pressure'].size observable_dict['Volume'] = np.ones(nframes) * result.ensemble.volume result.observables = ObservableData() for key, gmxkey in self.__gmx_energy_names.items(): result.observables[key] = observable_dict[gmxkey] return result
wardroom/aws.py
jpweber/wardroom
171
58893
<reponame>jpweber/wardroom import logging import sys import time import boto3 import click logger = logging.getLogger(name=__name__) logger.setLevel(logging.INFO) handler = logging.StreamHandler(sys.stderr) logger.addHandler(handler) yaml_template =''' {}: '64': {} '''.strip('\r\n') def copy_to_region(image, src_region, dest_region): session = boto3.session.Session(region_name=dest_region) local_client = session.client('ec2') logger.info("creating image in region {}".format(dest_region)) resp = local_client.copy_image( Name=image.name, SourceImageId=image.image_id, SourceRegion=src_region, ) local_ec2 = session.resource('ec2') new_image = local_ec2.Image(resp['ImageId']) return (new_image, dest_region) def make_public_and_tag(image, region, desc): while True: image.load() if image.state == 'available': image.modify_attribute( LaunchPermission={ 'Add': [{'Group': 'all'}] } ) # Can only modify one attribute at a time image.modify_attribute(Description={'Value': desc}) logger.info("region {} ami {} is available".format(region, image.id)) break time.sleep(5) def encode_desc(dict_): return " ".join("{0}={1}".format(*item) for item in dict_.items()) @click.group() def aws(): pass @aws.command(name='copy-ami') @click.option('-r', '--src-region', default='us-east-1', help='AWS Region') @click.option('-q', '--quiet', is_flag=True) @click.argument('src_ami') def copy_ami(src_region, src_ami, quiet): if quiet: logger.setLevel(logging.WARN) session = boto3.session.Session(region_name=src_region) client = session.client('ec2') dest_regions = [region['RegionName'] for region in client.describe_regions()['Regions'] if region['RegionName'] != src_region ] dest_regions.sort() logger.info("detected {} regions".format(len(dest_regions))) image = session.resource('ec2').Image(src_ami) description = encode_desc({i['Key']: i['Value'] for i in image.tags or []}) # copy to all regions images = [copy_to_region(image, src_region, region) for region in dest_regions] # Add the original images.append((image, src_region)) # print out the YAML for (image, region) in images: print(yaml_template.format(region, image.id)) logger.info("waiting for all images to be available. In the mean time," "that YAML can be pasted into the quickstart template.") # wait for all images to be available for (image, region) in images: make_public_and_tag(image, region, description)
zeus/models/repository_api_token.py
conrad-kronos/zeus
221
58930
from zeus.config import db from zeus.db.mixins import ApiTokenMixin, RepositoryMixin, StandardAttributes from zeus.db.utils import model_repr class RepositoryApiToken(StandardAttributes, RepositoryMixin, ApiTokenMixin, db.Model): """ An API token associated to a repository. """ __tablename__ = "repository_api_token" __repr__ = model_repr("repository_id", "key") def get_token_key(self): return "r"
Installation/auxiliary/gdb/test-gdb.py
ffteja/cgal
3,227
58935
#!/usr/bin/python # Copyright (c) 2011 GeometryFactory Sarl (France) # # $URL$ # $Id$ # SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial # # Author(s) : <NAME> import sys import os import gdb sys.path.insert(0, os.getcwd() + '/python') import CGAL.printers
bin/command/generate_dockerfile_command.py
oobeya-space/Dockerfile
1,405
58936
<reponame>oobeya-space/Dockerfile #!/usr/bin/env/python # -*- coding: utf-8 -*- # # (c) 2016 WebDevOps.io # # This file is part of Dockerfile Repository. # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated # documentation files (the "Software"), to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and # to permit persons to whom the Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or substantial portions # of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO # THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS # OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import os from cleo import Output from jinja2 import Environment, FileSystemLoader from webdevops import DockerfileUtility from webdevops.command import BaseCommand class GenerateDockerfileCommand(BaseCommand): """ Build Dockerfile containers generate:dockerfile {docker images?* : Docker images (whitelist)} {--whitelist=?* : image/tag whitelist } {--blacklist=?* : image/tag blacklist } """ template = '' template_header = '{% extends "Dockerfile/layout.jinja2" %}\n{% block content %}' template_footer = '{% endblock %}' def run_task(self, configuration): template_path = configuration.get('templatePath') dockerfile_path = configuration.get('dockerPath') whitelist = self.get_whitelist() blacklist = self.get_blacklist() if Output.VERBOSITY_VERBOSE <= self.output.get_verbosity(): self.line('<info>-> </info><comment>docker path</comment> : %s' % dockerfile_path) self.line('<info>-> </info><comment>template path </comment> : %s' % template_path) if whitelist: self.line('<info>-> </info><comment>whitelist </comment> :') for crit in whitelist: self.line("\t * %s" % crit) if blacklist: self.line('<info>-> </info><comment>blacklist </comment> :') for crit in blacklist: self.line("\t * %s" % crit) self.template = Environment( autoescape=False, loader=FileSystemLoader([template_path]), trim_blocks=False ) for file in DockerfileUtility.find_file_in_path(dockerfile_path=dockerfile_path, filename="Dockerfile.jinja2", whitelist=whitelist, blacklist=blacklist): self.process_dockerfile(file) def process_dockerfile(self, input_file): """ :param input_file: Input File :type input_file: str """ output_file = os.path.splitext(input_file) output_file = os.path.join(os.path.dirname(output_file[0]), os.path.basename(output_file[0])) docker_image = os.path.basename(os.path.dirname(os.path.dirname(output_file))) docker_tag = os.path.basename(os.path.dirname(output_file)) context = { 'Dockerfile': { 'image': docker_image, 'tag': docker_tag } } if Output.VERBOSITY_NORMAL <= self.output.get_verbosity(): self.line("<info>* </info><comment>Processing Dockerfile for </comment>%s:%s" % (docker_image,docker_tag)) with open(input_file, 'r') as fileInput: template_content = fileInput.read() template_content = self.template_header + template_content + self.template_footer rendered_content = self.template.from_string(template_content).render(context) rendered_content = rendered_content.lstrip() with open(output_file, 'w') as file_output: file_output.write(rendered_content)
tests/python_ann_assign/ann_assign.py
hixio-mh/plugin-python
362
58972
<reponame>hixio-mh/plugin-python<gh_stars>100-1000 a: str a: bool = True my_long_var_aaaaaaaaaaaaaaaaaaaaaaaaaa: MyLongTypeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA my_long_var_aaaaaaaaaaaaaaaaaaaaaaaaaa: MyLongTypeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA = 1
simplesqlite/core.py
thombashi/SimpleSQLite
126
59083
<reponame>thombashi/SimpleSQLite """ .. codeauthor:: <NAME> <<EMAIL>> """ import logging import os import re import sqlite3 from collections import OrderedDict, defaultdict from sqlite3 import Connection, Cursor from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union, cast import pathvalidate import typepy from dataproperty.typing import TypeHint from mbstrdecoder import MultiByteStrDecoder from sqliteschema import SQLITE_SYSTEM_TABLES, SQLiteSchemaExtractor from tabledata import TableData from typepy import extract_typepy_from_dtype from ._common import extract_table_metadata from ._func import copy_table, validate_table_name from ._logger import logger from ._sanitizer import SQLiteTableDataSanitizer from .converter import RecordConvertor from .error import ( AttributeNotFoundError, DatabaseError, NameValidationError, NullDatabaseConnectionError, OperationalError, TableNotFoundError, ) from .query import ( Attr, AttrList, Insert, QueryItem, Select, Table, Value, WhereQuery, make_index_name, ) from .sqlquery import SqlQuery MEMORY_DB_NAME = ":memory:" class SimpleSQLite: """ Wrapper class for |sqlite3| module. :param str database_src: SQLite database source. Acceptable types are: (1) File path to a database to be connected. (2) sqlite3.Connection instance. (3) SimpleSQLite instance :param str mode: Open mode. :param bool delayed_connection: Delaying connection to a database until access to the database the first time, if the value is |True|. :param int max_workers: Maximum number of workers to generate a table. In default, the same as the total number of CPUs. :param bool profile: Recording SQL query execution time profile, if the value is |True|. .. seealso:: :py:meth:`.connect` :py:meth:`.get_profile` """ dup_col_handler = "error" global_debug_query = False @property def database_path(self) -> Optional[str]: """ :return: File path of the connected database. :rtype: str :Examples: >>> from simplesqlite import SimpleSQLite >>> con = SimpleSQLite("sample.sqlite", "w") >>> con.database_path '/tmp/sample.sqlite' >>> con.close() >>> print(con.database_path) None """ if self.__delayed_connection_path: return self.__delayed_connection_path return self.__database_path @property def connection(self) -> Optional[Connection]: """ :return: |Connection| instance of the connected database. :rtype: sqlite3.Connection """ self.__delayed_connect() return self.__connection @property def schema_extractor(self) -> SQLiteSchemaExtractor: return SQLiteSchemaExtractor(self, max_workers=self.__max_workers) @property def total_changes(self) -> int: """ .. seealso:: :py:attr:`sqlite3.Connection.total_changes` """ self.check_connection() return self.connection.total_changes # type: ignore @property def mode(self) -> Optional[str]: """ :return: Connection mode: ``"r"``/``"w"``/``"a"``. :rtype: str .. seealso:: :py:meth:`.connect` """ return self.__mode def __initialize_connection(self) -> None: self.__database_path: Optional[str] = None self.__connection: Optional[Connection] = None self.__mode: Optional[str] = None self.__delayed_connection_path: Optional[str] = None self.__dict_query_count: Dict[str, int] = defaultdict(int) self.__dict_query_totalexectime: Dict[str, float] = defaultdict(float) def __init__( self, database_src: Union[Connection, "SimpleSQLite", str], mode: str = "a", delayed_connection: bool = True, max_workers: Optional[int] = None, profile: bool = False, ) -> None: self.debug_query = False self.__initialize_connection() self.__mode = mode self.__max_workers = max_workers self.__is_profile = profile if database_src is None: raise TypeError("database_src must be not None") if isinstance(database_src, SimpleSQLite): self.__connection = database_src.connection self.__database_path = database_src.database_path self.debug_query = database_src.debug_query return if isinstance(database_src, sqlite3.Connection): self.__connection = database_src return if delayed_connection: self.__delayed_connection_path = database_src return self.connect(database_src, mode) def __del__(self) -> None: self.close() def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback) -> None: self.close() def is_connected(self) -> bool: """ :return: |True| if the connection to a database is valid. :rtype: bool :Examples: >>> from simplesqlite import SimpleSQLite >>> con = SimpleSQLite("sample.sqlite", "w") >>> con.is_connected() True >>> con.close() >>> con.is_connected() False """ try: self.check_connection() except NullDatabaseConnectionError: return False return True def check_connection(self) -> None: """ :raises simplesqlite.NullDatabaseConnectionError: |raises_check_connection| :Sample Code: .. code:: python import simplesqlite con = simplesqlite.SimpleSQLite("sample.sqlite", "w") print("---- connected to a database ----") con.check_connection() print("---- disconnected from a database ----") con.close() try: con.check_connection() except simplesqlite.NullDatabaseConnectionError as e: print(e) :Output: .. code-block:: none ---- connected to a database ---- ---- disconnected from a database ---- null database connection """ if self.connection is None: if not self.__delayed_connect(): raise NullDatabaseConnectionError("null database connection") def connect(self, database_path: str, mode: str = "a") -> None: """ Connect to a SQLite database. :param str database_path: Path to the SQLite database file to be connected. :param str mode: ``"r"``: Open for read only. ``"w"``: Open for read/write. Delete existing tables when connecting. ``"a"``: Open for read/write. Append to the existing tables. :raises ValueError: If ``database_path`` is invalid or |attr_mode| is invalid. :raises simplesqlite.DatabaseError: If the file is encrypted or is not a database. :raises simplesqlite.OperationalError: If unable to open the database file. """ self.close() logger.debug(f"connect to a SQLite database: path='{database_path}', mode={mode}") if mode == "r": self.__verify_db_file_existence(database_path) elif mode in ["w", "a"]: self.__validate_db_path(database_path) else: raise ValueError("unknown connection mode: " + mode) if database_path == MEMORY_DB_NAME: self.__database_path = database_path else: self.__database_path = os.path.realpath(database_path) try: self.__connection = sqlite3.connect(database_path) except sqlite3.OperationalError as e: raise OperationalError(e) self.__mode = mode try: # validate connection after connect self.fetch_table_names() except sqlite3.DatabaseError as e: raise DatabaseError(e) if mode != "w": return for table in self.fetch_table_names(): self.drop_table(table) def execute_query( self, query: Union[str, QueryItem], caller: Optional[Tuple] = None ) -> Optional[Cursor]: """ Send arbitrary SQLite query to the database. :param query: Query to executed. :param tuple caller: Caller information. Expects the return value of :py:meth:`logging.Logger.findCaller`. :return: The result of the query execution. :rtype: sqlite3.Cursor :raises simplesqlite.NullDatabaseConnectionError: |raises_check_connection| :raises simplesqlite.OperationalError: |raises_operational_error| .. warning:: This method can execute an arbitrary query. i.e. No access permissions check by |attr_mode|. """ import time self.check_connection() if typepy.is_null_string(query): return None if self.debug_query or self.global_debug_query: logger.debug(query) if self.__is_profile: exec_start_time = time.time() assert self.connection # to avoid type check error try: result = self.connection.execute(str(query)) except (sqlite3.OperationalError, sqlite3.IntegrityError) as e: if caller is None: caller = logging.getLogger().findCaller() file_path, line_no, func_name = caller[:3] raise OperationalError( message="\n".join( [ "failed to execute query at {:s}({:d}) {:s}".format( file_path, line_no, func_name ), f" - query: {MultiByteStrDecoder(query).unicode_str}", f" - msg: {e}", f" - db: {self.database_path}", ] ) ) if self.__is_profile: self.__dict_query_count[str(query)] += 1 elapse_time = time.time() - exec_start_time self.__dict_query_totalexectime[str(query)] += elapse_time return result def set_row_factory(self, row_factory: Optional[Callable]) -> None: """ Set row_factory to the database connection. """ self.check_connection() self.__connection.row_factory = row_factory # type: ignore def select( self, select: Union[str, AttrList], table_name: str, where: Optional[WhereQuery] = None, extra: Optional[str] = None, ) -> Optional[Cursor]: """ Send a SELECT query to the database. :param select: Attribute for the ``SELECT`` query. :param str table_name: |arg_select_table_name| :param where: |arg_select_where| :type where: |arg_where_type| :param str extra: |arg_select_extra| :return: Result of the query execution. :rtype: sqlite3.Cursor :raises simplesqlite.NullDatabaseConnectionError: |raises_check_connection| :raises simplesqlite.TableNotFoundError: |raises_verify_table_existence| :raises simplesqlite.OperationalError: |raises_operational_error| """ self.verify_table_existence(table_name) return self.execute_query( str(Select(select, table_name, where, extra)), logging.getLogger().findCaller(), ) def select_as_dataframe( self, table_name: str, columns: Optional[Sequence[str]] = None, where: Optional[WhereQuery] = None, extra: Optional[str] = None, ): """ Get data in the database and return fetched data as a :py:class:`pandas.Dataframe` instance. :param str table_name: |arg_select_table_name| :param columns: |arg_select_as_xx_columns| :param where: |arg_select_where| :param extra: |arg_select_extra| :return: Table data as a :py:class:`pandas.Dataframe` instance. :rtype: pandas.DataFrame :raises simplesqlite.NullDatabaseConnectionError: |raises_check_connection| :raises simplesqlite.TableNotFoundError: |raises_verify_table_existence| :raises simplesqlite.OperationalError: |raises_operational_error| :Example: :ref:`example-select-as-dataframe` .. note:: ``pandas`` package required to execute this method. """ import pandas if columns is None: columns = self.fetch_attr_names(table_name) result = self.select( select=AttrList(columns), table_name=table_name, where=where, extra=extra ) if result is None: return pandas.DataFrame() return pandas.DataFrame(result.fetchall(), columns=columns) def select_as_tabledata( self, table_name: str, columns: Optional[Sequence[str]] = None, where: Optional[WhereQuery] = None, extra: Optional[str] = None, type_hints: Optional[Dict[str, TypeHint]] = None, ) -> TableData: """ Get data in the database and return fetched data as a :py:class:`tabledata.TableData` instance. :param str table_name: |arg_select_table_name| :param columns: |arg_select_as_xx_columns| :param where: |arg_select_where| :type where: |arg_where_type| :param str extra: |arg_select_extra| :return: Table data as a :py:class:`tabledata.TableData` instance. :rtype: tabledata.TableData :raises simplesqlite.NullDatabaseConnectionError: |raises_check_connection| :raises simplesqlite.TableNotFoundError: |raises_verify_table_existence| :raises simplesqlite.OperationalError: |raises_operational_error| .. note:: ``pandas`` package required to execute this method. """ if columns is None: columns = self.fetch_attr_names(table_name) result = self.select( select=AttrList(columns), table_name=table_name, where=where, extra=extra ) if result is None: return TableData(None, [], []) if type_hints is None: type_hints = self.fetch_data_types(table_name) return TableData( table_name, columns, result.fetchall(), type_hints=[type_hints.get(col) for col in columns], max_workers=self.__max_workers, ) def select_as_dict( self, table_name: str, columns: Optional[Sequence[str]] = None, where: Optional[WhereQuery] = None, extra: Optional[str] = None, ) -> "Optional[List[OrderedDict[str, Any]]]": """ Get data in the database and return fetched data as a |OrderedDict| list. :param str table_name: |arg_select_table_name| :param list columns: |arg_select_as_xx_columns| :param where: |arg_select_where| :type where: |arg_where_type| :param str extra: |arg_select_extra| :return: Table data as |OrderedDict| instances. :rtype: |list| of |OrderedDict| :raises simplesqlite.NullDatabaseConnectionError: |raises_check_connection| :raises simplesqlite.TableNotFoundError: |raises_verify_table_existence| :raises simplesqlite.OperationalError: |raises_operational_error| :Example: :ref:`example-select-as-dict` """ return self.select_as_tabledata(table_name, columns, where, extra).as_dict().get(table_name) def select_as_memdb( self, table_name: str, columns: Optional[Sequence[str]] = None, where: Optional[WhereQuery] = None, extra: Optional[str] = None, ): """ Get data in the database and return fetched data as a in-memory |SimpleSQLite| instance. :param str table_name: |arg_select_table_name| :param columns: |arg_select_as_xx_columns| :param where: |arg_select_where| :type where: |arg_where_type| :param str extra: |arg_select_extra| :return: Table data as a |SimpleSQLite| instance that connected to in memory database. :rtype: |SimpleSQLite| :raises simplesqlite.NullDatabaseConnectionError: |raises_check_connection| :raises simplesqlite.TableNotFoundError: |raises_verify_table_existence| :raises simplesqlite.OperationalError: |raises_operational_error| """ table_schema = self.schema_extractor.fetch_table_schema(table_name) memdb = connect_memdb(max_workers=self.__max_workers) memdb.create_table_from_tabledata( self.select_as_tabledata(table_name, columns, where, extra), primary_key=table_schema.primary_key, index_attrs=table_schema.index_list, ) return memdb def insert( self, table_name: str, record: Any, attr_names: Optional[Sequence[str]] = None ) -> None: """ Send an INSERT query to the database. :param str table_name: Table name of executing the query. :param record: Record to be inserted. :type record: |dict|/|namedtuple|/|list|/|tuple| :raises IOError: |raises_write_permission| :raises simplesqlite.NullDatabaseConnectionError: |raises_check_connection| :raises simplesqlite.OperationalError: |raises_operational_error| :Example: :ref:`example-insert-records` """ self.insert_many(table_name, records=[record], attr_names=attr_names) def insert_many( self, table_name: str, records: Sequence[Union[Dict, Sequence]], attr_names: Optional[Sequence[str]] = None, ) -> int: """ Send an INSERT query with multiple records to the database. :param str table: Table name of executing the query. :param records: Records to be inserted. :type records: list of |dict|/|namedtuple|/|list|/|tuple| :return: Number of inserted records. :rtype: int :raises IOError: |raises_write_permission| :raises simplesqlite.NullDatabaseConnectionError: |raises_check_connection| :raises simplesqlite.TableNotFoundError: |raises_verify_table_existence| :raises simplesqlite.OperationalError: |raises_operational_error| :Example: :ref:`example-insert-records` """ self.validate_access_permission(["w", "a"]) self.verify_table_existence(table_name, allow_view=False) if attr_names: logger.debug( "insert {number} records into {table}({attrs})".format( number=len(records) if records else 0, table=table_name, attrs=attr_names ) ) else: logger.debug( "insert {number} records into {table}".format( number=len(records) if records else 0, table=table_name ) ) if typepy.is_empty_sequence(records): return 0 if attr_names is None: attr_names = self.fetch_attr_names(table_name) records = RecordConvertor.to_records(attr_names, records) query = Insert(table_name, AttrList(attr_names)).to_query() if self.debug_query or self.global_debug_query: logging_count = 8 num_records = len(records) logs = [query] + [ f" record {i:4d}: {record}" for i, record in enumerate(records[:logging_count]) ] if num_records - logging_count > 0: logs.append(f" and other {num_records - logging_count} records will be inserted") logger.debug("\n".join(logs)) assert self.connection # to avoid type check error try: self.connection.executemany(query, records) except (sqlite3.OperationalError, sqlite3.IntegrityError) as e: caller = logging.getLogger().findCaller() file_path, line_no, func_name = caller[:3] raise OperationalError( f"{file_path:s}({line_no:d}) {func_name:s}: failed to execute query:\n" + f" query={query}\n" + f" msg='{e}'\n" + f" db={self.database_path}\n" + f" records={records[:2]}\n" ) return len(records) def update( self, table_name: str, set_query: Optional[str], where: Optional[WhereQuery] = None ) -> Optional[Cursor]: """Execute an UPDATE query. Args: table_name (|str|): Table name of executing the query. set_query (|str|): ``SET`` clause for the update query. where (|arg_where_type| , optional): ``WHERE`` clause for the update query. Defaults to |None|. Raises: IOError: |raises_write_permission| simplesqlite.NullDatabaseConnectionError: |raises_check_connection| simplesqlite.TableNotFoundError: |raises_verify_table_existence| simplesqlite.OperationalError: |raises_operational_error| """ self.validate_access_permission(["w", "a"]) self.verify_table_existence(table_name, allow_view=False) query = SqlQuery.make_update(table_name, set_query, where) return self.execute_query(query, logging.getLogger().findCaller()) def delete(self, table_name: str, where: Optional[WhereQuery] = None) -> Optional[Cursor]: """ Send a DELETE query to the database. :param str table_name: Table name of executing the query. :param where: |arg_select_where| :type where: |arg_where_type| """ self.validate_access_permission(["w", "a"]) self.verify_table_existence(table_name, allow_view=False) query = f"DELETE FROM {table_name:s}" if where: query += f" WHERE {where:s}" return self.execute_query(query, logging.getLogger().findCaller()) def fetch_value( self, select: str, table_name: str, where: Optional[WhereQuery] = None, extra: Optional[str] = None, ) -> Optional[int]: """ Fetch a value from the table. Return |None| if no value matches the conditions, or the table not found in the database. :param str select: Attribute for SELECT query :param str table_name: Table name of executing the query. :param where: |arg_select_where| :type where: |arg_where_type| :return: Result of execution of the query. :raises simplesqlite.NullDatabaseConnectionError: |raises_check_connection| :raises simplesqlite.OperationalError: |raises_operational_error| """ try: self.verify_table_existence(table_name) except DatabaseError as e: logger.debug(e) return None result = self.execute_query( Select(select, table_name, where, extra), logging.getLogger().findCaller() ) if result is None: return None fetch = result.fetchone() if fetch is None: return None return fetch[0] def fetch_values(self, select, table_name, where=None, extra=None) -> List: result = self.select(select=select, table_name=table_name, where=where, extra=extra) if result is None: return [] return [record[0] for record in result.fetchall()] def fetch_table_names( self, include_system_table: bool = False, include_view: bool = True ) -> List[str]: """ :return: List of table names in the database. :rtype: list :raises simplesqlite.NullDatabaseConnectionError: |raises_check_connection| :raises simplesqlite.OperationalError: |raises_operational_error| :Sample Code: .. code:: python from simplesqlite import SimpleSQLite con = SimpleSQLite("sample.sqlite", "w") con.create_table_from_data_matrix( "hoge", ["attr_a", "attr_b"], [[1, "a"], [2, "b"]]) print(con.fetch_table_names()) :Output: .. code-block:: python ['hoge'] """ self.check_connection() return self.schema_extractor.fetch_table_names( include_system_table=include_system_table, include_view=include_view ) def fetch_view_names(self) -> List[str]: """ :return: List of table names in the database. :rtype: list """ self.check_connection() return self.schema_extractor.fetch_view_names() def fetch_attr_names(self, table_name: str) -> List[str]: """ :return: List of attribute names in the table. :rtype: list :raises simplesqlite.NullDatabaseConnectionError: |raises_check_connection| :raises simplesqlite.TableNotFoundError: |raises_verify_table_existence| :raises simplesqlite.OperationalError: |raises_operational_error| :Example: .. code:: python import simplesqlite table_name = "sample_table" con = simplesqlite.SimpleSQLite("sample.sqlite", "w") con.create_table_from_data_matrix( table_name, ["attr_a", "attr_b"], [[1, "a"], [2, "b"]]) print(con.fetch_attr_names(table_name)) try: print(con.fetch_attr_names("not_existing")) except simplesqlite.TableNotFoundError as e: print(e) :Output: .. parsed-literal:: ['attr_a', 'attr_b'] 'not_existing' table not found in /tmp/sample.sqlite """ self.verify_table_existence(table_name) return self.schema_extractor.fetch_table_schema(table_name).get_attr_names() def fetch_attr_type(self, table_name: str) -> Dict[str, str]: """ :return: Dictionary of attribute names and attribute types in the table. :rtype: dict :raises simplesqlite.NullDatabaseConnectionError: |raises_check_connection| :raises simplesqlite.TableNotFoundError: |raises_verify_table_existence| :raises simplesqlite.OperationalError: |raises_operational_error| """ self.verify_table_existence(table_name, allow_view=False) result = self.execute_query( "SELECT sql FROM sqlite_master WHERE type='table' and name={:s}".format( Value(table_name) ) ) assert result # to avoid type check error query = result.fetchone()[0] match = re.search("[(].*[)]", query) assert match # to avoid type check error def get_entry(items): key = " ".join(items[:-1]) value = items[-1] return [key, value] return dict([get_entry(item.split(" ")) for item in match.group().strip("()").split(", ")]) def fetch_num_records( self, table_name: str, where: Optional[WhereQuery] = None ) -> Optional[int]: """ Fetch the number of records in a table. :param str table_name: Table name to get number of records. :param where: |arg_select_where| :type where: |arg_where_type| :return: Number of records in the table. |None| if no value matches the conditions, or the table not found in the database. :rtype: int """ return self.fetch_value(select="COUNT(*)", table_name=table_name, where=where) def fetch_data_types(self, table_name: str) -> Dict[str, TypeHint]: _, _, type_hints = extract_table_metadata(self, table_name) return type_hints def get_profile(self, profile_count: int = 50) -> List[Any]: """ Get profile of query execution time. :param int profile_count: Number of profiles to retrieve, counted from the top query in descending order by the cumulative execution time. :return: Profile information for each query. :rtype: list of |namedtuple| :raises simplesqlite.NullDatabaseConnectionError: |raises_check_connection| :raises simplesqlite.OperationalError: |raises_operational_error| :Example: :ref:`example-get-profile` """ from collections import namedtuple profile_table_name = "sql_profile" value_matrix = [ [query, execute_time, self.__dict_query_count.get(query, 0)] for query, execute_time in self.__dict_query_totalexectime.items() ] attr_names = ("sql_query", "cumulative_time", "count") con_tmp = connect_memdb(max_workers=self.