max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
Bot/cogs/mod.py
Shuri2060/Nurevam
145
91061
from discord.ext import commands from .utils import utils import datetime import asyncio import discord import logging log = logging.getLogger(__name__) def check_roles(ctx): if ctx.message.author.id == 1<PASSWORD>: return True return utils.check_roles(ctx, "Mod", "admin_roles") def has_mute_role(ctx): return utils.redis.smembers("{}:Mod:mute_roles".format(ctx.message.guild.id)) class get_person(commands.MemberConverter): def __init__(self, *, lower=False): self.lower = lower super().__init__() class Mod(commands.Cog): """ A mod tool for Mods. """ def __init__(self, bot): self.bot = bot self.redis = bot.db.redis self.bot.say_edit = bot.say def __local_check(self,ctx): return utils.is_enable(ctx,"mod") or ctx.message.author.id == self.bot.owner.id def delete_mine(self,m): return m.author.id == self.bot.user.id ######################################### # _____ _ # # / ____| | | # # | | | | ___ __ _ _ __ # # | | | | / _ \ / _` | | '_ \ # # | |____ | | | __/ | (_| | | | | | # # \_____| |_| \___| \__,_| |_| |_| # ######################################### @commands.group(brief="Allow to clean bot itself, have subcommand",invoke_without_command=True) @commands.check(check_roles) # async def clean(self, ctx, *, limit:int=100): async def clean(self, ctx,limit:int = 100,user:commands.MemberConverter or bool = False,): """ Is able to clear up it's own messages. can affect any user's messages by mention it. """ if limit > 2000: return await self.bot.say(ctx,content = "Won't able to delete due to {limit}/2000 message to delete.".format(limit = limit)) if user: counter = await ctx.message.channel.purge(check=lambda m:m.author.id == user.id,limit=limit) await self.bot.say(ctx,content = "```py\nI cleared {} posts from {}```".format(len(counter),user.name)) else: counter = await ctx.message.channel.purge(limit = limit,check=self.delete_mine) await self.bot.say(ctx,content = "```py\nI cleared {} posts of mine\n```".format(len(counter))) @clean.command(brief= "Is able to clear a certain role's messages",pass_context=True, invoke_without_command=True) @commands.check(check_roles) @commands.bot_has_permissions(manage_messages=True) async def role(self,ctx,roles : discord.Role,limit : int=100): """ <prefix> role <the role> <optional, number of messages, default: 100> Is able to clear messages of all users who have this role. """ def delete_role(m): return roles.id in [r.id for r in m.author.roles] counter = await ctx.message.channel.purge(limit=limit,check=delete_role) await self.bot.say(ctx, content = "```py\nI cleared {} from person who have role of {}\n```".format(len(counter),roles.name)) @clean.command(brief="Is able to clear a certain user's messages",invoke_without_command=True) @commands.check(check_roles) @commands.bot_has_permissions(manage_messages=True) async def person(self,ctx,user: discord.Member,*,limit: int = 100): """ <prefix> person <the person> <optional, number of messages, default 100> Is able to clear the messages of a certain person. """ def delete_player(m): return m.author.id == user.id counter = await ctx.message.channel.purge(check=delete_player,limit=limit) await self.bot.say(ctx,content = "```py\nI cleared {} posts from {}```".format(len(counter),user.name)) @clean.command(name = "all",brief="Allow to clear all message", invoke_without_command=True) @commands.check(check_roles) @commands.bot_has_permissions(manage_messages=True) async def _all(self,ctx,*,limit: int=100): """ <prefix> all <optional but how many, default 100 message> Allow to clear all message, nothing can stop it. """ counter = await ctx.message.channel.purge(limit =limit) await self.bot.say(ctx,content = "```py\nI cleared {} posts```".format(len(counter))) ############################################################# # _ __ _ _ __ ____ # # | |/ / (_) | | / / | _ \ # # | ' / _ ___ | | __ / / | |_) | __ _ _ __ # # | < | | / __| | |/ / / / | _ < / _` | | '_ \ # # | . \ | | | (__ | < / / | |_) | | (_| | | | | |# # |_|\_\ |_| \___| |_|\_\ /_/ |____/ \__,_| |_| |_|# ############################################################# def format_reason(self,ctx,reason): if reason is None: reason = "Request by {}".format(ctx.message.author) else: reason += " Request by {}".format(ctx.message.author) return reason @commands.command(brief="Is able to kick a user") @commands.check(check_roles) @commands.bot_has_permissions(kick_members=True) async def kick(self,ctx,user:discord.Member,*,reason:str = None): """ <prefix> kick <user name> Mentioning is a faster way to get the user. Is able to kick a user from guild. """ await ctx.message.guild.kick(user,reason = self.format_reason(ctx,reason)) await self.bot.say(ctx,content = "I have kicked {}".format(user.name)) @commands.command(brief="Is able to ban a user") @commands.check(check_roles) @commands.bot_has_permissions( ban_members=True) async def ban(self,ctx,user:discord.Member,*,reason:str = None): """ <prefix> ban <user name> <optional, number of passed days, for which the user's messages are deleted, default 1> Mentioning is a faster way to get the user. Is able to ban a user from the guild, default number of passed days, for which messages are deleted, is 1. """ await ctx.message.guild.ban(user,reason = self.format_reason(ctx,reason)) await self.bot.say(ctx,content = "I have banned {}".format(user.name)) @commands.command(brief="Is able to softban a user which is equal to kicking him and deleting his messages") @commands.check(check_roles) @commands.bot_has_permissions( ban_members=True) async def softban(self,ctx,user:discord.Member,*,reason:str = None): """ <prefix> softban <user name> <optional, number of passed days, for which the messages are deleted, default is 1> This is just kicking + deleting messages, Is able to kick a user and delete his messages. """ await ctx.message.guild.ban(user,reason = self.format_reason(ctx,reason)) await ctx.message.guild.unban(user) await self.bot.say(ctx,content = "I have softbanned {}".format(user.name)) ################################# # _____ _ # # | __ \ | | # # | |__) | ___ | | ___ # # | _ / / _ \ | | / _ \ # # | | \ \ | (_) | | | | __/ # # |_| \_\ \___/ |_| \___| # ################################# @commands.group(name = "role",brief="Multi subcommand related to role",invoke_without_command=True) @commands.check(check_roles) @commands.bot_has_permissions(manage_roles=True) async def _role(self): """ A subcommand of it. do this <prefix> help role to see a more infomations of its sub commands """ return @_role.command(brief="Is able to add a role to a user") @commands.check(check_roles) @commands.bot_has_permissions(manage_roles=True) async def add(self,ctx,user:discord.Member,*role:discord.Role): """ <prefix> add <user name> <the role> Is able to add a role to a member, this is useful for people who are on phone. You can also add multiple roles to a member at the same time. Note: this is cap-sensitives, if role have cap in, add cap in command """ await user.add_roles(*role,reason = "Request by {}".format(ctx.message.author)) await self.bot.say(ctx,content = "Added a role to {}".format(user.name)) @_role.command(brief="Is able to remove a role from a user") @commands.check(check_roles) @commands.bot_has_permissions(manage_roles=True) async def remove(self,ctx,user:discord.Member,*role:discord.Role): """ <prefix> remove <user name> <the role> Is able to remove a role from a member, this is useful for people who are on phone. You can also remove multiple roles from a member at the same time. Note: this is cap-sensitives, if role have cap in, add cap in command """ await user.remove_roles(*role,reason ="Request by {}".format(ctx.message.author)) await self.bot.say(ctx,content = "Remove role from {}".format(user.name)) ########################## # __ __ _ # # | \/ |_ _| |_ ___ # # | |\/| | || | _/ -_)# # |_| |_|\_,_|\__\___|# ########################## @commands.command(brief="Mute user") @commands.check(check_roles) @commands.check(has_mute_role) @commands.bot_has_permissions(manage_roles=True) async def mute(self,ctx,user:discord.Member): mute_role = await self.redis.smembers("{}:Mod:mute_roles".format(ctx.message.guild.id)) guild = ctx.message.guild if guild.me.top_role.permissions.manage_roles: # if got Manage roles permission, can grant roles role = [x for x in guild.roles if str(x.id) in mute_role] await user.add_roles(*role,reason = "{} requests with mute command".format(ctx.message.author)) await self.bot.say(ctx,content = "Done muting {}".format(user.mention)) @commands.command(brief="Unmute user") @commands.check(check_roles) @commands.check(has_mute_role) @commands.bot_has_permissions(manage_roles=True) async def unmute(self,ctx,user:discord.Member): mute_role = await self.redis.smembers("{}:Mod:mute_roles".format(ctx.message.guild.id)) guild = ctx.message.guild if guild.me.top_role.permissions.manage_roles: # if got Manage roles permission, can grant roles role = [x for x in guild.roles if str(x.id) in mute_role] try: await user.remove_roles(*role,reason = "{} requests with unmute command".format(ctx.message.author)) await self.bot.say(ctx,content = "Done unmuting {}".format(user.mention)) except: pass def setup(bot): bot.add_cog(Mod(bot))
examples/graph_learning/train_robot_value_prediction.py
ONLYA/RoboGrammar
156
91069