__max_workers) try: con_tmp.create_table_from_data_matrix( profile_table_name, attr_names, data_matrix=value_matrix ) except ValueError: return [] try: result = con_tmp.select( select="{:s},SUM({:s}),SUM({:s})".format(*attr_names), table_name=profile_table_name, extra="GROUP BY {:s} ORDER BY {:s} DESC LIMIT {:d}".format( attr_names[0], attr_names[1], profile_count ), ) except sqlite3.OperationalError: return [] if result is None: return [] SqliteProfile = namedtuple("SqliteProfile", " ".join(attr_names)) # type: ignore return [SqliteProfile(*profile) for profile in result.fetchall()] def fetch_sqlite_master(self) -> List[Dict]: """ Get sqlite_master table information as a list of dictionaries. :return: sqlite_master table information. :rtype: list :raises simplesqlite.NullDatabaseConnectionError: |raises_check_connection| :Sample Code: .. code:: python import json from simplesqlite import SimpleSQLite con = SimpleSQLite("sample.sqlite", "w") data_matrix = [ [1, 1.1, "aaa", 1, 1], [2, 2.2, "bbb", 2.2, 2.2], [3, 3.3, "ccc", 3, "ccc"], ] con.create_table_from_data_matrix( "sample_table", ["a", "b", "c", "d", "e"], data_matrix, index_attrs=["a"]) print(json.dumps(con.fetch_sqlite_master(), indent=4)) :Output: .. code-block:: json [ { "tbl_name": "sample_table", "sql": "CREATE TABLE 'sample_table' ('a' INTEGER, 'b' REAL, 'c' TEXT, 'd' REAL, 'e' TEXT)", "type": "table", "name": "sample_table", "rootpage": 2 }, { "tbl_name": "sample_table", "sql": "CREATE INDEX sample_table_a_index ON sample_table('a')", "type": "index", "name": "sample_table_a_index", "rootpage": 3 } ] """ self.check_connection() return self.schema_extractor.fetch_sqlite_master() def has_table(self, table_name: str, include_view: bool = True) -> bool: """ :param str table_name: Table name to be tested. :return: |True| if the database has the table. :rtype: bool :Sample Code: .. code:: python from simplesqlite import SimpleSQLite con = SimpleSQLite("sample.sqlite", "w") con.create_table_from_data_matrix( "hoge", ["attr_a", "attr_b"], [[1, "a"], [2, "b"]]) print(con.has_table("hoge")) print(con.has_table("not_existing")) :Output: .. code-block:: python True False """ try: validate_table_name(table_name) except NameValidationError: return False return table_name in self.fetch_table_names(include_view=include_view) def has_view(self, view_name: str) -> bool: """ :param str table_name: Table name to be tested. :return: |True| if the database has the table. :rtype: bool """ try: validate_table_name(view_name) except NameValidationError: return False return view_name in self.fetch_view_names() def has_attr(self, table_name: str, attr_name: Optional[str]) -> bool: """ :param str table_name: Table name that the attribute exists. :param str attr_name: Attribute name to be tested. :return: |True| if the table has the attribute. :rtype: bool :raises simplesqlite.TableNotFoundError: |raises_verify_table_existence| :Sample Code: .. code:: python import simplesqlite table_name = "sample_table" con = simplesqlite.SimpleSQLite("sample.sqlite", "w") con.create_table_from_data_matrix( table_name, ["attr_a", "attr_b"], [[1, "a"], [2, "b"]]) print(con.has_attr(table_name, "attr_a")) print(con.has_attr(table_name, "not_existing")) try: print(con.has_attr("not_existing", "attr_a")) except simplesqlite.DatabaseError as e: print(e) :Output: .. parsed-literal:: True False 'not_existing' table not found in /tmp/sample.sqlite """ self.verify_table_existence(table_name, allow_view=False) if typepy.is_null_string(attr_name): return False return attr_name in self.fetch_attr_names(table_name) def has_attrs(self, table_name: str, attr_names: Sequence[str]) -> bool: """ :param str table_name: Table name that attributes exists. :param attr_names: Attribute names to tested. :return: |True| if the table has all of the attribute. :rtype: bool :raises simplesqlite.TableNotFoundError: |raises_verify_table_existence| :Sample Code: .. code:: python import simplesqlite table_name = "sample_table" con = simplesqlite.SimpleSQLite("sample.sqlite", "w") con.create_table_from_data_matrix( table_name, ["attr_a", "attr_b"], [[1, "a"], [2, "b"]]) print(con.has_attrs(table_name, ["attr_a"])) print(con.has_attrs(table_name, ["attr_a", "attr_b"])) print(con.has_attrs(table_name, ["attr_a", "attr_b", "not_existing"])) try: print(con.has_attr("not_existing", ["attr_a"])) except simplesqlite.DatabaseError as e: print(e) :Output: .. parsed-literal:: True True False 'not_existing' table not found in /tmp/sample.sqlite """ if typepy.is_empty_sequence(attr_names): return False not_exist_fields = [ attr_name for attr_name in attr_names if not self.has_attr(table_name, attr_name) ] if not_exist_fields: return False return True def verify_table_existence(self, table_name: str, allow_view: bool = True) -> None: """ :param str table_name: Table name to be tested. :raises simplesqlite.TableNotFoundError: |raises_verify_table_existence| :raises simplesqlite.NameValidationError: |raises_validate_table_name| :Sample Code: .. code:: python import simplesqlite table_name = "sample_table" con = simplesqlite.SimpleSQLite("sample.sqlite", "w") con.create_table_from_data_matrix( table_name, ["attr_a", "attr_b"], [[1, "a"], [2, "b"]]) con.verify_table_existence(table_name) try: con.verify_table_existence("not_existing") except simplesqlite.DatabaseError as e: print(e) :Output: .. parsed-literal:: 'not_existing' table not found in /tmp/sample.sqlite """ validate_table_name(table_name) if self.has_table(table_name, include_view=allow_view): return raise TableNotFoundError(f"'{table_name}' not found in '{self.database_path}' database") def verify_attr_existence(self, table_name: str, attr_name: str) -> None: """ :param str table_name: Table name that the attribute exists. :param str attr_name: Attribute name to tested. :raises simplesqlite.AttributeNotFoundError: If attribute not found in the table :raises simplesqlite.TableNotFoundError: |raises_verify_table_existence| :Sample Code: .. code:: python from simplesqlite import ( SimpleSQLite, DatabaseError, AttributeNotFoundError ) table_name = "sample_table" con = SimpleSQLite("sample.sqlite", "w") con.create_table_from_data_matrix( table_name, ["attr_a", "attr_b"], [[1, "a"], [2, "b"]]) con.verify_attr_existence(table_name, "attr_a") try: con.verify_attr_existence(table_name, "not_existing") except AttributeNotFoundError as e: print(e) try: con.verify_attr_existence("not_existing", "attr_a") except DatabaseError as e: print(e) :Output: .. parsed-literal:: 'not_existing' attribute not found in 'sample_table' table 'not_existing' table not found in /tmp/sample.sqlite """ self.verify_table_existence(table_name, allow_view=False) if self.has_attr(table_name, attr_name): return raise AttributeNotFoundError(f"'{attr_name}' attribute not found in '{table_name}' table") def validate_access_permission(self, valid_permissions: Sequence[str]) -> None: """ :param valid_permissions: List of permissions that access is allowed. :type valid_permissions: |list|/|tuple| :raises ValueError: If the |attr_mode| is invalid. :raises IOError: If the |attr_mode| not in the ``valid_permissions``. :raises simplesqlite.NullDatabaseConnectionError: |raises_check_connection| """ self.check_connection() if typepy.is_null_string(self.mode): raise ValueError("mode is not set") if self.mode not in valid_permissions: raise OSError( "invalid access: expected-mode='{}', current-mode='{}'".format( "' or '".join(valid_permissions), self.mode ) ) def drop_table(self, table_name: str) -> None: """ :param str table_name: Table name to drop. :raises simplesqlite.NullDatabaseConnectionError: |raises_check_connection| :raises IOError: |raises_write_permission| """ self.validate_access_permission(["w", "a"]) if table_name in SQLITE_SYSTEM_TABLES: # warning message return if self.has_table(table_name, include_view=False): query = f"DROP TABLE IF EXISTS '{table_name:s}'" self.execute_query(query, logging.getLogger().findCaller()) elif self.has_view(table_name): self.execute_query(f"DROP VIEW IF EXISTS {table_name}") self.commit() def create_table(self, table_name: str, attr_descriptions: Sequence[str]) -> bool: """ :param str table_name: Table name to create. :param list attr_descriptions: List of table description. :raises simplesqlite.NullDatabaseConnectionError: |raises_check_connection| :raises IOError: |raises_write_permission| """ self.validate_access_permission(["w", "a"]) table_name = table_name.strip() if self.has_table(table_name): return True query = "CREATE TABLE IF NOT EXISTS '{:s}' ({:s})".format( table_name, ", ".join(attr_descriptions) ) logger.debug(query) if self.execute_query(query, logging.getLogger().findCaller()) is None: return False return True def create_index(self, table_name: str, attr_name: str) -> None: """ :param str table_name: Table name that contains the attribute to be indexed. :param str attr_name: Attribute name to create index. :raises IOError: |raises_write_permission| :raises simplesqlite.NullDatabaseConnectionError: |raises_check_connection| :raises simplesqlite.TableNotFoundError: |raises_verify_table_existence| """ self.verify_table_existence(table_name, allow_view=False) self.validate_access_permission(["w", "a"]) query_format = "CREATE INDEX IF NOT EXISTS {index:s} ON {table}({attr})" query = query_format.format( index=make_index_name(table_name, attr_name), table=Table(table_name), attr=Attr(attr_name), ) logger.debug(query) self.execute_query(query, logging.getLogger().findCaller()) def create_index_list(self, table_name: str, attr_names: Sequence[str]) -> None: """ :param str table_name: Table name that exists attribute. :param list attr_names: List of attribute names to create indices. Ignore attributes that are not existing in the table. .. seealso:: :py:meth:`.create_index` """ self.validate_access_permission(["w", "a"]) if typepy.is_empty_sequence(attr_names): return table_attr_set = set(self.fetch_attr_names(table_name)) index_attr_set = set(AttrList.sanitize(attr_names)) # type: ignore for attribute in list(table_attr_set.intersection(index_attr_set)): self.create_index(table_name, attribute) def create_table_from_data_matrix( self, table_name: str, attr_names: Sequence[str], data_matrix: Any, primary_key: Optional[str] = None, add_primary_key_column: bool = False, index_attrs: Optional[Sequence[str]] = None, type_hints: Optional[Sequence[TypeHint]] = None, ) -> None: """ Create a table if not exists. Moreover, insert data into the created table. :param str table_name: Table name to create. :param list attr_names: Attribute names of the table. :param data_matrix: Data to be inserted into the table. :type data_matrix: List of |dict|/|namedtuple|/|list|/|tuple| :param str primary_key: |primary_key| :param tuple index_attrs: |index_attrs| :raises simplesqlite.NameValidationError: |raises_validate_table_name| :raises simplesqlite.NameValidationError: |raises_validate_attr_name| :raises ValueError: If the ``data_matrix`` is empty. :Example: :ref:`example-create-table-from-data-matrix` .. seealso:: :py:meth:`.create_table` :py:meth:`.insert_many` :py:meth:`.create_index_list` """ self.__create_table_from_tabledata( TableData( table_name, headers=attr_names, rows=data_matrix, type_hints=type_hints, max_workers=self.__max_workers, ), primary_key, add_primary_key_column, index_attrs, ) def create_table_from_tabledata( self, table_data: TableData, primary_key: Optional[str] = None, add_primary_key_column: bool = False, index_attrs: Optional[Sequence[str]] = None, ) -> None: """ Create a table from :py:class:`tabledata.TableData`. :param tabledata.TableData table_data: Table data to create. :param str primary_key: |primary_key| :param tuple index_attrs: |index_attrs| .. seealso:: :py:meth:`.create_table_from_data_matrix` """ self.__create_table_from_tabledata( table_data, primary_key, add_primary_key_column, index_attrs ) def create_table_from_csv( self, csv_source: str, table_name: str = "", attr_names: Sequence[str] = (), delimiter: str = ",", quotechar: str = '"', encoding: str = "utf-8", primary_key: Optional[str] = None, add_primary_key_column: bool = False, index_attrs: Optional[Sequence[str]] = None, ) -> None: """ Create a table from a CSV file/text. :param str csv_source: Path to the CSV file or CSV text. :param str table_name: Table name to create. Using CSV file basename as the table name if the value is empty. :param list attr_names: Attribute names of the table. Use the first line of the CSV file as attributes if ``attr_names`` is empty. :param str delimiter: A one-character string used to separate fields. :param str quotechar: A one-character string used to quote fields containing special characters, such as the ``delimiter`` or ``quotechar``, or which contain new-line characters. :param str encoding: CSV file encoding. :param str primary_key: |primary_key| :param tuple index_attrs: |index_attrs| :raises ValueError: If the CSV data is invalid. :Dependency Packages: - `pytablereader <https://github.com/thombashi/pytablereader>`__ :Example: :ref:`example-create-table-from-csv` .. seealso:: :py:meth:`.create_table_from_data_matrix` :py:func:`csv.reader` :py:meth:`.pytablereader.CsvTableFileLoader.load` :py:meth:`.pytablereader.CsvTableTextLoader.load` """ import pytablereader as ptr loader = ptr.CsvTableFileLoader(csv_source) if typepy.is_not_null_string(table_name): loader.table_name = table_name loader.headers = attr_names loader.delimiter = delimiter loader.quotechar = quotechar loader.encoding = encoding try: for table_data in loader.load(): self.__create_table_from_tabledata( table_data, primary_key, add_primary_key_column, index_attrs ) return except (ptr.InvalidFilePathError, OSError): pass loader = ptr.CsvTableTextLoader(csv_source) if typepy.is_not_null_string(table_name): loader.table_name = table_name loader.headers = attr_names loader.delimiter = delimiter loader.quotechar = quotechar loader.encoding = encoding for table_data in loader.load(): self.__create_table_from_tabledata( table_data, primary_key, add_primary_key_column, index_attrs ) def create_table_from_json( self, json_source: str, table_name: str = "", primary_key: Optional[str] = None, add_primary_key_column: bool = False, index_attrs: Optional[Sequence[str]] = None, ) -> None: """ Create a table from a JSON file/text. :param str json_source: Path to the JSON file or JSON text. :param str table_name: Table name to create. :param str primary_key: |primary_key| :param tuple index_attrs: |index_attrs| :Dependency Packages: - `pytablereader <https://github.com/thombashi/pytablereader>`__ :Examples: :ref:`example-create-table-from-json` .. seealso:: :py:meth:`.pytablereader.JsonTableFileLoader.load` :py:meth:`.pytablereader.JsonTableTextLoader.load` """ import pytablereader as ptr loader = ptr.JsonTableFileLoader(json_source) if typepy.is_not_null_string(table_name): loader.table_name = table_name try: for table_data in loader.load(): self.__create_table_from_tabledata( table_data, primary_key, add_primary_key_column, index_attrs ) return except (ptr.InvalidFilePathError, OSError): pass loader = ptr.JsonTableTextLoader(json_source) if typepy.is_not_null_string(table_name): loader.table_name = table_name for table_data in loader.load(): self.__create_table_from_tabledata( table_data, primary_key, add_primary_key_column, index_attrs ) def create_table_from_dataframe( self, dataframe, table_name: str = "", primary_key: Optional[str] = None, add_primary_key_column: bool = False, index_attrs: Optional[Sequence[str]] = None, ) -> None: """ Create a table from a pandas.DataFrame instance. :param pandas.DataFrame dataframe: DataFrame instance to convert. :param str table_name: Table name to create. :param str primary_key: |primary_key| :param tuple index_attrs: |index_attrs| :Examples: :ref:`example-create-table-from-df` """ self.__create_table_from_tabledata( TableData.from_dataframe( dataframe=dataframe, table_name=table_name, type_hints=[extract_typepy_from_dtype(dtype) for dtype in dataframe.dtypes], ), primary_key, add_primary_key_column, index_attrs, ) def dump(self, db_path: str, mode: str = "a") -> None: with SimpleSQLite(db_path, mode=mode, max_workers=self.__max_workers) as dst_con: for table_name in self.fetch_table_names(include_view=False): copy_table(self, dst_con, src_table_name=table_name, dst_table_name=table_name) def rollback(self) -> None: """ .. seealso:: :py:meth:`sqlite3.Connection.rollback` """ try: self.check_connection() except NullDatabaseConnectionError: return logger.debug(f"rollback: path='{self.database_path}'") assert self.connection # to avoid type check error self.connection.rollback() def commit(self) -> None: """ .. seealso:: :py:meth:`sqlite3.Connection.commit` """ try: self.check_connection() except NullDatabaseConnectionError: return logger.debug(f"commit: path='{self.database_path}'") assert self.connection # to avoid type check error try: self.connection.commit() except sqlite3.ProgrammingError: pass def close(self) -> None: """ Commit and close the connection. .. seealso:: :py:meth:`sqlite3.Connection.close` """ if self.__delayed_connection_path and self.__connection is None: self.__initialize_connection() return try: self.check_connection() except (SystemError, NullDatabaseConnectionError): return logger.debug(f"close connection to a SQLite database: path='{self.database_path}'") self.commit() assert self.connection # to avoid type check error self.connection.close() self.__initialize_connection() @staticmethod def __validate_db_path(database_path: str) -> None: if typepy.is_null_string(database_path): raise ValueError("null path") if database_path == MEMORY_DB_NAME: return try: pathvalidate.validate_filename(os.path.basename(database_path)) except AttributeError: raise TypeError(f"database path must be a string: actual={type(database_path)}") def __verify_db_file_existence(self, database_path: str) -> None: """ :raises SimpleSQLite.OperationalError: If unable to open database file. """ self.__validate_db_path(database_path) if not os.path.isfile(os.path.realpath(database_path)): raise OSError("file not found: " + database_path) try: connection = sqlite3.connect(database_path) except sqlite3.OperationalError as e: raise OperationalError(e) connection.close() def __delayed_connect(self) -> bool: if self.__delayed_connection_path is None: return False # save and clear delayed_connection_path to avoid infinite recursion before # calling the connect method connection_path = self.__delayed_connection_path self.__delayed_connection_path = None self.connect(connection_path, cast(str, self.__mode)) return True def __extract_attr_descs_from_tabledata(self, table_data, primary_key, add_primary_key_column): if primary_key and not add_primary_key_column and primary_key not in table_data.headers: raise ValueError("primary key must be one of the values of attributes") attr_description_list = [] if add_primary_key_column: if not primary_key: primary_key = "id" if primary_key in table_data.headers: raise ValueError( "a primary key field that will be added should not conflict " "with existing fields." ) attr_description_list.append(f"{primary_key} INTEGER PRIMARY KEY AUTOINCREMENT") for col, value_type in sorted(self.__extract_col_type_from_tabledata(table_data).items()): attr_name = table_data.headers[col] attr_description = f"{Attr(attr_name)} {value_type:s}" if attr_name == primary_key: attr_description += " PRIMARY KEY" attr_description_list.append(attr_description) return attr_description_list @staticmethod def __extract_col_type_from_tabledata(table_data: TableData) -> Dict: """ Extract data type name for each column as SQLite names. :param tabledata.TableData table_data: :return: { column_number : column_data_type } :rtype: dictionary """ typename_table = { typepy.Typecode.INTEGER: "INTEGER", typepy.Typecode.REAL_NUMBER: "REAL", typepy.Typecode.STRING: "TEXT", } return { col_idx: typename_table.get(col_dp.typecode, "TEXT") for col_idx, col_dp in enumerate(table_data.column_dp_list) } def __create_table_from_tabledata( self, table_data: TableData, primary_key: Optional[str], add_primary_key_column: bool, index_attrs: Optional[Sequence[str]], ): self.validate_access_permission(["w", "a"]) debug_msg_list = ["__create_table_from_tabledata:", f" tbldata={table_data}"] if primary_key: debug_msg_list.append(f" primary_key={primary_key}") if add_primary_key_column: debug_msg_list.append(f" add_primary_key_column={add_primary_key_column}") if index_attrs: debug_msg_list.append(f" index_attrs={index_attrs}") logger.debug("\n".join(debug_msg_list)) if table_data.is_empty(): raise ValueError(f"input table_data is empty: {table_data}") table_data = SQLiteTableDataSanitizer( table_data, dup_col_handler=self.dup_col_handler, max_workers=self.__max_workers ).normalize() table_name = table_data.table_name assert table_name self.create_table( table_name, self.__extract_attr_descs_from_tabledata( table_data, primary_key, add_primary_key_column ), ) if add_primary_key_column: self.insert_many(table_name, [[None] + row for row in table_data.value_matrix]) else: self.insert_many(table_name, table_data.value_matrix) if typepy.is_not_empty_sequence(index_attrs): self.create_index_list(table_name, AttrList.sanitize(index_attrs)) # type: ignore self.commit() def connect_memdb(max_workers: Optional[int] = None) -> SimpleSQLite: """ :return: Instance of an in memory database. :rtype: SimpleSQLite :Example: :ref:`example-connect-sqlite-db-mem` """ return SimpleSQLite(MEMORY_DB_NAME, "w", max_workers=max_workers)
cloudtunes-server/cloudtunes/services/dropbox/models.py
skymemoryGit/cloudtunes
529
59085
<reponame>skymemoryGit/cloudtunes<gh_stars>100-1000 from mongoengine import StringField from cloudtunes.base.models import EmbeddedDocument from cloudtunes.services.models import ServiceAccount class DropboxAccount(ServiceAccount): country = StringField(max_length=2) display_name = StringField() oauth_token_key = StringField() oauth_token_secret = StringField() delta_cursor = StringField() service_name = 'Dropbox' def get_username(self): return self.display_name def get_picture(self): return None def get_url(self): return None class DropboxTrack(EmbeddedDocument): path = StringField(required=True)
fhir/resources/tests/test_bodystructure.py
cstoltze/fhir.resources
144
59104
# -*- coding: utf-8 -*- """ Profile: http://hl7.org/fhir/StructureDefinition/BodyStructure Release: R4 Version: 4.0.1 Build ID: 9346c8cc45 Last updated: 2019-11-01T09:29:23.356+11:00 """ from pydantic.validators import bytes_validator # noqa: F401 from .. import fhirtypes # noqa: F401 from .. import bodystructure def impl_bodystructure_1(inst): assert inst.description == "EDD 1/1/2017 confirmation by LMP" assert inst.id == "fetus" assert ( inst.identifier[0].system == "http://goodhealth.org/bodystructure/identifiers" ) assert inst.identifier[0].value == "12345" assert inst.location.coding[0].code == "83418008" assert inst.location.coding[0].display == "Entire fetus (body structure)" assert inst.location.coding[0].system == "http://snomed.info/sct" assert inst.location.text == "Fetus" assert inst.meta.tag[0].code == "HTEST" assert inst.meta.tag[0].display == "test health data" assert ( inst.meta.tag[0].system == "http://terminology.hl7.org/CodeSystem/v3-ActReason" ) assert inst.patient.reference == "Patient/example" assert inst.text.status == "generated" def test_bodystructure_1(base_settings): """No. 1 tests collection for BodyStructure. Test File: bodystructure-example-fetus.json """ filename = base_settings["unittest_data_dir"] / "bodystructure-example-fetus.json" inst = bodystructure.BodyStructure.parse_file( filename, content_type="application/json", encoding="utf-8" ) assert "BodyStructure" == inst.resource_type impl_bodystructure_1(inst) # testing reverse by generating data from itself and create again. data = inst.dict() assert "BodyStructure" == data["resourceType"] inst2 = bodystructure.BodyStructure(**data) impl_bodystructure_1(inst2) def impl_bodystructure_2(inst): assert inst.description == "7 cm maximum diameter" assert inst.id == "tumor" assert ( inst.identifier[0].system == "http://goodhealth.org/bodystructure/identifiers" ) assert inst.identifier[0].value == "12345" assert inst.image[0].contentType == "application/dicom" assert inst.image[0].url == ( "http://imaging.acme.com/wado/server?requestType=WADO&amp;wad" "o_details" ) assert inst.location.coding[0].code == "78961009" assert inst.location.coding[0].display == "Splenic structure (body structure)" assert inst.location.coding[0].system == "http://snomed.info/sct" assert inst.location.text == "Spleen" assert inst.meta.tag[0].code == "HTEST" assert inst.meta.tag[0].display == "test health data" assert ( inst.meta.tag[0].system == "http://terminology.hl7.org/CodeSystem/v3-ActReason" ) assert inst.morphology.coding[0].code == "4147007" assert inst.morphology.coding[0].display == "Mass (morphologic abnormality)" assert inst.morphology.coding[0].system == "http://snomed.info/sct" assert inst.morphology.text == "Splenic mass" assert inst.patient.reference == "Patient/example" assert inst.text.status == "generated" def test_bodystructure_2(base_settings): """No. 2 tests collection for BodyStructure. Test File: bodystructure-example-tumor.json """ filename = base_settings["unittest_data_dir"] / "bodystructure-example-tumor.json" inst = bodystructure.BodyStructure.parse_file( filename, content_type="application/json", encoding="utf-8" ) assert "BodyStructure" == inst.resource_type impl_bodystructure_2(inst) # testing reverse by generating data from itself and create again. data = inst.dict() assert "BodyStructure" == data["resourceType"] inst2 = bodystructure.BodyStructure(**data) impl_bodystructure_2(inst2) def impl_bodystructure_3(inst): assert inst.active is False assert inst.description == "inner surface (volar) of the left forearm" assert inst.id == "skin-patch" assert ( inst.identifier[0].system == "http://goodhealth.org/bodystructure/identifiers" ) assert inst.identifier[0].value == "12345" assert inst.location.coding[0].code == "14975008" assert inst.location.coding[0].display == "Forearm" assert inst.location.coding[0].system == "http://snomed.info/sct" assert inst.location.text == "Forearm" assert inst.locationQualifier[0].coding[0].code == "419161000" assert inst.locationQualifier[0].coding[0].display == "Unilateral left" assert inst.locationQualifier[0].coding[0].system == "http://snomed.info/sct" assert inst.locationQualifier[0].text == "Left" assert inst.locationQualifier[1].coding[0].code == "263929005" assert inst.locationQualifier[1].coding[0].display == "Volar" assert inst.locationQualifier[1].coding[0].system == "http://snomed.info/sct" assert inst.locationQualifier[1].text == "Volar" assert inst.meta.tag[0].code == "HTEST" assert inst.meta.tag[0].display == "test health data" assert ( inst.meta.tag[0].system == "http://terminology.hl7.org/CodeSystem/v3-ActReason" ) assert inst.morphology.text == "Skin patch" assert inst.patient.reference == "Patient/example" assert inst.text.status == "generated" def test_bodystructure_3(base_settings): """No. 3 tests collection for BodyStructure. Test File: bodystructure-example-skin-patch.json """ filename = ( base_settings["unittest_data_dir"] / "bodystructure-example-skin-patch.json" ) inst = bodystructure.BodyStructure.parse_file( filename, content_type="application/json", encoding="utf-8" ) assert "BodyStructure" == inst.resource_type impl_bodystructure_3(inst) # testing reverse by generating data from itself and create again. data = inst.dict() assert "BodyStructure" == data["resourceType"] inst2 = bodystructure.BodyStructure(**data) impl_bodystructure_3(inst2)
spec/fixtures/semgrep/trivial.py
hstocks/salus
625
59130
<filename>spec/fixtures/semgrep/trivial.py # https://semgrep.live/DdG if 3 == 3: print('3!')
l10n_br_sale/models/delivery_carrier.py
kaoecoito/odoo-brasil
181
59148
<reponame>kaoecoito/odoo-brasil<filename>l10n_br_sale/models/delivery_carrier.py from odoo import fields, models class DeliveryCarrier(models.Model): _inherit = 'delivery.carrier' partner_id = fields.Many2one('res.partner', string='Transportadora')
crosshair/libimpl/randomlib_test.py
samuelchassot/CrossHair
785
59155
<reponame>samuelchassot/CrossHair<gh_stars>100-1000 import copy import random from crosshair.core_and_libs import proxy_for_type, standalone_statespace from crosshair.libimpl.randomlib import ExplicitRandom def test_ExplicitRandom(): rng = ExplicitRandom([1, 2]) assert rng.randrange(0, 10) == 1 assert rng.choice(["a", "b", "c"]) == "c" assert rng.choice(["a", "b", "c"]) == "a" assert rng.random() == 0.0 assert repr(rng) == "crosshair.libimpl.randomlib.ExplicitRandom([1, 2, 0, 0.0])" def test_ExplicitRandom_copy(): rng = ExplicitRandom([1, 2]) (rng2,) = copy.deepcopy([rng]) assert rng.randint(0, 5) == 1 assert rng2.randint(0, 5) == 1 assert rng.randint(0, 5) == 2 assert rng2.randint(0, 5) == 2 def test_proxy_random(): with standalone_statespace as space: rng = proxy_for_type(random.Random, "rng") i = rng.randrange(5, 10) assert space.is_possible(i.var == 5) assert space.is_possible(i.var == 9) assert not space.is_possible(i.var == 4)
openbook_posts/migrations/0031_postcomment_parent_comment.py
TamaraAbells/okuna-api
164
59160
<gh_stars>100-1000 # Generated by Django 2.2 on 2019-05-02 17:34 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('openbook_posts', '0030_post_is_closed'), ] operations = [ migrations.AddField( model_name='postcomment', name='parent_comment', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='replies', to='openbook_posts.PostComment'), ), ]
tests/test_verilog/test_2d_array.py
leonardt/magma
167
59180
import magma as m import magma.testing def test_2d_array_from_verilog(): main = m.define_from_verilog(f""" module transpose_buffer ( input logic clk, output logic [2:0] index_inner, output logic [2:0] index_outer, input logic [3:0] input_data [63:0], input logic [2:0] range_inner, input logic [2:0] range_outer, input logic rst_n, input logic [2:0] stride ); always_ff @(posedge clk, negedge rst_n) begin if (~rst_n) begin index_outer <= 3'h0; index_inner <= 3'h0; end else begin if (index_outer == (range_outer - 3'h1)) begin index_outer <= 3'h0; end else index_outer <= index_outer + 3'h1; if (index_inner == (range_inner - 3'h1)) begin index_inner <= 3'h0; end else index_inner <= index_inner + 3'h1; end end endmodule // transpose_buffer """)[0] m.compile("build/2d_array_from_verilog", main, output="verilog") assert m.testing.check_files_equal(__file__, f"build/2d_array_from_verilog.v", f"gold/2d_array_from_verilog.v")
14Django/day01/BookManager/instruction01.py
HaoZhang95/PythonAndMachineLearning
937
59187
# MVT设计模式,model-view-template # model负责和数据库交互来获取model数据 # view相当于MVC中的Controller负责处理网络请求http response # template相当于MVC中的View负责封装html,css,js等内置模板引擎 # 具体流程:客户端发出网页请求 --> View接受网络请求 --> 找mdel去数据库找数据 -->找回的model数据返回给view # --> view可以直接返回无修饰的model原始数据给客户端 --> 或者找template去美化数据,添加css,html等,动态生成一个html文件返回给View # --> View将动态生成的html返回给客户端, MVT中的View充当中间人,两头链接M和T # django安装的时候会默认安装在一个公共的路径下,这样开发不同项目的时候,可能会用到不同版本的django,因为安装在公共陆空 # 这样就会版本覆盖,其他项目可能会产生版本不兼容的异常 # 所以安装django的时候会搭建虚拟环境,一个项目对应一个环境 """ django的配置,直接使用pycharm专业版,在设置中解释器中使用pip安装django 1- 安装成功后,整体的使用类似于angular的使用方法,关键字django-admin 2- cd到对应的目录下,django-admin startproject 项目名称 _init_.py --> 项目初始化文件,表示该项目可以被当作一个package引入 settings.py --> 项目的整体配置文件,比如在这里关联Book这个app urls.py --> 项目的url配置文件 wsgi.py --> 项目和WSGI兼容的Web服务器入口 manage.py --> 项目运行的入口,指定配置文件路径,里面包含main函数 3- cd到项目名称下面才可以: python manage.py startapp 应用名称 (创建应用,类似于angular中的模块?) init.py --> 应用初始化文件,表示该项目可以被当作一个package引入 admin.py --> 后台的站点管理注册文件 apps.py --> 当前app的基本信息 models.py --> 数据模型,里面存放各种bean tests.py --> 单元测试 views.py --> 处理业务逻辑,MVT中的中间人 migrations --> 模型model迁移的,将model类制作成数据库中的表 4- 配置刚刚创建的app,在项目的settings.py中的installed_apps中添加当前app,进行组装 """ """ 站点管理: 1- settings.py中设置语言和时区 2- python manage.py createsuperuser 创建管理员 3- 启动服务,到 http://127.0.0.1:8000/admin进行登陆 4- 在admin.py中注册自己的数据models用来在后台显示 """ """ ORM: object-relation-mapping 对象关系映射 优点:面向对象编程,不再是面向数据库写代码 实现了数据模型和数据库的解耦,不在关注用的是oracle,mysql还是其他数据库 缺点: object需要花费一点时间转换为sql语句,有性能损失(不过可忽略不计) """
unittest/scripts/py_devapi/validation/mysqlx_constants.py
mueller/mysql-shell
119
59191
<reponame>mueller/mysql-shell #@ mysqlx type constants |Type.BIT: <Type.BIT>| |Type.TINYINT: <Type.TINYINT>| |Type.SMALLINT: <Type.SMALLINT>| |Type.MEDIUMINT: <Type.MEDIUMINT>| |Type.INT: <Type.INT>| |Type.BIGINT: <Type.BIGINT>| |Type.FLOAT: <Type.FLOAT>| |Type.DECIMAL: <Type.DECIMAL>| |Type.DOUBLE: <Type.DOUBLE>| |Type.JSON: <Type.JSON>| |Type.STRING: <Type.STRING>| |Type.BYTES: <Type.BYTES>| |Type.TIME: <Type.TIME>| |Type.DATE: <Type.DATE>| |Type.DATETIME: <Type.DATETIME>| |Type.SET: <Type.SET>| |Type.ENUM: <Type.ENUM>| |Type.GEOMETRY: <Type.GEOMETRY>| |Type.SET: <Type.SET>|
ch26-Hough圆环变换/HoughCircles_camera.py
makelove/OpenCV-Python-Tutorial
2,875
59240
# -*- coding: utf-8 -*- # @Time : 2017/7/27 13:47 # @Author : play4fun # @File : HoughCircles_camera.py # @Software: PyCharm """ HoughCircles_camera.py: 用围棋-棋子来测试 """ import cv2 import numpy as np from skimage.measure import compare_mse as mse import string, random def id_generator(size=6, chars=string.ascii_uppercase + string.digits): return ''.join(random.choice(chars) for _ in range(size)) cap = cv2.VideoCapture(0) # ret = cap.set(3, 640) # ret = cap.set(4, 480) # margin = 60 margin = 30 def draw_line_rectangle(frame, margin): rows, cols, ch = frame.shape # (720, 1280, 3) half = int(cols / 2) # 中间 cv2.line(frame, (half, 0), (half, rows), (0, 0, 255), 2) # margin = 40 # 左边 up_left1 = (margin, margin) # 左上点 down_right1 = (cols - margin, rows - margin) # 右下点 # print(up_left, down_right) cv2.rectangle(frame, up_left1, down_right1, (0, 255, 0), 3) ret, temp = cap.read() tm = 0 while cap.isOpened(): key = cv2.waitKey(1) if key == ord("q"): break if key == ord('s'): cv2.imwrite(id_generator() + '.jpg', frame2) # Capture frame-by-frame ret, frame = cap.read() m = mse(cv2.cvtColor(temp, cv2.COLOR_BGR2GRAY), cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)) print('mse', m, '----\n') if abs(m - tm) < 2: # 静止画面,不用重复计算 continue else: temp = frame.copy() tm = m # # print(margin,frame.shape[0] - margin, margin,frame.shape[1] - margin)#40 680 40 1240 frame2 = frame[margin:frame.shape[0] - margin, margin:frame.shape[1] - margin] # .copy() # cv2.imshow('frame2', frame2) gray = cv2.cvtColor(frame2, cv2.COLOR_BGR2GRAY) # edges = cv2.Canny(gray, 50, 150, apertureSize=3) # HoughCircles(image, method, dp, minDist, circles=None, param1=None, param2=None, minRadius=None, maxRadius=None) # circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 20, param1=50, param2=30, minRadius=0, maxRadius=0) circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 20, param1=100, param2=30, minRadius=10, maxRadius=40) # circles = circles1[0, :, :] # 提取为二维 # circles = np.uint16(np.around(circles1)) print(circles) cimg = frame2 if circles is not None: for i in circles[0, :]: # for i in circles[:]: # draw the outer circle cv2.circle(cimg, (i[0], i[1]), i[2], (0, 255, 0), 2) # draw the center of the circle cv2.circle(cimg, (i[0], i[1]), 2, (0, 0, 255), 3) # cv2.imshow('detected circles', cimg) draw_line_rectangle(frame, margin) cv2.imshow("houghlines", frame) # cv2.imwrite('frame3.jpg', frame[margin:frame.shape[0] - margin, margin:frame.shape[1] - margin]) # When everything done, release the capture cap.release() cv2.destroyAllWindows()
piqa/lpips.py
charltongroves/piqa
205
59256
<filename>piqa/lpips.py r"""Learned Perceptual Image Patch Similarity (LPIPS) This module implements the LPIPS in PyTorch. Credits: Inspired by [lpips-pytorch](https://github.com/S-aiueo32/lpips-pytorch) References: [1] The Unreasonable Effectiveness of Deep Features as a Perceptual Metric (Zhang et al., 2018) https://arxiv.org/abs/1801.03924 """ import inspect import os import torch import torch.nn as nn import torchvision.models as models import torch.hub as hub from piqa.utils import _jit, _assert_type, _reduce from typing import Dict, List _SHIFT = torch.tensor([0.485, 0.456, 0.406]) _SCALE = torch.tensor([0.229, 0.224, 0.225]) _WEIGHTS_URL = ( 'https://github.com/richzhang/PerceptualSimilarity' '/raw/master/lpips/weights/{}/{}.pth' ) def get_weights( network: str = 'alex', version: str = 'v0.1', ) -> Dict[str, torch.Tensor]: r"""Returns the official LPIPS weights for `network`. Args: network: Specifies the perception network that is used: `'alex'` | `'squeeze'` | `'vgg'`. version: Specifies the official version release: `'v0.0'` | `'v0.1'`. Example: >>> w = get_weights(network='alex') >>> w.keys() dict_keys(['0.1.weight', '1.1.weight', '2.1.weight', '3.1.weight', '4.1.weight']) """ # Load from URL weights = hub.load_state_dict_from_url( _WEIGHTS_URL.format(version, network), map_location='cpu', ) # Format keys weights = { k.replace('lin', '').replace('.model', ''): v for (k, v) in weights.items() } return weights class Intermediary(nn.Module): r"""Module that catches and returns the outputs of indermediate target layers of a sequential module during its forward pass. Args: layers: A sequential module. targets: A list of target layer indexes. """ def __init__(self, layers: nn.Sequential, targets: List[int]): r"""""" super().__init__() self.layers = nn.ModuleList() j = 0 seq: List[nn.Module] = [] for i, layer in enumerate(layers): seq.append(layer) if i == targets[j]: self.layers.append(nn.Sequential(*seq)) seq.clear() j += 1 if j == len(targets): break def forward(self, input: torch.Tensor) -> List[torch.Tensor]: r"""Defines the computation performed at every call. """ output = [] for layer in self.layers: input = layer(input) output.append(input) return output class LPIPS(nn.Module): r"""Creates a criterion that measures the LPIPS between an input \(x\) and a target \(y\). $$ \text{LPIPS}(x, y) = \sum_{l \, \in \, \mathcal{F}} w_l \cdot \text{MSE}(\hat{\phi}_l(x), \hat{\phi}_l(y)) $$ where \(\hat{\phi}_l\) represents the normalized output of an intermediate layer \(l\) in a perception network \(\mathcal{F}\). Args: network: Specifies the perception network \(\mathcal{F}\) to use: `'alex'` | `'squeeze'` | `'vgg'`. scaling: Whether the input and target need to be scaled w.r.t. ImageNet. dropout: Whether dropout is used or not. pretrained: Whether the official weights \(w_l\) are used or not. eval: Whether to initialize the object in evaluation mode or not. reduction: Specifies the reduction to apply to the output: `'none'` | `'mean'` | `'sum'`. Shapes: * Input: \((N, 3, H, W)\) * Target: \((N, 3, H, W)\) * Output: \((N,)\) or \(()\) depending on `reduction` Note: `LPIPS` is a *trainable* metric. Example: >>> criterion = LPIPS().cuda() >>> x = torch.rand(5, 3, 256, 256, requires_grad=True).cuda() >>> y = torch.rand(5, 3, 256, 256).cuda() >>> l = criterion(x, y) >>> l.size() torch.Size([]) >>> l.backward() """ def __init__( self, network: str = 'alex', scaling: bool = True, dropout: bool = False, pretrained: bool = True, eval: bool = True, reduction: str = 'mean', ): r"""""" super().__init__() # ImageNet scaling self.scaling = scaling self.register_buffer('shift', _SHIFT.view(1, -1, 1, 1)) self.register_buffer('scale', _SCALE.view(1, -1, 1, 1)) # Perception layers if network == 'alex': # AlexNet layers = models.alexnet(pretrained=True).features targets = [1, 4, 7, 9, 11] channels = [64, 192, 384, 256, 256] elif network == 'squeeze': # SqueezeNet layers = models.squeezenet1_1(pretrained=True).features targets = [1, 4, 7, 9, 10, 11, 12] channels = [64, 128, 256, 384, 384, 512, 512] elif network == 'vgg': # VGG16 layers = models.vgg16(pretrained=True).features targets = [3, 8, 15, 22, 29] channels = [64, 128, 256, 512, 512] else: raise ValueError(f'Unknown network architecture {network}') self.net = Intermediary(layers, targets) for p in self.net.parameters(): p.requires_grad = False # Linear comparators self.lins = nn.ModuleList([ nn.Sequential( nn.Dropout(inplace=True) if dropout else nn.Identity(), nn.Conv2d(c, 1, kernel_size=1, bias=False), ) for c in channels ]) if pretrained: self.lins.load_state_dict(get_weights(network=network)) if eval: self.eval() self.reduction = reduction def forward( self, input: torch.Tensor, target: torch.Tensor, ) -> torch.Tensor: r"""Defines the computation performed at every call. """ _assert_type( [input, target], device=self.shift.device, dim_range=(4, 4), n_channels=3, value_range=(0., 1.) if self.scaling else (0., -1.), ) # ImageNet scaling if self.scaling: input = (input - self.shift) / self.scale target = (target - self.shift) / self.scale # LPIPS residuals = [] for lin, fx, fy in zip(self.lins, self.net(input), self.net(target)): fx = fx / torch.linalg.norm(fx, dim=1, keepdim=True) fy = fy / torch.linalg.norm(fy, dim=1, keepdim=True) mse = ((fx - fy) ** 2).mean(dim=(-1, -2), keepdim=True) residuals.append(lin(mse).flatten()) l = torch.stack(residuals, dim=-1).sum(dim=-1) return _reduce(l, self.reduction)
crabageprediction/venv/Lib/site-packages/numpy/typing/tests/data/pass/arrayterator.py
13rianlucero/CrabAgePrediction
20,453
59317
from __future__ import annotations from typing import Any import numpy as np AR_i8: np.ndarray[Any, np.dtype[np.int_]] = np.arange(10) ar_iter = np.lib.Arrayterator(AR_i8) ar_iter.var ar_iter.buf_size ar_iter.start ar_iter.stop ar_iter.step ar_iter.shape ar_iter.flat ar_iter.__array__() for i in ar_iter: pass ar_iter[0] ar_iter[...] ar_iter[:] ar_iter[0, 0, 0] ar_iter[..., 0, :]
tests/test_compatibility.py
AnandJyrm/allure-pytest
112
59318
<filename>tests/test_compatibility.py """ This module holds tests for compatibility with other py.test plugins. Created on Apr 15, 2014 @author: pupssman """ from hamcrest import assert_that, contains, has_property def test_maxfail(report_for): """ Check that maxfail generates proper report """ report = report_for(""" def test_a(): assert False def test_b(): assert True """, extra_run_args=['-x']) assert_that(report.findall('.//test-case'), contains(has_property('name', 'test_a')))
qiskit/algorithms/optimizers/tnc.py
Roshan-Thomas/qiskit-terra
1,599
59339
<gh_stars>1000+ # This code is part of Qiskit. # # (C) Copyright IBM 2018, 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Truncated Newton (TNC) optimizer. """ from typing import Optional from .scipy_optimizer import SciPyOptimizer class TNC(SciPyOptimizer): """ Truncated Newton (TNC) optimizer. TNC uses a truncated Newton algorithm to minimize a function with variables subject to bounds. This algorithm uses gradient information; it is also called Newton Conjugate-Gradient. It differs from the :class:`CG` method as it wraps a C implementation and allows each variable to be given upper and lower bounds. Uses scipy.optimize.minimize TNC For further detail, please refer to See https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html """ _OPTIONS = ["maxiter", "disp", "accuracy", "ftol", "xtol", "gtol", "eps"] # pylint: disable=unused-argument def __init__( self, maxiter: int = 100, disp: bool = False, accuracy: float = 0, ftol: float = -1, xtol: float = -1, gtol: float = -1, tol: Optional[float] = None, eps: float = 1e-08, options: Optional[dict] = None, max_evals_grouped: int = 1, **kwargs, ) -> None: """ Args: maxiter: Maximum number of function evaluation. disp: Set to True to print convergence messages. accuracy: Relative precision for finite difference calculations. If <= machine_precision, set to sqrt(machine_precision). Defaults to 0. ftol: Precision goal for the value of f in the stopping criterion. If ftol < 0.0, ftol is set to 0.0 defaults to -1. xtol: Precision goal for the value of x in the stopping criterion (after applying x scaling factors). If xtol < 0.0, xtol is set to sqrt(machine_precision). Defaults to -1. gtol: Precision goal for the value of the projected gradient in the stopping criterion (after applying x scaling factors). If gtol < 0.0, gtol is set to 1e-2 * sqrt(accuracy). Setting it to 0.0 is not recommended. Defaults to -1. tol: Tolerance for termination. eps: Step size used for numerical approximation of the Jacobian. options: A dictionary of solver options. max_evals_grouped: Max number of default gradient evaluations performed simultaneously. kwargs: additional kwargs for scipy.optimize.minimize. """ if options is None: options = {} for k, v in list(locals().items()): if k in self._OPTIONS: options[k] = v super().__init__( "TNC", options=options, tol=tol, max_evals_grouped=max_evals_grouped, **kwargs, )
scripts/serial-stress-test.py
twopoint718/Amethyst
260
59397
#!/usr/bin/env python import serial import time BAUD = 57600 with serial.Serial('/dev/cu.usbserial-DN05KLWU', BAUD) as port: time.sleep(5.0) n = 0 while True: port.write(bytearray([n & 0xFF])) n += 1
cflearn/models/cv/ssl/dino.py
carefree0910/carefree-learn
400
59493
import torch import numpy as np import torch.nn as nn import torch.distributed as dist import torch.nn.functional as F from torch import Tensor from typing import Any from typing import Dict from typing import Tuple from typing import Optional from cftool.misc import update_dict from cftool.misc import shallow_copy_dict from torch.nn.parallel import DistributedDataParallel as DDP from ..encoder import Encoder1DBase from ....data import CVLoader from ....types import tensor_dict_type from ....protocol import StepOutputs from ....protocol import TrainerState from ....protocol import MetricsOutputs from ....protocol import ModelWithCustomSteps from ....constants import LOSS_KEY from ....constants import INPUT_KEY from ....constants import LATENT_KEY from ....misc.toolkit import to_device from ....misc.toolkit import l2_normalize from ....misc.toolkit import get_world_size from ....misc.toolkit import has_batch_norms def _get_dino_defaults(name: str) -> Dict[str, Any]: if name == "vit": return {"patch_size": 16, "drop_path_rate": 0.1} return {} class Scheduler: def __init__(self, values: np.ndarray): self.values = values self.max_idx = len(values) - 1 def __getitem__(self, index: int) -> Any: return self.values[min(index, self.max_idx)] def cosine_scheduler( base_value: float, final_value: float, epochs: int, num_step_per_epoch: int, warmup_epochs: int = 0, start_warmup_value: int = 0, ) -> Scheduler: warmup_schedule = np.array([]) warmup_iters = warmup_epochs * num_step_per_epoch if warmup_epochs > 0: warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters) iters = np.arange(epochs * num_step_per_epoch - warmup_iters) diff = base_value - final_value schedule = final_value + 0.5 * diff * (1.0 + np.cos(np.pi * iters / len(iters))) schedule = np.concatenate((warmup_schedule, schedule)) assert len(schedule) == epochs * num_step_per_epoch return Scheduler(schedule) class MultiCropWrapper(nn.Module): def __init__(self, backbone: nn.Module, head: nn.Module): super().__init__() backbone.fc, backbone.head = nn.Identity(), nn.Identity() self.backbone = backbone self.head = head def forward( self, batch_idx: int, batch: tensor_dict_type, state: Optional[TrainerState] = None, *, img_end_idx: Optional[int] = None, **kwargs: Any, ) -> Tensor: img_crops = batch[INPUT_KEY] if not isinstance(img_crops, list): img_crops = batch[INPUT_KEY] = [img_crops] if img_end_idx is not None: img_crops = img_crops[:img_end_idx] idx_crops = torch.cumsum( torch.unique_consecutive( torch.tensor([img_crop.shape[-1] for img_crop in img_crops]), return_counts=True, )[1], 0, ) outputs = [] start_idx = 0 for end_idx in idx_crops: local_batch = shallow_copy_dict(batch) local_batch[INPUT_KEY] = torch.cat(img_crops[start_idx:end_idx]) idx_rs = self.backbone(batch_idx, local_batch, state, **kwargs) idx_out = idx_rs[LATENT_KEY] if isinstance(idx_out, tuple): idx_out = idx_out[0] outputs.append(idx_out) start_idx = end_idx return self.head(torch.cat(outputs)) class DINOHead(nn.Module): def __init__( self, in_dim: int, out_dim: int, batch_norm: bool = False, norm_last_layer: bool = True, *, num_layers: int = 3, latent_dim: int = 2048, bottleneck_dim: int = 256, ): super().__init__() num_layers = max(num_layers, 1) if num_layers == 1: self.mapping = nn.Linear(in_dim, bottleneck_dim) else: blocks = [nn.Linear(in_dim, latent_dim)] if batch_norm: blocks.append(nn.BatchNorm1d(latent_dim)) blocks.append(nn.GELU()) for _ in range(num_layers - 2): blocks.append(nn.Linear(latent_dim, latent_dim)) if batch_norm: blocks.append(nn.BatchNorm1d(latent_dim)) blocks.append(nn.GELU()) blocks.append(nn.Linear(latent_dim, bottleneck_dim)) self.mapping = nn.Sequential(*blocks) self.apply(self._init_weights) last = nn.Linear(bottleneck_dim, out_dim, bias=False) self.last_layer = nn.utils.weight_norm(last) self.last_layer.weight_g.data.fill_(1) if norm_last_layer: self.last_layer.weight_g.requires_grad = False def _init_weights(self, m: nn.Module) -> None: if isinstance(m, nn.Linear): nn.init.trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, net: Tensor) -> Tensor: net = self.mapping(net) net = nn.functional.normalize(net, dim=-1, p=2) net = self.last_layer(net) return net class DINOLoss(nn.Module): center: torch.Tensor def __init__( self, out_dim: int, teacher_temp: float, warmup_teacher_temp: float, warmup_teacher_temp_epochs: int, teacher_temp_epochs: int, *, student_temp: float = 0.1, center_momentum: float = 0.9, ): super().__init__() self.student_temp = student_temp self.center_momentum = center_momentum self.register_buffer("center", torch.zeros(1, out_dim)) teacher_temp_constant_epochs = teacher_temp_epochs - warmup_teacher_temp_epochs self.teacher_temp_schedule = Scheduler( np.concatenate( ( np.linspace( warmup_teacher_temp, teacher_temp, warmup_teacher_temp_epochs, ), np.ones(teacher_temp_constant_epochs) * teacher_temp, ) ) ) self.num_epochs = teacher_temp_epochs def forward( self, epoch: int, num_crops: int, student_output: Tensor, teacher_output: Tensor, ) -> Tensor: student_logits = student_output / self.student_temp student_logits_list = student_logits.chunk(num_crops) temp = self.teacher_temp_schedule[epoch] teacher_logits = F.softmax((teacher_output - self.center) / temp, dim=-1) teacher_logits_list = teacher_logits.detach().chunk(2) total_loss = 0.0 num_loss_terms = 0 for it, t_logit in enumerate(teacher_logits_list): for iv, v_logit in enumerate(student_logits_list): if iv == it: continue loss = torch.sum(-t_logit * F.log_softmax(v_logit, dim=-1), dim=-1) total_loss += loss.mean() num_loss_terms += 1 total_loss /= num_loss_terms self.update_center(teacher_output) return total_loss @torch.no_grad() def update_center(self, teacher_output: Tensor) -> None: batch_center = torch.sum(teacher_output, dim=0, keepdim=True) if dist.is_initialized(): dist.all_reduce(batch_center) batch_center = batch_center / (len(teacher_output) * get_world_size()) m = self.center_momentum self.center = self.center * m + batch_center * (1.0 - m) class DINOEvaluateLoss: def __init__(self, train_loss: DINOLoss): self.train_loss = train_loss def __call__( self, epoch: int, student_output: Tensor, teacher_output: Tensor, ) -> float: s_logits = student_output / self.train_loss.student_temp temp = self.train_loss.teacher_temp_schedule[epoch] centered = teacher_output - self.train_loss.center t_logits = F.softmax(centered / temp, dim=-1) loss = torch.sum(-t_logits * F.log_softmax(s_logits, dim=-1), dim=-1).mean() return loss.item() @ModelWithCustomSteps.register("dino") class DINO(ModelWithCustomSteps): custom_params_groups = True custom_ddp_initialization = True lr_schedule: Optional[Scheduler] wd_schedule: Optional[Scheduler] momentum_schedule: Optional[Scheduler] def __init__( self, encoder1d: str = "vit", encoder1d_config: Optional[Dict[str, Any]] = None, student_specific: Optional[Dict[str, Any]] = None, teacher_specific: Optional[Dict[str, Any]] = None, *, out_dim: int = 65536, use_bn_in_head: bool = False, norm_last_layer: bool = True, teacher_temp: float = 0.07, momentum_teacher: float = 0.996, warmup_teacher_temp: float = 0.04, warmup_teacher_temp_epochs: int = 30, teacher_temp_epochs: int, freeze_last_layer: int = 1, weight_decay: float = 0.04, weight_decay_end: float = 0.4, warmup_epochs: int = 10, ): super().__init__() base = update_dict(encoder1d_config or {}, _get_dino_defaults(encoder1d)) student_cfg = update_dict(student_specific or {}, shallow_copy_dict(base)) teacher_cfg = update_dict(teacher_specific or {}, shallow_copy_dict(base)) student = Encoder1DBase.make(encoder1d, student_cfg) teacher = Encoder1DBase.make(encoder1d, teacher_cfg) self.ddp_student = self.ddp_teacher = None self.student = MultiCropWrapper( student, DINOHead( student.latent_dim, out_dim, use_bn_in_head, norm_last_layer, ), ) self.teacher = MultiCropWrapper( teacher, DINOHead(teacher.latent_dim, out_dim, use_bn_in_head), ) self.freeze_last_layer = freeze_last_layer self.teacher.load_state_dict(self.student.state_dict()) self.loss = DINOLoss( out_dim, teacher_temp, warmup_teacher_temp, warmup_teacher_temp_epochs, teacher_temp_epochs, ) self.evaluate_loss = DINOEvaluateLoss(self.loss) self.momentum_teacher = momentum_teacher self.teacher_temp_epochs = teacher_temp_epochs self.weight_decay = weight_decay self.weight_decay_end = weight_decay_end self.warmup_epochs = warmup_epochs self.lr_schedule = None self.wd_schedule = None self.momentum_schedule = None @property def student_for_training(self) -> MultiCropWrapper: return self.ddp_student or self.student @property def teacher_for_training(self) -> MultiCropWrapper: return self.ddp_teacher or self.teacher def forward( self, batch_idx: int, batch: tensor_dict_type, state: Optional[TrainerState] = None, **kwargs: Any, ) -> tensor_dict_type: net = self.student.backbone(batch_idx, batch, state, **kwargs)[LATENT_KEY] net = l2_normalize(net) return {LATENT_KEY: net} def onnx_forward(self, batch: tensor_dict_type) -> Any: inp = batch[INPUT_KEY] net = self.get_latent(inp, determinate=True) return net.view(inp.shape[0], self.student.backbone.latent_dim) def get_latent(self, net: Tensor, **kwargs: Any) -> Tensor: return self.forward(0, {INPUT_KEY: net}, **kwargs)[LATENT_KEY] def get_logits(self, net: Tensor) -> Tensor: return self.student(0, {INPUT_KEY: net}) def state_dict( self, destination: Any = None, prefix: str = "", keep_vars: bool = False, ) -> Any: states = super().state_dict(destination, prefix, keep_vars) for k in list(states.keys()): if k.startswith("ddp"): states.pop(k) return states def summary_forward(self, batch_idx: int, batch: tensor_dict_type) -> None: self.student(batch_idx, to_device(batch, self.device)) def _get_outputs( self, batch_idx: int, batch: tensor_dict_type, trainer: Any, forward_kwargs: Dict[str, Any], ) -> tensor_dict_type: teacher_output = self.teacher_for_training( batch_idx, batch, trainer.state, img_end_idx=2, **forward_kwargs, ) student_output = self.student_for_training( batch_idx, batch, trainer.state, **forward_kwargs, ) return {"student": student_output, "teacher": teacher_output} def _get_loss( self, batch_idx: int, batch: tensor_dict_type, trainer: Any, forward_kwargs: Dict[str, Any], ) -> Tuple[tensor_dict_type, Tensor]: with torch.cuda.amp.autocast(enabled=trainer.use_amp): outputs = self._get_outputs(batch_idx, batch, trainer, forward_kwargs) epoch = trainer.state.epoch num_crops = len(batch[INPUT_KEY]) student_output = outputs["student"] teacher_output = outputs["teacher"] loss = self.loss(epoch, num_crops, student_output, teacher_output) return outputs, loss def train_step( self, batch_idx: int, batch: tensor_dict_type, trainer: Any, forward_kwargs: Dict[str, Any], loss_kwargs: Dict[str, Any], ) -> StepOutputs: state = trainer.state if self.lr_schedule is None: self.lr_schedule = cosine_scheduler( self.lr * (len(batch[INPUT_KEY][0]) * get_world_size()) / 256.0, # type: ignore self.min_lr, self.teacher_temp_epochs, state.num_step_per_epoch, warmup_epochs=self.warmup_epochs, ) if self.wd_schedule is None: self.wd_schedule = cosine_scheduler( self.weight_decay, self.weight_decay_end, self.teacher_temp_epochs, state.num_step_per_epoch, ) # manual scheduling optimizer = trainer.optimizers["all"] for i, param_group in enumerate(optimizer.param_groups): param_group["lr"] = self.lr_schedule[state.step] if i == 0: param_group["weight_decay"] = self.wd_schedule[state.step] # forward pass rs, loss = self._get_loss(batch_idx, batch, trainer, forward_kwargs) # backward pass optimizer.zero_grad() trainer.grad_scaler.scale(loss).backward() # clip norm if trainer.clip_norm > 0.0: trainer.grad_scaler.unscale_(optimizer) nn.utils.clip_grad_norm_( self.student_for_training.parameters(), max_norm=trainer.clip_norm, ) # freeze last layer if state.epoch <= self.freeze_last_layer: for n, p in self.student.named_parameters(): if "last_layer" in n: p.grad = None # update parameters trainer.grad_scaler.step(optimizer) trainer.grad_scaler.update() # update momentum teacher if self.momentum_schedule is None: self.momentum_schedule = cosine_scheduler( self.momentum_teacher, 1.0, self.teacher_temp_epochs, state.num_step_per_epoch, ) with torch.no_grad(): m = self.momentum_schedule[state.step] for param_q, param_k in zip( self.student.parameters(), self.teacher.parameters(), ): param_k.data.mul_(m).add_((1.0 - m) * param_q.detach().data) # return return StepOutputs(rs, {LOSS_KEY: loss.item()}) def evaluate_step( # type: ignore self, loader: CVLoader, portion: float, trainer: Any, ) -> MetricsOutputs: losses = [] for i, batch in enumerate(loader): if i / len(loader) >= portion: break batch = to_device(batch, self.device) outputs = self._get_outputs(i, batch, trainer, {}) losses.append( self.evaluate_loss( trainer.state.epoch, outputs["student"], outputs["teacher"], ) ) # gather mean_loss = sum(losses) / len(losses) return MetricsOutputs( -mean_loss, { "loss": mean_loss, "lr": self.lr_schedule[trainer.state.step], # type: ignore "wd": self.wd_schedule[trainer.state.step], # type: ignore }, ) @staticmethod def params_groups(m: nn.Module) -> Any: regularized = [] bias_and_norm = [] for name, param in m.named_parameters(): if not param.requires_grad: continue if name.endswith(".bias") or len(param.shape) == 1: bias_and_norm.append(param) else: regularized.append(param) return [{"params": regularized}, {"params": bias_and_norm, "weight_decay": 0.0}] def _init_with_trainer(self, trainer: Any) -> None: self.teacher_for_training.requires_grad_(False) def init_ddp(self, trainer: Any) -> None: if has_batch_norms(self.student): self.student = nn.SyncBatchNorm.convert_sync_batchnorm(self.student) self.teacher = nn.SyncBatchNorm.convert_sync_batchnorm(self.teacher) self.ddp_student = DDP(self.student, device_ids=[trainer.rank]) self.ddp_teacher = DDP(self.teacher, device_ids=[trainer.rank]) self.ddp_teacher.requires_grad_(False) # type: ignore def permute_trainer_config(self, trainer_config: Dict[str, Any]) -> None: # TODO : make `permute_trainer_config` more general if trainer_config["clip_norm"] == 0.0: trainer_config["clip_norm"] = 3.0 if trainer_config["lr"] is None: trainer_config["lr"] = 0.0005 self.lr = trainer_config["lr"] self.min_lr = trainer_config.pop("min_lr", 1.0e-6) if trainer_config["optimizer_name"] is None: trainer_config["optimizer_name"] = "adamw" trainer_config["scheduler_name"] = "none" __all__ = [ "DINO", ]
anuga/file_conversion/dem2array.py
samcom12/anuga_core
136
59494
from __future__ import absolute_import # external modules from past.builtins import basestring import numpy as num # ANUGA modules import anuga.utilities.log as log from anuga.config import netcdf_mode_r, netcdf_mode_w, netcdf_mode_a, \ netcdf_float from .asc2dem import asc2dem def dem2array(filename, variable_name='elevation', easting_min=None, easting_max=None, northing_min=None, northing_max=None, use_cache=False, verbose=False,): """Read Digitial Elevation model from the following NetCDF format (.dem) Example: ncols 3121 nrows 1800 xllcorner 722000 yllcorner 5893000 cellsize 25 NODATA_value -9999 138.3698 137.4194 136.5062 135.5558 .......... name_in should be .dem file to be read. """ import os from anuga.file.netcdf import NetCDFFile msg = 'Filename must be a text string' assert isinstance(filename, basestring), msg msg = 'Extension should be .dem' assert os.path.splitext(filename)[1] in ['.dem'], msg msg = 'Variable name must be a text string' assert isinstance(variable_name, basestring), msg # Get NetCDF infile = NetCDFFile(filename, netcdf_mode_r) if verbose: log.critical('Reading DEM from %s' % (filename)) ncols = int(infile.ncols) nrows = int(infile.nrows) xllcorner = float(infile.xllcorner) # Easting of lower left corner yllcorner = float(infile.yllcorner) # Northing of lower left corner cellsize = float(infile.cellsize) NODATA_value = float(infile.NODATA_value) zone = int(infile.zone) false_easting = float(infile.false_easting) false_northing = float(infile.false_northing) # Text strings projection = infile.projection datum = infile.datum units = infile.units Z = infile.variables[variable_name][:] Z = Z.reshape(nrows,ncols) Z = num.where(Z == NODATA_value , num.nan, Z) #changed the orientation of Z array to make it consistent with grd2array result Z = num.fliplr(Z.T) #print ncols, nrows, xllcorner,yllcorner, cellsize, NODATA_value, zone x = num.linspace(xllcorner, xllcorner+(ncols-1)*cellsize, ncols) y = num.linspace(yllcorner, yllcorner+(nrows-1)*cellsize, nrows) return x,y, Z
browser_fingerprinting/bro_log_reader.py
dodoandbling/data_hacking
475
59509
<reponame>dodoandbling/data_hacking<filename>browser_fingerprinting/bro_log_reader.py ''' This module handles the mechanics around easily pulling in Bro Log data The read_log method is a generator (in the python sense) for rows in a Bro log, because of this, it's memory efficient and does not read the entire file into memory. ''' import csv import datetime import optparse import itertools class BroLogReader(): ''' This class implements a python based Bro Log Reader. ''' def __init__(self): ''' Init for BroLogReader. ''' self._delimiter = '\t' def read_log(self, logfile, max_rows=None): ''' The read_log method is a generator for rows in a Bro log. Usage: rows = my_bro_reader.read_log(logfile) for row in rows: do something with row Because this method returns a generator, it's memory efficient and does not read the entire file in at once. ''' # First parse the header of the bro log bro_fptr, field_names, field_types = self._parse_bro_header(logfile) # Note: The parse_bro_header method has advanced us to the first # real data row, so we can use the normal csv reader. reader = csv.DictReader(bro_fptr, fieldnames=field_names, delimiter=self._delimiter, restval='BRO_STOP') for _row in itertools.islice(reader, 0, max_rows): values = self._cast_dict(_row) if (values): yield values def _parse_bro_header(self, logfile): ''' This method tries to parse the Bro log header section. Note: My googling is failing me on the documentation on the format, so just making a lot of assumptions and skipping some shit. Assumption 1: The delimeter is a tab. Assumption 2: Types are either time, string, int or float Assumption 3: The header is always ends with #fields and #types as the last two lines. Format example: #separator \x09 #set_separator , #empty_field (empty) #unset_field - #path httpheader_recon #fields ts origin useragent header_events_json #types time string string string ''' # Open the logfile _file = open(logfile, 'rb') # Skip until you find the #fields line _line = next(_file) while (not _line.startswith('#fields')): _line = next(_file) # Read in the field names _field_names = _line.strip().split(self._delimiter)[1:] # Read in the types _line = next(_file) _field_types = _line.strip().split(self._delimiter)[1:] # Return the header info return _file, _field_names, _field_types def _cast_dict(self, data_dict): ''' Internal method that makes sure any dictionary elements are properly cast into the correct types, instead of just treating everything like a string from the csv file ''' for key, value in data_dict.iteritems(): if (value == 'BRO_STOP'): return None data_dict[key] = self._cast_value(value) return data_dict def _cast_value(self, value): ''' Internal method that makes sure any dictionary elements are properly cast into the correct types, instead of just treating everything like a string from the csv file ''' # First try time try: return datetime.datetime.fromtimestamp(float(value)) # Next try a set of primitive types except ValueError: tests = (int, float, str) for test in tests: try: return test(value) except ValueError: continue return value if __name__ == '__main__': # Handle command-line arguments PARSER = optparse.OptionParser() PARSER.add_option('--logfile', default=None, help='Logfile to read from. Default: %default') (OPTIONS, ARGUMENTS) = PARSER.parse_args() print OPTIONS, ARGUMENTS # Create a BRO log file reader and pull from the logfile BRO_LOG = BroLogReader() RECORDS = BRO_LOG.read_log(OPTIONS.logfile, max_rows=10) for row in RECORDS: print row
chapter-12/fees/app.py
wallacei/microservices-in-action-copy
115
59550
import datetime import json from nameko.events import EventDispatcher, event_handler from simplebank.chassis import init_logger, init_statsd class FeesService: name = "fees_service" statsd = init_statsd('simplebank-demo.fees', 'statsd') logger = init_logger() @event_handler("market_service", "order_placed") @statsd.timer('charge_fee') def charge_fee(self, payload): self.logger.debug( "this is a debug message from fees service", extra={"uuid": payload}) self.logger.info("charging fees", extra={ "uuid": payload}) return payload
python/iceberg/api/transforms/identity.py
moulimukherjee/incubator-iceberg
2,161
59602
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from .transform import Transform from .transform_util import TransformUtil from ..expressions import Expressions from ..types import TypeID class Identity(Transform): @staticmethod def get(type_var): return Identity(type_var) def __init__(self, type_var): self.type_var = type_var def apply(self, value): return value def can_transform(self, type_var): return type_var.is_primitive_type() def get_result_type(self, source_type): return source_type def project(self, name, predicate): return self.project_strict(name, predicate) def project_strict(self, name, predicate): if predicate.lit is not None: return Expressions.predicate(predicate.op, name, predicate.lit.value) else: return Expressions.predicate(predicate.op, name) def to_human_string(self, value): if value is None: return "null" if self.type_var.type_id == TypeID.DATE: return TransformUtil.human_day(value) elif self.type_var.type_id == TypeID.TIME: return TransformUtil.human_time(value) elif self.type_var.type_id == TypeID.TIMESTAMP: if self.type_var.adjust_to_utc: return TransformUtil.human_timestamp_with_timezone(value) else: return TransformUtil.human_timestamp_without_timezone(value) elif self.type_var.type_id in (TypeID.BINARY, TypeID.FIXED): raise NotImplementedError() # if isinstance(value, bytearray): # return base64.b64encode(value) # elif isinstance(value, bytes): # return base64.b64encode(bytes(value)) # else: # raise RuntimeError("Unsupported binary type: %s" % value.__class__.__name__) else: return str(value) def __str__(self): return "identity" def __eq__(self, other): if id(self) == id(other): return True if other is None or not isinstance(other, Identity): return False return self.type_var == other.type_var def __hash__(self): return hash(self.__key()) def __key(self): return Identity.__class__, self.type_var
plugins/comment_mem_access.py
bennofs/execution-trace-viewer
186
59640
"""This plugin finds every memory access and comments the row with address and value""" from yapsy.IPlugin import IPlugin from core.api import Api class PluginCommentMemAccesses(IPlugin): def execute(self, api: Api): want_to_continue = api.ask_user( "Warning", "This plugin may replace some of your comments, continue?" ) if not want_to_continue: return trace_data = api.get_trace_data() trace = api.get_visible_trace() for i, t in enumerate(trace): if 'mem' in t and t['mem']: comment = "" for mem in t['mem']: addr = hex(mem['addr']) value = mem['value'] if mem['access'] == "READ": comment += f"[{ addr }] -> { hex(value) } " elif mem['access'] == "WRITE": comment += f"[{ addr }] <- { hex(value) } " if 0x20 <= value <= 0x7e: comment += f"'{ chr(value) }' " # Add comment to full trace row = t["id"] trace_data.trace[row]['comment'] = comment # Add comment to visible trace too because it could be filtered_trace trace[i]['comment'] = comment api.update_trace_table()
datasets/coco_eval_proposals.py
StephenStorm/DETReg
212
59734
# pip install pycocotools opencv-python opencv-contrib-python # wget https://github.com/opencv/opencv_extra/raw/master/testdata/cv/ximgproc/model.yml.gz import os import copy import time import argparse import contextlib import multiprocessing import numpy as np import cv2 import cv2.ximgproc import matplotlib.patches import matplotlib.pyplot as plt import torch from torchvision.datasets import CocoDetection from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval def imshow_with_boxes(img, boxes_xywh, savefig): plt.figure() plt.imshow(img) plt.axis('off') for x, y, w, h in boxes_xywh.tolist(): plt.gca().add_patch(matplotlib.patches.Rectangle((x, y), w, h, linewidth=1, edgecolor='r', facecolor='none')) plt.savefig(savefig) plt.close() return savefig def selective_search(img, fast, topk): algo = cv2.ximgproc.segmentation.createSelectiveSearchSegmentation() algo.setBaseImage(img) if fast: algo.switchToSelectiveSearchFast() else: algo.switchToSelectiveSearchQuality() boxes_xywh = algo.process().astype(np.float32) scores = np.ones( (len(boxes_xywh), ) ) return boxes_xywh[:topk], scores[:topk] def edge_boxes(img, fast, topk, bgr2rgb = (2, 1, 0), algo_edgedet = cv2.ximgproc.createStructuredEdgeDetection('model.yml.gz') if os.path.exists('model.yml.gz') else None): edges = algo_edgedet.detectEdges(img[..., bgr2rgb].astype(np.float32) / 255.0) orimap = algo_edgedet.computeOrientation(edges) edges = algo_edgedet.edgesNms(edges, orimap) algo_edgeboxes = cv2.ximgproc.createEdgeBoxes() algo_edgeboxes.setMaxBoxes(topk) boxes_xywh, scores = algo_edgeboxes.getBoundingBoxes(edges, orimap) if scores is None: boxes_xywh, scores = np.array([[0, 0.0, img.shape[1], img.shape[0]]]), np.ones((1, )) return boxes_xywh, scores.squeeze() def process_image(image_id, img_extra, fast, resize, algo, rgb2bgr = (2, 1, 0), category_other = -1, topk = 1000): img = np.asarray(img_extra[0])[..., rgb2bgr] h, w = img.shape[:2] img_det = img if resize == 1 else cv2.resize(img, (resize, resize)) boxes_xywh, scores = algo(img_det, fast, topk) boxes_xywh = boxes_xywh.astype(np.float32) * (1 if resize == 1 else np.array([w, h, w, h]) / resize) labels = np.full((len(boxes_xywh), ), category_other, dtype = int) return image_id, dict(boxes = boxes_xywh, scores = scores, labels = labels) def process_loaded(image_id, loaded, category_other = -1): boxes_xyxy = loaded['pred_boxes_'].clamp(min = 0) boxes_xywh = torch.stack([boxes_xyxy[:, 0], boxes_xyxy[:, 1], boxes_xyxy[:, 2] - boxes_xyxy[:, 0], boxes_xyxy[:, 3] - boxes_xyxy[:, 1]], dim = -1) labels = np.full((len(boxes_xywh), ), category_other, dtype = int) num_classes = loaded['pred_logits'].shape[-1] scores = loaded['pred_logits'][:, 1:: num_classes - 2][:, 0] I = scores.argsort(descending = True) scores = scores[I] boxes_xywh = boxes_xywh[I] labels = labels[I] return image_id, dict(boxes = boxes_xywh, scores = scores, labels = labels) class CocoEvaluator(object): def __init__(self, coco_gt, iou_type = 'bbox', useCats = 0, maxDets = 100): self.coco_gt = copy.deepcopy(coco_gt) self.coco_eval = COCOeval(coco_gt, iouType = iou_type) if maxDets != [100]: self.coco_eval.params.maxDets = maxDets if not useCats: self.coco_eval.params.useCats = useCats self.coco_eval.params.catIds = [-1] coco_gt.loadAnns = lambda imgIds, loadAnns = coco_gt.loadAnns: [gt.update(dict(category_id = -1)) or gt for gt in loadAnns(imgIds)] self.accumulate, self.summarize = self.coco_eval.accumulate, self.coco_eval.summarize @staticmethod def call_without_stdout(func, *args): with open(os.devnull, 'w') as devnull: with contextlib.redirect_stdout(devnull): return func(*args) def update(self, predictions): tolist = lambda a: [a.tolist()] if a.ndim == 0 else a.tolist() detection_results = [dict(image_id = image_id, bbox = bbox, score = score, category_id = category_id) for image_id, pred in predictions.items() if pred for bbox, score, category_id in zip(pred['boxes'].tolist(), tolist(pred['scores']), pred['labels'].tolist())] self.coco_eval.cocoDt = self.call_without_stdout(COCO.loadRes, self.coco_gt, detection_results) if detection_results else COCO() self.coco_eval.params.imgIds = list(predictions) self.call_without_stdout(self.coco_eval.evaluate) def main(args): coco_mode = 'instances' PATHS = dict( train = (os.path.join(args.dataset_root, f'train{args.dataset_year}'), os.path.join(args.dataset_root, 'annotations', f'{coco_mode}_train{args.dataset_year}.json')), val = (os.path.join(args.dataset_root, f'val{args.dataset_year}'), os.path.join(args.dataset_root, 'annotations', f'{coco_mode}_val{args.dataset_year}.json')), ) dataset = CocoDetection(*PATHS[args.dataset_split]) coco_evaluator = CocoEvaluator(dataset.coco, maxDets = args.max_dets) tic = time.time() if args.output_dir: os.makedirs(args.output_dir, exist_ok = True) if args.algo != 'process_loaded': preds = dict(multiprocessing.Pool(processes = args.num_workers).starmap(process_image, zip(dataset.ids, dataset, [args.fast] * len(dataset), [args.resize] * len(dataset), [globals()[args.algo]] * len(dataset)))) else: preds = [] for i, t in enumerate(zip(dataset.ids, dataset, [args.fast] * len(dataset), [args.resize] * len(dataset), [globals()[args.algo]] * len(dataset))): loaded = torch.load(os.path.join(args.input_dir, str(t[0]) + '.pt'), map_location = 'cpu') preds.append(process_loaded(t[0], loaded)) if args.output_dir: imshow_with_boxes(t[1][0], preds[-1][1]['boxes'][:5], os.path.join(args.output_dir, str(t[0]) + '.jpg')) print(i) if i % 50 == 0 else None preds = dict(preds) print('proposals', time.time() - tic); tic = time.time() coco_evaluator.update(preds) coco_evaluator.accumulate() coco_evaluator.summarize() print('evaluator', time.time() - tic) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--input-dir', '-i') parser.add_argument('--output-dir', '-o') parser.add_argument('--dataset-root') parser.add_argument('--dataset-split', default = 'val', choices = ['train', 'val']) parser.add_argument('--dataset-year', type = int, default = 2017) parser.add_argument('--num-workers', type = int, default = 16) parser.add_argument('--algo', default = 'selective_search', choices = ['selective_search', 'edge_boxes', 'process_loaded']) parser.add_argument('--fast', action = 'store_true') parser.add_argument('--resize', type = int, default = 128) parser.add_argument('--max-dets', type = int, nargs = '*', default = [100]) args = parser.parse_args() print(args) main(args)
names_dataset/__init__.py