<filename>examples/graph_learning/train_robot_value_prediction.py<gh_stars>100-1000 ''' train_robot_value_prediction.py use Graph Neural Network to learn a value function for robot designs. Learned GNN: input: a graph of the robot design with all nodes being terminal nodes. output: the predicted reward for the design. Argument: --dataset-name: the name of the dataset --use-cuse: if use gpu to train, [default is False] ''' import sys import os project_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), '../../') current_dir = os.path.dirname(os.path.abspath(__file__)) # import python packages from math import ceil import time import numpy as np import pickle import argparse import random from copy import deepcopy # import third-party packages import torch import torch.nn.functional as F from torch_geometric.datasets import TUDataset import torch_geometric.transforms as T from torch_geometric.data import DenseDataLoader from torch_geometric.nn import DenseSAGEConv, dense_diff_pool from torch_geometric.data import InMemoryDataset from torch_geometric.data.data import Data torch.set_printoptions(threshold=sys.maxsize) import IPython # import our packages import parse_log_file from common import * # parse argument parser = argparse.ArgumentParser() parser.add_argument('--dataset-name', type = str, default = 'flat_mar23') parser.add_argument('--use-cuda', default = False, action = 'store_true') parser.add_argument('--save-interval', type = int, default = 10) parser.add_argument('--load-path', type = str, default = None) parser.add_argument('--test', default = False, action = 'store_true') args = parser.parse_args() dataset_name = args.dataset_name save_dir = os.path.join(current_dir, 'trained_models', 'value_function', dataset_name, get_time_stamp()) # define if construct dataset from raw data load_data = False # dataset path dataset_dir = os.path.join(current_dir, 'data', dataset_name) testset_path = os.path.join(dataset_dir, 'test_loader') valset_path = os.path.join(dataset_dir, 'val_loader') trainset_path = os.path.join(dataset_dir, 'train_loader') testset_path = os.path.join(dataset_dir, 'test_loader') # load pre-prosessed dataset. build if not exists if os.path.isfile(testset_path) and os.path.isfile(valset_path) and os.path.isfile(trainset_path): with open(testset_path, 'rb') as test_file, open(valset_path, 'rb') as val_file, open(trainset_path, 'rb') as train_file: test_dataset = pickle.load(test_file) train_dataset = pickle.load(train_file) val_dataset = pickle.load(val_file) max_nodes = 19 num_features = 32 # 31 for previous configuration and 32 for current one (including torque) else: os.makedirs(dataset_dir, exist_ok = True) raw_dataset_path = os.path.join(current_dir, 'data', args.dataset_name + '.csv') all_link_features, all_link_adj, all_rewards \ = parse_log_file.main(raw_dataset_path, os.path.join(project_dir, 'data/designs/grammar_jan21.dot')) # exprimental postprocessing # step 1: make symmetric all_link_adj_symmetric = [link_adj + np.transpose(link_adj) for link_adj in all_link_adj] # step 2: Add blank rows, pad with 0s, and fill out mask: max_nodes = max([feat.shape[0] for feat in all_link_features]) def pad(array, shape): """ array: Array to be padded reference: Reference array with the desired shape offsets: list of offsets (number of elements must be equal to the dimension of the array) """ # Create an array of zeros with the reference shape result = np.zeros(shape) if len(shape) == 1: result[:array.shape[0], :] = array # ERROR: why result is 2d elif len(shape) == 2: result[:array.shape[0], :array.shape[1]] = array else: raise Exception('only 1 and 2d supported for now') return result all_link_adj_symmetric_pad = [pad(adj, (max_nodes, max_nodes)) for adj in all_link_adj_symmetric] all_features_pad = [pad(feat, (max_nodes, feat.shape[1])) for feat in all_link_features] def create_mask(feat, max_nodes): return np.array([True if i < feat.shape[0] else False for i in range(max_nodes)]) all_masks = [create_mask(feat, max_nodes) for feat in all_link_features] num_features = all_features_pad[0].shape[1] print('max-nodes = ', max_nodes, ', num-features = ', num_features) #step 3: Create dataset object data = [Data(adj=torch.from_numpy(adj).float(), mask=torch.from_numpy(mask), x=torch.from_numpy(x[:, :num_features]).float(), y=torch.from_numpy(np.array([y])).float() ) for adj, mask, x, y in zip(all_link_adj_symmetric_pad, all_masks, all_features_pad, all_rewards)] random.shuffle(data) n_test = (len(data) + 2) // 3 random.shuffle(data) known_dataset = data[:-n_test] unknown_dataset = data[-n_test:] # random.shuffle(known_dataset) n_val = (len(known_dataset) + 9) // 10 train_dataset = known_dataset[:-n_val] val_dataset = known_dataset[-n_val:] test_dataset = unknown_dataset with open(testset_path, 'wb') as test_file, open(valset_path, 'wb') as val_file, open(trainset_path, 'wb') as train_file: pickle.dump(test_dataset, test_file) pickle.dump(train_dataset, train_file) pickle.dump(val_dataset, val_file) # print dataset info print_info('dataset loaded:') print_info('size of training set: {}'.format(len(train_dataset))) print_info('size of validation set: {}'.format(len(val_dataset))) print_info('size of testing set: {}'.format(len(test_dataset))) y_min, y_max = 10000000.0, -10000000.0 for data in train_dataset: y_min = min(y_min, data.y[0]) y_max = max(y_max, data.y[0]) print('training set: y min = ', y_min, ', y max = ', y_max) y_min, y_max = 10000000.0, -10000000.0 for data in test_dataset: y_min = min(y_min, data.y[0]) y_max = max(y_max, data.y[0]) print('testing set: y min = ', y_min, ', yy max = ', y_max) # constrct batch test_loader = DenseDataLoader(test_dataset, batch_size=20) val_loader = DenseDataLoader(val_dataset, batch_size=20) # random.shuffle(train_dataset) train_loader = DenseDataLoader(train_dataset, batch_size=20) class GNN(torch.nn.Module): def __init__(self, in_channels, hidden_channels, out_channels, normalize=False, batch_normalization=False, add_loop=False, lin=True): super(GNN, self).__init__() self.add_loop = add_loop self.batch_normalization = batch_normalization self.conv1 = DenseSAGEConv(in_channels, hidden_channels, normalize) self.conv2 = DenseSAGEConv(hidden_channels, hidden_channels, normalize) self.conv3 = DenseSAGEConv(hidden_channels, out_channels, normalize) if self.batch_normalization: self.bn1 = torch.nn.BatchNorm1d(hidden_channels) self.bn2 = torch.nn.BatchNorm1d(hidden_channels) self.bn3 = torch.nn.BatchNorm1d(out_channels) if lin is True: self.lin = torch.nn.Linear(2 * hidden_channels + out_channels, out_channels) else: self.lin = None def bn(self, i, x): batch_size, num_nodes, num_features = x.size() x = x.view(-1, num_features) x = getattr(self, 'bn{}'.format(i))(x) x = x.view(batch_size, num_nodes, num_features) return x def forward(self, x, adj, mask=None): batch_size, num_nodes, in_channels = x.size() x0 = x #IPython.embed() if self.batch_normalization: x1 = self.bn(1, F.relu(self.conv1(x0, adj, mask, self.add_loop))) x2 = self.bn(2, F.relu(self.conv2(x1, adj, mask, self.add_loop))) x3 = self.bn(3, F.relu(self.conv3(x2, adj, mask, self.add_loop))) else: x1 = F.relu(self.conv1(x0, adj, mask, self.add_loop)) x2 = F.relu(self.conv2(x1, adj, mask, self.add_loop)) x3 = F.relu(self.conv3(x2, adj, mask, self.add_loop)) x = torch.cat([x1, x2, x3], dim=-1) if self.lin is not None: x = F.relu(self.lin(x)) return x class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() batch_normalization = False num_nodes = ceil(0.25 * max_nodes) self.gnn1_pool = GNN(num_features, 64, num_nodes, batch_normalization = batch_normalization, add_loop=True) self.gnn1_embed = GNN(num_features, 64, 64, batch_normalization = batch_normalization, add_loop=True, lin=False) num_nodes = ceil(0.25 * num_nodes) self.gnn2_pool = GNN(3 * 64, 64, num_nodes, batch_normalization = batch_normalization) self.gnn2_embed = GNN(3 * 64, 64, 64, batch_normalization = batch_normalization, lin=False) self.gnn3_embed = GNN(3 * 64, 64, 64, batch_normalization = batch_normalization, lin=False) self.lin1 = torch.nn.Linear(3 * 64, 64) self.lin2 = torch.nn.Linear(64, 1) def forward(self, x, adj, mask=None): s = self.gnn1_pool(x, adj, mask) x = self.gnn1_embed(x, adj, mask) x, adj, l1, e1 = dense_diff_pool(x, adj, s, mask) s = self.gnn2_pool(x, adj) x = self.gnn2_embed(x, adj) x, adj, l2, e2 = dense_diff_pool(x, adj, s) x = self.gnn3_embed(x, adj) x = x.mean(dim=1) x = F.relu(self.lin1(x)) x = self.lin2(x) return x, l1 + l2, e1 + e2 device = torch.device('cuda' if torch.cuda.is_available() and args.use_cuda else 'cpu') model = Net().to(device) if args.load_path is not None and os.path.isfile(args.load_path): model.load_state_dict(torch.load(args.load_path)) print_info('Successfully loaded the GNN model from {}'.format(args.load_path)) else: print_info('Train with random initial GNN model') optimizer = torch.optim.Adam(model.parameters(), lr=0.0001) def train(epoch): model.train() loss_all = 0 for data in train_loader: data = data.to(device) optimizer.zero_grad() output, loss_link, loss_entropy = model(data.x, data.adj, data.mask) loss = F.mse_loss(output[:, 0], data.y.view(-1)) # loss = loss + loss_link + loss_entropy loss.backward() loss_all += loss.item() optimizer.step() return loss_all / len(train_loader) @torch.no_grad() def test(loader, size, debug = False): model.eval() error = 0. idx = 0 for data in loader: data = data.to(device) pred = model(data.x, data.adj, data.mask)[0] error += F.mse_loss(pred[:, 0], data.y.view(-1)) if idx == 0 and debug: print_info('predict = {}'.format(pred[:, 0])) print_info('y = {}'.format(data.y.view(-1))) idx += 1 return error / size if not args.test: os.makedirs(save_dir, exist_ok = True) best_val_error = test_error = 10000.0 best_model = None for epoch in range(1, 151): t_start = time.time() train_loss = train(epoch) train_error = test(train_loader, len(train_loader)) val_error = test(val_loader, len(val_loader)) t_end = time.time() if val_error < best_val_error: test_error = test(test_loader, len(test_loader), debug = True) best_val_error = val_error best_model = deepcopy(model) print('Epoch: {:03d}, Epoch Time: {:.1f}s, Train Loss: {:.7f}, Train Error: {:.7f}, Val Error: {:.7f}, Test Error: {:.7f}'\ .format(epoch, t_end - t_start, train_loss, train_error, val_error, test_error)) # save model with fixed interval if args.save_interval > 0 and epoch % args.save_interval == 0: save_path = os.path.join(save_dir, 'model_state_dict_{}.pt'.format(epoch)) torch.save(model.state_dict(), save_path) # save the final model save_path = os.path.join(save_dir, 'model_state_dict_final.pt') torch.save(model.state_dict(), save_path) else: train_error = test(train_loader, len(train_loader)) val_error = test(val_loader, len(val_loader)) test_error = test(test_loader, len(test_loader), debug = True) print('Train Error: {:.7f}, Val Error: {:.7f}, Test Error: {:.7f}'\ .format(train_error, val_error, test_error))
Chapter03/demoTabWidget.py
houdinii/Qt5-Python-GUI-Programming-Cookbook
131
91087