nischal-sanil/name-dataset
478
59750
<filename>names_dataset/__init__.py from names_dataset.nd_v1 import NameDatasetV1 # noqa from names_dataset.nd_v2 import NameDataset # noqa
apps/interface/business/interfacemodule.py
rainydaygit/testtcloudserver
349
59776
from flask import g, current_app, jsonify from sqlalchemy import asc, desc, func from apps.interface.models.interfaceapimsg import InterfaceApiMsg from apps.interface.models.interfacecase import InterfaceCase from apps.interface.models.interfacemodule import InterfaceModule from apps.interface.models.interfaceproject import InterfaceProject from apps.interface.util.utils import * from library.api.db import db from library.api.transfer import transfer2json class InterfaceModuleBusiness(object): @classmethod def project_permission(cls, pid=None, id=None): if g.is_admin: return 0 if pid: return 0 if pid in g.projectid else 1 else: ret = InterfaceModule.query.add_columns(InterfaceModule.project_id.label('projectid')).filter( InterfaceModule.id == id).first() return 0 if ret.projectid in g.projectid else 1 @classmethod def _query(cls): return InterfaceModule.query.add_columns( InterfaceModule.id.label('id'), InterfaceModule.name.label('name'), InterfaceModule.project_id.label('projectid'), InterfaceModule.num.label('num'), InterfaceModule.weight.label('weight'), InterfaceModule.status.label('status'), ) @classmethod @transfer2json('?id|!name|!projectid|!num|!weight|!status') def query_all_json(cls, limit, offset): ret = cls._query().filter(InterfaceModule.status == InterfaceModule.ACTIVE) \ .order_by(desc(InterfaceModule.id)) \ .limit(limit).offset(offset).all() return ret @classmethod def module_create(cls, name, project_id, num): try: m = InterfaceModule( name=name, project_id=project_id, num=num, ) db.session.add(m) db.session.commit() return 0, None except Exception as e: current_app.logger.error(str(e)) return 102, str(e) @classmethod def module_delete(cls, id): try: m = InterfaceModule.query.get(id) m.status = InterfaceModule.DISABLE db.session.add(m) db.session.commit() return 0 except Exception as e: current_app.logger.error(str(e)) return 105, str(e) @classmethod def module_modify(cls, id, name, project_id): try: m = InterfaceModule.query.get(id) m.name = name m.project_id = project_id db.session.add(m) db.session.commit() return 0, None except Exception as e: current_app.logger.error(str(e)) return 102, str(e) @classmethod @transfer2json('?id|!name|!projectid|!num|!weight|!status') def query_json_by_id(cls, id): ret = cls._query().filter(InterfaceModule.status == InterfaceModule.ACTIVE, InterfaceModule.id == id).all() return ret @classmethod def _query_total(cls): return InterfaceModule.query.outerjoin( InterfaceCase, InterfaceCase.module_id == InterfaceModule.id).add_columns( InterfaceModule.id.label('id'), InterfaceModule.name.label('name'), InterfaceModule.project_id.label('projectid'), InterfaceModule.num.label('num'), InterfaceModule.weight.label('weight'), InterfaceModule.status.label('status'), func.count('*').label('total'), ) @classmethod @transfer2json('?id|!name|!projectid|!num|!weight|!status|!total') def query_by_project_id_total(cls, pid): # TODO : here need case import # ret = cls._query_total().filter(InterfaceModule.status == InterfaceModule.ACTIVE, # InterfaceModule.project_id == pid, Case.status != Case.DISABLE).order_by( # desc(InterfaceModule.id)).group_by(Case.module_id).all() ret = [] return ret @classmethod @transfer2json('?id|!name|!projectid|!num|!weight|!status') def query_by_project_ids(cls, pid): ret = cls._query().filter(InterfaceModule.status == InterfaceModule.ACTIVE, InterfaceModule.project_id == pid).order_by(desc(InterfaceModule.id)).all() return ret @classmethod def query_by_project_id(cls, pid): tlist = [] total_ret = cls.query_by_project_id_total(pid) for a in total_ret: tlist.append(a['id']) ret = cls.query_by_project_ids(pid) for i in range(len(ret)): if ret[i]['id'] not in tlist: ret[i]['total'] = 0 total_ret.append(ret[i]) total_ret = sorted(total_ret, key=lambda x: x['id'], reverse=True) return total_ret @classmethod def find_model(cls, page, per_page, project_name): if not project_name: return jsonify({'msg': '请先选择项目', 'status': 0}) peoject_id = InterfaceProject.query.filter_by(name=project_name, status=InterfaceProject.ACTIVE).first().id all_module = InterfaceModule.query.filter_by(status=InterfaceModule.ACTIVE, project_id=peoject_id).order_by( InterfaceModule.num.asc()) pagination = all_module.paginate(page, per_page=per_page, error_out=False) my_module = pagination.items total = pagination.total my_module = [{'name': c.name, 'moduleId': c.id, 'num': c.num} for c in my_module] # 查询出所有的接口模块是为了接口录入的时候可以选所有的模块 _all_module = [{'name': s.name, 'moduleId': s.id, 'num': s.num} for s in all_module.all()] return jsonify({'data': my_module, 'total': total, 'status': 1, 'all_module': _all_module}) @classmethod def add_model(cls, project_name, name, ids, number): if not project_name: return jsonify({'msg': '请先创建项目', 'status': 0}) if not name: return jsonify({'msg': '模块名称不能为空', 'status': 0}) project_id = InterfaceProject.query.filter_by(name=project_name, status=InterfaceProject.ACTIVE).first().id num = auto_num(number, InterfaceModule, project_id=project_id, status=InterfaceModule.ACTIVE) if ids: old_data = InterfaceModule.query.filter_by(id=ids, status=InterfaceModule.ACTIVE).first() old_num = old_data.num list_data = InterfaceModule.query.filter(InterfaceModule.status == InterfaceModule.ACTIVE, InterfaceModule.project_id == project_id).order_by( InterfaceModule.num.asc()).all() if InterfaceModule.query.filter_by(name=name, project_id=project_id, status=InterfaceModule.ACTIVE).first() and name != old_data.name: return jsonify({'msg': '模块名字重复', 'status': 0}) num_sort(num, old_num, list_data, old_data) InterfaceModuleBusiness.module_modify(ids, name, project_id) return jsonify({'msg': '修改成功', 'status': 1}) else: if InterfaceModule.query.filter_by(name=name, project_id=project_id, status=InterfaceModule.ACTIVE).first(): return jsonify({'msg': '模块名字重复', 'status': 0}) else: InterfaceModuleBusiness.module_create(name, project_id, num) return jsonify({'msg': '新建成功', 'status': 1}) @classmethod def del_model(cls, ids): # _edit = InterfaceModule.query.filter_by(id=ids).first() # if current_user.id != Project.query.filter_by(id=_edit.project_id).first().user_id: # return jsonify({'msg': '不能删除别人项目下的模块', 'status': 0}) if InterfaceApiMsg.query.filter( InterfaceApiMsg.module_id == ids, InterfaceApiMsg.status == InterfaceApiMsg.ACTIVE ).order_by(asc(InterfaceApiMsg.num)).all(): return jsonify({'msg': '请先删除模块下的接口用例', 'status': 0}) InterfaceModuleBusiness.module_delete(ids) return jsonify({'msg': '删除成功', 'status': 1}) @classmethod def stick_module(cls, module_id, project_name): old_data = InterfaceModule.query.filter_by(id=module_id, status=InterfaceModule.ACTIVE).first() old_num = old_data.num list_data_id = InterfaceProject.query.filter_by(name=project_name, status=InterfaceProject.ACTIVE).first().id list_data = InterfaceModule.query.filter_by(project_id=list_data_id, status=InterfaceModule.ACTIVE).order_by( InterfaceModule.num.asc()).all() num_sort(1, old_num, list_data, old_data) db.session.commit() return jsonify({'msg': '置顶完成', 'status': 1})
data_readers/kitti.py
xingruiy/RAFT-3D
133
59784
import numpy as np import torch import torch.utils.data as data import torch.nn.functional as F import os import cv2 import math import random import json import csv import pickle import os.path as osp from glob import glob import raft3d.projective_ops as pops from . import frame_utils from .augmentation import RGBDAugmentor, SparseAugmentor class KITTIEval(data.Dataset): crop = 80 def __init__(self, image_size=None, root='datasets/KITTI', do_augment=True): self.init_seed = None mode = "testing" self.image1_list = sorted(glob(osp.join(root, mode, "image_2/*10.png"))) self.image2_list = sorted(glob(osp.join(root, mode, "image_2/*11.png"))) self.disp1_ga_list = sorted(glob(osp.join(root, mode, "disp_ganet_{}/*10.png".format(mode)))) self.disp2_ga_list = sorted(glob(osp.join(root, mode, "disp_ganet_{}/*11.png".format(mode)))) self.calib_list = sorted(glob(osp.join(root, mode, "calib_cam_to_cam/*.txt"))) self.intrinsics_list = [] for calib_file in self.calib_list: with open(calib_file) as f: reader = csv.reader(f, delimiter=' ') for row in reader: if row[0] == 'K_02:': K = np.array(row[1:], dtype=np.float32).reshape(3,3) kvec = np.array([K[0,0], K[1,1], K[0,2], K[1,2]]) self.intrinsics_list.append(kvec) @staticmethod def write_prediction(index, disp1, disp2, flow): def writeFlowKITTI(filename, uv): uv = 64.0 * uv + 2**15 valid = np.ones([uv.shape[0], uv.shape[1], 1]) uv = np.concatenate([uv, valid], axis=-1).astype(np.uint16) cv2.imwrite(filename, uv[..., ::-1]) def writeDispKITTI(filename, disp): disp = (256 * disp).astype(np.uint16) cv2.imwrite(filename, disp) disp1 = np.pad(disp1, ((KITTIEval.crop,0),(0,0)), mode='edge') disp2 = np.pad(disp2, ((KITTIEval.crop, 0), (0,0)), mode='edge') flow = np.pad(flow, ((KITTIEval.crop, 0), (0,0),(0,0)), mode='edge') disp1_path = 'kitti_submission/disp_0/%06d_10.png' % index disp2_path = 'kitti_submission/disp_1/%06d_10.png' % index flow_path = 'kitti_submission/flow/%06d_10.png' % index writeDispKITTI(disp1_path, disp1) writeDispKITTI(disp2_path, disp2) writeFlowKITTI(flow_path, flow) def __len__(self): return len(self.image1_list) def __getitem__(self, index): intrinsics = self.intrinsics_list[index] image1 = cv2.imread(self.image1_list[index]) image2 = cv2.imread(self.image2_list[index]) disp1 = cv2.imread(self.disp1_ga_list[index], cv2.IMREAD_ANYDEPTH) / 256.0 disp2 = cv2.imread(self.disp2_ga_list[index], cv2.IMREAD_ANYDEPTH) / 256.0 image1 = image1[self.crop:] image2 = image2[self.crop:] disp1 = disp1[self.crop:] disp2 = disp2[self.crop:] intrinsics[3] -= self.crop image1 = torch.from_numpy(image1).float().permute(2,0,1) image2 = torch.from_numpy(image2).float().permute(2,0,1) disp1 = torch.from_numpy(disp1).float() disp2 = torch.from_numpy(disp2).float() intrinsics = torch.from_numpy(intrinsics).float() return image1, image2, disp1, disp2, intrinsics class KITTI(data.Dataset): def __init__(self, image_size=None, root='datasets/KITTI', do_augment=True): import csv self.init_seed = None self.crop = 80 if do_augment: self.augmentor = SparseAugmentor(image_size) else: self.augmentor = None self.image1_list = sorted(glob(osp.join(root, "training", "image_2/*10.png"))) self.image2_list = sorted(glob(osp.join(root, "training", "image_2/*11.png"))) self.disp1_list = sorted(glob(osp.join(root, "training", "disp_occ_0/*10.png"))) self.disp2_list = sorted(glob(osp.join(root, "training", "disp_occ_1/*10.png"))) self.disp1_ga_list = sorted(glob(osp.join(root, "training", "disp_ganet/*10.png"))) self.disp2_ga_list = sorted(glob(osp.join(root, "training", "disp_ganet/*11.png"))) self.flow_list = sorted(glob(osp.join(root, "training", "flow_occ/*10.png"))) self.calib_list = sorted(glob(osp.join(root, "training", "calib_cam_to_cam/*.txt"))) self.intrinsics_list = [] for calib_file in self.calib_list: with open(calib_file) as f: reader = csv.reader(f, delimiter=' ') for row in reader: if row[0] == 'K_02:': K = np.array(row[1:], dtype=np.float32).reshape(3,3) kvec = np.array([K[0,0], K[1,1], K[0,2], K[1,2]]) self.intrinsics_list.append(kvec) def __len__(self): return len(self.image1_list) def __getitem__(self, index): if not self.init_seed: worker_info = torch.utils.data.get_worker_info() if worker_info is not None: torch.manual_seed(worker_info.id) np.random.seed(worker_info.id) random.seed(worker_info.id) self.init_seed = True image1 = cv2.imread(self.image1_list[index]) image2 = cv2.imread(self.image2_list[index]) disp1 = cv2.imread(self.disp1_list[index], cv2.IMREAD_ANYDEPTH) / 256.0 disp2 = cv2.imread(self.disp2_list[index], cv2.IMREAD_ANYDEPTH) / 256.0 disp1_dense = cv2.imread(self.disp1_ga_list[index], cv2.IMREAD_ANYDEPTH) / 256.0 disp2_dense = cv2.imread(self.disp2_ga_list[index], cv2.IMREAD_ANYDEPTH) / 256.0 flow, valid = frame_utils.readFlowKITTI(self.flow_list[index]) intrinsics = self.intrinsics_list[index] SCALE = np.random.uniform(0.08, 0.15) # crop top 80 pixels, no ground truth information image1 = image1[self.crop:] image2 = image2[self.crop:] disp1 = disp1[self.crop:] disp2 = disp2[self.crop:] flow = flow[self.crop:] valid = valid[self.crop:] disp1_dense = disp1_dense[self.crop:] disp2_dense = disp2_dense[self.crop:] intrinsics[3] -= self.crop image1 = torch.from_numpy(image1).float().permute(2,0,1) image2 = torch.from_numpy(image2).float().permute(2,0,1) disp1 = torch.from_numpy(disp1 / intrinsics[0]) / SCALE disp2 = torch.from_numpy(disp2 / intrinsics[0]) / SCALE disp1_dense = torch.from_numpy(disp1_dense / intrinsics[0]) / SCALE disp2_dense = torch.from_numpy(disp2_dense / intrinsics[0]) / SCALE dz = (disp2 - disp1_dense).unsqueeze(dim=-1) depth1 = 1.0 / disp1_dense.clamp(min=0.01).float() depth2 = 1.0 / disp2_dense.clamp(min=0.01).float() intrinsics = torch.from_numpy(intrinsics) valid = torch.from_numpy(valid) flow = torch.from_numpy(flow) valid = valid * (disp2 > 0).float() flow = torch.cat([flow, dz], -1) if self.augmentor is not None: image1, image2, depth1, depth2, flow, valid, intrinsics = \ self.augmentor(image1, image2, depth1, depth2, flow, valid, intrinsics) return image1, image2, depth1, depth2, flow, valid, intrinsics
tests/test_content_api.py
tzengwei/fastapi-sqlmodel-typer
123
59810
<reponame>tzengwei/fastapi-sqlmodel-typer def test_content_create(api_client_authenticated): response = api_client_authenticated.post( "/content/", json={ "title": "hello test", "text": "this is just a test", "published": True, "tags": ["test", "hello"], }, ) assert response.status_code == 200 result = response.json() assert result["slug"] == "hello-test" def test_content_list(api_client_authenticated): response = api_client_authenticated.get("/content/") assert response.status_code == 200 result = response.json() assert result[0]["slug"] == "hello-test"
nautobot/extras/migrations/0011_fileattachment_fileproxy.py
psmware-ltd/nautobot
384
59828
# Generated by Django 3.1.13 on 2021-07-16 21:44 from django.db import migrations, models import nautobot.extras.models.models import uuid class Migration(migrations.Migration): dependencies = [ ("extras", "0010_change_cf_validation_max_min_field_to_bigint"), ] operations = [ migrations.CreateModel( name="FileAttachment", fields=[ ( "id", models.UUIDField( default=uuid.uuid4, editable=False, primary_key=True, serialize=False, unique=True ), ), ("bytes", models.BinaryField()), ("filename", models.CharField(max_length=255)), ("mimetype", models.CharField(max_length=50)), ], options={"ordering": ["filename"]}, ), migrations.CreateModel( name="FileProxy", fields=[ ( "id", models.UUIDField( default=uuid.uuid4, editable=False, primary_key=True, serialize=False, unique=True ), ), ("name", models.CharField(max_length=255)), ( "file", models.FileField( storage=nautobot.extras.models.models.database_storage, upload_to="extras.FileAttachment/bytes/filename/mimetype", ), ), ("uploaded_at", models.DateTimeField(auto_now_add=True)), ], options={ "get_latest_by": "uploaded_at", "ordering": ["name"], "verbose_name_plural": "file proxies", }, ), migrations.AlterModelOptions( name="jobresult", options={"get_latest_by": "created", "ordering": ["-created"]}, ), ]
koku/masu/database/provider_auth_db_accessor.py
rubik-ai/koku
157
59831
<gh_stars>100-1000 # # Copyright 2021 Red Hat Inc. # SPDX-License-Identifier: Apache-2.0 # """Accessor for Provider Authentication from koku database.""" from api.provider.models import ProviderAuthentication from masu.database.koku_database_access import KokuDBAccess class ProviderAuthDBAccessor(KokuDBAccess): """Class to interact with the koku database for Provider Authentication Data.""" def __init__(self, auth_id=None, credentials=None): """ Establish Provider Authentication database connection. Args: auth_id (string) the provider authentication unique database id credentials (dict) the credentials dictionary """ super().__init__("public") self._auth_id = auth_id self._credentials = credentials self._table = ProviderAuthentication def _get_db_obj_query(self): """ Return the sqlachemy query for the provider auth object. Args: None Returns: (django.db.query.QuerySet): QuerySet of objects matching the given filters """ if self._auth_id and self._credentials: query = self._table.objects.filter(id=self._auth_id, credentials=self._credentials) elif self._auth_id: query = self._table.objects.filter(id=self._auth_id) elif self._credentials: query = self._table.objects.filter(credentials=self._credentials) else: query = self._table.objects.none() return query def get_auth_id(self): """ Return the database id. Args: None Returns: (Integer): "1", """ auth_obj = self._get_db_obj_query().first() return auth_obj.id if auth_obj else None def get_uuid(self): """ Return the provider uuid. Args: None Returns: (String): "UUID v4", example: "edf94475-235e-4b64-ba18-0b81f2de9c9e" """ obj = self._get_db_obj_query().first() return obj.uuid def get_credentials(self): """ Return the provider resource name. Args: None Returns: (dtring): "Provider Resource Name. i.e. AWS: RoleARN", example: {"role_arn": "arn:aws:iam::111111111111:role/CostManagement"} """ obj = self._get_db_obj_query().first() return obj.credentials
lite/tests/unittest_py/pass/test_elementwise_scale_fuse_pass.py
714627034/Paddle-Lite
808
59840
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys sys.path.append('..') from auto_scan_test import FusePassAutoScanTest, IgnoreReasons from program_config import TensorConfig, ProgramConfig, OpConfig, CxxConfig, TargetType, PrecisionType, DataLayoutType, Place import numpy as np from functools import partial from typing import Optional, List, Callable, Dict, Any, Set import unittest import hypothesis from hypothesis import given, settings, seed, example, assume, reproduce_failure from test_elementwise_util import trim_trailing_singular_dims, check_input_shape_available import hypothesis.strategies as st class TestElementwiseScaleFuse(FusePassAutoScanTest): def __init__(self, *args, **kwargs): FusePassAutoScanTest.__init__(self, *args, **kwargs) opencl_places = [ Place(TargetType.OpenCL, PrecisionType.FP16, DataLayoutType.ImageDefault), Place( TargetType.OpenCL, PrecisionType.FP16, DataLayoutType.ImageFolder), Place(TargetType.OpenCL, PrecisionType.FP32, DataLayoutType.NCHW), Place(TargetType.OpenCL, PrecisionType.Any, DataLayoutType.ImageDefault), Place( TargetType.OpenCL, PrecisionType.Any, DataLayoutType.ImageFolder), Place(TargetType.OpenCL, PrecisionType.Any, DataLayoutType.NCHW), Place(TargetType.Host, PrecisionType.FP32) ] self.enable_testing_on_place(places=opencl_places) def is_program_valid(self, program_config: ProgramConfig, predictor_config: CxxConfig) -> bool: if len(program_config.inputs["input_data_x"].shape) > 4 or len( program_config.inputs["input_data_y"].shape ) > 4 or program_config.ops[1].attrs["bias_after_scale"] == False: return False return True def sample_program_configs(self, draw): in_shape_x = draw( st.lists( st.integers( min_value=1, max_value=20), min_size=2, max_size=5)) in_shape_y = draw( st.lists( st.integers( min_value=1, max_value=20), min_size=2, max_size=5)) axis = draw( st.integers( min_value=-1, max_value=max(len(in_shape_x), len(in_shape_y)))) assume( check_input_shape_available( in_shape_x=in_shape_x, in_shape_y=in_shape_y, axis=axis) == True) #scale param scale = draw(st.floats(min_value=0.5, max_value=5)) bias = draw(st.floats(min_value=0, max_value=1)) bias_after_scale = draw(st.sampled_from([False, True])) elementwise_op = OpConfig( type='elementwise_mul', inputs={"X": ["input_data_x"], "Y": ["input_data_y"]}, outputs={"Out": ["elementwise_output_data"]}, attrs={"data_format": 'nchw', "axis": axis}) scale_op = OpConfig( type='scale', inputs={"X": ["elementwise_output_data"]}, outputs={"Out": ["output_data"]}, attrs={ "scale": scale, "bias": bias, "bias_after_scale": bias_after_scale }) ops = [elementwise_op, scale_op] program_config = ProgramConfig( ops=ops, weights={}, inputs={ "input_data_x": TensorConfig(shape=in_shape_x), "input_data_y": TensorConfig(shape=in_shape_y) }, outputs=["output_data"]) return program_config def sample_predictor_configs(self): config = CxxConfig() return self.get_predictor_configs(), ['elementwise_mul'], (1e-5, 1e-5) def add_ignore_pass_case(self): pass def test(self, *args, **kwargs): self.run_and_statis( quant=False, max_examples=1000, passes=["lite_elementwise_scale_fuse_pass"]) if __name__ == "__main__": unittest.main(argv=[''])
Data_Structures/Tree/Binary_Search_Tree/Binary_Search_Tree.py
pranjalkumar153/algo_ds_101
182
59886
<reponame>pranjalkumar153/algo_ds_101 # Binary Search Tree (BST) Implementation class BSTNode: def __init__(selfNode, nodeData): # Node Structure selfNode.nodeData = nodeData selfNode.left = None selfNode.right = None selfNode.parent = None # Insertion Operation def insert(selfNode, node): if selfNode.nodeData > node.nodeData: if selfNode.left is None: selfNode.left = node node.parent = selfNode else: selfNode.left.insert(node) elif selfNode.nodeData < node.nodeData: if selfNode.right is None: selfNode.right = node node.parent = selfNode else: selfNode.right.insert(node) # Removal Operation Functions def replace_node_of_parent(selfNode, new_node): if selfNode.parent is not None: if new_node is not None: new_node.parent = selfNode.parent if selfNode.parent.left == selfNode: selfNode.parent.left = new_node elif selfNode.parent.right == selfNode: selfNode.parent.right = new_node else: selfNode.nodeData = new_node.nodeData selfNode.left = new_node.left selfNode.right = new_node.right if new_node.left is not None: new_node.left.parent = selfNode if new_node.right is not None: new_node.right.parent = selfNode def find_min(selfNode): current = selfNode while current.left is not None: current = current.left return current def remove(selfNode): if (selfNode.left is not None and selfNode.right is not None): successor = selfNode.right.find_min() selfNode.nodeData = successor.nodeData successor.remove() elif selfNode.left is not None: selfNode.replace_node_of_parent(selfNode.left) elif selfNode.right is not None: selfNode.replace_node_of_parent(selfNode.right) else: selfNode.replace_node_of_parent(None) # Search required data within BST def search(selfNode, nodeData): if selfNode.nodeData > nodeData: if selfNode.left is not None: return selfNode.left.search(nodeData) else: return None elif selfNode.nodeData < nodeData: if selfNode.right is not None: return selfNode.right.search(nodeData) else: return None return selfNode # InOrder Traversal Operation def inorder(selfNode): if selfNode.left is not None: selfNode.left.inorder() print(selfNode.nodeData, end=' ') if selfNode.right is not None: selfNode.right.inorder() # PostOrder Traversal Operation def postorder(selfNode): if selfNode.left is not None: selfNode.left.inorder() if selfNode.right is not None: selfNode.right.inorder() print(selfNode.nodeData, end=' ') # PreOrder Traversal Operation def preorder(selfNode): print(selfNode.nodeData, end=' ') if selfNode.left is not None: selfNode.left.inorder() if selfNode.right is not None: selfNode.right.inorder() class BSTree: # Structure of Binary Search Tree def __init__(selfNode): selfNode.root = None def inorder(selfNode): if selfNode.root is not None: selfNode.root.inorder() def preorder(selfNode): if selfNode.root is not None: selfNode.root.preorder() def postorder(selfNode): if selfNode.root is not None: selfNode.root.postorder() def add(selfNode, nodeData): new_node = BSTNode(nodeData) if selfNode.root is None: selfNode.root = new_node else: selfNode.root.insert(new_node) def remove(selfNode, nodeData): to_remove = selfNode.search(nodeData) if (selfNode.root == to_remove and selfNode.root.left is None and selfNode.root.right is None): selfNode.root = None else: to_remove.remove() def search(selfNode, nodeData): if selfNode.root is not None: return selfNode.root.search(nodeData) bstree = BSTree() # Object of class BSTree # Menu of Operations on BST Tree print('BST Tree Operation Menu') print('Add <data>') print('Remove <data>') print('Inorder') print('Preorder') print('Postorder') print('Quit') while True: do = input('Enter your action => ').split() operation = do[0].strip().lower() if operation == 'add': nodeData = int(do[1]) bstree.add(nodeData) elif operation == 'remove': nodeData = int(do[1]) bstree.remove(nodeData) elif operation == 'inorder': print('Inorder Traversal: ', end='') bstree.inorder() print() elif operation == 'postorder': print('Postorder Traversal: ', end='') bstree.postorder() print() elif operation == 'preorder': print('Preorder Traversal: ', end='') bstree.preorder() print() elif operation == 'quit': print("BST Tree Implementation finished.") break
factory-ai-vision/EdgeSolution/modules/WebModule/backend/vision_on_edge/azure_training_status/signals.py
kaka-lin/azure-intelligent-edge-patterns
176
59899
"""App signals. """ import logging from django.db.models.signals import post_save from django.dispatch import receiver from ..azure_projects.models import Project from .models import TrainingStatus logger = logging.getLogger(__name__) @receiver( signal=post_save, sender=Project, dispatch_uid="training_status_project_created_listener", ) def training_status_project_created_listener(**kwargs): """Project create change.""" instance = kwargs["instance"] created = kwargs["created"] if not created: logger.info("Project not created. Pass...") return logger.info("Azure Project created. Create TrainingStatus object.") TrainingStatus.objects.update_or_create( project_id=instance.id, defaults={ "status": "ok", "log": "Status : Has not configured", "performance": "{}", }, )
backend/breach/urls.py
Cancelll/rupture
184
59960
<gh_stars>100-1000 from django.conf.urls import url from . import views urlpatterns = [ url(r'^get_work/(?P<victim_id>\d+)$', views.get_work, name='get_work'), url(r'^get_work$', views.get_work, name='get_work'), url(r'^work_completed/(?P<victim_id>\d+)$', views.work_completed, name='work_completed'), url(r'^work_completed$', views.work_completed, name='work_completed'), url(r'^target$', views.TargetView.as_view(), name='TargetView'), url(r'^victim$', views.VictimListView.as_view(), name='VictimListView'), url(r'^attack$', views.AttackView.as_view(), name='AttackView'), url(r'^victim/(?P<victim_id>\d+)/$', views.VictimDetailView.as_view(), name='VictimDetailView'), url(r'^victim/notstarted/$', views.DiscoveredVictimsView.as_view(), name='DiscoveredVictimsView') ]
invoice/tests.py
Chris7/django-invoice
139
60020
<reponame>Chris7/django-invoice<filename>invoice/tests.py import datetime from django.test import TestCase from django.contrib.auth.models import User from addressbook.models import Address, Country from .models import Invoice class InvoiceTestCase(TestCase): def setUp(self): usr = User.objects.create(username='test', first_name='John', last_name='Doe', email='<EMAIL>') country = Country.objects.create(name='TestCountry') address = Address.objects.create(contact_name='<NAME>', address_one='Street', town='Town', postcode='PostCode', country=country) self.inv = Invoice.objects.create(user=usr, address=address) def testInvoiceId(self): inv = self.inv self.assertEquals(inv.invoice_id, u'TTH9R') inv.invoice_id = False inv.save() self.assertEquals(inv.invoice_id, u'TTH9R') def testGetDue(self): inv = self.inv inv.draft = True inv.save() self.assertEquals(len(Invoice.objects.get_due()), 0) inv.draft = False inv.save() self.assertEquals(len(Invoice.objects.get_due()), 1) inv.invoiced = True inv.save() self.assertEquals(len(Invoice.objects.get_due()), 0) today = datetime.date.today() yesterday = today - datetime.timedelta(1) tomorrow = today + datetime.timedelta(1) inv.invoiced = False inv.invoice_date = yesterday inv.save() self.assertEquals(len(Invoice.objects.get_due()), 1) inv.invoice_date = tomorrow inv.save() self.assertEquals(len(Invoice.objects.get_due()), 0)
Dynamic Programming/Egg Dropping Puzzle/eggDrop.py
muthusk07/cs-algorithms
239
60035
#A Dynamic Programming based Python Program for the Egg Dropping Puzzle import sys # Function to get minimum number of trials # needed in worst case with n eggs and k floors def eggDrop(n, k): # If there are no floors, then no trials needed. If there is one floor, one trial needed. if (k == 0 or k == 1): return k # We need k trials for one egg and k floors if (n == 1): return k min = sys.maxsize # Consider all droppings from 1st floor to kth floor and return the minimum of these values plus 1. for x in range(1, k + 1): res = max(eggDrop(n - 1, x - 1), eggDrop(n, k - x)) if (res < min): min = res return min + 1 if __name__ == "__main__": n = 2 k = 36 #or #n=int(input("Enter number of eggs : ")) #k=int(input("Enter number of floors : ")) print("Minimum number of trials in worst case with", n, "eggs and", k, "floors is", eggDrop(n, k))
testData/regex/otherFunc.py
alek-sun/pydantic-pycharm-plugin
238
60058
from pydantic import BaseModel, constr def other_func(regex): pass class Model(BaseModel): abc: str = other_func(regex='<caret>[^a-zA-Z]+')
testing/tests/001-main/005-unittests/002-api/008-branch.py
fekblom/critic
216
60073
<gh_stars>100-1000 # @dependency 001-main/002-createrepository.py SHA1 = "66f25ae79dcc5e200b136388771b5924a1b5ae56" with repository.workcopy() as work: REMOTE_URL = instance.repository_url("alice") work.run(["checkout", "-b", "008-branch", SHA1]) work.run(["rebase", "--force-rebase", "HEAD~5"]) work.run(["push", REMOTE_URL, "008-branch"]) sha1 = work.run(["rev-parse", "HEAD"]).strip() try: instance.unittest("api.branch", ["basic"], args=["--sha1=" + sha1, "--name=008-branch"]) finally: work.run(["push", REMOTE_URL, ":008-branch"])
Scatter/scatter_multi_dimension.py
pyecharts/pyecharts_gallery
759
60098
from pyecharts import options as opts from pyecharts.charts import Scatter from pyecharts.commons.utils import JsCode from pyecharts.faker import Faker c = ( Scatter() .add_xaxis(Faker.choose()) .add_yaxis( "商家A", [list(z) for z in zip(Faker.values(), Faker.choose())], label_opts=opts.LabelOpts( formatter=JsCode( "function(params){return params.value[1] +' : '+ params.value[2];}" ) ), ) .set_global_opts( title_opts=opts.TitleOpts(title="Scatter-多维度数据"), tooltip_opts=opts.TooltipOpts( formatter=JsCode( "function (params) {return params.name + ' : ' + params.value[2];}" ) ), visualmap_opts=opts.VisualMapOpts( type_="color", max_=150, min_=20, dimension=1 ), ) .render("scatter_multi_dimension.html") )
src/test/tests/databases/h5part.py
visit-dav/vis
226
60109
# ---------------------------------------------------------------------------- # CLASSES: nightly # # Test Case: h5part.py # # Programmer: <NAME> # Date: January, 2009 # # Modifications: # <NAME>, Wed Jan 21 09:36:13 PST 2009 # Took Gunther's original code and integrated it with test suite. # # ---------------------------------------------------------------------------- RequiredDatabasePlugin("H5Part") TurnOffAllAnnotations() OpenDatabase(data_path("h5part_test_data/sample.h5part"), 0) AddPlot("Pseudocolor", "GaussianField", 1, 0) DrawPlots() Test("h5part_01") ChangeActivePlotsVar("LinearField") View3DAtts = GetView3D() View3DAtts.viewNormal = (1.000000, 0.000000, 0.0000000) View3DAtts.focus = (31.5, 31.5, 31.5) View3DAtts.viewUp = (0.000000, 1.000000, 0.0000000) View3DAtts.viewAngle = 30 View3DAtts.parallelScale = 54.5596 View3DAtts.nearPlane = -109.119 View3DAtts.farPlane = 109.119 View3DAtts.imagePan = (0, 0) View3DAtts.imageZoom = 1 View3DAtts.perspective = 1 View3DAtts.eyeAngle = 2 View3DAtts.centerOfRotationSet = 0 View3DAtts.centerOfRotation = (31.5, 31.5, 31.5) SetView3D(View3DAtts) Test("h5part_02") DeleteActivePlots() AddPlot("Pseudocolor", "px", 1, 0) PseudocolorAtts = PseudocolorAttributes() PseudocolorAtts.pointType = PseudocolorAtts.Sphere PseudocolorAtts.pointSize = 1.5 SetPlotOptions(PseudocolorAtts) DrawPlots() Test("h5part_03") AddPlot("Pseudocolor", "LinearField", 1, 0) AddOperator("Slice", 0) SliceAtts = SliceAttributes() SliceAtts.originType = SliceAtts.Intercept SliceAtts.originIntercept = 30 SliceAtts.axisType = SliceAtts.XAxis SliceAtts.project2d = 0 SliceAtts.meshName = "particles" SetOperatorOptions(SliceAtts) DrawPlots() Test("h5part_04") Exit()
models/spach/spach.py
ritwikraha/SPACH
104
60160
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. from functools import partial import torch from torch import nn from timm.models.layers import DropPath from einops.layers.torch import Reduce from .layers import DWConv, SPATIAL_FUNC, ChannelMLP, STEM_LAYER from .misc import reshape2n class MixingBlock(nn.Module): def __init__(self, dim, spatial_func=None, scaled=True, init_values=1e-4, shared_spatial_func=False, norm_layer=partial(nn.LayerNorm, eps=1e-6), act_layer=nn.GELU, drop_path=0., cpe=True, num_heads=None, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., # attn in_features=None, hidden_features=None, drop=0., # mlp channel_ratio=2.0 ): super(MixingBlock, self).__init__() spatial_kwargs = dict(act_layer=act_layer, in_features=in_features, hidden_features=hidden_features, drop=drop, # mlp dim=dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=proj_drop # attn ) self.valid_spatial_func = True if spatial_func is not None: if shared_spatial_func: self.spatial_func = spatial_func else: self.spatial_func = spatial_func(**spatial_kwargs) self.norm1 = norm_layer(dim) if scaled: self.gamma_1 = nn.Parameter(init_values * torch.ones(1, 1, dim), requires_grad=True) else: self.gamma_1 = 1. else: self.valid_spatial_func = False self.channel_func = ChannelMLP(in_features=dim, hidden_features=int(dim*channel_ratio), act_layer=act_layer, drop=drop) self.norm2 = norm_layer(dim) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.cpe = cpe if cpe: self.cpe_net = DWConv(dim) def forward(self, x): in_x = x if self.valid_spatial_func: x = x + self.drop_path(self.gamma_1 * self.spatial_func(self.norm1(in_x))) if self.cpe: x = x + self.cpe_net(in_x) x = x + self.drop_path(self.channel_func(self.norm2(x))) return x def flops(self, input_shape): _, N, C = input_shape flops = 0 if self.valid_spatial_func: flops += self.spatial_func.flops(input_shape) flops += N * C * 2 # norm + skip if self.cpe: flops += self.cpe_net.flops(input_shape) flops += self.channel_func.flops(input_shape) flops += N * C * 2 return flops class Spach(nn.Module): def __init__(self, num_classes=1000, img_size=224, in_chans=3, hidden_dim=384, patch_size=16, net_arch=None, act_layer=nn.GELU, norm_layer=partial(nn.LayerNorm, eps=1e-6), stem_type='conv1', scaled=True, init_values=1e-4, drop_path_rate=0., cpe=True, shared_spatial_func=False, # mixing block num_heads=12, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0., # attn token_ratio=0.5, channel_ratio=2.0, drop_rate=0., # mlp downstream=False, **kwargs ): super(Spach, self).__init__() self.num_classes = num_classes self.hidden_dim = hidden_dim self.downstream = downstream self.stem = STEM_LAYER[stem_type]( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=hidden_dim, downstream=downstream) self.norm1 = norm_layer(hidden_dim) block_kwargs = dict(dim=hidden_dim, scaled=scaled, init_values=init_values, cpe=cpe, shared_spatial_func=shared_spatial_func, norm_layer=norm_layer, act_layer=act_layer, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=proj_drop, # attn in_features=self.stem.num_patches, hidden_features=int(self.stem.num_patches * token_ratio), channel_ratio=channel_ratio, drop=drop_rate) # mlp self.blocks = self.make_blocks(net_arch, block_kwargs, drop_path_rate, shared_spatial_func) self.norm2 = norm_layer(hidden_dim) if not downstream: self.pool = Reduce('b n c -> b c', reduction='mean') self.head = nn.Linear(hidden_dim, self.num_classes) self.init_weights() def make_blocks(self, net_arch, block_kwargs, drop_path, shared_spatial_func): if shared_spatial_func: assert len(net_arch) == 1, '`shared_spatial_func` only support unitary spatial function' assert net_arch[0][0] != 'pass', '`shared_spatial_func` do not support pass' spatial_func = SPATIAL_FUNC[net_arch[0][0]](**block_kwargs) else: spatial_func = None blocks = [] for func_type, depth in net_arch: for i in range(depth): blocks.append(MixingBlock(spatial_func=spatial_func or SPATIAL_FUNC[func_type], drop_path=drop_path, **block_kwargs)) return nn.Sequential(*blocks) def init_weights(self): for n, m in self.named_modules(): _init_weights(m, n) def forward_features(self, x): x = self.stem(x) x = reshape2n(x) x = self.norm1(x) x = self.blocks(x) x = self.norm2(x) return x def forward(self, x): x = self.forward_features(x) x = self.pool(x) x = self.head(x) return x def flops(self): flops = 0 shape = (1, self.stem.num_patches, self.hidden_dim) # stem flops += self.stem.flops() flops += sum(shape) # blocks flops += sum([i.flops(shape) for i in self.blocks]) flops += sum(shape) # head flops += self.hidden_dim * self.num_classes return flops def _init_weights(m, n: str): if isinstance(m, nn.Linear): if n.startswith('head'): nn.init.zeros_(m.weight) nn.init.zeros_(m.bias) else: nn.init.xavier_uniform_(m.weight) if m.bias is not None: if 'mlp' in n: nn.init.normal_(m.bias, std=1e-6) else: nn.init.zeros_(m.bias) elif isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, (nn.LayerNorm, nn.BatchNorm2d, nn.GroupNorm)): nn.init.ones_(m.weight) nn.init.zeros_(m.bias)
tests/nn/data_parallel/test_fsdp_grad_scaler.py
zhaojuanmao/fairscale
1,662
60197
<reponame>zhaojuanmao/fairscale # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. # pylint: disable=missing-module-docstring # pylint: disable=missing-class-docstring # pylint: disable=missing-function-docstring """ Test FSDP with grad scaler. """ import os import random import pytest import torch import torch.nn as nn import torch.nn.functional as F from fairscale.nn import FullyShardedDataParallel from fairscale.optim.grad_scaler import ShardedGradScaler from fairscale.utils.testing import skip_if_no_cuda try: from torch.cuda.amp import autocast except ImportError: # Older version doesn't support autocast. Skip this file. pytestmark = pytest.mark.skip # Mixed precision needs cuda. @skip_if_no_cuda def test_scaler_cpu_offload_breaks(): device = torch.device("cuda") torch.cuda.set_device(0) # Random port in case the next test run quickly, same port would cause conflict. os.environ["MASTER_ADDR"] = "localhost" os.environ["MASTER_PORT"] = str(random.randint(2000, 3000)) torch.distributed.init_process_group(backend="nccl", rank=0, world_size=1) try: scaler = ShardedGradScaler() model = FullyShardedDataParallel(nn.Linear(5, 5), cpu_offload=True, mixed_precision=True) optim = torch.optim.SGD(model.parameters(), lr=1e-3) input = torch.rand((1, 5), dtype=torch.float).to(device) optim.zero_grad() with autocast(): output = model(input) loss = F.mse_loss(input, output) scaler.scale(loss).backward() # TODO (Min): Need to fix. Details in issue #421. with pytest.raises(RuntimeError): scaler.step(optim) scaler.update() finally: # Clean-up is important or the next test in this file may fail to init the PG. torch.distributed.destroy_process_group() del os.environ["MASTER_ADDR"] del os.environ["MASTER_PORT"]
veles/external/freetype/ft_enums/ft_encodings.py
AkshayJainG/veles
1,007
60208
#!/usr/bin/env python # -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # # FreeType high-level python API - Copyright 2011-2012 <NAME> # Distributed under the terms of the new BSD license. # # ----------------------------------------------------------------------------- """ An enumeration used to specify character sets supported by charmaps. Used in the FT_Select_Charmap API function. FT_ENCODING_NONE The encoding value 0 is reserved. FT_ENCODING_UNICODE Corresponds to the Unicode character set. This value covers all versions of the Unicode repertoire, including ASCII and Latin-1. Most fonts include a Unicode charmap, but not all of them. For example, if you want to access Unicode value U+1F028 (and the font contains it), use value 0x1F028 as the input value for FT_Get_Char_Index. FT_ENCODING_MS_SYMBOL Corresponds to the Microsoft Symbol encoding, used to encode mathematical symbols in the 32..255 character code range. For more information, see 'http://www.ceviz.net/symbol.htm'. FT_ENCODING_SJIS Corresponds to Japanese SJIS encoding. More info at at 'http://langsupport.japanreference.com/encoding.shtml'. See note on multi-byte encodings below. FT_ENCODING_GB2312 Corresponds to an encoding system for Simplified Chinese as used used in mainland China. FT_ENCODING_BIG5 Corresponds to an encoding system for Traditional Chinese as used in Taiwan and Hong Kong. FT_ENCODING_WANSUNG Corresponds to the Korean encoding system known as Wansung. For more information see 'http://www.microsoft.com/typography/unicode/949.txt'. FT_ENCODING_JOHAB The Korean standard character set (KS C 5601-1992), which corresponds to MS Windows code page 1361. This character set includes all possible Hangeul character combinations. FT_ENCODING_ADOBE_LATIN_1 Corresponds to a Latin-1 encoding as defined in a Type 1 PostScript font. It is limited to 256 character codes. FT_ENCODING_ADOBE_STANDARD Corresponds to the Adobe Standard encoding, as found in Type 1, CFF, and OpenType/CFF fonts. It is limited to 256 character codes. FT_ENCODING_ADOBE_EXPERT Corresponds to the Adobe Expert encoding, as found in Type 1, CFF, and OpenType/CFF fonts. It is limited to 256 character codes. FT_ENCODING_ADOBE_CUSTOM Corresponds to a custom encoding, as found in Type 1, CFF, and OpenType/CFF fonts. It is limited to 256 character codes. FT_ENCODING_APPLE_ROMAN Corresponds to the 8-bit Apple roman encoding. Many TrueType and OpenType fonts contain a charmap for this encoding, since older versions of Mac OS are able to use it. FT_ENCODING_OLD_LATIN_2 This value is deprecated and was never used nor reported by FreeType. Don't use or test for it. """ def _FT_ENC_TAG(a, b, c, d): return (ord(a) << 24 | ord(b) << 16 | ord(c) << 8 | ord(d)) FT_ENCODINGS = {'FT_ENCODING_NONE': _FT_ENC_TAG('\0', '\0', '\0', '\0'), 'FT_ENCODING_MS_SYMBOL': _FT_ENC_TAG('s', 'y', 'm', 'b'), 'FT_ENCODING_UNICODE': _FT_ENC_TAG('u', 'n', 'i', 'c'), 'FT_ENCODING_SJIS': _FT_ENC_TAG('s', 'j', 'i', 's'), 'FT_ENCODING_GB2312': _FT_ENC_TAG('g', 'b', ' ', ' '), 'FT_ENCODING_BIG5': _FT_ENC_TAG('b', 'i', 'g', '5'), 'FT_ENCODING_WANSUNG': _FT_ENC_TAG('w', 'a', 'n', 's'), 'FT_ENCODING_JOHAB': _FT_ENC_TAG('j', 'o', 'h', 'a'), 'FT_ENCODING_ADOBE_STANDARD': _FT_ENC_TAG('A', 'D', 'O', 'B'), 'FT_ENCODING_ADOBE_EXPERT': _FT_ENC_TAG('A', 'D', 'B', 'E'), 'FT_ENCODING_ADOBE_CUSTOM': _FT_ENC_TAG('A', 'D', 'B', 'C'), 'FT_ENCODING_ADOBE_LATIN1': _FT_ENC_TAG('l', 'a', 't', '1'), 'FT_ENCODING_OLD_LATIN2': _FT_ENC_TAG('l', 'a', 't', '2'), 'FT_ENCODING_APPLE_ROMAN': _FT_ENC_TAG('a', 'r', 'm', 'n')} globals().update(FT_ENCODINGS)
benchmarks/perf_tabletunnel.py
Emersonxuelinux/aliyun-odps-python-sdk
412
60229
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 1999-2017 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import time import cProfile from pstats import Stats # switch on to run in pure Python mode from odps import options # options.force_py = True from odps.compat import unittest, Decimal from odps.tests.core import TestBase from odps.models import Schema from datetime import datetime # remember to reset False before committing ENABLE_PROFILE = False DUMP_PROFILE = False class Test(TestBase): COMPRESS_DATA = True BUFFER_SIZE = 1024*1024 DATA_AMOUNT = 100000 STRING_LITERAL = "Soft kitty, warm kitty, little ball of fur; happy kitty, sleepy kitty, purr, purr" def setUp(self): TestBase.setUp(self) if ENABLE_PROFILE: self.pr = cProfile.Profile() self.pr.enable() fields = ['a', 'b', 'c', 'd', 'e', 'f'] types = ['bigint', 'double', 'datetime', 'boolean', 'string', 'decimal'] self.SCHEMA = Schema.from_lists(fields, types) def tearDown(self): if ENABLE_PROFILE: if DUMP_PROFILE: self.pr.dump_stats('profile.out') p = Stats(self.pr) p.strip_dirs() p.sort_stats('time') p.print_stats(40) p.print_callees('types.py:846\(validate_value', 20) p.print_callees('types.py:828\(_validate_primitive_value', 20) p.print_callees('tabletunnel.py:185\(write', 20) TestBase.teardown(self) def testWrite(self): table_name = 'pyodps_test_tunnel_write_performance' self.odps.create_table(table_name, schema=self.SCHEMA, if_not_exists=True) ss = self.tunnel.create_upload_session(table_name) r = ss.new_record() start = time.time() with ss.open_record_writer(0) as writer: for i in range(self.DATA_AMOUNT): r[0] = 2**63-1 r[1] = 0.0001 r[2] = datetime(2015, 11, 11) r[3] = True r[4] = self.STRING_LITERAL r[5] = Decimal('3.15') writer.write(r) n_bytes = writer.n_bytes print(n_bytes, 'bytes', float(n_bytes) / 1024 / 1024 / (time.time() - start), 'MiB/s') ss.commit([0]) self.odps.delete_table(table_name, if_exists=True) def testRead(self): table_name = 'pyodps_test_tunnel_read_performance' self.odps.delete_table(table_name, if_exists=True) t = self.odps.create_table(table_name, schema=self.SCHEMA) def gen_data(): for i in range(self.DATA_AMOUNT): r = t.new_record() r[0] = 2 ** 63 - 1 r[1] = 0.0001 r[2] = datetime(2015, 11, 11) r[3] = True r[4] = self.STRING_LITERAL r[5] = Decimal('3.15') yield r self.odps.write_table(t, gen_data()) if ENABLE_PROFILE: self.pr = cProfile.Profile() self.pr.enable() ds = self.tunnel.create_download_session(table_name) start = time.time() cnt = 0 with ds.open_record_reader(0, ds.count) as reader: for _ in reader: cnt += 1 n_bytes = reader.n_bytes print(n_bytes, 'bytes', float(n_bytes) / 1024 / 1024 / (time.time() - start), 'MiB/s') self.assertEqual(self.DATA_AMOUNT, cnt) self.odps.delete_table(table_name, if_exists=True) def testBufferedWrite(self): table_name = 'test_tunnel_bufferred_write' self.odps.create_table(table_name, schema=self.SCHEMA, if_not_exists=True) ss = self.tunnel.create_upload_session(table_name) r = ss.new_record() start = time.time() with ss.open_record_writer(buffer_size=self.BUFFER_SIZE, compress=self.COMPRESS_DATA) as writer: for i in range(self.DATA_AMOUNT): r[0] = 2**63-1 r[1] = 0.0001 r[2] = datetime(2015, 11, 11) r[3] = True r[4] = self.STRING_LITERAL r[5] = Decimal('3.15') writer.write(r) n_bytes = writer.n_bytes print(n_bytes, 'bytes', float(n_bytes) / 1024 / 1024 / (time.time() - start), 'MiB/s') ss.commit(writer.get_blocks_written()) self.odps.delete_table(table_name, if_exists=True) if __name__ == '__main__': unittest.main()
WebMirror/OutputFilters/util/feedNameLut.py
awesome-archive/ReadableWebProxy
193
60257
import urllib.parse import cachetools from common import database as db from sqlalchemy.orm import joinedload FEED_LOOKUP_CACHE = cachetools.LRUCache(maxsize=200) def patch_blogspot(innetloc): assert isinstance(innetloc, str), "Expected str, recieved %s" % type(innetloc) # Blogspot domains are coerced to ".com" since they seem to localize their TLD, # and somehow it all points to the same place in the end. if ".blogspot." in innetloc and not innetloc.endswith(".blogspot.com"): prefix = innetloc.split(".blogspot.")[0] innetloc = prefix + ".blogspot.com" return innetloc def get_name_for_netloc_db(db_sess, netloc): if netloc in FEED_LOOKUP_CACHE: return FEED_LOOKUP_CACHE[netloc] row = db_sess.query(db.RssFeedUrlMapper) \ .filter(db.RssFeedUrlMapper.feed_netloc == netloc) \ .options(joinedload('feed_entry')) \ .all() if not row: return False if len(row) > 1: print("ERROR: Multiple solutions for netloc %s?" % netloc) feedname = row[0].feed_entry.feed_name if feedname: FEED_LOOKUP_CACHE[netloc] = feedname return feedname else: return False def getNiceName(session, srcurl, netloc=None, debug=False): if netloc: assert isinstance(netloc, str), "Expected str, recieved %s" % type(netloc) srcnetloc = netloc elif srcurl: assert isinstance(srcurl, str), "Expected str, recieved %s" % type(srcurl) srcnetloc = urllib.parse.urlparse(srcurl).netloc else: raise RuntimeError("You need to at least pass a srcurl or netloc!") srcnetloc = patch_blogspot(srcnetloc) val = get_name_for_netloc_db(session, srcnetloc) return val
fluent.docs/fluent/docs/__init__.py
shlomyb-di/python-fluent
155
60262
from pathlib import Path from .build import DocBuilder def finalize_builddir(repo_name): 'Bookkeeping on the docs build directory' root = Path('_build') / repo_name with open(root / '.nojekyll', 'w') as fh: fh.write('') def build_root(repo_name): '''Build the top-level documentation. See :py:mod:`.build` on building sub-projects. ''' with DocBuilder(repo_name, '.') as builder: builder.build()
SimCalorimetry/EcalSimProducers/python/esEcalLiteDTUPedestalsProducer_cfi.py
ckamtsikis/cmssw
852
60265
<filename>SimCalorimetry/EcalSimProducers/python/esEcalLiteDTUPedestalsProducer_cfi.py import FWCore.ParameterSet.Config as cms EcalLiteDTUPedestalsRcd = cms.ESSource("EmptyESSource", recordName = cms.string("EcalLiteDTUPedestalsRcd"), firstValid = cms.vuint32(1), iovIsRunNotTime = cms.bool(True) ) EcalLiteDTUPedestals = cms.ESProducer( "EcalLiteDTUPedestalsESProducer", ComponentName = cms.string('EcalLiteDTUPedestalProducer'), MeanPedestalsGain10 = cms.double(12), RMSPedestalsGain10 = cms.double(2.5), MeanPedestalsGain1 = cms.double(12.), RMSPedestalsGain1 = cms.double(2.) )
examples/torch-starter/extract-coco-features.py
dapatil211/Jacinle
114
60338
<reponame>dapatil211/Jacinle #! /usr/bin/env python3 # -*- coding: utf-8 -*- # File : extract-coco-features.py # Author : <NAME> # Email : <EMAIL> # Date : 11/27/2018 # # This file is part of Jacinle. # Distributed under terms of the MIT license. """ Extracing features from the MS-COCO dataset. Examples: jac-crun 0 extract-coco-features.py --caption /mnt/localssd1/coco/annotations/captions_train2014.json --image-root /mnt/localssd1/coco/raw/train2014 --output /mnt/localssd2/train.h5 """ import os.path as osp import queue import threading from PIL import Image import torch import torch.nn as nn import torch.cuda as cuda import torch.backends.cudnn as cudnn from torch.utils.data.dataset import Dataset import jacinle.io as io from jacinle.cli.argument import JacArgumentParser from jacinle.logging import get_logger from jacinle.utils.container import GView from jacinle.utils.tqdm import tqdm from jactorch.cuda.copy import async_copy_to logger = get_logger(__file__) io.set_fs_verbose(True) parser = JacArgumentParser() parser.add_argument('--caption', required=True, type='checked_file', help='caption annotations (*.json)') parser.add_argument('--image-root', required=True, type='checked_dir', help='image directory') parser.add_argument('--output', required=True, help='output .h5 file') parser.add_argument('--image-size', default=224, type=int, metavar='N', help='input image size') parser.add_argument('--batch-size', default=64, type=int, metavar='N', help='batch size') parser.add_argument('--data-workers', type=int, default=4, metavar='N', help='the num of workers that input training data') parser.add_argument('--use-gpu', type='bool', default=True, metavar='B', help='use GPU or not') parser.add_argument('--force-gpu', action='store_true', help='force the script to use GPUs, useful when there exists on-the-ground devices') args = parser.parse_args() args.output_images_json = osp.splitext(args.output)[0] + '.images.json' if args.use_gpu: nr_devs = cuda.device_count() if args.force_gpu and nr_devs == 0: nr_devs = 1 assert nr_devs > 0, 'No GPU device available' args.gpus = [i for i in range(nr_devs)] args.gpu_parallel = (nr_devs > 1) class COCOImageDataset(Dataset): def __init__(self, images, image_root, image_transform): self.images = images self.image_root = image_root self.image_transform = image_transform def __getitem__(self, index): info = self.images[index] feed_dict = GView() feed_dict.image_filename = info['file_name'] if self.image_root is not None: feed_dict.image = Image.open(osp.join(self.image_root, feed_dict.image_filename)).convert('RGB') feed_dict.image = self.image_transform(feed_dict.image) return feed_dict.raw() def __len__(self): return len(self.images) def make_dataloader(self, batch_size, shuffle, drop_last, nr_workers): from jactorch.data.dataloader import JacDataLoader from jactorch.data.collate import VarLengthCollateV2 collate_guide = { 'image_filename': 'skip', } return JacDataLoader( self, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=nr_workers, pin_memory=True, collate_fn=VarLengthCollateV2(collate_guide) ) class FeatureExtractor(nn.Module): def __init__(self): super().__init__() import jactorch.models.vision.resnet as resnet self.resnet = resnet.resnet152(pretrained=True, incl_gap=False, num_classes=None) def forward(self, feed_dict): feed_dict = GView(feed_dict) f = self.resnet(feed_dict.image) output_dict = {'features': f} return output_dict class AsyncWriter(object): def __init__(self, output_file, total_size): self.output_file = output_file self.total_size = total_size self.queue = queue.Queue(maxsize=5) self.output_dataset = None self.thread = threading.Thread(target=self.target) self.thread.start() def feed(self, payload): self.queue.put(payload) def join(self): self.queue.put(None) self.thread.join() def target(self): cur_idx = 0 while True: payload = self.queue.get() if payload is None: break output_dict = payload if self.output_dataset is None: logger.info('Initializing the dataset.') self.output_dataset = { k: self.output_file.create_dataset(k, (self.total_size, ) + v.size()[1:], dtype='float32') for k, v in output_dict.items() } for k, v in output_dict.items(): next_idx = cur_idx + v.size(0) self.output_dataset[k][cur_idx:next_idx] = v.cpu().numpy() cur_idx = next_idx def main(): logger.critical('Loading the dataset.') data = io.load(args.caption) # Step 1: filter out images. images = {c['image_id'] for c in data['annotations']} # Step 2: build a reverse mapping for images. id2image = {i['id']: i for i in data['images']} images = [id2image[i] for i in images] import torchvision.transforms as T image_transform = T.Compose([ T.Resize((args.image_size, args.image_size)), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) dataset = COCOImageDataset(images, args.image_root, image_transform) logger.critical('Building the model.') model = FeatureExtractor() if args.use_gpu: model.cuda() if args.gpu_parallel: from jactorch.parallel import JacDataParallel model = JacDataParallel(model, device_ids=args.gpus).cuda() cudnn.benchmark = True model.eval() dataloader = dataset.make_dataloader(args.batch_size, shuffle=False, drop_last=False, nr_workers=args.data_workers) output_file = io.open_h5(args.output, 'w') writer = AsyncWriter(output_file, total_size=len(dataset)) for feed_dict in tqdm(dataloader, total=len(dataloader), desc='Extracting features'): if args.use_gpu: feed_dict = async_copy_to(feed_dict, 0) with torch.no_grad(): output_dict = model(feed_dict) writer.feed(output_dict) writer.join() output_file.close() io.dump(args.output_images_json, images) if __name__ == '__main__': main()
test/tomography/test_gateset_tomography.py
paulineollitrault/qiskit-ignis
182
60366
# -*- coding: utf-8 -*- # # This code is part of Qiskit. # # (C) Copyright IBM 2019, 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. # pylint: disable=missing-docstring,invalid-name import unittest import numpy as np from qiskit import Aer from qiskit.compiler import assemble from qiskit.ignis.verification.tomography import GatesetTomographyFitter from qiskit.ignis.verification.tomography import gateset_tomography_circuits from qiskit.ignis.verification.tomography.basis import default_gateset_basis from qiskit.providers.aer.noise import NoiseModel from qiskit.extensions import HGate, SGate from qiskit.quantum_info import PTM class TestGatesetTomography(unittest.TestCase): @staticmethod def collect_tomography_data(shots=10000, noise_model=None, gateset_basis='Default'): backend_qasm = Aer.get_backend('qasm_simulator') circuits = gateset_tomography_circuits(gateset_basis=gateset_basis) qobj = assemble(circuits, shots=shots) result = backend_qasm.run(qobj, noise_model=noise_model).result() fitter = GatesetTomographyFitter(result, circuits, gateset_basis) return fitter @staticmethod def expected_linear_inversion_gates(Gs, Fs): rho = Gs['rho'] E = Gs['E'] B = np.array([(F @ rho).T[0] for F in Fs]).T BB = np.linalg.inv(B) gates = {label: BB @ G @ B for (label, G) in Gs.items() if label not in ['E', 'rho']} gates['E'] = E @ B gates['rho'] = BB @ rho return gates @staticmethod def hs_distance(A, B): return sum([np.abs(x) ** 2 for x in np.nditer(A-B)]) @staticmethod def convert_from_ptm(vector): Id = np.sqrt(0.5) * np.array([[1, 0], [0, 1]]) X = np.sqrt(0.5) * np.array([[0, 1], [1, 0]]) Y = np.sqrt(0.5) * np.array([[0, -1j], [1j, 0]]) Z = np.sqrt(0.5) * np.array([[1, 0], [0, -1]]) v = vector.reshape(4) return v[0] * Id + v[1] * X + v[2] * Y + v[3] * Z def compare_gates(self, expected_gates, result_gates, labels, delta=0.2): for label in labels: expected_gate = expected_gates[label] result_gate = result_gates[label].data msg = "Failure on gate {}: Expected gate = \n{}\n" \ "vs Actual gate = \n{}".format(label, expected_gate, result_gate) distance = self.hs_distance(expected_gate, result_gate) self.assertAlmostEqual(distance, 0, delta=delta, msg=msg) def run_test_on_basis_and_noise(self, gateset_basis='Default', noise_model=None, noise_ptm=None): if gateset_basis == 'Default': gateset_basis = default_gateset_basis() labels = gateset_basis.gate_labels gates = gateset_basis.gate_matrices gates['rho'] = np.array([[np.sqrt(0.5)], [0], [0], [np.sqrt(0.5)]]) gates['E'] = np.array([[np.sqrt(0.5), 0, 0, np.sqrt(0.5)]]) # apply noise if given for label in labels: if label != "Id" and noise_ptm is not None: gates[label] = noise_ptm @ gates[label] Fs = [gateset_basis.spam_matrix(label) for label in gateset_basis.spam_labels] # prepare the fitter fitter = self.collect_tomography_data(shots=10000, noise_model=noise_model, gateset_basis=gateset_basis) # linear inversion test result_gates = fitter.linear_inversion() expected_gates = self.expected_linear_inversion_gates(gates, Fs) self.compare_gates(expected_gates, result_gates, labels + ['E', 'rho']) # fitter optimization test result_gates = fitter.fit() expected_gates = gates expected_gates['E'] = self.convert_from_ptm(expected_gates['E']) expected_gates['rho'] = self.convert_from_ptm(expected_gates['rho']) self.compare_gates(expected_gates, result_gates, labels + ['E', 'rho']) def test_noiseless_standard_basis(self): self.run_test_on_basis_and_noise() def test_noiseless_h_gate_standard_basis(self): basis = default_gateset_basis() basis.add_gate(HGate()) self.run_test_on_basis_and_noise(gateset_basis=basis) def test_noiseless_s_gate_standard_basis(self): basis = default_gateset_basis() basis.add_gate(SGate()) self.run_test_on_basis_and_noise(gateset_basis=basis) def test_amplitude_damping_standard_basis(self): gamma = 0.05 noise_ptm = PTM(np.array([[1, 0, 0, 0], [0, np.sqrt(1-gamma), 0, 0], [0, 0, np.sqrt(1-gamma), 0], [gamma, 0, 0, 1-gamma]])) noise_model = NoiseModel() noise_model.add_all_qubit_quantum_error(noise_ptm, ['u1', 'u2', 'u3']) self.run_test_on_basis_and_noise(noise_model=noise_model, noise_ptm=np.real(noise_ptm.data)) def test_depolarization_standard_basis(self): p = 0.05 noise_ptm = PTM(np.array([[1, 0, 0, 0], [0, 1-p, 0, 0], [0, 0, 1-p, 0], [0, 0, 0, 1-p]])) noise_model = NoiseModel() noise_model.add_all_qubit_quantum_error(noise_ptm, ['u1', 'u2', 'u3']) self.run_test_on_basis_and_noise(noise_model=noise_model, noise_ptm=np.real(noise_ptm.data)) if __name__ == '__main__': unittest.main()
tests/unit/lookups/handlers/test_env.py
avosper-intellaegis/runway
134
60377
"""Tests for lookup handler for env.""" # pylint: disable=no-self-use # pyright: basic from __future__ import annotations from typing import TYPE_CHECKING import pytest from runway.lookups.handlers.env import EnvLookup if TYPE_CHECKING: from ...factories import MockRunwayContext ENV_VARS = {"str_val": "test"} class TestEnvLookup: """Tests for EnvLookup.""" def test_handle(self, runway_context: MockRunwayContext) -> None: """Validate handle base functionality.""" runway_context.env.vars = ENV_VARS.copy() result = EnvLookup.handle("str_val", context=runway_context) assert result == "test" def test_handle_not_found(self, runway_context: MockRunwayContext) -> None: """Validate exception when lookup cannot be resolved.""" runway_context.env.vars = ENV_VARS.copy() with pytest.raises(ValueError): EnvLookup.handle("NOT_VALID", context=runway_context)
websploit/modules/wifi_fap_spam.py
albiahbi/websploit
803
60399
<reponame>albiahbi/websploit from scapy.all import * from websploit.core import base from threading import Thread from websploit.core.utils import get_fake_mac, get_fake_name conf.verb = 0 class Main(base.Module): """Spamming Fake access points """ parameters = { "iface": "wlan0mon", "count": 10, } completions = list(parameters.keys()) def do_execute(self, line): """Execute current module""" process_list = [] try: for _ in range(int(self.parameters['count'])): name = get_fake_name() mac = get_fake_mac() p = Thread(target=SpawnAP, args=(name, mac, self.parameters['iface'])) process_list.append(p) p.start() self.cp.success(text=f"Access point name : {name} - MAC {mac} started.") self.cp.info("Press Ctrl+C for stop ...") input("") except KeyboardInterrupt: self.cp.warning("\nKilling all access points, please wait ...") # for p in process_list: # p.terminate() # p.join() self.cp.success("Done.") def complete_set(self, text, line, begidx, endidx): mline = line.partition(' ')[2] offs = len(mline) - len(text) return [s[offs:] for s in self.completions if s.startswith(mline)] class SpawnAP: def __init__(self, ssid, mac, iface): self.ssid = ssid self.mac = mac self.iface = iface self.run() def run(self): dot11 = Dot11(type=0, subtype=8, addr1="ff:ff:ff:ff:ff:ff", addr2=self.mac, addr3=self.mac) beacon = Dot11Beacon() essid = Dot11Elt(ID="SSID", info=self.ssid, len=len(self.ssid)) rsn = Dot11Elt(ID='RSNinfo', info=( '\x01\x00' # RSN Version 1 '\x00\x0f\xac\x02' # Group Cipher Suite : 00-0f-ac TKIP '\x02\x00' # 2 Pairwise Cipher Suites (next two lines) '\x00\x0f\xac\x04' # AES Cipher '\x00\x0f\xac\x02' # TKIP Cipher '\x01\x00' # 1 Authentication Key Managment Suite (line below) '\x00\x0f\xac\x02' # Pre-Shared Key '\x00\x00')) # RSN Capabilities (no extra capabilities) frame = RadioTap()/dot11/beacon/essid/rsn sendp(frame, inter=0.1, iface=self.iface, loop=1)
latest version/web/login.py
AzusaYukina/Arcaea-server
162
60405
#import sqlite3 from flask import (Blueprint, flash, g, redirect, render_template, request, session, url_for) import functools from setting import Config import hashlib bp = Blueprint('login', __name__, url_prefix='/web') @bp.route('/login', methods=('GET', 'POST')) def login(): # 登录 if request.method == 'POST': username = request.form['username'] password = request.form['password'] error = None if username != Config.USERNAME or password != Config.PASSWORD: error = '错误的用户名或密码 Incorrect username or password.' if error is None: session.clear() hash_session = username + \ hashlib.sha256(password.encode("utf8")).hexdigest() hash_session = hashlib.sha256( hash_session.encode("utf8")).hexdigest() session['user_id'] = hash_session return redirect(url_for('index.index')) flash(error) return render_template('web/login.html') @bp.route('/logout') def logout(): # 登出 session.clear() flash('成功登出 Successfully log out.') return redirect(url_for('index.index')) def login_required(view): # 登录验证,写成了修饰器 @functools.wraps(view) def wrapped_view(**kwargs): x = session.get('user_id') hash_session = Config.USERNAME + \ hashlib.sha256(Config.PASSWORD.encode("utf8")).hexdigest() hash_session = hashlib.sha256(hash_session.encode("utf8")).hexdigest() if x != hash_session: return redirect(url_for('login.login')) g.user = {'user_id': x, 'username': Config.USERNAME} return view(**kwargs) return wrapped_view
simple_rl/tasks/trench/TrenchOOMDPState.py
david-abel/mdps
230
60412
from simple_rl.mdp.oomdp.OOMDPStateClass import OOMDPState class TrenchOOMDPState(OOMDPState): ''' Class for Trench World States ''' def __init__(self, objects): OOMDPState.__init__(self, objects=objects) def get_agent_x(self): return self.objects["agent"][0]["x"] def get_agent_y(self): return self.objects["agent"][0]["y"] def __hash__(self): state_hash = str(self.get_agent_x()) + str(self.get_agent_y()) + str(self.objects["agent"][0]["dx"] + 1)\ + str(self.objects["agent"][0]["dy"] + 1) + str(self.objects["agent"][0]["dest_x"])\ + str(self.objects["agent"][0]["dest_x"]) + str(self.objects["agent"][0]["dest_y"]) + \ str(self.objects["agent"][0]["has_block"]) + "00" for b in self.objects["block"]: state_hash += str(b["x"]) + str(b["y"]) state_hash += "00" for l in self.objects["lava"]: state_hash += str(l["x"]) + str(l["y"]) return int(state_hash) def __eq__(self, other_trench_state): return hash(self) == hash(other_trench_state)