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'demoTabWidget.ui' # # Created by: PyQt5 UI code generator 5.6 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_Dialog(object): def setupUi(self, Dialog): Dialog.setObjectName("Dialog") Dialog.resize(574, 300) self.tabWidget = QtWidgets.QTabWidget(Dialog) self.tabWidget.setGeometry(QtCore.QRect(10, 10, 481, 271)) font = QtGui.QFont() font.setPointSize(12) self.tabWidget.setFont(font) self.tabWidget.setObjectName("tabWidget") self.tab = QtWidgets.QWidget() self.tab.setObjectName("tab") self.checkBox = QtWidgets.QCheckBox(self.tab) self.checkBox.setGeometry(QtCore.QRect(30, 30, 191, 17)) self.checkBox.setObjectName("checkBox") self.checkBox_2 = QtWidgets.QCheckBox(self.tab) self.checkBox_2.setGeometry(QtCore.QRect(30, 70, 141, 17)) self.checkBox_2.setObjectName("checkBox_2") self.checkBox_3 = QtWidgets.QCheckBox(self.tab) self.checkBox_3.setGeometry(QtCore.QRect(30, 110, 161, 17)) self.checkBox_3.setObjectName("checkBox_3") self.checkBox_4 = QtWidgets.QCheckBox(self.tab) self.checkBox_4.setGeometry(QtCore.QRect(30, 150, 171, 17)) self.checkBox_4.setObjectName("checkBox_4") self.pushButton = QtWidgets.QPushButton(self.tab) self.pushButton.setGeometry(QtCore.QRect(40, 190, 141, 23)) self.pushButton.setObjectName("pushButton") self.tabWidget.addTab(self.tab, "") self.tab_2 = QtWidgets.QWidget() self.tab_2.setObjectName("tab_2") self.radioButton = QtWidgets.QRadioButton(self.tab_2) self.radioButton.setGeometry(QtCore.QRect(40, 30, 131, 17)) self.radioButton.setObjectName("radioButton") self.radioButton_2 = QtWidgets.QRadioButton(self.tab_2) self.radioButton_2.setGeometry(QtCore.QRect(40, 80, 111, 17)) self.radioButton_2.setObjectName("radioButton_2") self.radioButton_3 = QtWidgets.QRadioButton(self.tab_2) self.radioButton_3.setGeometry(QtCore.QRect(40, 130, 121, 21)) self.radioButton_3.setObjectName("radioButton_3") self.radioButton_4 = QtWidgets.QRadioButton(self.tab_2) self.radioButton_4.setGeometry(QtCore.QRect(40, 180, 181, 21)) self.radioButton_4.setObjectName("radioButton_4") self.tabWidget.addTab(self.tab_2, "") self.tab_3 = QtWidgets.QWidget() self.tab_3.setObjectName("tab_3") self.lineEdit = QtWidgets.QLineEdit(self.tab_3) self.lineEdit.setGeometry(QtCore.QRect(160, 10, 291, 20)) self.lineEdit.setObjectName("lineEdit") self.lineEdit_2 = QtWidgets.QLineEdit(self.tab_3) self.lineEdit_2.setGeometry(QtCore.QRect(160, 50, 291, 20)) self.lineEdit_2.setObjectName("lineEdit_2") self.lineEdit_3 = QtWidgets.QLineEdit(self.tab_3) self.lineEdit_3.setGeometry(QtCore.QRect(160, 90, 291, 20)) self.lineEdit_3.setObjectName("lineEdit_3") self.lineEdit_4 = QtWidgets.QLineEdit(self.tab_3) self.lineEdit_4.setGeometry(QtCore.QRect(160, 130, 291, 20)) self.lineEdit_4.setObjectName("lineEdit_4") self.lineEdit_5 = QtWidgets.QLineEdit(self.tab_3) self.lineEdit_5.setGeometry(QtCore.QRect(160, 170, 291, 20)) self.lineEdit_5.setObjectName("lineEdit_5") self.lineEdit_6 = QtWidgets.QLineEdit(self.tab_3) self.lineEdit_6.setGeometry(QtCore.QRect(160, 210, 291, 20)) self.lineEdit_6.setObjectName("lineEdit_6") self.label = QtWidgets.QLabel(self.tab_3) self.label.setGeometry(QtCore.QRect(10, 10, 91, 16)) self.label.setObjectName("label") self.label_2 = QtWidgets.QLabel(self.tab_3) self.label_2.setGeometry(QtCore.QRect(10, 50, 71, 16)) self.label_2.setObjectName("label_2") self.label_3 = QtWidgets.QLabel(self.tab_3) self.label_3.setGeometry(QtCore.QRect(10, 90, 47, 13)) self.label_3.setObjectName("label_3") self.label_4 = QtWidgets.QLabel(self.tab_3) self.label_4.setGeometry(QtCore.QRect(10, 130, 71, 21)) self.label_4.setObjectName("label_4") self.label_5 = QtWidgets.QLabel(self.tab_3) self.label_5.setGeometry(QtCore.QRect(10, 170, 71, 16)) self.label_5.setObjectName("label_5") self.label_6 = QtWidgets.QLabel(self.tab_3) self.label_6.setGeometry(QtCore.QRect(10, 210, 121, 16)) self.label_6.setObjectName("label_6") self.tabWidget.addTab(self.tab_3, "") self.retranslateUi(Dialog) self.tabWidget.setCurrentIndex(2) QtCore.QMetaObject.connectSlotsByName(Dialog) def retranslateUi(self, Dialog): _translate = QtCore.QCoreApplication.translate Dialog.setWindowTitle(_translate("Dialog", "Dialog")) self.checkBox.setText(_translate("Dialog", "Cell Phone $150")) self.checkBox_2.setText(_translate("Dialog", "Laptop $500")) self.checkBox_3.setText(_translate("Dialog", "Camera $250")) self.checkBox_4.setText(_translate("Dialog", "Shoes $200")) self.pushButton.setText(_translate("Dialog", "Add to Cart")) self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab), _translate("Dialog", "Products Listing")) self.radioButton.setText(_translate("Dialog", "Debit Card")) self.radioButton_2.setText(_translate("Dialog", "Credit Card")) self.radioButton_3.setText(_translate("Dialog", "Net Banking")) self.radioButton_4.setText(_translate("Dialog", "Cash On Delivery")) self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab_2), _translate("Dialog", "Payment Method")) self.label.setText(_translate("Dialog", "Address 1")) self.label_2.setText(_translate("Dialog", "Address 2")) self.label_3.setText(_translate("Dialog", "State")) self.label_4.setText(_translate("Dialog", "Country")) self.label_5.setText(_translate("Dialog", "Zip Code")) self.label_6.setText(_translate("Dialog", "Contact Number")) self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab_3), _translate("Dialog", "Delivery Address")) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) Dialog = QtWidgets.QDialog() ui = Ui_Dialog() ui.setupUi(Dialog) Dialog.show() sys.exit(app.exec_())
bcbio/bam/ref.py
a113n/bcbio-nextgen
418
91126
<reponame>a113n/bcbio-nextgen """Manipulation functionality to deal with reference files. """ import collections from bcbio import utils from bcbio.pipeline import config_utils from bcbio.provenance import do def fasta_idx(in_file, config=None): """Retrieve samtools style fasta index. """ fasta_index = in_file + ".fai" if not utils.file_exists(fasta_index): samtools = config_utils.get_program("samtools", config) if config else "samtools" cmd = "{samtools} faidx {in_file}" do.run(cmd.format(**locals()), "samtools faidx") return fasta_index def file_contigs(ref_file, config=None): """Iterator of reference contigs and lengths from a reference file. """ ContigInfo = collections.namedtuple("ContigInfo", "name size") with open(fasta_idx(ref_file, config)) as in_handle: for line in (l for l in in_handle if l.strip()): name, size = line.split()[:2] yield ContigInfo(name, int(size))
dataviva/apps/embed/views.py
joelvisroman/dataviva-site
126
91136
<reponame>joelvisroman/dataviva-site # -*- coding: utf-8 -*- import requests from datetime import datetime from sqlalchemy import func from flask import Blueprint, request, render_template, g, Response, make_response, jsonify from flask.ext.babel import gettext from dataviva import db, datavivadir, __year_range__, view_cache from dataviva.api.attrs.models import Bra, Cnae, Hs, Cbo, Wld, University, Course_hedu, Course_sc, Search from dataviva.apps.general.views import get_locale from dataviva.apps.data.forms import DownloadForm from dataviva.apps.user.models import Starred from dataviva.apps.embed.models import Build, UI, App, Crosswalk_oc, Crosswalk_pi from dataviva.apps.general.models import Short from dataviva.utils.gzip_data import gzip_data from dataviva.utils.cached_query import cached_query from dataviva.utils.title_format import title_format import json import urllib2 import urllib from config import FACEBOOK_OAUTH_ID, basedir, GZIP_DATA import os import zipfile mod = Blueprint('embed', __name__, template_folder='templates', url_prefix='/<lang_code>/embed') @mod.before_request def before_request(): g.page_type = mod.name g.color = "#af1f24" g.sabrina = { "outfit": "lab", "face": "smirk", "hat": "glasses" } @mod.url_defaults def add_language_code(endpoint, values): values.setdefault('lang_code', get_locale()) @mod.url_value_preprocessor def pull_lang_code(endpoint, values): g.locale = values.pop('lang_code') def filler(dataset, filter1, filter2): '''Since the "builds" are held in the database with placeholders for attributes i.e. <cbo>, <hs>, <cnae> we need to convert the IDs given in the URL to these placeholders. i.e. - a0111 = <cnae> - 010101 = <hs> - all = all ''' filler1 = filter1 if filler1 != "all": if dataset == "rais": filler1 = "cnae" elif dataset == "secex": filler1 = "hs" elif dataset == "hedu": filler1 = "university" filler2 = filter2 if filler2 != "all": if dataset == "rais": filler2 = "cbo" elif dataset == "secex": filler2 = "wld" elif dataset == "hedu": filler2 = "course_hedu" elif dataset == "sc": filler2 = "course_sc" return filler1, filler2 def is_xhr(): return request.is_xhr @mod.route("/") @mod.route("/<app_name>/<dataset>/<bra_id>/<filter1>/<filter2>/<output>/") <EMAIL>(key_prefix=api_cache_key("apps:embed"), unless=is_xhr) def embed(app_name="tree_map", dataset="rais", bra_id="4mg", filter1="all", filter2="all", output="cbo"): prefix = "apps:embed:xhr:" lang = request.args.get('lang', None) or g.locale global_vars = {x[0]: x[1] for x in request.args.items()} imports = False if "size" in global_vars: if global_vars["size"] == "import_val": imports = True if "y" in global_vars: if global_vars["y"] == "import_val": imports = True if "axes" in global_vars: if global_vars["axes"] == "import_val": imports = True if (g.user is None or not g.user.is_authenticated) and request.is_xhr: cache_id = prefix + request.path + lang if imports: cache_id = cache_id + "imports" cached_q = cached_query(cache_id) if cached_q: ret = make_response(cached_q) ret.headers['Content-Encoding'] = 'gzip' ret.headers['Content-Length'] = str(len(ret.data)) return ret build_filter1, build_filter2 = filler(dataset, filter1, filter2) '''Grab attrs for bra and filters ''' if bra_id == "all": bra_attr = Wld.query.get_or_404("sabra") else: bra_attr = [Bra.query.get_or_404(b) for b in bra_id.split("_")] filter1_attr = filter1 filter2_attr = filter2 if filter1 != "all": filter1_attr = globals()[build_filter1.capitalize()].query.get_or_404( filter1) if filter2 != "all": filter2_attr = globals()[build_filter2.capitalize()].query.get_or_404( filter2) if build_filter1 != "all": build_filter1 = "<{}>".format(build_filter1) if build_filter2 != "all": build_filter2 = "<{}>".format(build_filter2) '''This is an instance of the Build class for the selected app, determined by the combination of app_type, dataset, filters and output. ''' current_app = App.query.filter_by(type=app_name).first_or_404() current_build = Build.query.filter_by( app=current_app, dataset=dataset, filter1=build_filter1, filter2=build_filter2, output=output).first_or_404() current_build.set_filter1(filter1_attr) current_build.set_filter2(filter2_attr) current_build.set_bra(bra_attr) '''Every possible build, required by the embed page for building the build dropdown. ''' # all_builds = Build.query.all() # all_builds.sort(key=lambda x: x.dataset) # for build in all_builds: # build.set_filter1(filter1_attr) # build.set_filter2(filter2_attr) # build.set_bra(bra_attr) '''Get URL query parameters from reqest.args object to return to the view. ''' if "controls" not in global_vars: global_vars["controls"] = "true" '''If user is logged in see if they have starred this app.''' starred = 0 app_id = "/".join([app_name, dataset, bra_id, filter1, filter2, output]) if g.user and g.user.is_authenticated: is_starred = Starred.query.filter_by( user=g.user, app_id=app_id).first() starred = 1 if is_starred else -1 if imports: current_build.set_import() if request.is_xhr: ret = jsonify({ "current_build": current_build.serialize(), # "all_builds": [b.json() for b in all_builds], "starred": starred }) ret.data = gzip_data(ret.data) ret.headers['Content-Encoding'] = 'gzip' ret.headers['Content-Length'] = str(len(ret.data)) if starred == 0 and cached_q is None: cached_query(cache_id, ret.data) else: current_build.set_import() year_range_dict = __year_range__.copy() if current_build.app.type in ['network', 'rings', 'scatter']: year_range_dict["secex"] = ["2000-1", "2017-12"] year_range = json.dumps(year_range_dict) ret = make_response(render_template("embed/embed.html", # apps = App.query.all(), # all_builds = all_builds, starred=starred, form=DownloadForm(), current_build=current_build, global_vars=json.dumps( global_vars), facebook_id=FACEBOOK_OAUTH_ID, year_range=year_range)) ret.data = gzip_data(ret.data) ret.headers['Content-Encoding'] = 'gzip' ret.headers['Content-Length'] = str(len(ret.data)) ret.headers.add('Last-Modified', datetime.now()) ret.headers.add( 'Cache-Control', 'no-store, no-cache, must-revalidate, post-check=0, pre-check=0') ret.headers.add('Pragma', 'no-cache') return ret @mod.route('/star/<app_name>/<data_type>/<bra_id>/<filter1>/<filter2>/<output>/', methods=['GET', 'POST']) def app_star(app_name, data_type, bra_id, filter1, filter2, output): app_id = "/".join([app_name, data_type, bra_id, filter1, filter2, output]) # if request.method == 'POST' and request.remote_addr == SITE_MIRROR.split(":")[1][2:]: # g.user = User.query.get(request.form["user"]) if g.user is None or not g.user.is_authenticated: return jsonify({"error": gettext("You need to be logged in to star visualizations.")}) starred = Starred.query.filter_by(user=g.user, app_id=app_id).first() if request.method == 'POST': # if "user" not in request.form: # form_json = {"user": g.user.id, "title": request.form['title'].encode('utf-8')} # try: # opener = urllib2.urlopen("{0}{1}".format(SITE_MIRROR,request.path[1:]),urllib.urlencode(form_json),5) # except: # return jsonify({"error": gettext("The server is not responding. # Please try again later.")}) if starred: db.session.delete(starred) db.session.commit() return jsonify({"success": -1}) else: app_name = request.form['title'].encode('utf-8') timestamp = datetime.utcnow() new_star = Starred( user=g.user, app_id=app_id, app_name=app_name, timestamp=timestamp) db.session.add(new_star) db.session.commit() return jsonify({"success": 1}) if starred: return jsonify({"success": 1}) else: return jsonify({"success": -1}) def get_builds(bra_attr, dataset, profile1, filter1, profile2, filter2, kwargs): builds = Build.query.filter_by( dataset=dataset, filter1=profile1, filter2=profile2).all() build_list = [] for b in builds: # -- when looking at all Brazil, skip Occugrid/Rings if bra_attr and ((b.output == 'bra' and len(bra_attr.id) == 9) or (bra_attr.id == "sabra" and b.id in [48, 51])): continue if bra_attr: b.set_bra(bra_attr) if filter1 != 'all': b.set_filter1(filter1) if filter2 != 'all': b.set_filter2(filter2) build_list.append(b.json(**kwargs)) return build_list @mod.route('/recommend/', methods=['GET', 'POST']) @mod.route('/recommend/<app_name>/<dataset>/<bra_id>/<filter1>/<filter2>/<output>/', methods=['GET', 'POST']) <EMAIL>(key_prefix=api_cache_key("apps:recommend")) def recommend(app_name=None, dataset=None, bra_id="4mg", filter1=None, filter2=None, output=None): recommended = {} build_filter1, build_filter2 = filler(dataset, filter1, filter2) '''Grab attrs for bra and filters ''' bra_all = [Wld.query.get_or_404("sabra")] if bra_id == "all": bra_attr = bra_all else: bra_attr = [Bra.query.get_or_404(b) for b in bra_id.split("_")] filter1_attr = filter1 filter2_attr = filter2 profile = False if filter1 != "all": filter1_attr = globals()[build_filter1.capitalize()].query.get_or_404( filter1) if output == build_filter1: profile = filter1_attr recommended["crosswalk"] = crosswalk_recs( dataset, build_filter1, filter1) if filter2 != "all": filter2_attr = globals()[build_filter2.capitalize()].query.get_or_404( filter2) if output == build_filter2: profile = filter2_attr recommended["crosswalk"] = crosswalk_recs( dataset, build_filter2, filter2) if profile == False and output == "bra": profile = bra_attr[0] if profile and output != "school": if g.locale == "pt": title = u"Perfil <{0}_para> <{0}>".format(output) else: title = u"Profile for <{0}>".format(output) recommended["profile"] = { "title": title_format(title, profile), "url": profile.url() } if build_filter1 != "all": build_filter1 = "<{}>".format(build_filter1) if build_filter2 != "all": build_filter2 = "<{}>".format(build_filter2) kwargs = {k: v for k, v in request.args.items()} if app_name == "geo_map" and len(bra_id) < 9: custom = Build.query.filter_by( app_id=3, dataset=dataset, filter1=build_filter1, filter2=build_filter2, output=output).first() custom.set_bra(bra_attr) custom.set_filter1(filter1_attr) custom.set_filter2(filter2_attr) recommended["custom"] = custom.json(**kwargs) for bra in bra_attr: recommended['builds'] = get_builds( bra, dataset, build_filter1, filter1_attr, build_filter2, filter2_attr, kwargs) if bra_id != "all" and output != "bra": recommended['builds'] += get_builds( bra_all[0], dataset, build_filter1, filter1_attr, build_filter2, filter2_attr, kwargs) return jsonify(recommended) def get_geo_location(ip): req = urllib2.Request("http://freegeoip.net/json/" + ip) opener = urllib2.build_opener() try: f = opener.open(req) except: return None json_resp = json.loads(f.read()) city = json_resp["city"] # city = "Viana" state = json_resp["region_name"] # state = "Espírito Santo" # state = "Maranhão" # first try to find the exact city within the state bra_state = Bra.query.filter_by(name_pt=state).filter( func.char_length(Bra.id) == 3).first() bra_cities = Bra.query.filter_by(name_pt=city).filter( func.char_length(Bra.id) == 9) if bra_state: if bra_cities.count() == 1: return bra_cities.first() elif bra_cities.count() > 1: return bra_cities.filter(Bra.id.like(bra_state.id+'%')).first() return None return None @mod.route('/download/', methods=['GET', 'POST']) def download(): import tempfile import subprocess import random import base64 form = DownloadForm() data = form.data.data format = form.output_format.data title = form.title.data downloadToken = form.downloadToken.data max_length = 250 - (len(downloadToken) + 1) title_safe = title[:max_length] filenameDownload = title_safe + "-" + downloadToken if format == "png": mimetype = 'image/png' elif format == "pdf": mimetype = 'application/pdf' elif format == "svg": mimetype = 'application/octet-stream' elif format == "csv": mimetype = "text/csv;charset=UTF-16" elif format == "url2csv": mimetype = "text/csv;charset=UTF-16" response_data = data.encode("utf-16") content_disposition = "attachment;filename=%s.%s" % (title_safe, format) content_disposition = content_disposition.replace(",", "_") download_file = make_response(Response(response_data, mimetype=mimetype, headers={"Content-Disposition": content_disposition})) with open(os.path.join(basedir, "dataviva/static/downloads/" + title_safe + "." + format), "wb") as fo: fo.write(response_data) zf = zipfile.ZipFile(os.path.join( basedir, "dataviva/static/downloads/" + filenameDownload + ".zip"), mode='w') try: zf.write(os.path.join(basedir, "dataviva/static/downloads/" + title_safe + "." + format), title_safe + "." + format) finally: zf.close() os.remove(os.path.join(basedir, "dataviva/static/downloads/" + title_safe + "." + format)) return "/static/downloads/" + filenameDownload + ".zip" @mod.route('/info/<app_name>/') def info(app_name="tree_map"): return render_template("embed/info.html", app_name=app_name) @mod.route('/coords/<id>/') def coords(id="all"): if GZIP_DATA: fileext = ".gz" filetype = "gzip" else: fileext = "" filetype = "json" if id == "all": file_name = "bra_states.json"+fileext else: file_name = ("{0}_munic.json"+fileext).format(id) cached_q = cached_query(file_name) if cached_q: ret = make_response(cached_q) else: path = datavivadir+"/static/json/coords/{0}".format(file_name) gzip_file = open(path).read() cached_query(file_name, gzip_file) ret = make_response(gzip_file) ret.headers['Content-Encoding'] = filetype ret.headers['Content-Length'] = str(len(ret.data)) return ret @mod.route('/networks/<type>/') def networks(type="hs"): if GZIP_DATA: fileext = ".gz" filetype = "gzip" else: fileext = "" filetype = "json" file_name = ("network_{0}.json"+fileext).format(type) cached_q = cached_query(file_name) if cached_q: ret = make_response(cached_q) else: path = datavivadir+"/static/json/networks/{0}".format(file_name) gzip_file = open(path).read() cached_query(file_name, gzip_file) ret = make_response(gzip_file) ret.headers['Content-Encoding'] = filetype ret.headers['Content-Length'] = str(len(ret.data)) return ret @mod.route('/shorten/', methods=['GET', 'POST']) def shorten_url(): if request.method == 'POST': response = request.form['url'] if 'url' in request.form else request.json['url'] long_url = urllib.unquote(response.encode('utf-8')).decode('utf-8') short = Short.query.filter_by(long_url=long_url).first() if short is None: slug = Short.make_unique_slug(long_url) short = Short(slug=slug, long_url=long_url) db.session.add(short) db.session.commit() return jsonify({"slug": short.slug}) return jsonify({"error": "No URL given."}) def crosswalk_recs(dataset, filter, id): crosswalk = [] attr_swap = {"hs": "cnae", "cnae": "hs", "cbo": "course_hedu", "course_hedu": "cbo"} crosswalk_table = { "hs": "pi", "cnae": "pi", "cbo": "oc", "course_hedu": "oc"} if filter in attr_swap and id != "all": table = globals()["Crosswalk_{}".format(crosswalk_table[filter])] col = getattr(table, "{}_id".format(filter)) results = table.query.filter(col == id) ids = [row.get_id(dataset) for row in results] if ids: ids = Search.query.filter(Search.id.in_(ids)).filter( Search.kind == attr_swap[filter]).all() ids = [a.id for a in ids] table = globals()[attr_swap[filter].capitalize()] attrs = table.query.filter(table.id.in_(ids)).all() crosswalk = [ {"title": a.name(), "url": a.url(), "type": attr_swap[filter]} for a in attrs] return crosswalk @mod.route('/image', methods=['GET']) def image(): url = request.args.get('link'); code = requests.get(url).status_code; return Response(str(code), status=200)