tests/schema/test_plot.py
vishalbelsare/FinMind
1,106
60447
<gh_stars>1000+ import os import pytest from FinMind.data import DataLoader from FinMind.schema.plot import Labels, Series, convert_labels_series_schema @pytest.fixture(scope="module") def df(): user_id = os.environ.get("FINMIND_USER", "") password = os.environ.get("FINMIND_PASSWORD", "") data_loader = DataLoader() data_loader.login(user_id, password) df = data_loader.taiwan_stock_month_revenue( stock_id="2890", start_date="2018-1M", end_date="2021-7M" ) df["labels"] = ( df[["revenue_year", "revenue_month"]] .astype(str) .apply(lambda date: f"{date[0]}-{date[1]}M", axis=1) ) df["series"] = df["revenue"].map(lambda value: round(value * 1e-8, 2)) return df def test_Labels(df): labels = df.to_dict("list")["labels"] assert Labels(labels=labels) def test_Series(df): series = df.to_dict("list")["series"] assert Series(series=series) def test_convert_labels_series_schema(df): labels = df.to_dict("list")["labels"] series = df.to_dict("list")["series"] labels, series = convert_labels_series_schema(labels=labels, series=series) assert isinstance(labels, Labels) assert isinstance(series, Series)
quokka/utils/custom_vars.py
songshansitulv/quokka
1,141
60451
<filename>quokka/utils/custom_vars.py # coding: utf-8 from dynaconf.utils.parse_conf import parse_conf_data def parse_data(data): """Return converted data from @int, @float, @bool, @json markers""" return parse_conf_data(data) def custom_var_dict(cvarlist): cvarlist = cvarlist or [] return { cvar['key']: parse_data(cvar['value']) for cvar in cvarlist }
test/nodes/test_accumulate.py
HerySon/timeflux
123
60461
<reponame>HerySon/timeflux """Tests for accumulate.py""" import pandas as pd import xarray as xr from timeflux.helpers.testing import DummyData, DummyXArray from timeflux.nodes.accumulate import AppendDataFrame, AppendDataArray xarray_data = DummyXArray() pandas_data = DummyData() def test_append_dataframe(): """"Test node AppendDataFrame""" node = AppendDataFrame() pandas_data.reset() node.clear() # gate is not closed, data should be accumulated but not released # first chunk node.i.data = pandas_data.next(5) node.update() # assert no output assert node.o.data == None # assert the data has been buffered pd.testing.assert_frame_equal(pandas_data._data.iloc[:5, :], node._data) # second chunk node.clear() node.i.data = pandas_data.next(10) node.update() # assert no output assert node.o.data == None # assert the buffer is the concatenation of the 2 accumulated chunks pd.testing.assert_frame_equal(pandas_data._data.iloc[:15, :], node._data) # now a meta is received, assessing that the gate has just closed node.i.data = pandas_data.next(5) node.i.meta = {'gate_status': 'closed'} node.update() # assert output data is the concatenation of the 3 chunks pd.testing.assert_frame_equal(pandas_data._data.iloc[:20, :], node.o.data) def test_append_dataarray(): """"Test node AppendDataArray""" node = AppendDataArray(dim='time') xarray_data.reset() node.clear() # gate is not closed, data should be accumulated but not released # first chunk node.i.data = xarray_data.next(5) node.update() # assert no output assert node.o.data == None # assert the data has been buffered xr.testing.assert_equal(xarray_data._data.isel({'time': slice(0, 5)}), node._data_list[0]) # second chunk node.clear() node.i.data = xarray_data.next(10) node.update() # assert no output assert node.o.data == None # assert the buffer is the concatenation of the 2 accumulated chunks xr.testing.assert_equal(xarray_data._data.isel({'time': slice(5, 15)}), node._data_list[1]) # now a meta is received, assessing that the gate has just closed node.i.data = xarray_data.next(5) node.i.meta = {'gate_status': 'closed'} node.update() # assert output data is the concatenation of the 3 chunks xr.testing.assert_equal(xarray_data._data.isel({'time': slice(0, 20)}), node.o.data)
__init__.py
nickm324/sensor.rpi_power
297
60519
"""Raspberry Pi Power Supply Checker"""
Misc/jython_checker.py
jeff5/jython-whinchat
577
60530
<gh_stars>100-1000 import sys def usage(): print 'Usage: jython jython_checker.py <module name created by make_checker>' sys.exit(1) if not len(sys.argv) == 2: usage() checker_name = sys.argv[1].split('.')[0]#pop off the .py if needed try: checker = __import__(checker_name) except: print 'No module "%s" found' % checker_name usage() import make_checker ignored_types = ['frame', 'code', 'traceback'] checks = [] for check in checker.checks: index, expected_type, expected_bases, expected_dict = check if checker.names[index] in ignored_types: print 'Skipping', checker.names[index] continue checks.append(check) ignored_members = ['__getattribute__', '__doc__'] ok, missing, bad_type, different = make_checker.do_check(checker.names, checks) def strip_ignored(differences, key, ignored): if not key in differences: return problems = differences[key] for member in ignored_members: if member in problems: problems.remove(member) for t, name, differences in different: strip_ignored(differences, 'missing', ignored_members) strip_ignored(differences, 'extras', ignored_members) make_checker.report(ok, missing, bad_type, different)
bcs-ui/backend/templatesets/legacy_apps/configuration/migrations/0015_auto_20171227_1502.py
laodiu/bk-bcs
599
60650
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # Generated by Django 1.11.5 on 2017-12-27 07:02 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('configuration', '0014_auto_20171225_1112'), ] operations = [ migrations.CreateModel( name='ShowVersion', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('creator', models.CharField(max_length=32, verbose_name='创建者')), ('updator', models.CharField(max_length=32, verbose_name='更新者')), ('created', models.DateTimeField(auto_now_add=True)), ('updated', models.DateTimeField(auto_now=True)), ('is_deleted', models.BooleanField(default=False)), ('deleted_time', models.DateTimeField(blank=True, null=True)), ('template_id', models.IntegerField(verbose_name='关联的模板 ID')), ('real_version_id', models.IntegerField(verbose_name='关联的VersionedEntity ID')), ('name', models.CharField(max_length=32, verbose_name='版本名称')), ], ), migrations.AddField( model_name='template', name='draft', field=models.TextField(default='', verbose_name='草稿'), ), migrations.AddField( model_name='template', name='draft_time', field=models.DateTimeField(blank=True, null=True, verbose_name='草稿更新时间'), ), migrations.AddField( model_name='template', name='draft_updator', field=models.CharField(default='', max_length=32, verbose_name='草稿更新者'), ), migrations.AlterField( model_name='application', name='updator', field=models.CharField(max_length=32, verbose_name='更新者'), ), migrations.AlterField( model_name='configmap', name='updator', field=models.CharField(max_length=32, verbose_name='更新者'), ), migrations.AlterField( model_name='deplpyment', name='updator', field=models.CharField(max_length=32, verbose_name='更新者'), ), migrations.AlterField( model_name='secret', name='updator', field=models.CharField(max_length=32, verbose_name='更新者'), ), migrations.AlterField( model_name='service', name='updator', field=models.CharField(max_length=32, verbose_name='更新者'), ), migrations.AlterField( model_name='template', name='updator', field=models.CharField(max_length=32, verbose_name='更新者'), ), migrations.AlterField( model_name='versionedentity', name='updator', field=models.CharField(max_length=32, verbose_name='更新者'), ), migrations.AlterUniqueTogether( name='showversion', unique_together=set([('template_id', 'name')]), ), ]
tests/test_element.py
cgarjun/Pyno
163
60658
"""Tests for pyno.element""" pass
Chapter07/python/com/sparksamples/linearregression/LinearRegressionCrossValidationIterations.py
quguiliang/Machine-Learning-with-Spark-Second-Edition
112
60670
<reponame>quguiliang/Machine-Learning-with-Spark-Second-Edition import os import sys import pylab as P import matplotlib import matplotlib.pyplot as plt from com.sparksamples.util import evaluate from com.sparksamples.linearregression.LinearRegressionUtil import get_train_test_data try: from pyspark import SparkContext from pyspark import SparkConf except ImportError as e: print ("Error importing Spark Modules", e) sys.exit(1) from com.sparksamples.util import SPARK_HOME os.environ['SPARK_HOME'] = SPARK_HOME sys.path.append(SPARK_HOME + "/python") def main(): execute() def execute(): train_data, test_data = get_train_test_data() params = [1, 5, 10, 20, 50, 100, 200] metrics = [evaluate(train_data, test_data, param, 0.01, 0.0, 'l2', False) for param in params] print params print metrics P.plot(params, metrics) fig = matplotlib.pyplot.gcf() plt.xscale('log') plt.title("LinearRegressionWithSGD : Iterations") plt.xlabel("Iterators") plt.ylabel("RMSLE") P.show() if __name__ == "__main__": main()
nlpcda/tools/Equivalent_char.py
blmoistawinde/nlpcda
959
60713
<reponame>blmoistawinde/nlpcda<filename>nlpcda/tools/Equivalent_char.py #!/usr/bin/python # -*- coding: utf-8 -*- from nlpcda.tools.Basetool import Basetool from nlpcda.config import Equivalent_char_path class EquivalentChar(Basetool): ''' 等价字,用于随机替换等价字,【字级别的】,增强数据 ''' def __init__(self, base_file=Equivalent_char_path, create_num=5, change_rate=0.05, seed=1): super(EquivalentChar, self).__init__(base_file, create_num, change_rate, seed) def load_paser_base_file(self): self.base_file_mapobj = {} for line in open(self.base_file, "r", encoding='utf-8'): equivalent_list = line.strip().split("\t") assert len(equivalent_list) > 1 self.add_equivalent_list(equivalent_list) print('load :%s done' % (self.base_file)) return self.base_file_mapobj def add_equivalent_list(self, equivalent_list): ''' 添加等价字list :param equivalent_list: :return: ''' num = len(equivalent_list) for i in range(num - 1): self.base_file_mapobj[equivalent_list[i]] = equivalent_list[:i] + equivalent_list[i + 1:] self.base_file_mapobj[equivalent_list[-1]] = equivalent_list[:-1] def replace(self, replace_str: str): replace_str = replace_str.replace('\n', '').strip() chars = list(replace_str) sentences = [replace_str] t = 0 while len(sentences) < self.create_num: t += 1 a_sentence = '' for chrr in chars: if chrr in self.base_file_mapobj and self.random.random() < self.change_rate: wi = self.random.randint(0, len(self.base_file_mapobj[chrr]) - 1) place = self.base_file_mapobj[chrr][wi] else: place = chrr a_sentence += place if a_sentence not in sentences: sentences.append(a_sentence) if t > self.create_num * self.loop_t / self.change_rate: break return sentences def test(test_str, create_num=3, change_rate=0.3): hoe = EquivalentChar(create_num=create_num, change_rate=change_rate) try: return hoe.replace(test_str) except: print('error in Homophone.replace') return [test_str] if __name__ == '__main__': ts = '''今天是7月5日21:32:21。''' rs = test(ts) for s in rs: print(s)
forms.py
deeplook/slackipy
103
60746
<filename>forms.py<gh_stars>100-1000 from flask_wtf import Form from wtforms import validators from wtforms.fields.html5 import EmailField class InviteForm(Form): email = EmailField('Email Address', [validators.DataRequired(), validators.Email()])
mongodb/mongodb_consistent_backup/official/mongodb_consistent_backup/Upload/Rsync/Rsync.py
smthkissinger/docker-images
282
60777
import os import logging import re from copy_reg import pickle from multiprocessing import Pool from subprocess import check_output from types import MethodType from RsyncUploadThread import RsyncUploadThread from mongodb_consistent_backup.Common import config_to_string from mongodb_consistent_backup.Errors import OperationError from mongodb_consistent_backup.Pipeline import Task # Allows pooled .apply_async()s to work on Class-methods: def _reduce_method(m): if m.im_self is None: return getattr, (m.im_class, m.im_func.func_name) else: return getattr, (m.im_self, m.im_func.func_name) pickle(MethodType, _reduce_method) class Rsync(Task): def __init__(self, manager, config, timer, base_dir, backup_dir, **kwargs): super(Rsync, self).__init__(self.__class__.__name__, manager, config, timer, base_dir, backup_dir, **kwargs) self.backup_location = self.config.backup.location self.backup_name = self.config.backup.name self.remove_uploaded = self.config.upload.remove_uploaded self.retries = self.config.upload.retries self.rsync_path = self.config.upload.rsync.path self.rsync_user = self.config.upload.rsync.user self.rsync_host = self.config.upload.rsync.host self.rsync_port = self.config.upload.rsync.port self.rsync_ssh_key = self.config.upload.rsync.ssh_key self.rsync_binary = "rsync" self.rsync_flags = ["--archive", "--compress"] self.rsync_version = None self._rsync_info = None self.threads(self.config.upload.threads) self._pool = Pool(processes=self.threads()) def init(self): if not self.host_has_rsync(): raise OperationError("Cannot find rsync binary on this host!") if not os.path.isdir(self.backup_dir): logging.error("The source directory: %s does not exist or is not a directory! Skipping Rsync upload!" % self.backup_dir) raise OperationError("The source directory: %s does not exist or is not a directory! Skipping Rsync upload!" % self.backup_dir) def rsync_info(self): if not self._rsync_info: output = check_output([self.rsync_binary, "--version"]) search = re.search(r"^rsync\s+version\s([0-9.-]+)\s+protocol\sversion\s(\d+)", output) self.rsync_version = search.group(1) self._rsync_info = {"version": self.rsync_version, "protocol_version": int(search.group(2))} return self._rsync_info def host_has_rsync(self): if self.rsync_info(): return True return False def get_dest_path(self): return os.path.join(self.rsync_path, self.base_dir) def prepare_dest_dir(self): # mkdir -p the rsync dest path via ssh ssh_mkdir_cmd = ["ssh"] if self.rsync_ssh_key: ssh_mkdir_cmd.extend(["-i", self.rsync_ssh_key]) ssh_mkdir_cmd.extend([ "%s@%s" % (self.rsync_user, self.rsync_host), "mkdir", "-p", self.get_dest_path() ]) # run the mkdir via ssh try: check_output(ssh_mkdir_cmd) except Exception, e: logging.error("Creating rsync dest path with ssh failed for %s: %s" % ( self.rsync_host, e )) raise e return True def done(self, data): logging.info(data) def run(self): try: self.init() self.timer.start(self.timer_name) logging.info("Preparing destination path on %s" % self.rsync_host) self.prepare_dest_dir() rsync_config = { "dest": "%s@%s:%s" % (self.rsync_user, self.rsync_host, self.get_dest_path()), "threads": self.threads(), "retries": self.retries } rsync_config.update(self.rsync_info()) logging.info("Starting upload using rsync version %s (%s)" % ( self.rsync_info()['version'], config_to_string(rsync_config) )) for child in os.listdir(self.backup_dir): self._pool.apply_async(RsyncUploadThread( os.path.join(self.backup_dir, child), self.base_dir, self.rsync_flags, self.rsync_path, self.rsync_user, self.rsync_host, self.rsync_port, self.rsync_ssh_key, self.remove_uploaded, self.retries ).run, callback=self.done) self.wait() except Exception, e: logging.error("Rsync upload failed! Error: %s" % e) raise OperationError(e) finally: self.timer.stop(self.timer_name) self.completed = True def wait(self): if self._pool: logging.info("Waiting for Rsync upload threads to stop") self._pool.close() self._pool.join() def close(self): if self._pool: logging.error("Stopping Rsync upload threads") self._pool.terminate() self._pool.join()
src/pyinfraboxutils/db.py
agu3rra/InfraBox
265
60782
import time import os import psycopg2 import psycopg2.extras from pyinfraboxutils import get_logger logger = get_logger('infrabox') def connect_db(): while True: try: conn = psycopg2.connect(dbname=os.environ['INFRABOX_DATABASE_DB'], user=os.environ['INFRABOX_DATABASE_USER'], password=os.environ['<PASSWORD>'], host=os.environ['INFRABOX_DATABASE_HOST'], port=os.environ['INFRABOX_DATABASE_PORT']) return conn except Exception as e: logger.warn("Could not connect to db: %s", e) time.sleep(3) class DB(object): def __init__(self, conn): self.conn = conn def execute_one(self, stmt, args=None): r = self.execute_many(stmt, args) if not r: return r return r[0] def execute_many(self, stmt, args=None): c = self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) c.execute(stmt, args) r = c.fetchall() c.close() return r def execute_one_dict(self, stmt, args=None): r = self.execute_many_dict(stmt, args) if not r: return r return r[0] def execute_many_dict(self, stmt, args=None): c = self.conn.cursor(cursor_factory=psycopg2.extras.RealDictCursor) c.execute(stmt, args) r = c.fetchall() c.close() return r def execute(self, stmt, args=None): c = self.conn.cursor() c.execute(stmt, args) c.close() def commit(self): self.conn.commit() def rollback(self): self.conn.rollback() def close(self): self.conn.close()
pclib/rtl/onehot_test.py
belang/pymtl
206
60787
#============================================================================== # ConfigManger_test.py #============================================================================== from pymtl import * from pclib.test import TestVectorSimulator from onehot import Mux, Demux #------------------------------------------------------------------------------ # test_Mux #------------------------------------------------------------------------------ def test_Mux( dump_vcd, test_verilog ): nports = 2 data_nbits = 16 # Define test input and output functions def tv_in( model, test_vector ): model.sel .value = test_vector[0] model.in_[0].value = test_vector[1] model.in_[1].value = test_vector[2] def tv_out( model, test_vector ): assert model.out == test_vector[3] # Select and elaborate the model under test model = Mux( nports, dtype = data_nbits ) model.vcd_file = dump_vcd if test_verilog: model = TranslationTool( model ) model.elaborate() # Define the test vectors test_vectors = [ # sel in[0] in[1] out [ 0b00, 0x1111, 0x2222, 0x0000 ], [ 0b01, 0x1111, 0x2222, 0x1111 ], [ 0b10, 0x1111, 0x2222, 0x2222 ], [ 0b00, 0x1111, 0x2222, 0x0000 ], ] # Create the simulator and configure it sim = TestVectorSimulator( model, test_vectors, tv_in, tv_out ) # Run the simulator sim.run_test() #------------------------------------------------------------------------------ # test_Demux #------------------------------------------------------------------------------ def test_Demux( dump_vcd, test_verilog ): nports = 2 data_nbits = 16 # Define test input and output functions def tv_in( model, test_vector ): model.sel.value = test_vector[0] model.in_.value = test_vector[1] def tv_out( model, test_vector ): assert model.out[0] == test_vector[2] assert model.out[1] == test_vector[3] # Select and elaborate the model under test model = Demux( nports, dtype = data_nbits ) model.vcd_file = dump_vcd if test_verilog: model = TranslationTool( model ) model.elaborate() # Define the test vectors test_vectors = [ # sel in_ out[0] out[1] [ 0b00, 0x3333, 0x0000, 0x0000 ], [ 0b01, 0x1111, 0x1111, 0x0000 ], [ 0b10, 0x2222, 0x0000, 0x2222 ], [ 0b00, 0x1111, 0x0000, 0x0000 ], ] # Create the simulator and configure it sim = TestVectorSimulator( model, test_vectors, tv_in, tv_out ) # Run the simulator sim.run_test()
static/paddlex_restful/restful/project/visualize.py
cheneyveron/PaddleX
3,655
60788
# copytrue (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #! /usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import cv2 import math import xml.etree.ElementTree as ET from PIL import Image def resize_img(img): """ 调整图片尺寸 Args: img: 图片信息 """ h, w = img.shape[:2] min_size = 580 if w >= h and w > min_size: new_w = min_size new_h = new_w * h / w elif h >= w and h > min_size: new_h = min_size new_w = new_h * w / h else: new_h = h new_w = w new_img = cv2.resize( img, (int(new_w), int(new_h)), interpolation=cv2.INTER_CUBIC) scale_value = new_w / w return new_img, scale_value def plot_det_label(image, anno, labels): """ 目标检测类型生成标注图 Args: image: 图片路径 anno: 图片标注 labels: 图片所属数据集的类别信息 """ catid2color = {} img = cv2.imread(image) img, scale_value = resize_img(img) tree = ET.parse(anno) objs = tree.findall('object') color_map = get_color_map_list(len(labels) + 1) for i, obj in enumerate(objs): cname = obj.find('name').text catid = labels.index(cname) if cname not in labels: continue xmin = int(float(obj.find('bndbox').find('xmin').text) * scale_value) ymin = int(float(obj.find('bndbox').find('ymin').text) * scale_value) xmax = int(float(obj.find('bndbox').find('xmax').text) * scale_value) ymax = int(float(obj.find('bndbox').find('ymax').text) * scale_value) if catid not in catid2color: catid2color[catid] = color_map[catid + 1] color = tuple(catid2color[catid]) img = draw_rectangle_and_cname(img, xmin, ymin, xmax, ymax, cname, color) return img def plot_seg_label(anno): """ 语义分割类型生成标注图 Args: anno: 图片标注 """ label = pil_imread(anno) pse_label = gray2pseudo(label) return pse_label def plot_insseg_label(image, anno, labels, alpha=0.7): """ 实例分割类型生成标注图 Args: image: 图片路径 anno: 图片标注 labels: 图片所属数据集的类别信息 """ anno = np.load(anno, allow_pickle=True).tolist() catid2color = dict() img = cv2.imread(image) img, scale_value = resize_img(img) color_map = get_color_map_list(len(labels) + 1) img_h = anno['h'] img_w = anno['w'] gt_class = anno['gt_class'] gt_bbox = anno['gt_bbox'] gt_poly = anno['gt_poly'] num_bbox = gt_bbox.shape[0] num_mask = len(gt_poly) # 描绘mask信息 img_array = np.array(img).astype('float32') for i in range(num_mask): cname = gt_class[i] catid = labels.index(cname) if cname not in labels: continue if catid not in catid2color: catid2color[catid] = color_map[catid + 1] color = np.array(catid2color[catid]).astype('float32') import pycocotools.mask as mask_util for x in range(len(gt_poly[i])): for y in range(len(gt_poly[i][x])): gt_poly[i][x][y] = int(float(gt_poly[i][x][y]) * scale_value) poly = gt_poly[i] rles = mask_util.frPyObjects(poly, int(float(img_h) * scale_value), int(float(img_w) * scale_value)) rle = mask_util.merge(rles) mask = mask_util.decode(rle) * 255 idx = np.nonzero(mask) img_array[idx[0], idx[1], :] *= 1.0 - alpha img_array[idx[0], idx[1], :] += alpha * color img = img_array.astype('uint8') for i in range(num_bbox): cname = gt_class[i] catid = labels.index(cname) if cname not in labels: continue if catid not in catid2color: catid2color[catid] = color_map[catid] color = tuple(catid2color[catid]) xmin, ymin, xmax, ymax = gt_bbox[i] img = draw_rectangle_and_cname(img, int(float(xmin) * scale_value), int(float(ymin) * scale_value), int(float(xmax) * scale_value), int(float(ymax) * scale_value), cname, color) return img def draw_rectangle_and_cname(img, xmin, ymin, xmax, ymax, cname, color): """ 根据提供的标注信息,给图片描绘框体和类别显示 Args: img: 图片路径 xmin: 检测框最小的x坐标 ymin: 检测框最小的y坐标 xmax: 检测框最大的x坐标 ymax: 检测框最大的y坐标 cname: 类别信息 color: 类别与颜色的对应信息 """ # 描绘检测框 line_width = math.ceil(2 * max(img.shape[0:2]) / 600) cv2.rectangle( img, pt1=(xmin, ymin), pt2=(xmax, ymax), color=color, thickness=line_width) # 计算并描绘类别信息 text_thickness = math.ceil(2 * max(img.shape[0:2]) / 1200) fontscale = math.ceil(0.5 * max(img.shape[0:2]) / 600) tw, th = cv2.getTextSize( cname, 0, fontScale=fontscale, thickness=text_thickness)[0] cv2.rectangle( img, pt1=(xmin + 1, ymin - th), pt2=(xmin + int(0.7 * tw) + 1, ymin), color=color, thickness=-1) cv2.putText( img, cname, (int(xmin) + 3, int(ymin) - 5), 0, 0.6 * fontscale, (255, 255, 255), lineType=cv2.LINE_AA, thickness=text_thickness) return img def pil_imread(file_path): """ 将图片读成np格式数据 Args: file_path: 图片路径 """ img = Image.open(file_path) return np.asarray(img) def get_color_map_list(num_classes): """ 为类别信息生成对应的颜色列表 Args: num_classes: 类别数量 """ color_map = num_classes * [0, 0, 0] for i in range(0, num_classes): j = 0 lab = i while lab: color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j)) color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j)) color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j)) j += 1 lab >>= 3 color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)] return color_map def gray2pseudo(gray_image): """ 将分割的结果映射到图片 Args: gray_image: 灰度图 """ color_map = get_color_map_list(256) color_map = np.array(color_map).astype("uint8") # 用OpenCV进行色彩映射 c1 = cv2.LUT(gray_image, color_map[:, 0]) c2 = cv2.LUT(gray_image, color_map[:, 1]) c3 = cv2.LUT(gray_image, color_map[:, 2]) pseudo_img = np.dstack((c1, c2, c3)) return pseudo_img
parsifal/apps/invites/migrations/0002_alter_invite_invitee_email.py
ShivamPytho/parsifal
342
60826
# Generated by Django 3.2.7 on 2021-09-08 00:45 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('invites', '0001_initial'), ] operations = [ migrations.AlterField( model_name='invite', name='invitee_email', field=models.EmailField(db_index=True, max_length=254, verbose_name='invitee email'), ), ]
test/test_parameters.py
DLPerf/tensorforce
1,132
60829
<filename>test/test_parameters.py<gh_stars>1000+ # Copyright 2020 Tensorforce Team. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import unittest from test.unittest_base import UnittestBase class TestParameters(UnittestBase, unittest.TestCase): def float_unittest(self, exploration): agent, environment = self.prepare(exploration=exploration) states = environment.reset() actions = agent.act(states=states) exploration1 = agent.model.exploration.value().numpy().item() states, terminal, reward = environment.execute(actions=actions) agent.observe(terminal=terminal, reward=reward) actions = agent.act(states=states) exploration2 = agent.model.exploration.value().numpy().item() if not isinstance(exploration, dict) or exploration['type'] == 'constant': self.assertEqual(exploration2, exploration1) else: self.assertNotEqual(exploration2, exploration1) states, terminal, reward = environment.execute(actions=actions) agent.observe(terminal=terminal, reward=reward) agent.close() environment.close() self.finished_test() def int_unittest(self, horizon): agent, environment = self.prepare(reward_estimation=dict(horizon=horizon)) states = environment.reset() actions = agent.act(states=states) states, terminal, reward = environment.execute(actions=actions) agent.observe(terminal=terminal, reward=reward) horizon1 = agent.model.reward_horizon.value().numpy().item() actions = agent.act(states=states) states, terminal, reward = environment.execute(actions=actions) agent.observe(terminal=terminal, reward=reward) horizon2 = agent.model.reward_horizon.value().numpy().item() if not isinstance(horizon, dict) or horizon['type'] == 'constant': self.assertEqual(horizon2, horizon1) else: self.assertNotEqual(horizon2, horizon1) agent.close() environment.close() self.finished_test() def test_constant(self): self.start_tests(name='constant') exploration = 0.1 self.float_unittest(exploration=exploration) horizon = 4 self.int_unittest(horizon=horizon) def test_decaying(self): self.start_tests(name='decaying') exploration = dict( type='decaying', decay='exponential', unit='timesteps', num_steps=5, initial_value=0.1, decay_rate=0.5 ) self.float_unittest(exploration=exploration) horizon = dict( type='polynomial', unit='timesteps', num_steps=1, initial_value=2, final_value=4, power=2 ) self.int_unittest(horizon=horizon) def test_exponential(self): self.start_tests(name='exponential') # SPECIFICATION.MD exploration = dict( type='exponential', unit='timesteps', num_steps=5, initial_value=0.1, decay_rate=0.5 ) self.float_unittest(exploration=exploration) def test_linear(self): self.start_tests(name='linear') exploration = dict( type='linear', unit='timesteps', num_steps=5, initial_value=0.1, final_value=0.5 ) self.float_unittest(exploration=exploration) # SPECIFICATION.MD horizon = dict(type='linear', unit='timesteps', num_steps=1, initial_value=2, final_value=4) self.int_unittest(horizon=horizon) def test_ornstein_uhlenbeck(self): self.start_tests(name='ornstein-uhlenbeck') exploration = dict(type='ornstein_uhlenbeck', absolute=True) self.float_unittest(exploration=exploration) def test_piecewise_constant(self): self.start_tests(name='piecewise-constant') exploration = dict( type='piecewise_constant', unit='timesteps', boundaries=[1], values=[0.1, 0.0] ) self.float_unittest(exploration=exploration) horizon = dict( type='piecewise_constant', dtype='int', unit='timesteps', boundaries=[1], values=[1, 2] ) self.int_unittest(horizon=horizon) def test_random(self): self.start_tests(name='random') exploration = dict(type='random', distribution='uniform') self.float_unittest(exploration=exploration)
pydlm/predict/_dlmPredict.py
onnheimm/pydlm
423
60840
""" =============================================================================== The code for all predicting methods =============================================================================== """ from pydlm.core._dlm import _dlm class _dlmPredict(_dlm): """ The main class containing all prediction methods. Methods: _oneDayAheadPredict: predict one day a head. _continuePredict: continue predicting one day after _oneDayAheadPredict """ # Note the following functions will modify the status of the model, so they # shall not be directly call through the main model if this behavior is not # desired. # featureDict contains all the features for prediction. # It is a dictionary with key equals to the name of the component and # the value as the new feature (a list). The function # will first use the features provided in this feature dict, if not # found, it will fetch the default feature from the component. If # it could not find feature for some component, it returns an error # The intermediate result will be stored in result.predictStatus as # (start_date, next_pred_date, [all_predicted_values]), which will be # used by _continuePredict. def _oneDayAheadPredict(self, date, featureDict=None): """ One day ahead prediction based on the date and the featureDict. The prediction could be on the last day and into the future or in the middle of the time series and ignore the rest. For predicting into the future, the new features must be supplied to featureDict. For prediction in the middle, the user can still supply the features which will be used priorily. The old features will be used if featureDict is None. Args: date: the prediction starts (based on the observation before and on this date) featureDict: the new feature value for some dynamic components. must be specified in a form of {component_name: value} if the feature for some dynamic component is not supplied. The algorithm will use the features from the old data. (which means if the prediction is out of sample, then all dynamic component must be provided with the new feature value) Returns: A tuple of (predicted_mean, predicted_variance) """ if date > self.n - 1: raise NameError('The date is beyond the data range.') # get the correct status of the model self._setModelStatus(date=date) self._constructEvaluationForPrediction( date=date + 1, featureDict=featureDict, padded_data=self.padded_data[:(date + 1)]) # initialize the prediction status self.builder.model.prediction.step = 0 # start predicting self.Filter.predict(self.builder.model) predictedObs = self.builder.model.prediction.obs predictedObsVar = self.builder.model.prediction.obsVar self.result.predictStatus = [ date, # start_date date + 1, # current_date [predictedObs[0, 0]] # all historical predictions ] return (predictedObs, predictedObsVar) def _continuePredict(self, featureDict=None): """ Continue predicting one day after _oneDayAheadPredict or after _continuePredict. After using _oneDayAheadPredict, the user can continue predicting by using _continuePredict. The featureDict act the same as in _oneDayAheadPredict. Args: featureDict: the new feature value for some dynamic components. see @_oneDayAheadPredict Returns: A tuple of (predicted_mean, predicted_variance) """ if self.result.predictStatus is None: raise NameError('_continoousPredict can only be used after ' + '_oneDayAheadPredict') startDate = self.result.predictStatus[0] currentDate = self.result.predictStatus[1] self._constructEvaluationForPrediction( date=currentDate + 1, featureDict=featureDict, padded_data=self.padded_data[:(startDate + 1)] + self.result.predictStatus[2]) self.Filter.predict(self.builder.model) predictedObs = self.builder.model.prediction.obs predictedObsVar = self.builder.model.prediction.obsVar self.result.predictStatus[1] += 1 self.result.predictStatus[2].append(predictedObs[0, 0]) return (predictedObs, predictedObsVar) # This function will modify the status of the object, use with caution. def _constructEvaluationForPrediction(self, date, featureDict=None, padded_data=None): """ Construct the evaluation matrix based on date and featureDict. Used for prediction. Features provided in the featureDict will be used preferrably. If the feature is not found in featureDict, the algorithm will seek it based on the old data and the date. Args: featureDict: a dictionary containing {dynamic_component_name: value} for update the feature for the corresponding component. date: if a dynamic component name is not found in featureDict, the algorithm is using its old feature on the given date. padded_data: is the mix of the raw data and the predicted data. It is used by auto regressor. """ # New features are provided. Update dynamic componnet. # We distribute the featureDict back to dynamicComponents. If the date is # out of bound, we append the feature to the feature set. If the date is # within range, we replace the old feature with the new feature. if featureDict is not None: for name in featureDict: if name in self.builder.dynamicComponents: comp = self.builder.dynamicComponents[name] # the date is within range if date < comp.n: comp.features[date] = featureDict[name] comp.n += 1 elif date < comp.n + 1: comp.features.append(featureDict[name]) comp.n += 1 else: raise NameError("Feature is missing between the last predicted " + "day and the new day") self.builder.updateEvaluation(date, padded_data)
blinkpy/helpers/__init__.py
magicalyak/blinkpy
272
60875
"""Init file for blinkpy helper functions."""