nsff_scripts/run_midas.py
frankhome61/nsff
330
91140
<filename>nsff_scripts/run_midas.py """ Compute depth maps for images in the input folder. """ import os import glob import torch import cv2 import numpy as np from torchvision.transforms import Compose from models.midas_net import MidasNet from models.transforms import Resize, NormalizeImage, PrepareForNet import sys import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt VIZ = True def read_image(path): """Read image and output RGB image (0-1). Args: path (str): path to file Returns: array: RGB image (0-1) """ img = cv2.imread(path) if img.ndim == 2: img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0 return img def _minify(basedir, factors=[], resolutions=[]): ''' Minify the images to small resolution for training ''' needtoload = False for r in factors: imgdir = os.path.join(basedir, 'images_{}'.format(r)) if not os.path.exists(imgdir): needtoload = True for r in resolutions: imgdir = os.path.join(basedir, 'images_{}x{}'.format(r[1], r[0])) if not os.path.exists(imgdir): needtoload = True if not needtoload: return from shutil import copy from subprocess import check_output import glob imgdir = os.path.join(basedir, 'images') imgs = [os.path.join(imgdir, f) for f in sorted(os.listdir(imgdir))] imgs = [f for f in imgs if any([f.endswith(ex) for ex in ['JPG', 'jpg', 'png', 'jpeg', 'PNG']])] imgdir_orig = imgdir wd = os.getcwd() for r in factors + resolutions: if isinstance(r, int): name = 'images_{}'.format(r) resizearg = '{}%'.format(100./r) else: name = 'images_{}x{}'.format(r[1], r[0]) resizearg = '{}x{}'.format(r[1], r[0]) imgdir = os.path.join(basedir, name) if os.path.exists(imgdir): continue print('Minifying', r, basedir) os.makedirs(imgdir) check_output('cp {}/* {}'.format(imgdir_orig, imgdir), shell=True) ext = imgs[0].split('.')[-1] print(ext) # sys.exit() img_path_list = glob.glob(os.path.join(imgdir, '*.%s'%ext)) for img_path in img_path_list: save_path = img_path.replace('.jpg', '.png') img = cv2.imread(img_path) print(img.shape, r) cv2.imwrite(save_path, cv2.resize(img, (r[1], r[0]), interpolation=cv2.INTER_AREA)) if ext != 'png': check_output('rm {}/*.{}'.format(imgdir, ext), shell=True) print('Removed duplicates') print('Done') to8b = lambda x : (255*np.clip(x,0,1)).astype(np.uint8) import imageio def run(basedir, input_path, output_path, model_path, resize_height=288): """Run MonoDepthNN to compute depth maps. Args: input_path (str): path to input folder output_path (str): path to output folder model_path (str): path to saved model """ print("initialize") img0 = [os.path.join(basedir, 'images', f) \ for f in sorted(os.listdir(os.path.join(basedir, 'images'))) \ if f.endswith('JPG') or f.endswith('jpg') or f.endswith('png')][0] sh = cv2.imread(img0).shape height = resize_height factor = sh[0] / float(height) width = int(round(sh[1] / factor)) _minify(basedir, resolutions=[[height, width]]) # select device device = torch.device("cuda") print("device: %s" % device) small_img_dir = input_path + '_*x' + str(resize_height) + '/' print(small_img_dir) small_img_path = sorted(glob.glob(glob.glob(small_img_dir)[0] + '/*.png'))[0] small_img = cv2.imread(small_img_path) print('small_img', small_img.shape) # Portrait Orientation if small_img.shape[0] > small_img.shape[1]: input_h = 640 input_w = int(round( float(input_h) / small_img.shape[0] * small_img.shape[1])) # Landscape Orientation else: input_w = 640 input_h = int(round( float(input_w) / small_img.shape[1] * small_img.shape[0])) print('Monocular depth input_w %d input_h %d '%(input_w, input_h)) # load network model = MidasNet(model_path, non_negative=True) transform_1 = Compose( [ Resize( input_w, input_h, resize_target=None, keep_aspect_ratio=True, ensure_multiple_of=32, resize_method="upper_bound", image_interpolation_method=cv2.INTER_AREA, ), NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), PrepareForNet(), ] ) model.to(device) model.eval() # get input img_names = sorted(glob.glob(os.path.join(input_path, "*"))) num_images = len(img_names) # create output folder os.makedirs(output_path, exist_ok=True) print("start processing") for ind in range(len(img_names)): img_name = img_names[ind] print(" processing {} ({}/{})".format(img_name, ind + 1, num_images)) # input img = read_image(img_name) img_input_1 = transform_1({"image": img})["image"] # compute with torch.no_grad(): sample_1 = torch.from_numpy(img_input_1).to(device).unsqueeze(0) prediction = model.forward(sample_1) prediction = ( torch.nn.functional.interpolate( prediction.unsqueeze(1), size=[small_img.shape[0], small_img.shape[1]], mode="nearest", ) .squeeze() .cpu() .numpy() ) # output filename = os.path.join( output_path, os.path.splitext(os.path.basename(img_name))[0] ) if VIZ: if not os.path.exists('./midas_otuputs'): os.makedirs('./midas_otuputs') plt.figure(figsize=(12, 6)) plt.subplot(1,2,1) plt.imshow(img) plt.subplot(1,2,2) plt.imshow(prediction, cmap='jet') plt.savefig('./midas_otuputs/%s'%(img_name.split('/')[-1])) plt.close() print(filename + '.npy') np.save(filename + '.npy', prediction.astype(np.float32)) print("finished") import argparse if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--data_path", type=str, help='COLMAP Directory') # parser.add_argument("--input_w", type=int, default=640, # help='input image width for monocular depth network') # parser.add_argument("--input_h", type=int, default=360, # help='input image height for monocular depth network') parser.add_argument("--resize_height", type=int, default=288, help='resized image height for training \ (width will be resized based on original aspect ratio)') args = parser.parse_args() BASE_DIR = args.data_path INPUT_PATH = BASE_DIR + "/images" OUTPUT_PATH = BASE_DIR + "/disp" MODEL_PATH = "model.pt" if not os.path.exists(OUTPUT_PATH): os.makedirs(OUTPUT_PATH) # set torch options torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True # compute depth maps run(BASE_DIR, INPUT_PATH, OUTPUT_PATH, MODEL_PATH, args.resize_height)
angr/exploration_techniques/dfs.py
Kyle-Kyle/angr
6,132
91144
<gh_stars>1000+ from . import ExplorationTechnique import random class DFS(ExplorationTechnique): """ Depth-first search. Will only keep one path active at a time, any others will be stashed in the 'deferred' stash. When we run out of active paths to step, we take the longest one from deferred and continue. """ def __init__(self, deferred_stash='deferred'): super(DFS, self).__init__() self._random = random.Random() self._random.seed(10) self.deferred_stash = deferred_stash def setup(self, simgr): if self.deferred_stash not in simgr.stashes: simgr.stashes[self.deferred_stash] = [] def step(self, simgr, stash='active', **kwargs): simgr = simgr.step(stash=stash, **kwargs) if len(simgr.stashes[stash]) > 1: self._random.shuffle(simgr.stashes[stash]) simgr.split(from_stash=stash, to_stash=self.deferred_stash, limit=1) if len(simgr.stashes[stash]) == 0: if len(simgr.stashes[self.deferred_stash]) == 0: return simgr simgr.stashes[stash].append(simgr.stashes[self.deferred_stash].pop()) return simgr
app/tests/uploads_tests/test_models.py
kaczmarj/grand-challenge.org
101
91146
import pytest from django.conf import settings from requests import put from grandchallenge.uploads.models import UserUpload from tests.algorithms_tests.factories import AlgorithmImageFactory from tests.factories import UserFactory from tests.verification_tests.factories import VerificationFactory @pytest.mark.django_db def test_user_upload_flow(): # Create User Upload u = UserFactory() filename = "foo.bat" # Create User Upload File upload = UserUpload.objects.create(creator=u, filename=filename) assert upload.status == UserUpload.StatusChoices.INITIALIZED assert upload.s3_upload_id != "" # Get the presigned url presigned_url = upload.generate_presigned_url(part_number=0) assert presigned_url != "" # PUT the file response = put(presigned_url, data=b"123") assert response.status_code == 200 assert response.headers["ETag"] != "" # Finish the upload upload.complete_multipart_upload( parts=[{"ETag": response.headers["ETag"], "PartNumber": 0}] ) assert upload.status == UserUpload.StatusChoices.COMPLETED def test_create_multipart_upload(): user = UserFactory.build() upload = UserUpload(creator=user) assert upload.s3_upload_id == "" assert upload.status == UserUpload.StatusChoices.PENDING upload.create_multipart_upload() assert upload.s3_upload_id != "" assert upload.status == UserUpload.StatusChoices.INITIALIZED assert upload.key == f"uploads/{user.pk}/{upload.pk}" def test_generate_presigned_urls(): upload = UserUpload(creator=UserFactory.build()) upload.create_multipart_upload() presigned_urls = upload.generate_presigned_urls(part_numbers=[1, 13, 26]) assert set(presigned_urls.keys()) == {"1", "13", "26"} assert presigned_urls["1"].startswith( f"{settings.AWS_S3_ENDPOINT_URL}/{upload.bucket}/{upload.key}?uploadId={upload.s3_upload_id}&partNumber=1&" ) assert presigned_urls["13"].startswith( f"{settings.AWS_S3_ENDPOINT_URL}/{upload.bucket}/{upload.key}?uploadId={upload.s3_upload_id}&partNumber=13&" ) assert presigned_urls["26"].startswith( f"{settings.AWS_S3_ENDPOINT_URL}/{upload.bucket}/{upload.key}?uploadId={upload.s3_upload_id}&partNumber=26&" ) def test_abort_multipart_upload(): upload = UserUpload(creator=UserFactory.build()) upload.create_multipart_upload() assert upload.status == UserUpload.StatusChoices.INITIALIZED assert upload.s3_upload_id != "" upload.abort_multipart_upload() assert upload.status == UserUpload.StatusChoices.ABORTED assert upload.s3_upload_id == "" def test_list_parts(): upload = UserUpload(creator=UserFactory.build()) upload.create_multipart_upload() url = upload.generate_presigned_url(part_number=1) response = put(url, data=b"123") parts = upload.list_parts() assert len(parts) == 1 assert parts[0]["ETag"] == response.headers["ETag"] assert parts[0]["Size"] == 3 assert parts[0]["PartNumber"] == 1 def test_list_parts_empty(): upload = UserUpload(creator=UserFactory.build()) upload.create_multipart_upload() parts = upload.list_parts() assert parts == [] def test_list_parts_truncation(): upload = UserUpload(creator=UserFactory.build()) upload.create_multipart_upload() presigned_urls = upload.generate_presigned_urls(part_numbers=[1, 2]) responses = {} for part_number, url in presigned_urls.items(): responses[part_number] = put(url, data=b"123") upload.LIST_MAX_ITEMS = 1 parts = upload.list_parts() assert len(parts) == 2 assert parts[0]["ETag"] == responses["1"].headers["ETag"] assert parts[0]["Size"] == 3 assert parts[0]["PartNumber"] == 1 assert parts[1]["ETag"] == responses["2"].headers["ETag"] assert parts[1]["Size"] == 3 assert parts[1]["PartNumber"] == 2 @pytest.mark.django_db def test_upload_copy(): user = UserFactory() upload = UserUpload.objects.create(creator=user, filename="test.tar.gz") presigned_urls = upload.generate_presigned_urls(part_numbers=[1]) response = put(presigned_urls["1"], data=b"123") upload.complete_multipart_upload( parts=[{"ETag": response.headers["ETag"], "PartNumber": 1}] ) upload.save() ai = AlgorithmImageFactory(creator=user, image=None) assert not ai.image upload.copy_object(to_field=ai.image) assert ( ai.image.name == f"docker/images/algorithms/algorithmimage/{ai.pk}/test.tar.gz" ) assert ai.image.storage.exists(name=ai.image.name) with ai.image.open() as f: assert f.read() == b"123" @pytest.mark.django_db def test_file_deleted_with_object(): u = UserFactory() upload = UserUpload.objects.create(creator=u) presigned_urls = upload.generate_presigned_urls(part_numbers=[1]) response = put(presigned_urls["1"], data=b"123") upload.complete_multipart_upload( parts=[{"ETag": response.headers["ETag"], "PartNumber": 1}] ) upload.save() bucket = upload.bucket key = upload.key assert upload._client.head_object(Bucket=bucket, Key=key) UserUpload.objects.filter(pk=upload.pk).delete() with pytest.raises(upload._client.exceptions.ClientError): upload._client.head_object(Bucket=bucket, Key=key) @pytest.mark.django_db def test_incomplete_deleted_with_object(): u = UserFactory() upload = UserUpload.objects.create(creator=u) bucket = upload.bucket key = upload.key assert "Uploads" in upload._client.list_multipart_uploads( Bucket=bucket, Prefix=key ) UserUpload.objects.filter(pk=upload.pk).delete() assert "Uploads" not in upload._client.list_multipart_uploads( Bucket=bucket, Prefix=key ) def test_size_of_creators_completed_uploads(): def upload_files_for_user(user, n=1): for _ in range(n): ul = UserUpload(creator=user) ul.create_multipart_upload() presigned_urls = ul.generate_presigned_urls(part_numbers=[1]) response = put(presigned_urls["1"], data=b"123") ul.complete_multipart_upload( parts=[{"ETag": response.headers["ETag"], "PartNumber": 1}] ) u = UserFactory.build(pk=42) upload = UserUpload(creator=u) upload.LIST_MAX_ITEMS = 1 initial_upload_size = upload.size_of_creators_completed_uploads assert type(initial_upload_size) == int upload_files_for_user(user=u, n=upload.LIST_MAX_ITEMS + 1) # another users files should not be considered upload_files_for_user(user=UserFactory.build(pk=u.pk + 1)) assert ( upload.size_of_creators_completed_uploads == initial_upload_size + (upload.LIST_MAX_ITEMS + 1) * 3 ) def test_size_incomplete(): u = UserFactory.build(pk=42) upload = UserUpload(creator=u) upload.create_multipart_upload() upload.LIST_MAX_ITEMS = 1 assert upload.size == 0 parts = [1, 2] presigned_urls = upload.generate_presigned_urls(part_numbers=parts) for part in parts: put(presigned_urls[str(part)], data=b"123") assert upload.size == (upload.LIST_MAX_ITEMS + 1) * 3 def test_size_complete(): u = UserFactory.build(pk=42) upload = UserUpload(creator=u) upload.create_multipart_upload() assert upload.size == 0 presigned_urls = upload.generate_presigned_urls(part_numbers=[1]) response = put(presigned_urls["1"], data=b"123") upload.complete_multipart_upload( parts=[{"ETag": response.headers["ETag"], "PartNumber": 1}] ) assert upload.size == 3 @pytest.mark.django_db def test_can_upload_more_unverified(settings): upload = UserUpload.objects.create(creator=UserFactory()) presigned_urls = upload.generate_presigned_urls(part_numbers=[1]) put(presigned_urls["1"], data=b"123") assert upload.can_upload_more is True settings.UPLOADS_MAX_SIZE_UNVERIFIED = 2 assert upload.can_upload_more is False @pytest.mark.django_db def test_can_upload_more_verified(settings): user = UserFactory() upload = UserUpload.objects.create(creator=user) presigned_urls = upload.generate_presigned_urls(part_numbers=[1]) put(presigned_urls["1"], data=b"123") settings.UPLOADS_MAX_SIZE_UNVERIFIED = 2 assert upload.can_upload_more is False VerificationFactory(user=user, is_verified=True) assert upload.can_upload_more is True settings.UPLOADS_MAX_SIZE_VERIFIED = 2 assert upload.can_upload_more is False @pytest.mark.django_db def test_can_upload_more_other_objects(settings): user = UserFactory() new_upload = UserUpload.objects.create(creator=user) settings.UPLOADS_MAX_SIZE_UNVERIFIED = 2 assert new_upload.can_upload_more is True upload = UserUpload.objects.create(creator=user) presigned_urls = upload.generate_presigned_urls(part_numbers=[1]) response = put(presigned_urls["1"], data=b"123") upload.complete_multipart_upload( parts=[{"ETag": response.headers["ETag"], "PartNumber": 1}] ) assert upload.can_upload_more is False assert new_upload.can_upload_more is False
analysis/flight_data/generate_wind_db_from_flight_log.py
leozz37/makani
1,178
91159
#!/usr/bin/python # Copyright 2020 Makani Technologies LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Produces a wind database for simulation from a flight log.""" import contextlib import ctypes import os import sys import gflags import h5py from makani.config import mconfig from makani.control import system_types from makani.lib.python import h5log_loader from makani.sim.physics import wind_frame import numpy as np from scipy import signal gflags.DEFINE_string('output_file', None, 'Output wind database.') gflags.DEFINE_enum('log_type', 'wing', ('wing', 'cc', 'weather'), 'Type of log (wing, command center, or weather station)' ' being read.') gflags.DEFINE_enum('wind_source', 'est', ('est', 'ws'), 'Source of wind data:' 'the controller estimate or raw weather station.') gflags.DEFINE_float('cutoff_freq', None, 'If specified, wind data will be low-pass filtered with ' 'this cutoff frequency [Hz].') FLAGS = gflags.FLAGS def ExtractLogData(log_file_names, log_type, wind_source): """Extracts data from log files. Args: log_file_names: Names of HDF5 log files. log_type: 'wing', 'cc', or 'weather'. wind_source: 'est' or 'ws' Returns: (wind_vel_ws, duration): wind_vel_ws: [:, 3] array of wind velocity measurements [m/s] in the wind sensor frame. duration: Length of time [s] spanned by wind_vel_ws. Raises: ValueError: If log_type is invalid. """ log = h5log_loader.H5LogLoader() log.Open(log_file_names) if log_type == 'weather': telemetry_path = 'PlatformSensorsA/GroundStationWeather' elif log_type == 'wing': telemetry_path = 'ControllerA/ControlDebug' elif log_type == 'cc': telemetry_path = 'ControllerA/ControlTelemetry' else: raise ValueError('Invalid value of --log_type: %s.' % FLAGS.log_type) t = log.capture_time[telemetry_path] if wind_source == 'ws': if log_type == 'weather': wind_vel = log[telemetry_path + '/wind/wind_velocity'].astype(np.float64) elif log_type == 'wing' or log_type == 'cc': # Each wind_ws point is stored as a Vec3. Use a view to reinterpret it as # an array. wind_vel = log[telemetry_path + '/control_input/wind_ws'].view( np.dtype(('>f8', 3))) elif wind_source == 'est': if log_type == 'weather': raise ValueError('Cannot use estimator wind_g from weather log.') elif log_type == 'wing' or log_type == 'cc': # Each wind_g point is stored as a Vec3. Use a view to reinterpret it as # an array. wind_vel = log[telemetry_path + '/state_est/wind_g/vector'].view( np.dtype(('>f8', 3))) else: raise ValueError('Invalid value of --wind_source: %s.' % wind_source) log.Close() return wind_vel, t[-1] - t[0] def CalcWindVelMwAndMeanWind(wind_vel, wind_source): """Converts wind to the mean wind frame, and provides mean speed/direction. Args: wind_vel: Wind velocity [m/s] in the wind sensor frame or the ground frame, depending on wind_source (ws and est, respectively). wind_source: 'est' or 'ws' Returns: (wind_vel_mw, mean_wind_speed, mean_wind_dir), defined as: wind_vel_mw: Wind velocity [m/s] in the mean wind frame. mean_wind_speed: Mean wind speed [m/s] in the horizontal plane. mean_wind_dir: Direction [rad] of the mean wind. Raises: ValueError: The specified wind source was invalid. """ # Transform from weather station to ground coordinates, if needed if wind_source == 'ws': system_params = mconfig.MakeParams('m600.system_params') assert (system_params['gs_model'] == system_types.kGroundStationModelTopHat), ( 'This script assumes a top hat configuration.') dcm_ws2g = np.array(system_params['wind_sensor']['dcm_parent2ws']['d']).T wind_vel_g = np.dot(dcm_ws2g, wind_vel.T).T elif wind_source == 'est': wind_vel_g = wind_vel else: raise ValueError('Invalid value of --wind_source: %s.' % wind_source) # Calculate mean wind xy-speed and direction. mean_wind_g = np.mean(wind_vel_g, axis=0) mean_wind_speed = np.hypot(mean_wind_g[0], mean_wind_g[1]) mean_wind_dir = np.arctan2(-mean_wind_g[1], -mean_wind_g[0]) # Rotate wind velocity to the mean wind frame. dcm_mw2g = wind_frame.Mat3() wind_frame.CalcDcmMwToG(mean_wind_dir, ctypes.byref(dcm_mw2g)) dcm_mw2g = np.array([row[:] for row in dcm_mw2g.d]) wind_vel_mw = np.dot(dcm_mw2g.T, wind_vel_g.T).T return wind_vel_mw, mean_wind_speed, mean_wind_dir def main(argv): def PrintUsageAndExit(): print 'Usage: %s <log_1.h5> [log_2.h5] [log_3.h5] ...\n%s' % ( os.path.basename(argv[0]), FLAGS) sys.exit(1) # Parse flags and validate inputs. try: argv = FLAGS(argv) except gflags.FlagsError, e: print '\nError: %s\n\n' % e PrintUsageAndExit() if len(argv) < 2: PrintUsageAndExit() log_files = argv[1:] wind_vel, duration = ExtractLogData(log_files, FLAGS.log_type, FLAGS.wind_source) wind_vel_mw, mean_wind_speed, mean_wind_dir = CalcWindVelMwAndMeanWind( wind_vel, FLAGS.wind_source) nt = wind_vel_mw.shape[0] # Filter measured wind if requested. if FLAGS.cutoff_freq is not None: nyquist_freq = float(nt) / duration / 2.0 nyquist_frac = FLAGS.cutoff_freq / nyquist_freq assert 0.0 < FLAGS.cutoff_freq <= 1.0 b, a = signal.butter(1, nyquist_frac, 'lowpass') for i in range(3): wind_vel_mw[:, i] = signal.lfilter(b, a, wind_vel_mw[:, i]) # Each timepoint in the wind database defines a wind field in the mean wind # yz-plane (vw-plane) that advects downwind. This field can be inhomogeneous # in general. # # However, we only have one reading at the wind sensor to work with. # Consequently, we make this field constant at each timepoint in the simplest # way possible - by using a 2x2 grid that fills a "large" region. ny = 2 nz = 2 width = 5000.0 height = 1000.0 with contextlib.closing(h5py.File(FLAGS.output_file, 'w')) as f: f.create_dataset('num_t', data=np.array([nt]), dtype='<i4') f.create_dataset('num_y', data=np.array([ny]), dtype='<i4') f.create_dataset('num_z', data=np.array([nz]), dtype='<i4') f.create_dataset('mean_wind_speed', data=np.array([mean_wind_speed])) f.create_dataset('mean_wind_direction', data=np.array([mean_wind_dir])) f.create_dataset('duration', data=np.array([duration])) f.create_dataset('width', data=np.array([width])) f.create_dataset('height', data=np.array([height])) # The velocity field is uniform over y and z for each point in time. # Each dataset corresponds to an array over (t, y, z) in row-major # order, so each data point should be repeated ny*nz times. f.create_dataset('u', data=np.repeat(wind_vel_mw[:, 0], ny * nz), compression='gzip', compression_opts=5) f.create_dataset('v', data=np.repeat(wind_vel_mw[:, 1], ny * nz), compression='gzip', compression_opts=5) f.create_dataset('w', data=np.repeat(wind_vel_mw[:, 2], ny * nz), compression='gzip', compression_opts=5) if __name__ == '__main__': gflags.MarkFlagAsRequired('output_file') main(sys.argv)
test/util.py
pyrige/greedypacker
108
91202
import sys import contextlib @contextlib.contextmanager def stdout_redirect(stringIO): sys.stdout = stringIO try: yield stringIO finally: sys.stdout = sys.__stdout__ stringIO.seek(0)
snape/test/test_make_image_dataset.py
AhmadKSA/snape
182
91259
<reponame>AhmadKSA/snape import shutil from snape.make_image_dataset import * from snape.make_image_dataset import _ImageNet, _ImageGrabber from snape.utils import get_random_state import glob import pytest conf = { "n_classes": 2, "n_samples": 11, "out_path": "./test_images/", "weights": [.8, .2], "image_source": "imagenet", "random_seed": 42 } random_state = get_random_state(conf["random_seed"]) def test_make_image_dataset(): os.mkdir(conf["out_path"]) try: make_image_dataset(conf) subdirs = glob.glob(f'{conf["out_path"]}/*') print(f"Subdirs: {subdirs}") assert len(subdirs) == conf["n_classes"], \ f'Expected {conf["n_classes"]} classes, but got {len(subdirs)}' n_samples = conf["n_samples"] weights = conf["weights"] exp_class_counts = sorted([int(w * n_samples) for w in weights]) # sort subdir names by present images under each subdir_counts = sorted([len(glob.glob(f'{s}/*')) for s in subdirs]) assert exp_class_counts == subdir_counts, \ f"\nExpected class counts: {exp_class_counts}" \ f"\nActual class counts: {subdir_counts}" finally: shutil.rmtree(conf["out_path"]) @pytest.mark.parametrize( 'cfg', [ # missing an arg { "n_samples": 11, "out_path": "./test_images/", "weights": [.8, .2], "image_source": "imagenet", "random_seed": 42 }, # wrong arg { "nclasses": 2, "n_samples": 11, "out_path": "./test_images/", "weights": [.8, .2], "image_source": "imagenet", "random_seed": 42 } ] ) def test_check_configuration(cfg): with pytest.raises(AssertionError): check_configuration(cfg) class TestImageNet: def __init__(self): self.image_net = _ImageNet(n_classes=conf["n_classes"], weights=conf["weights"], n_samples=conf["n_samples"], output_dir=conf["out_path"], random_state=random_state) def test_get_images(self): os.mkdir(conf["out_path"]) try: self.image_net.get_images() sub_dir1 = conf["out_path"] + os.listdir(conf["out_path"])[0] sub_dir2 = conf["out_path"] + os.listdir(conf["out_path"])[1] n_images1 = len(os.listdir(sub_dir1)) n_images2 = len(os.listdir(sub_dir2)) class1_size = int(conf["n_samples"] * conf["weights"][0]) assert (class1_size == n_images1) or (class1_size == n_images2), "Did not download n images" except: raise finally: shutil.rmtree(conf["out_path"]) def test_sample_synset_links(self): n = 5 wnid = 'n02114855' os.mkdir(conf["out_path"]) try: self.image_net.sample_synset_links(wnid, n, conf["out_path"]) n_images = len(os.listdir(conf["out_path"] + '/' + wnid)) assert n == n_images, "Did not download n images" assert wnid in os.listdir(conf["out_path"]), "Did not get the requested synset" except: raise finally: shutil.rmtree(conf["out_path"]) def test_get_ilsvrc_1000_synsets(self): synsets = self.image_net.get_ilsvrc_1000_synsets() assert len(synsets) == 1000, "ILSVRC page parsed incorrectly" def test_get_synset_image_links(self): wnid = 'n02114855' links = self.image_net.get_synset_image_links(wnid) assert len(links) > 0, "Did not return any image links" def test_retrieve_class_counts(self): class_counts = self.image_net.retrieve_class_counts() assert isinstance(class_counts, pd.core.frame.DataFrame), "Class counts not returned in a dataframe" class TestImageGrabber: def test_download_image(self): good_url = "http://farm4.static.flickr.com/3290/2998414960_01dd35d094.jpg" good_im_path = "ducky.jpg" _ImageGrabber().download_image(good_url, good_im_path) good_im_type = imghdr.what(good_im_path) os.remove(good_im_path) assert good_im_type is not None bad_url = "https://mckinleyleather.com/image/130963084.jpg" bad_im_path = "no_ducky.jpg" _ImageGrabber().download_image(bad_url, bad_im_path) is_file = os.path.isfile(bad_im_path) assert not is_file def test_catch_unavailable_image(self): good_url = "http://farm4.static.flickr.com/3290/2998414960_01dd35d094.jpg" good_img_data = requests.get(good_url) assert not _ImageGrabber.catch_unavailable_image(good_img_data), "The good image tested was found to be bad" stale_url = "https://mckinleyleather.com/image/130963084.jpg" stale_img_data = requests.get(stale_url) assert _ImageGrabber.catch_unavailable_image(stale_img_data), "The stale image tested was found to be good" junk_url = "http://farm4.static.flickr.com/3225/2806850016_9bf939037e.jpg" junk_img_data = requests.get(junk_url) assert _ImageGrabber.catch_unavailable_image(junk_img_data), "The junk image tested was found to be good" class TestOpenImages: pass class TestGoogleSearch: pass
scripts/kitti_submission.py
xingruiy/RAFT-3D
133
91268
<reponame>xingruiy/RAFT-3D<filename>scripts/kitti_submission.py import sys sys.path.append('.') from tqdm import tqdm import os import numpy as np import cv2 import argparse import torch from lietorch import SE3 import raft3d.projective_ops as pops from utils import show_image, normalize_image from data_readers.kitti import KITTIEval import torch.nn.functional as F from torch.utils.data import DataLoader import matplotlib.pyplot as plt from glob import glob from data_readers.frame_utils import * def display(img, tau, phi): """ display se3 fields """ fig, (ax1, ax2, ax3) = plt.subplots(1,3) ax1.imshow(img[:, :, ::-1] / 255.0) tau_img = np.clip(tau, -0.1, 0.1) tau_img = (tau_img + 0.1) / 0.2 phi_img = np.clip(phi, -0.1, 0.1) phi_img = (phi_img + 0.1) / 0.2 ax2.imshow(tau_img) ax3.imshow(phi_img) plt.show() def prepare_images_and_depths(image1, image2, depth1, depth2, depth_scale=1.0): """ padding, normalization, and scaling """ ht, wd = image1.shape[-2:] pad_h = (-ht) % 8 pad_w = (-wd) % 8 image1 = F.pad(image1, [0,pad_w,0,pad_h], mode='replicate') image2 = F.pad(image2, [0,pad_w,0,pad_h], mode='replicate') depth1 = F.pad(depth1[:,None], [0,pad_w,0,pad_h], mode='replicate')[:,0] depth2 = F.pad(depth2[:,None], [0,pad_w,0,pad_h], mode='replicate')[:,0] depth1 = (depth_scale * depth1).float() depth2 = (depth_scale * depth2).float() image1 = normalize_image(image1.float()) image2 = normalize_image(image2.float()) depth1 = depth1.float() depth2 = depth2.float() return image1, image2, depth1, depth2, (pad_w, pad_h) @torch.no_grad() def make_kitti_submission(model): loader_args = {'batch_size': 1, 'shuffle': False, 'num_workers': 1, 'drop_last': False} test_loader = DataLoader(KITTIEval(), **loader_args) DEPTH_SCALE = .1 for i_batch, data_blob in enumerate(test_loader): image1, image2, disp1, disp2, intrinsics = [item.cuda() for item in data_blob] img1 = image1[0].permute(1,2,0).cpu().numpy() depth1 = DEPTH_SCALE * (intrinsics[0,0] / disp1) depth2 = DEPTH_SCALE * (intrinsics[0,0] / disp2) ht, wd = image1.shape[2:] image1, image2, depth1, depth2, _ = \ prepare_images_and_depths(image1, image2, depth1, depth2) Ts = model(image1, image2, depth1, depth2, intrinsics, iters=16) tau_phi = Ts.log() # uncomment to diplay motion field # tau, phi = Ts.log().split([3,3], dim=-1) # tau = tau[0].cpu().numpy() # phi = phi[0].cpu().numpy() # display(img1, tau, phi) # compute optical flow flow, _, _ = pops.induced_flow(Ts, depth1, intrinsics) flow = flow[0, :ht, :wd, :2].cpu().numpy() # compute disparity change coords, _ = pops.projective_transform(Ts, depth1, intrinsics) disp2 = intrinsics[0,0] * coords[:,:ht,:wd,2] * DEPTH_SCALE disp1 = disp1[0].cpu().numpy() disp2 = disp2[0].cpu().numpy() KITTIEval.write_prediction(i_batch, disp1, disp2, flow) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--model', help='path the model weights') parser.add_argument('--network', default='raft3d.raft3d', help='network architecture') parser.add_argument('--radius', type=int, default=32) args = parser.parse_args() import importlib RAFT3D = importlib.import_module(args.network).RAFT3D model = torch.nn.DataParallel(RAFT3D(args)) model.load_state_dict(torch.load(args.model)) model.cuda() model.eval() if not os.path.isdir('kitti_submission'): os.mkdir('kitti_submission') os.mkdir('kitti_submission/disp_0') os.mkdir('kitti_submission/disp_1') os.mkdir('kitti_submission/flow') make_kitti_submission(model)
tests/callbacks/test_manifold_mixup.py
NunoEdgarGFlowHub/torchbearer
358
91279