preprocess/__init__.py
federicozaiter/LogClass
159
60896
<reponame>federicozaiter/LogClass<gh_stars>100-1000 __all__ = [ "bgl_preprocessor", "open_source_logs", ]
setup.py
jpic/django-nested-admin
580
60899
<gh_stars>100-1000 #!/usr/bin/env python import re import os.path try: from setuptools import setup, find_packages except ImportError: from ez_setup import use_setuptools use_setuptools() from setuptools import setup, find_packages # Find the package version in __init__.py without importing it # (which we cannot do because it has extensive dependencies). init_file = os.path.join(os.path.dirname(__file__), 'nested_admin', '__init__.py') with open(init_file, 'r') as f: for line in f: m = re.search(r'''^__version__ = (['"])(.+?)\1$''', line) if m is not None: version = m.group(2) break else: raise LookupError('Unable to find __version__ in ' + init_file) setup( name='django-nested-admin', version=version, install_requires=[ 'python-monkey-business>=1.0.0', 'six', ], description="Django admin classes that allow for nested inlines", author='<NAME>', author_email='<EMAIL>', url='https://github.com/theatlantic/django-nested-admin', packages=find_packages(), license='BSD', platforms='any', classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Web Environment', 'Intended Audience :: Developers', 'Operating System :: OS Independent', 'Programming Language :: Python', "Programming Language :: Python :: 2", 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Framework :: Django', 'Framework :: Django :: 1.8', 'Framework :: Django :: 1.11', 'Framework :: Django :: 2.0', 'Framework :: Django :: 2.1', 'Framework :: Django :: 2.2', ], include_package_data=True, zip_safe=False, long_description=''.join(list(open('README.rst'))[3:]))
sfaira/unit_tests/data_for_tests/loaders/consts.py
theislab/sfaira
110
60922
<filename>sfaira/unit_tests/data_for_tests/loaders/consts.py<gh_stars>100-1000 ASSEMBLY_HUMAN = "Homo_sapiens.GRCh38.104" ASSEMBLY_MOUSE = "Mus_musculus.GRCm39.104" CELLTYPES = ["adventitial cell", "endothelial cell", "acinar cell", "pancreatic PP cell", "type B pancreatic cell"] CL_VERSION = "v2021-08-10"
en_transformer/__init__.py
dumpmemory/En-transformer
108
60935
from en_transformer.en_transformer import EquivariantAttention, EnTransformer
tests/test_perf_counters.py
gglin001/poptorch
128
60959
<reponame>gglin001/poptorch # Copyright (c) 2021 Graphcore Ltd. All rights reserved. import torch import pytest import poptorch import helpers class Model(torch.nn.Module): def forward(self, x, y): return torch.matmul(x, y) def assert_perf_counter_size(perf, inputs, outputs, steps, outsteps=None): def assert_size(perf, elems, steps): assert len(perf) == elems for elem in perf: assert len(elem) == steps outsteps = outsteps or steps assert_size(perf['input'], inputs, steps) assert_size(perf['input_complete'], inputs, steps) assert_size(perf['output'], outputs, outsteps) assert_size(perf['output_complete'], outputs, outsteps) def assert_latency_values(model): def check(latency): (minimum, maximum, average) = latency assert minimum <= average assert average <= maximum host2ipu = model.getHostIpuLatency() compute = model.getComputeLatency() ipu2host = model.getIpuHostLatency() round_trip = model.getLatency() check(host2ipu) check(compute) check(ipu2host) check(round_trip) def test_simple(): x = torch.randn(100, 100) y = torch.randn(100, 100) model = Model() poptorch_model = poptorch.inferenceModel(model) poptorch_model(x, y) perf = poptorch_model.getPerfCounters() assert_perf_counter_size(perf, 2, 1, 1) assert_latency_values(poptorch_model) def test_steps(): x = torch.randn(10, 100, 100) y = torch.randn(10, 100, 100) model = Model() opts = poptorch.Options().deviceIterations(10) poptorch_model = poptorch.inferenceModel(model, opts) poptorch_model(x, y) perf = poptorch_model.getPerfCounters() assert_perf_counter_size(perf, 2, 1, 10) assert_latency_values(poptorch_model) @pytest.mark.skipif(not poptorch.ipuHardwareIsAvailable(), reason="Hardware IPU needed") def test_replicas(): x = torch.randn(4, 100, 100) y = torch.randn(4, 100, 100) model = Model() opts = poptorch.Options().replicationFactor(4) poptorch_model = poptorch.inferenceModel(model, opts) poptorch_model(x, y) perf = poptorch_model.getPerfCounters() assert_perf_counter_size(perf, 2, 1, 4) assert_latency_values(poptorch_model) @pytest.mark.parametrize("mode_tuple", [(poptorch.AnchorMode.Final, 1), (poptorch.AnchorMode.All, 1), (poptorch.AnchorMode.Sum, 1), (poptorch.AnchorMode.EveryN, 2)]) @pytest.mark.parametrize("steps", [2, 4]) @pytest.mark.parametrize("replicas", [1, 2]) @pytest.mark.skipif(not poptorch.ipuHardwareIsAvailable(), reason="Hardware IPU needed") def test_inference(mode_tuple, steps, replicas): model = Model() opts = poptorch.Options() opts.anchorMode(mode_tuple[0], mode_tuple[1]) opts.deviceIterations(steps) opts.replicationFactor(replicas) poptorch_model = poptorch.inferenceModel(model, opts) torch.manual_seed(42) x = torch.randn(16, 100, 100) y = torch.randn(16, 100, 100) poptorch_model(x, y) perf = poptorch_model.getPerfCounters() outsteps = steps * replicas if mode_tuple[0] in [poptorch.AnchorMode.Final, poptorch.AnchorMode.Sum]: outsteps = replicas elif mode_tuple[0] is poptorch.AnchorMode.EveryN: outsteps = steps // mode_tuple[1] * replicas assert_perf_counter_size(perf, 2, 1, steps * replicas, outsteps) assert_latency_values(poptorch_model) @pytest.mark.parametrize("mode_tuple", [(poptorch.AnchorMode.Final, 1), (poptorch.AnchorMode.All, 1), (poptorch.AnchorMode.Sum, 1), (poptorch.AnchorMode.EveryN, 2)]) @pytest.mark.parametrize("steps", [2, 4]) @pytest.mark.parametrize("accums", [1, 2]) @pytest.mark.parametrize("replicas", [1, 2]) @pytest.mark.skipif(not poptorch.ipuHardwareIsAvailable(), reason="Hardware IPU needed") def test_training(mode_tuple, steps, accums, replicas): torch.manual_seed(42) inputs = torch.randn(16, 100) targets = torch.randn(16, 100) opts = poptorch.Options() opts.anchorMode(mode_tuple[0], mode_tuple[1]) opts.deviceIterations(steps) opts.Training.gradientAccumulation(accums) opts.replicationFactor(replicas) model = torch.nn.Linear(100, 100) poptorch_model = helpers.trainingModelWithLoss(model, loss=torch.nn.L1Loss(), options=opts) poptorch_model(inputs, targets) perf = poptorch_model.getPerfCounters() outsteps = steps * accums * replicas if mode_tuple[0] in [poptorch.AnchorMode.Final, poptorch.AnchorMode.Sum]: outsteps = replicas elif mode_tuple[0] is poptorch.AnchorMode.EveryN: outsteps = steps // mode_tuple[1] * accums * replicas assert_perf_counter_size(perf, 2, 2, steps * accums * replicas, outsteps) assert_latency_values(poptorch_model) def test_synthetic_data(): model = Model() opts = poptorch.Options() opts.deviceIterations(16) opts.enableSyntheticData(True) poptorch_model = poptorch.inferenceModel(model, opts) torch.manual_seed(42) x = torch.randn(16, 100, 100) y = torch.randn(16, 100, 100) poptorch_model(x, y) perf = poptorch_model.getPerfCounters() assert_perf_counter_size(perf, 2, 1, 0, 0) latency = poptorch_model.getLatency() assert latency == (0., 0., 0.)
scripts/rct_to_text.py
tomhoper/scibert
1,143
60962
<reponame>tomhoper/scibert """ Script to convert Pubmed RCT dataset to textual format for sent classification """ import jsonlines import click import pathlib @click.command() @click.argument('inpath') @click.argument('outpath') def convert(inpath, outpath): pathlib.Path(outpath).parent.mkdir(parents=True, exist_ok=True) with open(inpath) as f_in: with jsonlines.open(outpath, 'w') as f_out: for line in f_in: abstract_id = '' line = line.strip() if not line: continue if line.startswith('###'): abstract_id = line continue label, sent = line.split('\t') f_out.write({'label': label, 'text': sent, 'metadata':abstract_id}) convert()
testcase/test_case_4_QuickdrawDataset4dict_random_attention_mask.py
Team-Squad-Up/multigraph_transformer
268
60992
<reponame>Team-Squad-Up/multigraph_transformer<filename>testcase/test_case_4_QuickdrawDataset4dict_random_attention_mask.py import numpy as np def produce_adjacent_matrix_random(stroke_length, conn=0.15): attention_mask = np.random.choice(a=[0, 1], size=[7, 7], p=[conn, 1-conn]) attention_mask[stroke_length: , :] = 2 attention_mask[:, stroke_length : ] = 2 ##### attention_mask = np.triu(attention_mask) attention_mask += attention_mask.T - np.diag(attention_mask.diagonal()) for i in range(stroke_length): attention_mask[i, i] = 0 return attention_mask att_msk = produce_adjacent_matrix_random(4, 0.5) print(att_msk) print("----------------------") print((att_msk.T == att_msk).all())
bin/measure_interface.py
fchapoton/CrisisMappingToolkit
178
61011
# ----------------------------------------------------------------------------- # Copyright * 2014, United States Government, as represented by the # Administrator of the National Aeronautics and Space Administration. All # rights reserved. # # The Crisis Mapping Toolkit (CMT) v1 platform is licensed under the Apache # License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0. # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. # ----------------------------------------------------------------------------- from PyQt4 import QtGui, QtCore import sys from threading import Thread from LLAMA import Ui_Lake_Level_UI from plot_water_levelui import * from lake_measure import * class ProgressPopup(QtGui.QWidget): update_signal = QtCore.pyqtSignal(int, int, str, str, int, int) def __init__(self, cancel_function): QtGui.QWidget.__init__(self) self.update_signal.connect(self.apply_update, QtCore.Qt.QueuedConnection) self.cancel_function = cancel_function self.lake_totals = None self.lake_counts = None self.progressBar = QtGui.QProgressBar(self) self.progressBar.setMinimumSize(500, 50) self.progressBar.setMaximumSize(500, 50) self.progressBar.setRange(0, 100) self.progressBar.setValue(0) self.status = QtGui.QLabel(self) self.status.setText("") self.cancelButton = QtGui.QPushButton('Cancel', self) self.cancelButton.setMinimumSize(50, 30) self.cancelButton.setMaximumSize(100, 50) self.cancelButton.clicked[bool].connect(self._cancel) vbox = QtGui.QVBoxLayout(self) vbox.addWidget(self.progressBar) vbox.addWidget(self.status) vbox.addWidget(self.cancelButton) vbox.addStretch(1) self.setLayout(vbox) def update_function(self, lakes_number, lakes_total, lake_name, lake_date, lake_image, lake_image_total): self.update_signal.emit(lakes_number, lakes_total, lake_name, lake_date, lake_image, lake_image_total) def apply_update(self, lakes_number, lakes_total, lake_name, lake_date, lake_image, lake_image_total): if self.lake_totals == None: self.lake_totals = [10] * lakes_total self.lake_counts = [0] * lakes_total self.lake_totals[lakes_number] = lake_image_total self.lake_counts[lakes_number] = lake_image total = sum(self.lake_totals) progress = sum(self.lake_counts) self.status.setText('Completed processing %s on %s.' % (lake_name, lake_date)) self.progressBar.setValue(float(progress) / total * 100) def closeEvent(self, event): if self.cancel_function != None: self.cancel_function() event.accept() def _cancel(self): self.close() class Lake_Level_App(QtGui.QMainWindow, Ui_Lake_Level_UI): def __init__(self): super(self.__class__, self).__init__() self.setupUi(self) self.start_date = '1984-04-25' # Sets end date to current date. self.end_date = str((QtCore.QDate.currentDate()).toString('yyyy-MM-dd')) self.selected_lake = 'Lake Tahoe' self.selectlakeDropMenu.activated[str].connect(self.selectLakeHandle) self.okBtn.clicked.connect(self.okHandle) # Sets end date as current date. Couldn't set this option in QT Designer self.endDate.setDate(QtCore.QDate.currentDate()) self.endDate.dateChanged[QtCore.QDate].connect(self.endHandle) self.startDate.dateChanged[QtCore.QDate].connect(self.startHandle) self.faiState = False self.ndtiState = False self.completedSignal.connect(self.completeLakeThread, QtCore.Qt.QueuedConnection) def selectLakeHandle(self, text): self.selected_lake = str(text) def startHandle(self, date): self.start_date = str(date.toString('yyyy-MM-dd')) def endHandle(self, date): self.end_date = str(date.toString('yyyy-MM-dd')) completedSignal = QtCore.pyqtSignal() @QtCore.pyqtSlot() def completeLakeThread(self): if self.tableCheckbox.isChecked(): table_water_level(self.selected_lake, self.start_date, self.end_date, result_dir='results', output_file=self.table_output_file) if self.graphCheckbox.isChecked(): plot_water_level(self.selected_lake, self.start_date, self.end_date, result_dir='results') self.popup.close() def okHandle(self): if self.algaeCheckbox.isChecked(): self.faiState = True else: self.faiState = False if self.turbidityCheckbox.isChecked(): self.ndtiState = True else: self.ndtiState = False # Heat map checkbox is not functioning. Add under here: # if self.lake_areaCheckbox.isChecked(): if self.tableCheckbox.isChecked(): self.table_output_file = QtGui.QFileDialog.getSaveFileName(self, 'Choose Output File', 'results/' + self.selected_lake + '.csv', 'CSV File (*.csv *.txt)') self.popup = ProgressPopup(Lake_Level_Cancel) self.lake_thread = Thread(target=Lake_Level_Run, args=(self.selected_lake, self.start_date, self.end_date, \ 'results', self.faiState, self.ndtiState, self.popup.update_function, self.completedSignal.emit)) self.popup.show() self.lake_thread.start() # CHANGE THIS. NEED TO MAKE THESE PARTS WAIT UNTIL LAKE_THREAD IS FINISHED. def main(): app = QtGui.QApplication(sys.argv) # A new instance of QApplication form = Lake_Level_App() # We set the form to be our ExampleApp (design) form.show() # Show the form app.exec_() # and execute the app if __name__ == '__main__': # if we're running file directly and not importing it main()
run_proto_exp.py
renmengye/inc-few-shot-attractor-public
122
61025
<reponame>renmengye/inc-few-shot-attractor-public """Runs a baseline for prototype networks for incremental few-shot learning. Author: <NAME> (<EMAIL>) See run_exp.py for usage. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np import os import six import tensorflow as tf from tqdm import tqdm from fewshot.utils import logger from run_exp import (get_config, get_restore_saver, get_datasets, get_model, save_config, get_exp_logger, get_saver, restore_model, final_log) from train_lib import get_metadata log = logger.get() FLAGS = tf.flags.FLAGS def calculate_protos(sess, model, num_classes_a, task_a_it, num_steps): """Calculates the prototypes of the entire training set.""" prototypes = [] for idx in six.moves.xrange(num_classes_a): prototypes.append([]) for step in six.moves.xrange(num_steps): x, y = task_a_it.next() h = sess.run(model.h_a, feed_dict={model.inputs: x}) for jj, idx in enumerate(y): prototypes[idx].append(h[jj]) for idx in six.moves.xrange(num_classes_a): prototypes[idx] = np.array(prototypes[idx]).mean(axis=0) return np.array(prototypes) def calculate_episode_protos(sess, model, num_classes_a, nway, episode, old_and_new): """Caluclates the prototypes of a single episode.""" prototypes = [] for idx in six.moves.xrange(nway): prototypes.append([]) h = sess.run(model.h_a, feed_dict={model.inputs: episode.x_train}) for idx in six.moves.xrange(episode.x_train.shape[0]): if old_and_new: prototypes[episode.y_train[idx] - num_classes_a].append(h[idx]) else: prototypes[episode.y_train[idx]].append(h[idx]) for idx in six.moves.xrange(nway): prototypes[idx] = np.array(prototypes[idx]).mean(axis=0) return np.array(prototypes) def cosine(h, protos): """Cosine similarity.""" proto_t = protos.T result = np.dot(h, proto_t) / np.sqrt(np.sum( h**2, axis=1, keepdims=True)) / np.sqrt( np.sum(proto_t**2, axis=0, keepdims=True)) return result def euclidean(h, protos): """Euclidean similarity.""" h_ = np.expand_dims(h, 1) protos_ = np.expand_dims(protos, 0) return -np.sum((h_ - protos_)**2, axis=2) def dot(h, protos): """Dot product.""" return np.dot(h, protos.T) def evaluate_b(sess, model, task_it, num_steps, num_classes_a, num_classes_b, prototypes_a=None, old_and_new=False, similarity='euclidean'): """Evaluate the model on task A.""" acc_list = np.zeros([num_steps]) if old_and_new: acc_list_old = np.zeros([num_steps]) acc_list_new = np.zeros([num_steps]) acc_list_old2 = np.zeros([num_steps]) acc_list_new2 = np.zeros([num_steps]) it = tqdm(six.moves.xrange(num_steps), ncols=0) for tt in it: task_data = task_it.next() prototypes_b = calculate_episode_protos( sess, model, num_classes_a, num_classes_b, task_data, old_and_new) if old_and_new: all_prototypes = np.concatenate([prototypes_a, prototypes_b]) else: all_prototypes = prototypes_b h_test = sess.run(model.h_a, feed_dict={model.inputs: task_data.x_test}) if similarity == 'cosine': logits = cosine(h_test, all_prototypes) elif similarity == 'euclidean': logits = euclidean(h_test, all_prototypes) elif similarity == 'dot': logits = dot(h_test, all_prototypes) else: raise ValueError('Unknown similarity function') correct = np.equal(np.argmax(logits, axis=1), task_data.y_test).astype(np.float32) _acc = correct.mean() acc_list[tt] = _acc if old_and_new: is_new = task_data.y_test >= num_classes_a is_old = np.logical_not(is_new) _acc_old = correct[is_old].mean() _acc_new = correct[is_new].mean() correct_new = np.equal( np.argmax(logits[is_new, num_classes_a:], axis=1), task_data.y_test[is_new] - num_classes_a).astype(np.float32) _acc_new2 = correct_new.mean() correct_old = np.equal( np.argmax(logits[is_old, :num_classes_a], axis=1), task_data.y_test[is_old]).astype(np.float32) _acc_old2 = correct_old.mean() acc_list_old[tt] = _acc_old acc_list_new[tt] = _acc_new acc_list_new2[tt] = _acc_new2 acc_list_old2[tt] = _acc_old2 it.set_postfix( acc_b=u'{:.3f}±{:.3f}'.format( np.array(acc_list).sum() * 100.0 / float(tt + 1), np.array(acc_list).std() / np.sqrt(float(tt + 1)) * 100.0), acc_b_old=u'{:.3f}±{:.3f}'.format( np.array(acc_list_old).sum() * 100.0 / float(tt + 1), np.array(acc_list_old).std() / np.sqrt(float(tt + 1)) * 100.0), acc_b_old2=u'{:.3f}±{:.3f}'.format( np.array(acc_list_old2).sum() * 100.0 / float(tt + 1), np.array(acc_list_old2).std() / np.sqrt(float(tt + 1)) * 100.0), acc_b_new=u'{:.3f}±{:.3f}'.format( np.array(acc_list_new).sum() * 100.0 / float(tt + 1), np.array(acc_list_new).std() / np.sqrt(float(tt + 1)) * 100.0), acc_b_new2=u'{:.3f}±{:.3f}'.format( np.array(acc_list_new2).sum() * 100.0 / float(tt + 1), np.array(acc_list_new2).std() / np.sqrt(float(tt + 1)) * 100.0)) else: it.set_postfix(acc_b=u'{:.3f}±{:.3f}'.format( np.array(acc_list).sum() * 100.0 / float(tt + 1), np.array(acc_list).std() / np.sqrt(float(tt + 1)) * 100.0)) results_dict = { 'acc': acc_list.mean(), 'acc_se': acc_list.std() / np.sqrt(float(acc_list.size)) } if old_and_new: results_dict['acc_old'] = acc_list_old.mean() results_dict['acc_old_se'] = acc_list_old.std() / np.sqrt( float(acc_list_old.size)) results_dict['acc_old2'] = acc_list_old2.mean() results_dict['acc_old2_se'] = acc_list_old2.std() / np.sqrt( float(acc_list_old2.size)) results_dict['acc_new'] = acc_list_new.mean() results_dict['acc_new_se'] = acc_list_new.std() / np.sqrt( float(acc_list_new.size)) results_dict['acc_new2'] = acc_list_new2.mean() results_dict['acc_new2_se'] = acc_list_new2.std() / np.sqrt( float(acc_list_new2.size)) results_dict['delta_a'] = results_dict['acc_old'] - results_dict['acc_old2'] results_dict['delta_b'] = results_dict['acc_new'] - results_dict['acc_new2'] results_dict['delta'] = 0.5 * ( results_dict['delta_a'] + results_dict['delta_b']) return results_dict def main(): # ------------------------------------------------------------------------ # Flags nshot = FLAGS.nshot dataset = FLAGS.dataset nclasses_train = FLAGS.nclasses_b nclasses_val = FLAGS.nclasses_b nclasses_test = FLAGS.nclasses_b num_test = FLAGS.ntest is_eval = FLAGS.eval nepisode_final = FLAGS.nepisode_final run_test = FLAGS.test pretrain = FLAGS.pretrain retest = FLAGS.retest tag = FLAGS.tag # ------------------------------------------------------------------------ # Configuration config = get_config(FLAGS.config) opt_config = config.optimizer_config old_and_new = config.transfer_config.old_and_new similarity = config.protonet_config.similarity # ------------------------------------------------------------------------ # Log folder assert tag is not None, 'Please add a name for the experiment' log_folder = os.path.join(FLAGS.results, dataset, 'n{}w{}'.format( nshot, nclasses_val), tag) log.info('Experiment ID {}'.format(tag)) if not os.path.exists(log_folder): os.makedirs(log_folder) elif not is_eval: assert False, 'Folder {} exists. Pick another tag.'.format(log_folder) # ------------------------------------------------------------------------ # Model metadata = get_metadata(dataset) with log.verbose_level(2): model_dict = get_model( config, metadata['num_classes_a'], nclasses_train, nclasses_val, nclasses_test, is_eval=is_eval) model = model_dict['val'] modelv = model_dict['val'] # ------------------------------------------------------------------------ # Dataset seed = 0 with log.verbose_level(2): data = get_datasets(dataset, metadata, nshot, num_test, opt_config.batch_size, opt_config.num_gpu, metadata['num_classes_a'], nclasses_train, nclasses_val, nclasses_test, old_and_new, seed, True) # ------------------------------------------------------------------------ # Save configurations save_config(config, log_folder) # ------------------------------------------------------------------------ # Log outputs restore_saver = get_restore_saver( retest=retest, cosine_a=modelv.config.protonet_config.cosine_a, reinit_tau=modelv.config.protonet_config.reinit_tau) logger = get_exp_logger(log_folder) saver = get_saver(log_folder) # ------------------------------------------------------------------------ # Create a TensorFlow session sess_config = tf.ConfigProto() sess_config.gpu_options.allow_growth = True sess = tf.Session(config=sess_config) # ------------------------------------------------------------------------ # Initialize model restore_model( sess, model, modelv, restore_saver, is_eval=is_eval, pretrain=pretrain) # ------------------------------------------------------------------------ # Calculate prototypes A. if old_and_new: prototypes_a = calculate_protos(sess, model, model.num_classes_a, data['a_train'], nepisode_final) else: prototypes_a = None # ------------------------------------------------------------------------ # Run on val set. results = {} results['val_b'] = evaluate_b( sess, model, data['b_val'], nepisode_final, model.num_classes_a, nclasses_val, prototypes_a=prototypes_a, old_and_new=old_and_new, similarity=similarity) # ------------------------------------------------------------------------ # Run on test set. if run_test: results['test_b'] = evaluate_b( sess, model, data['b_test'], nepisode_final, model.num_classes_a, nclasses_val, prototypes_a=prototypes_a, old_and_new=old_and_new, similarity=similarity) # ------------------------------------------------------------------------ # Log results. final_log(log_folder, results, old_and_new=old_and_new) if __name__ == '__main__': main()
plot_parametric_plot.py
vinnamkim/large-batch-training
122
61046
<filename>plot_parametric_plot.py<gh_stars>100-1000 ''' Train CNNs on the CIFAR10/CIFAR100 Plots a parametric plot between SB and LB minimizers demonstrating the relative sharpness of the two minima. Requirements: - Keras (with Theano) - Matplotlib - Numpy GPU run command: KERAS_BACKEND=theano python plot_parametric_plot.py --network C[1-4] ''' from __future__ import print_function from keras.datasets import cifar10, cifar100 from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Convolution2D, MaxPooling2D from keras.utils import np_utils import numpy import matplotlib.pyplot as plt import argparse import network_zoo parser = argparse.ArgumentParser(description= '''This code first trains the user-specific network (C[1-4]) using small-batch ADAM and large-batch ADAM, and then plots the parametric plot connecting the two minimizers illustrating the sharpness difference.''') parser.add_argument('-n', '--network', help='''Selects which network to plot the parametric plots for. Choices are C1, C2, C3 and C4.''', required=True) network_choice = vars(parser.parse_args())['network'] nb_epoch = 20 # the data, shuffled and split between train and test sets if network_choice in ['C1', 'C2']: (X_train, y_train), (X_test, y_test) = cifar10.load_data() nb_classes = 10 elif network_choice in ['C3', 'C4']: (X_train, y_train), (X_test, y_test) = cifar100.load_data() nb_classes = 100 else: raise ValueError('''Invalid choice of network. Please choose one of C1, C2, C3 or C4. Refer to the paper for details regarding these networks''') X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train /= 255 X_test /= 255 # convert class vectors to binary class matrices Y_train = np_utils.to_categorical(y_train, nb_classes) Y_test = np_utils.to_categorical(y_test, nb_classes) # build the network if network_choice in ['C1', 'C3']: model = network_zoo.shallownet(nb_classes) elif network_choice in ['C2', 'C4']: model = network_zoo.deepnet(nb_classes) # let's train the model using Adam model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.save_weights('x0.h5') # let's first find the small-batch solution model.fit(X_train, Y_train, batch_size=256, nb_epoch=nb_epoch, validation_data=(X_test, Y_test), shuffle=True) sb_solution = [p.get_value() for p in model.trainable_weights] # re-compiling to reset the optimizer accumulators model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # setting the initial (starting) point model.load_weights('x0.h5') # now, let's train the large-batch solution model.fit(X_train, Y_train, batch_size=5000, nb_epoch=nb_epoch, validation_data=(X_test, Y_test)) lb_solution = [p.get_value() for p in model.trainable_weights] # parametric plot data collection # we discretize the interval [-1,2] into 25 pieces alpha_range = numpy.linspace(-1, 2, 25) data_for_plotting = numpy.zeros((25, 4)) i = 0 for alpha in alpha_range: for p in range(len(sb_solution)): model.trainable_weights[p].set_value(lb_solution[p]*alpha + sb_solution[p]*(1-alpha)) train_xent, train_acc = model.evaluate(X_train, Y_train, batch_size=5000, verbose=0) test_xent, test_acc = model.evaluate(X_test, Y_test, batch_size=5000, verbose=0) data_for_plotting[i, :] = [train_xent, train_acc, test_xent, test_acc] i += 1 # finally, let's plot the data # we plot the XENT loss on the left Y-axis # and accuracy on the right Y-axis # if you don't have Matplotlib, simply print # data_for_plotting to file and use a different plotter fig, ax1 = plt.subplots() ax2 = ax1.twinx() ax1.plot(alpha_range, data_for_plotting[:, 0], 'b-') ax1.plot(alpha_range, data_for_plotting[:, 2], 'b--') ax2.plot(alpha_range, data_for_plotting[:, 1]*100., 'r-') ax2.plot(alpha_range, data_for_plotting[:, 3]*100., 'r--') ax1.set_xlabel('alpha') ax1.set_ylabel('Cross Entropy', color='b') ax2.set_ylabel('Accuracy', color='r') ax1.legend(('Train', 'Test'), loc=0) ax1.grid(b=True, which='both') plt.savefig('Figures/'+network_choice+'.pdf') print('Plot save as ' + network_choice + '.pdf in the Figures/ folder')
tensorflow_graphics/math/tests/feature_representation_test.py
Liang813/graphics
2,759
61049
<reponame>Liang813/graphics # Copyright 2020 The TensorFlow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for feature representations.""" from absl.testing import parameterized from tensorflow_graphics.math import feature_representation from tensorflow_graphics.util import test_case class FeatureRepresentationTest(test_case.TestCase): @parameterized.parameters( (3, (3,)), (4, (2, 3)), (8, (5, 3, 6)), ) def test_random_rays_exception_exception_not_raised(self, num_frequencies, *shapes): """Tests that the shape exceptions are not raised.""" self.assert_exception_is_not_raised( feature_representation.positional_encoding, shapes, num_frequencies=num_frequencies) if __name__ == "__main__": test_case.main()
applications/DEMApplication/tests/test_DEM_search_tolerance.py
lkusch/Kratos
778
61073
import os import KratosMultiphysics from KratosMultiphysics import Logger Logger.GetDefaultOutput().SetSeverity(Logger.Severity.WARNING) import KratosMultiphysics.KratosUnittest as KratosUnittest import KratosMultiphysics.DEMApplication.DEM_analysis_stage import numpy as np import auxiliary_functions_for_tests this_working_dir_backup = os.getcwd() def GetFilePath(fileName): return os.path.join(os.path.dirname(os.path.realpath(__file__)), fileName) class DEM3D_SearchToleranceMain(KratosMultiphysics.DEMApplication.DEM_analysis_stage.DEMAnalysisStage, KratosUnittest.TestCase): def Initialize(self): super().Initialize() for node in self.spheres_model_part.Nodes: self.initial_normal_vel = node.GetSolutionStepValue(KratosMultiphysics.VELOCITY_Z) @classmethod def GetMainPath(self): return os.path.join(os.path.dirname(os.path.realpath(__file__)), "test_search_tolerance") def GetProblemNameWithPath(self): return os.path.join(self.main_path, self.DEM_parameters["problem_name"].GetString()) def FinalizeSolutionStep(self): super().FinalizeSolutionStep() for node in self.spheres_model_part.Nodes: #reference data with freq=1 searchtolerance=0.0 if node.Id == 2: tol = 1.0e-15 if np.isclose(self.time, 0.02, rtol=0.0, atol=1e-06): y_vel = node.GetSolutionStepValue(KratosMultiphysics.VELOCITY_Y) print(self.time, y_vel) y_vel_ref = -5.86502139707038 self.assertAlmostEqual(y_vel, y_vel_ref, delta=tol) if np.isclose(self.time, 0.115, rtol=0.0, atol=1e-06): y_vel = node.GetSolutionStepValue(KratosMultiphysics.VELOCITY_Y) print(self.time, y_vel) y_vel_ref = -3.3859516373258987 self.assertAlmostEqual(y_vel, y_vel_ref, delta=tol) if np.isclose(self.time, 0.22, rtol=0.0, atol=1e-06): y_vel = node.GetSolutionStepValue(KratosMultiphysics.VELOCITY_Y) print(self.time, y_vel) y_vel_ref = -0.5929799879392164 self.assertAlmostEqual(y_vel, y_vel_ref, delta=tol) def Finalize(self): self.procedures.RemoveFoldersWithResults(str(self.main_path), str(self.problem_name), '') super().Finalize() class DEM3D_SearchTolerance1(DEM3D_SearchToleranceMain): def FinalizeSolutionStep(self): KratosMultiphysics.DEMApplication.DEM_analysis_stage.DEMAnalysisStage.FinalizeSolutionStep(self) for node in self.spheres_model_part.Nodes: if node.Id == 2: tol = 1.0e-15 if np.isclose(self.time, 0.02, rtol=0.0, atol=1e-06): y_vel = node.GetSolutionStepValue(KratosMultiphysics.VELOCITY_Y) print(self.time, y_vel) y_vel_ref = -5.8654458179811835 self.assertAlmostEqual(y_vel, y_vel_ref, delta=tol) if np.isclose(self.time, 0.115, rtol=0.0, atol=1e-06): y_vel = node.GetSolutionStepValue(KratosMultiphysics.VELOCITY_Y) print(self.time, y_vel) y_vel_ref = -3.3861319639727263 self.assertAlmostEqual(y_vel, y_vel_ref, delta=tol) if np.isclose(self.time, 0.22, rtol=0.0, atol=1e-06): y_vel = node.GetSolutionStepValue(KratosMultiphysics.VELOCITY_Y) print(self.time, y_vel) y_vel_ref = -0.594495289987086 self.assertAlmostEqual(y_vel, y_vel_ref, delta=tol) class DEM3D_SearchTolerance2(DEM3D_SearchToleranceMain): def FinalizeSolutionStep(self): KratosMultiphysics.DEMApplication.DEM_analysis_stage.DEMAnalysisStage.FinalizeSolutionStep(self) for node in self.spheres_model_part.Nodes: if node.Id == 2: tol = 1.0e-15 if np.isclose(self.time, 0.02, rtol=0.0, atol=1e-06): y_vel = node.GetSolutionStepValue(KratosMultiphysics.VELOCITY_Y) print(self.time, y_vel) y_vel_ref = -5.865445816566027 self.assertAlmostEqual(y_vel, y_vel_ref, delta=tol) if np.isclose(self.time, 0.115, rtol=0.0, atol=1e-06): y_vel = node.GetSolutionStepValue(KratosMultiphysics.VELOCITY_Y) print(self.time, y_vel) y_vel_ref = -3.386128017385994 self.assertAlmostEqual(y_vel, y_vel_ref, delta=tol) if np.isclose(self.time, 0.22, rtol=0.0, atol=1e-06): y_vel = node.GetSolutionStepValue(KratosMultiphysics.VELOCITY_Y) print(self.time, y_vel) y_vel_ref = -0.5941551772701182 self.assertAlmostEqual(y_vel, y_vel_ref, delta=tol) class DEM3D_SearchTolerance3(DEM3D_SearchToleranceMain): def FinalizeSolutionStep(self): KratosMultiphysics.DEMApplication.DEM_analysis_stage.DEMAnalysisStage.FinalizeSolutionStep(self) for node in self.spheres_model_part.Nodes: if node.Id == 2: tol = 1.0e-15 if np.isclose(self.time, 0.02, rtol=0.0, atol=1e-06): y_vel = node.GetSolutionStepValue(KratosMultiphysics.VELOCITY_Y) print(self.time, y_vel) y_vel_ref = -5.86502139707038 self.assertAlmostEqual(y_vel, y_vel_ref, delta=tol) if np.isclose(self.time, 0.115, rtol=0.0, atol=1e-06): y_vel = node.GetSolutionStepValue(KratosMultiphysics.VELOCITY_Y) print(self.time, y_vel) y_vel_ref = -3.3859516373258987 self.assertAlmostEqual(y_vel, y_vel_ref, delta=tol) if np.isclose(self.time, 0.22, rtol=0.0, atol=1e-06): y_vel = node.GetSolutionStepValue(KratosMultiphysics.VELOCITY_Y) print(self.time, y_vel) y_vel_ref = -0.5929799879392164 self.assertAlmostEqual(y_vel, y_vel_ref, delta=tol) class TestSearchTolerance(KratosUnittest.TestCase): @classmethod def test_SearchA(self): path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "test_search_tolerance") parameters_file_name = os.path.join(path, "ProjectParametersDEM.json") with open(parameters_file_name,'r') as parameter_file: project_parameters = KratosMultiphysics.Parameters(parameter_file.read()) project_parameters["SearchTolerance"].SetDouble(0.0) project_parameters["search_tolerance_against_walls"].SetDouble(0.0) project_parameters["NeighbourSearchFrequency"].SetInt(1) model = KratosMultiphysics.Model() auxiliary_functions_for_tests.CreateAndRunStageInSelectedNumberOfOpenMPThreads(DEM3D_SearchToleranceMain, model, project_parameters, auxiliary_functions_for_tests.GetHardcodedNumberOfThreads()) @classmethod def test_SearchB(self): path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "test_search_tolerance") parameters_file_name = os.path.join(path, "ProjectParametersDEM.json") with open(parameters_file_name,'r') as parameter_file: project_parameters = KratosMultiphysics.Parameters(parameter_file.read()) project_parameters["SearchTolerance"].SetDouble(0.0) project_parameters["search_tolerance_against_walls"].SetDouble(0.0) project_parameters["NeighbourSearchFrequency"].SetInt(10) model = KratosMultiphysics.Model() auxiliary_functions_for_tests.CreateAndRunStageInSelectedNumberOfOpenMPThreads(DEM3D_SearchTolerance1, model, project_parameters, auxiliary_functions_for_tests.GetHardcodedNumberOfThreads()) @classmethod def test_SearchC(self): path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "test_search_tolerance") parameters_file_name = os.path.join(path, "ProjectParametersDEM.json") with open(parameters_file_name,'r') as parameter_file: project_parameters = KratosMultiphysics.Parameters(parameter_file.read()) project_parameters["SearchTolerance"].SetDouble(1e-04) project_parameters["search_tolerance_against_walls"].SetDouble(1e-04) project_parameters["NeighbourSearchFrequency"].SetInt(20) model = KratosMultiphysics.Model() auxiliary_functions_for_tests.CreateAndRunStageInSelectedNumberOfOpenMPThreads(DEM3D_SearchTolerance2, model, project_parameters, auxiliary_functions_for_tests.GetHardcodedNumberOfThreads()) @classmethod def test_SearchD(self): path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "test_search_tolerance") parameters_file_name = os.path.join(path, "ProjectParametersDEM.json") with open(parameters_file_name,'r') as parameter_file: project_parameters = KratosMultiphysics.Parameters(parameter_file.read()) project_parameters["SearchTolerance"].SetDouble(1e-03) project_parameters["search_tolerance_against_walls"].SetDouble(1e-03) project_parameters["NeighbourSearchFrequency"].SetInt(20) model = KratosMultiphysics.Model() auxiliary_functions_for_tests.CreateAndRunStageInSelectedNumberOfOpenMPThreads(DEM3D_SearchTolerance3, model, project_parameters, auxiliary_functions_for_tests.GetHardcodedNumberOfThreads()) if __name__ == "__main__": Logger.GetDefaultOutput().SetSeverity(Logger.Severity.WARNING) KratosUnittest.main()
mmdet/core/bbox/assigners/__init__.py
yanglinGEM/ReDet
270
61107
from .base_assigner import BaseAssigner from .max_iou_assigner import MaxIoUAssigner from .approx_max_iou_assigner import ApproxMaxIoUAssigner from .assign_result import AssignResult from .max_iou_assigner_hbb_cy import MaxIoUAssignerCy from .max_iou_assigner_rbbox import MaxIoUAssignerRbbox from .approx_max_iou_assigner_cy import ApproxMaxIoUAssignerCy __all__ = [ 'BaseAssigner', 'MaxIoUAssigner', 'ApproxMaxIoUAssigner', 'AssignResult', 'MaxIoUAssignerCy', 'MaxIoUAssignerRbbox','ApproxMaxIoUAssignerCy' ]
soccer3d/instancesegm/utils.py
ngerstle/soccerontable
465
61114
import numpy as np import scipy import cv2 def get_pixel_neighbors(height, width): """ Estimate the 4 neighbors of every pixel in an image :param height: image height :param width: image width :return: pixel index - neighbor index lists """ pix_id = [] neighbor_id = [] for i in range(height): for j in range(width): n = [] if i == 0: n = n + [(i + 1) * width + j] elif i == height - 1: n = n + [(i - 1) * width + j] else: n = n + [(i + 1) * width + j, (i - 1) * width + j] if j == 0: n = n + [i * width + j + 1] elif j == width - 1: n = n + [i * width + j - 1] else: n = n + [i * width + j + 1, i * width + j - 1] for k in n: pix_id.append(i*width+j) neighbor_id.append(k) return pix_id, neighbor_id limps = np.array( [[0, 1], [1, 2], [2, 3], [3, 4], [1, 5], [5, 6], [6, 7], [1, 11], [11, 12], [12, 13], [1, 8], [8, 9], [9, 10], [14, 15], [16, 17], [0, 14], [0, 15], [14, 16], [15, 17]]) def get_instance_skeleton_buffer(h, w, poses): output = np.zeros((h, w, 3), dtype=np.float32) - 1 for i in range(len(poses)): keypoints = poses[i] lbl = i for k in range(limps.shape[0]): kp1, kp2 = limps[k, :].astype(int) bone_start = keypoints[kp1, :] bone_end = keypoints[kp2, :] bone_start[0] = np.maximum(np.minimum(bone_start[0], w - 1), 0.) bone_start[1] = np.maximum(np.minimum(bone_start[1], h - 1), 0.) bone_end[0] = np.maximum(np.minimum(bone_end[0], w - 1), 0.) bone_end[1] = np.maximum(np.minimum(bone_end[1], h - 1), 0.) if bone_start[2] > 0.0: output[int(bone_start[1]), int(bone_start[0])] = 1 cv2.circle(output, (int(bone_start[0]), int(bone_start[1])), 2, (lbl, 0, 0), -1) if bone_end[2] > 0.0: output[int(bone_end[1]), int(bone_end[0])] = 1 cv2.circle(output, (int(bone_end[0]), int(bone_end[1])), 2, (lbl, 0, 0), -1) if bone_start[2] > 0.0 and bone_end[2] > 0.0: cv2.line(output, (int(bone_start[0]), int(bone_start[1])), (int(bone_end[0]), int(bone_end[1])), (lbl, 0, 0), 1) return output[:, :, 0] def get_poseimg_for_opt(sel_pose, poseimg, init_mask, n_bg=50): h, w = init_mask.shape[:2] bg_label = 1 output = np.zeros((h, w, 3), dtype=np.float32) - 1 II, JJ = (poseimg > 0).nonzero() Isel, J_sel = (poseimg == sel_pose).nonzero() output[II, JJ] = 0 output[Isel, J_sel] = 2 init_mask[Isel, J_sel] = 1 # Sample also from points in the field init_mask = cv2.dilate(init_mask, np.ones((25, 25), np.uint8), iterations=1) I_bg, J_bg = (init_mask == 0).nonzero() rand_index = np.random.permutation(len(I_bg))[:n_bg] bg_points = np.array([J_bg[rand_index], I_bg[rand_index]]).T for k in range(bg_points.shape[0]): cv2.circle(output, (int(bg_points[k, 0]), int(bg_points[k, 1])), 2, (bg_label, 0, 0), -1) return output[:, :, 0] def draw_poses_for_optimization(sel_pose, keypoints_list, init_mask, n_bg=50): h, w = init_mask.shape[:2] bg_label = 0 output = np.zeros((h, w, 3), dtype=np.float32)-1 for i in range(len(keypoints_list)): keypoints = keypoints_list[i] if i == sel_pose: lbl = 2 else: lbl = 1 for k in range(limps.shape[0]): kp1, kp2 = limps[k, :].astype(int) bone_start = keypoints[kp1, :] bone_end = keypoints[kp2, :] bone_start[0] = np.maximum(np.minimum(bone_start[0], w - 1), 0.) bone_start[1] = np.maximum(np.minimum(bone_start[1], h - 1), 0.) bone_end[0] = np.maximum(np.minimum(bone_end[0], w - 1), 0.) bone_end[1] = np.maximum(np.minimum(bone_end[1], h - 1), 0.) if bone_start[2] > 0.0: output[int(bone_start[1]), int(bone_start[0])] = 1 cv2.circle(output, (int(bone_start[0]), int(bone_start[1])), 2, (lbl, 0, 0), -1) if bone_end[2] > 0.0: output[int(bone_end[1]), int(bone_end[0])] = 1 cv2.circle(output, (int(bone_end[0]), int(bone_end[1])), 2, (lbl, 0, 0), -1) if bone_start[2] > 0.0 and bone_end[2] > 0.0: cv2.line(output, (int(bone_start[0]), int(bone_start[1])), (int(bone_end[0]), int(bone_end[1])), (lbl, 0, 0), 1) # Draw circles for the bg players keypoints # for k in range(bg_keypoints.shape[0]): # cv2.circle(output, (int(bg_keypoints[k, 0]), int(bg_keypoints[k, 1])), 2, (bg_keypoint_lable, 0, 0), -1) # Sample also from points in the field init_mask = cv2.dilate(init_mask, np.ones((5, 5), np.uint8), iterations=1) I_bg, J_bg = (init_mask == 0).nonzero() rand_index = np.random.permutation(len(I_bg))[:n_bg] bg_points = np.array([J_bg[rand_index], I_bg[rand_index]]).T for k in range(bg_points.shape[0]): cv2.circle(output, (int(bg_points[k, 0]), int(bg_points[k, 1])), 2, (bg_label, 0, 0), -1) return output[:, :, 0] def set_U(strokes, h, w, dim): N = h*w y = np.zeros((N, dim)) U = scipy.sparse.lil_matrix((N, N)) for p in range(strokes.shape[0]): i = strokes[p, 1] j = strokes[p, 0] index = int(i * w + j) for ii in range(dim): y[index, ii] = strokes[p, ii+2] U[index, index] = 1 return U, y def set_DW(image, edges=None, sigma1=1000., sigma2=0.01): image = image.astype(float) h, w = image.shape[0:2] N = h * w pixd, neighborid = get_pixel_neighbors(h, w) i, j = np.unravel_index(pixd, (h, w)) ii, jj = np.unravel_index(neighborid, (h, w)) pix_diff = np.squeeze((image[i, j, :] - image[ii, jj, :]) ** 2) if len(pix_diff.shape) == 1: pix_diff = pix_diff[:, np.newaxis] weight0 = np.exp(-(np.sum(pix_diff, axis=1)) / sigma1) weight1 = np.exp(-((edges[i, j]) ** 2) / sigma2) # neighbor_info = np.vstack((pixd, neighborid, weight0)).T M = len(pixd) D = scipy.sparse.lil_matrix((M, N)) W = scipy.sparse.lil_matrix((M, M)) p = np.arange(0, M, 1) D[p, pixd] = 1 D[p, neighborid] = -1 W[p, p] = weight1 return D, W
src/einsteinpy/geodesic/geodesic.py
epsilonethan/einsteinpy
485
61138
import warnings import numpy as np from einsteinpy.integrators import GeodesicIntegrator from .utils import _P, _kerr, _kerrnewman, _sch class Geodesic: """ Base Class for defining Geodesics Working in Geometrized Units (M-Units), with :math:`c = G = M = k_e = 1` """ def __init__( self, metric, metric_params, position, momentum, time_like=True, return_cartesian=True, **kwargs, ): """ Constructor Parameters ---------- metric : str Name of the metric. Currently, these metrics are supported: 1. Schwarzschild 2. Kerr 3. KerrNewman metric_params : array_like Tuple of parameters to pass to the metric E.g., ``(a,)`` for Kerr position : array_like 3-Position 4-Position is initialized by taking ``t = 0.0`` momentum : array_like 3-Momentum 4-Momentum is calculated automatically, considering the value of ``time_like`` time_like : bool, optional Determines type of Geodesic ``True`` for Time-like geodesics ``False`` for Null-like geodesics Defaults to ``True`` return_cartesian : bool, optional Whether to return calculated positions in Cartesian Coordinates This only affects the coordinates. Momenta are dimensionless quantities, and are returned in Spherical Polar Coordinates. Defaults to ``True`` kwargs : dict Keyword parameters for the Geodesic Integrator See 'Other Parameters' below. Other Parameters ---------------- steps : int Number of integration steps Defaults to ``50`` delta : float Initial integration step-size Defaults to ``0.5`` rtol : float Relative Tolerance Defaults to ``1e-2`` atol : float Absolute Tolerance Defaults to ``1e-2`` order : int Integration Order Defaults to ``2`` omega : float Coupling between Hamiltonian Flows Smaller values imply smaller integration error, but too small values can make the equation of motion non-integrable. For non-capture trajectories, ``omega = 1.0`` is recommended. For trajectories, that either lead to a capture or a grazing geodesic, a decreased value of ``0.01`` or less is recommended. Defaults to ``1.0`` suppress_warnings : bool Whether to suppress warnings during simulation Warnings are shown for every step, where numerical errors exceed specified tolerance (controlled by ``rtol`` and ``atol``) Defaults to ``False`` """ # Contravariant Metrics, defined so far _METRICS = { "Schwarzschild": _sch, "Kerr": _kerr, "KerrNewman": _kerrnewman, } if metric not in _METRICS: raise NotImplementedError( f"'{metric}' is unsupported. Currently, these metrics are supported:\ \n1. Schwarzschild\n2. Kerr\n3. KerrNewman" ) self.metric_name = metric self.metric = _METRICS[metric] self.metric_params = metric_params if metric == "Schwarzschild": self.metric_params = (0.0,) self.position = np.array([0.0, *position]) self.momentum = _P( self.metric, metric_params, self.position, momentum, time_like ) self.time_like = time_like self.kind = "Time-like" if time_like else "Null-like" self.coords = "Cartesian" if return_cartesian else "Spherical Polar" self._trajectory = self.calculate_trajectory(**kwargs) def __repr__(self): return f"""Geodesic Object:(\n\ Type : ({self.kind}),\n\ Metric : ({self.metric_name}),\n\ Metric Parameters : ({self.metric_params}),\n\ Initial 4-Position : ({self.position}),\n\ Initial 4-Momentum : ({self.momentum}),\n\ Trajectory = (\n\ {self.trajectory}\n\ ),\n\ Output Position Coordinate System = ({self.coords})\n\ ))""" def __str__(self): return self.__repr__() @property def trajectory(self): """ Returns the trajectory of the test particle """ return self._trajectory def calculate_trajectory(self, **kwargs): """ Calculate trajectory in spacetime Parameters ---------- kwargs : dict Keyword parameters for the Geodesic Integrator See 'Other Parameters' below. Returns ------- ~numpy.ndarray N-element numpy array, containing step count ~numpy.ndarray Shape-(N, 8) numpy array, containing (4-Position, 4-Momentum) for each step Other Parameters ---------------- steps : int Number of integration steps Defaults to ``50`` delta : float Initial integration step-size Defaults to ``0.5`` rtol : float Relative Tolerance Defaults to ``1e-2`` atol : float Absolute Tolerance Defaults to ``1e-2`` order : int Integration Order Defaults to ``2`` omega : float Coupling between Hamiltonian Flows Smaller values imply smaller integration error, but too small values can make the equation of motion non-integrable. For non-capture trajectories, ``omega = 1.0`` is recommended. For trajectories, that either lead to a capture or a grazing geodesic, a decreased value of ``0.01`` or less is recommended. Defaults to ``1.0`` suppress_warnings : bool Whether to suppress warnings during simulation Warnings are shown for every step, where numerical errors exceed specified tolerance (controlled by ``rtol`` and ``atol``) Defaults to ``False`` """ g, g_prms = self.metric, self.metric_params q0, p0 = self.position, self.momentum tl = self.time_like N = kwargs.get("steps", 50) dl = kwargs.get("delta", 0.5) rtol = kwargs.get("rtol", 1e-2) atol = kwargs.get("atol", 1e-2) order = kwargs.get("order", 2) omega = kwargs.get("omega", 1.0) sw = kwargs.get("suppress_warnings", False) steps = np.arange(N) geodint = GeodesicIntegrator( metric=g, metric_params=g_prms, q0=q0, p0=p0, time_like=tl, steps=N, delta=dl, rtol=rtol, atol=atol, order=order, omega=omega, suppress_warnings=sw, ) for i in steps: geodint.step() vecs = np.array(geodint.results, dtype=float) q1 = vecs[:, 0] p1 = vecs[:, 1] results = np.hstack((q1, p1)) # Ignoring # q2 = vecs[:, 2] # p2 = vecs[:, 3] if self.coords == "Cartesian": # Converting to Cartesian from Spherical Polar Coordinates # Note that momenta cannot be converted this way, # due to ambiguities in the signs of v_r and v_th (velocities) t, r, th, ph = q1.T pt, pr, pth, pph = p1.T x = r * np.sin(th) * np.cos(ph) y = r * np.sin(th) * np.sin(ph) z = r * np.cos(th) cart_results = np.vstack((t, x, y, z, pt, pr, pth, pph)).T return steps, cart_results return steps, results class Nulllike(Geodesic): """ Class for defining Null-like Geodesics """ def __init__( self, metric, metric_params, position, momentum, return_cartesian=True, **kwargs ): """ Constructor Parameters ---------- metric : str Name of the metric. Currently, these metrics are supported: 1. Schwarzschild 2. Kerr 3. KerrNewman metric_params : array_like Tuple of parameters to pass to the metric E.g., ``(a,)`` for Kerr position : array_like 3-Position 4-Position is initialized by taking ``t = 0.0`` momentum : array_like 3-Momentum 4-Momentum is calculated automatically, considering the value of ``time_like`` return_cartesian : bool, optional Whether to return calculated positions in Cartesian Coordinates This only affects the coordinates. The momenta dimensionless quantities, and are returned in Spherical Polar Coordinates. Defaults to ``True`` kwargs : dict Keyword parameters for the Geodesic Integrator See 'Other Parameters' below. Other Parameters ---------------- steps : int Number of integration steps Defaults to ``50`` delta : float Initial integration step-size Defaults to ``0.5`` rtol : float Relative Tolerance Defaults to ``1e-2`` atol : float Absolute Tolerance Defaults to ``1e-2`` order : int Integration Order Defaults to ``2`` omega : float Coupling between Hamiltonian Flows Smaller values imply smaller integration error, but too small values can make the equation of motion non-integrable. For non-capture trajectories, ``omega = 1.0`` is recommended. For trajectories, that either lead to a capture or a grazing geodesic, a decreased value of ``0.01`` or less is recommended. Defaults to ``1.0`` suppress_warnings : bool Whether to suppress warnings during simulation Warnings are shown for every step, where numerical errors exceed specified tolerance (controlled by ``rtol`` and ``atol``) Defaults to ``False`` """ super().__init__( metric=metric, metric_params=metric_params, position=position, momentum=momentum, time_like=False, return_cartesian=return_cartesian, **kwargs, ) class Timelike(Geodesic): """ Class for defining Time-like Geodesics """ def __init__( self, metric, metric_params, position, momentum, return_cartesian=True, **kwargs ): """ Constructor Parameters ---------- metric : str Name of the metric. Currently, these metrics are supported: 1. Schwarzschild 2. Kerr 3. KerrNewman metric_params : array_like Tuple of parameters to pass to the metric E.g., ``(a,)`` for Kerr position : array_like 3-Position 4-Position is initialized by taking ``t = 0.0`` momentum : array_like 3-Momentum 4-Momentum is calculated automatically, considering the value of ``time_like`` return_cartesian : bool, optional Whether to return calculated positions in Cartesian Coordinates This only affects the coordinates. The momenta dimensionless quantities, and are returned in Spherical Polar Coordinates. Defaults to ``True`` kwargs : dict Keyword parameters for the Geodesic Integrator See 'Other Parameters' below. Other Parameters ---------------- steps : int Number of integration steps Defaults to ``50`` delta : float Initial integration step-size Defaults to ``0.5`` rtol : float Relative Tolerance Defaults to ``1e-2`` atol : float Absolute Tolerance Defaults to ``1e-2`` order : int Integration Order Defaults to ``2`` omega : float Coupling between Hamiltonian Flows Smaller values imply smaller integration error, but too small values can make the equation of motion non-integrable. For non-capture trajectories, ``omega = 1.0`` is recommended. For trajectories, that either lead to a capture or a grazing geodesic, a decreased value of ``0.01`` or less is recommended. Defaults to ``1.0`` suppress_warnings : bool Whether to suppress warnings during simulation Warnings are shown for every step, where numerical errors exceed specified tolerance (controlled by ``rtol`` and ``atol``) Defaults to ``False`` """ super().__init__( metric=metric, metric_params=metric_params, position=position, momentum=momentum, time_like=True, return_cartesian=return_cartesian, **kwargs, )
components/isceobj/Orbit/PRC.py
vincentschut/isce2
1,133
61155
<reponame>vincentschut/isce2 import os import logging import datetime from isceobj.Orbit.Orbit import Orbit from isceobj.Orbit.Orbit import StateVector from isceobj.Util.decorators import type_check, logged, pickled class PRC(object): """A class to parse orbit data from D-PAF""" logging_name = "isce.orbit.PRC.PRC" @logged def __init__(self, file=None): self.filename = file self.firstEpoch = 0 self.lastEpoch = 0 self.tdtOffset = 0 self.orbit = Orbit() self.orbit.configure() self.orbit.setOrbitQuality('Precise') self.orbit.setOrbitSource('PRC') return None def getOrbit(self): return self.orbit def parse(self): #People still seem to be using the old .Z format #Adding support for it - PSA if os.path.splitext(self.filename)[1] == '.Z': from subprocess import Popen, PIPE fp = Popen(["zcat", self.filename], stdout=PIPE).stdout else: fp = open(self.filename,'r') data = fp.read() fp.close() numLines = int(len(data)/130) for i in range(numLines): line = data[i*130:(i+1)*130] self.__parseLine(line) def __parseLine(self,line): """Parse a line from a PRC orbit file""" referenceFrame = line[0:6].decode('utf-8') if (referenceFrame == 'STATE '): self.__parseStateLine(line) if (referenceFrame == 'STTERR'): self.__parseTerrestrialLine(line) def __parseTerrestrialLine(self,line): j2000Day = float(line[14:20])/10.0 + 0.5 tdt = float(line[20:31])/1e6 x = float(line[31:43])/1e3 y = float(line[43:55])/1e3 z = float(line[55:67])/1e3 vx = float(line[67:78])/1e6 vy = float(line[78:89])/1e6 vz = float(line[89:100])/1e6 quality = line[127] tdt = tdt - self.tdtOffset dt = self.__j2000ToDatetime(j2000Day,tdt) sv = StateVector() sv.configure() sv.setTime(dt) sv.setPosition([x,y,z]) sv.setVelocity([vx,vy,vz]) self.orbit.addStateVector(sv) def __parseStateLine(self,line): self.firstEpoch = self.__j2000ToDatetime(float(line[6:12])/10.0,0.0) self.lastEpoch = self.__j2000ToDatetime(float(line[12:18])/10.0,0.0) self.tdtOffset = float(line[47:52]) self.tdtOffset = self.tdtOffset/1e3 def __j2000ToDatetime(self,j2000Day,tdt): """Convert the number of days since 1 Jan. 2000 to a datetime object""" j2000 = datetime.datetime(year=2000,month=1,day=1) dt = j2000 + datetime.timedelta(days=j2000Day,seconds=tdt) return dt pass @pickled class Arclist(object): """A class for parsing the old ROI_PAC PRC arclist file""" logging_name = 'isce.Orbit.PRC.Arclist' @logged def __init__(self, file=None): self.filename = file self.arclist = [] return None def parse(self): fp = open(self.filename,'r') for line in fp.readlines(): data = line.split() start = float(data[1])/10.0 end = float(data[2])/10.0 arc = Arc() arc.filename = data[0] arc.setStart(self.__j2000ToDatetime(start, 86400.0/2.0)) arc.setStop(self.__j2000ToDatetime(end,86400.0/2.0)) self.arclist.append(arc) def getArc(self,time): """Given a datetime object, determine the first arc number that contains precise ephemeris""" inRange = [] # Make a list containing all of the # arcs that span <code>time</code> for arc in self.arclist: if (arc.inRange(time)): inRange.append(arc) if (len(inRange) == 0): self.logger.error("No valid arcs found spanning %s" % (time)) if (len(inRange) > 0): self.logger.info("%s valid arcs found spanning %s" % (len(inRange),time)) return inRange[0].filename def getOrbitFile(self,time): filename = self.getArc(time) return filename def __j2000ToDatetime(self,j2000Day,tdt): """Convert the number of days since 1 Jan. 2000 to a datetime object""" j2000 = datetime.datetime(year=2000,month=1,day=1) dt = j2000 + datetime.timedelta(days=j2000Day,seconds=tdt) return dt class Arc(object): """A class representing an orbital arc segment""" def __init__(self): self.filename = None self._start = None self._stop = None def getStart(self): return self._start @type_check(datetime.datetime) def setStart(self,start): self._start = start def getStop(self): return self._stop @type_check(datetime.datetime) def setStop(self,stop): self._stop = stop def inRange(self, time): """Determine whether a time stamp lies within the start and stop times""" return self._start <= time <= self._stop start = property(fget=getStart,fset=setStart) stop = property(fget=getStop,fset=setStop) pass
authx/middleware/__init__.py
theoohoho/authx
141
61179
<gh_stars>100-1000 from authx.middleware.Oauth2 import MiddlewareOauth2 __all__ = ["MiddlewareOauth2"]