from unittest import TestCase from mock import patch, Mock from torch import nn from torchbearer.callbacks.manifold_mixup import ManifoldMixup import torchbearer import torch class TestModule(nn.Module): def __init__(self): super(TestModule, self).__init__() self.conv = nn.Conv1d(1, 1, 1) self.relu = nn.ReLU() self.bn = nn.BatchNorm1d(1) def forward(self, x): x = self.conv(x.view(-1, 1, 1)) x = self.relu(x) x = self.bn(x) return x class TestModule2(nn.Module): def __init__(self): super(TestModule2, self).__init__() self.layer1 = TestModule() def forward(self, x): return self.layer1(x) class TestModel(nn.Module): def __init__(self): super(TestModel, self).__init__() self.fc1 = nn.Linear(1, 1) self.conv1 = nn.Conv1d(1, 1, 1) self.relu = nn.ReLU() self.layer1 = TestModule() self.layer2 = TestModule2() def forward(self, x): x = self.fc1(x) x = self.conv1(x.view(-1,1,1)) x = self.relu(x) x = self.layer1(x) x = self.layer2(x) return x class TestManifoldMixup(TestCase): def setUp(self): super(TestManifoldMixup, self).setUp() self.model = TestModel() def test_depth_none(self): mm = ManifoldMixup().at_depth(None) state = {torchbearer.MODEL: self.model} mm.on_start(state) self.assertTrue(len(mm._layers) == 12) def test_depth_0(self): mm = ManifoldMixup().at_depth(0) state = {torchbearer.MODEL: self.model} mm.on_start(state) checks = [ self.model.fc1 in mm._layers, self.model.conv1 in mm._layers, self.model.relu in mm._layers, self.model.layer1 in mm._layers, self.model.layer2 in mm._layers, ] self.assertTrue(all(checks)) # Top level modules in self.assertFalse(self.model.layer1.conv in mm._layers) # Depth 1 modules not in def test_depth_1(self): mm = ManifoldMixup().at_depth(1) state = {torchbearer.MODEL: self.model} mm.on_start(state) top_checks = [ self.model.fc1 in mm._layers, self.model.conv1 in mm._layers, self.model.relu in mm._layers, self.model.layer1 in mm._layers, self.model.layer2 in mm._layers, ] first_checks = [ self.model.layer1.conv in mm._layers, self.model.layer1.relu in mm._layers, self.model.layer1.bn in mm._layers, self.model.layer2.layer1 in mm._layers, ] self.assertFalse(any(top_checks)) # Top level modules not in self.assertTrue(all(first_checks)) # Depth 1 modules in def test_depth_2(self): mm = ManifoldMixup().at_depth(2) state = {torchbearer.MODEL: self.model} mm.on_start(state) top_checks = [ self.model.fc1 in mm._layers, self.model.conv1 in mm._layers, self.model.relu in mm._layers, self.model.layer1 in mm._layers, self.model.layer2 in mm._layers, ] first_checks = [ self.model.layer1.conv in mm._layers, self.model.layer1.relu in mm._layers, self.model.layer1.bn in mm._layers, self.model.layer2.layer1 in mm._layers, ] second_checks = [ self.model.layer2.layer1.conv in mm._layers, self.model.layer2.layer1.relu in mm._layers, self.model.layer2.layer1.bn in mm._layers, ] self.assertFalse(any(top_checks)) # Top level modules not in self.assertFalse(any(first_checks)) # Depth 1 modules not in self.assertTrue(all(second_checks)) # Depth 2 modules in def test_for_layers(self): mm = ManifoldMixup().at_depth(None).for_layers(['conv1', 'layer1_conv', 'layer2_layer1_conv']) state = {torchbearer.MODEL: self.model} mm.on_start(state) self.assertTrue(self.model.conv1 in mm._layers, self.model.layer1.conv in mm._layers and self.model.layer2.layer1.conv in mm._layers) self.assertTrue(len(mm._layers) == 3) def test_get_selected_layers(self): mm = ManifoldMixup().at_depth(None).for_layers(['conv1', 'layer1_conv', 'layer2_layer1_conv']) found_layers = mm.get_selected_layers(self.model) self.assertTrue(len(found_layers) == 3) self.assertTrue('conv1' in found_layers) self.assertTrue('layer1_conv' in found_layers) self.assertTrue('layer2_layer1_conv' in found_layers) def test_layer_filter(self): mm = ManifoldMixup().at_depth(None).with_layer_filter(['conv1', 'layer1_conv', 'layer2_layer1_conv']) state = {torchbearer.MODEL: self.model} mm.on_start(state) self.assertFalse(self.model.conv1 in mm._layers, self.model.layer1.conv in mm._layers and self.model.layer2.layer1.conv in mm._layers) self.assertTrue(len(mm._layers) == 12-3) def test_layer_type_filter(self): mm = ManifoldMixup().at_depth(None).with_layer_type_filter([nn.Conv1d]) state = {torchbearer.MODEL: self.model} mm.on_start(state) self.assertFalse(self.model.conv1 in mm._layers, self.model.layer1.conv in mm._layers and self.model.layer2.layer1.conv in mm._layers) self.assertTrue(len(mm._layers) == 12-3) def test_wrap(self): mm = ManifoldMixup().at_depth(None).for_layers(['conv1', 'layer1_relu', 'layer2_layer1_conv']) state = {torchbearer.MODEL: self.model} mm.on_start(state) self.model.conv1.mixup() self.model.layer1.relu.mixup() self.model.layer2.layer1.conv.mixup() self.assertRaises(AttributeError, lambda: self.model.relu.mixup()) @patch('torchbearer.callbacks.manifold_mixup._mixup_inputs', side_effect=lambda x, _: x) def test_call_mix(self, _): mm = ManifoldMixup().at_depth(None).for_layers(['conv1', 'layer1_relu', 'layer2_layer1_conv']) state = {torchbearer.MODEL: self.model} mm.on_start(state) self.model.conv1.mixup() self.assertTrue(self.model.conv1.do_mixup) self.model(torch.rand(3, 1)) self.assertFalse(self.model.conv1.do_mixup) @patch('torchbearer.callbacks.manifold_mixup._mixup') def test_on_sample(self, mix): mm = ManifoldMixup().at_depth(None).for_layers(['conv1', 'layer1_relu', 'layer2_layer1_conv']) state = {torchbearer.MODEL: self.model, torchbearer.X: torch.rand(3, 1), torchbearer.Y_TRUE: torch.rand(3, 1)} mm.on_start(state) mm.on_sample(state) self.assertTrue(mix.call_count == 1) self.assertTrue(torchbearer.MIXUP_PERMUTATION in state) self.assertTrue(torchbearer.MIXUP_LAMBDA in state) state = {torchbearer.MODEL: self.model, torchbearer.X: torch.rand(3, 1), torchbearer.Y_TRUE: torch.rand(3, 1)} mm.on_sample(state) self.assertTrue(mix.call_count == 2) @patch('torchbearer.callbacks.manifold_mixup._mixup_inputs', side_effect=lambda x, _: x) def test_eval(self, mix): mm = ManifoldMixup().at_depth(None).for_layers(['conv1', 'layer1_relu', 'layer2_layer1_conv']) self.model.eval() state = {torchbearer.MODEL: self.model, torchbearer.X: torch.rand(3, 1), torchbearer.Y_TRUE: torch.rand(3, 1)} mm.on_start(state) mm.on_sample(state) self.model(torch.rand(3, 1)) self.assertTrue(mix.call_count == 0) state = {torchbearer.MODEL: self.model, torchbearer.X: torch.rand(3, 1), torchbearer.Y_TRUE: torch.rand(3, 1)} mm.on_sample(state) self.model = self.model.train() self.model(torch.rand(3, 1)) self.assertTrue(mix.call_count == 1) def test_mixup_inputs(self): from torchbearer.callbacks.manifold_mixup import _mixup_inputs x = torch.Tensor([[1, 2], [2, 3]]) perm = torch.Tensor([1, 0]).long() lam = torch.Tensor([0.1]) state = {torchbearer.X: x, torchbearer.MIXUP_PERMUTATION: perm, torchbearer.MIXUP_LAMBDA: lam} mixed = _mixup_inputs(x, state) self.assertFalse((mixed - torch.Tensor([[1.9, 2.9], [1.1, 2.1]]) > 1e-6).any()) @patch('torchbearer.callbacks.manifold_mixup.Beta') def test_sample_lam_random(self, beta): mm = ManifoldMixup() sl = mm._sample_lam sl() self.assertTrue(beta.mock_calls[0][1] == (1., 1.)) self.assertTrue(beta.mock_calls[1][0] == '().sample') def test_sample_lam_negative(self): mm = ManifoldMixup(alpha=-1) sl = mm._sample_lam lam = sl() self.assertTrue(lam == 1.) def test_sample_lam_fixed(self): mm = ManifoldMixup(lam=2.) sl = mm._sample_lam lam = sl() self.assertTrue(lam == 2.) def test_single_to_list(self): mm = ManifoldMixup() sl = mm._single_to_list item = 1. self.assertTrue(sl(item) == [item, ])
python/graphscope/nx/tests/algorithms/forward/traversal/test_bfs.py
LI-Mingyu/GraphScope-MY
1,521
91280
<reponame>LI-Mingyu/GraphScope-MY<gh_stars>1000+ import networkx.algorithms.traversal.tests.test_bfs import pytest from graphscope.nx.utils.compat import import_as_graphscope_nx import_as_graphscope_nx(networkx.algorithms.traversal.tests.test_bfs, decorators=pytest.mark.usefixtures("graphscope_session"))
corehq/motech/repeaters/migrations/0004_attempt_strings.py
akashkj/commcare-hq
471
91304
# Generated by Django 2.2.19 on 2021-04-10 14:10 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('repeaters', '0003_migrate_connectionsettings'), ] operations = [ migrations.AlterField( model_name='sqlrepeatrecordattempt', name='message', field=models.TextField(blank=True, default=''), ), migrations.AlterField( model_name='sqlrepeatrecordattempt', name='traceback', field=models.TextField(blank=True, default=''), ), ]
examples/vocab.py
lyeoni/nlp-preprocessing
152
91306
import argparse from collections import Counter, OrderedDict from prenlp.tokenizer import * TOKENIZER = {'nltk_moses': NLTKMosesTokenizer(), 'mecab' : Mecab()} class Vocab: """Defines a vocabulary object that will be used to numericalize text. Args: vocab_size (int) : the maximum size of the vocabulary pad_token (str) : token that indicates 'padding' unk_token (str) : token that indicates 'unknown word' bos_token (str) : token that indicates 'beginning of sentence' eos_token (str) : token that indicates 'end of sentence' """ def __init__(self, vocab_size: int = 16000, pad_token: str = '[PAD]', unk_token: str = '[UNK]', bos_token: str = '[BOS]', eos_token: str = '[EOS]'): self.vocab_size = vocab_size self.pad_token = pad_token self.unk_token = unk_token self.bos_token = bos_token self.eos_token = eos_token self.special_tokens = [pad_token, unk_token, bos_token, eos_token] self.freqs = Counter() self.vocab = OrderedDict() # Initialize vocabulary with special tokens for special_token in self.special_tokens: self.vocab[special_token] = len(self.vocab) def build(self, corpus, tokenizer, max_sentence_length=100000): """Build vocabulary with given corpus and tokenizer. """ with open(corpus, 'r', encoding='utf-8') as reader: for i, line in enumerate(reader.readlines()): if len(line) >= max_sentence_length: line = line[:max_sentence_length] tokens = tokenizer.tokenize(line.strip()) self.freqs.update(tokens) for token, freq in self.freqs.most_common(self.vocab_size-len(self.special_tokens)): self.vocab[token] = len(self.vocab) def save(self, path, postfix='.vocab'): """Save vocabulary. """ with open(path+postfix, 'w', encoding='utf-8') as writer: for token, id in self.vocab.items(): writer.write('{token}\t{id}\n'.format(token=token, id=id)) def __len__(self): return len(self.vocab) def build(args): if args.tokenizer == 'sentencepiece': tokenizer = SentencePiece.train(input = args.corpus, model_prefix = args.prefix, vocab_size = args.vocab_size, model_type = args.model_type, character_coverage = args.character_coverage, max_sentence_length = args.max_sentence_length, pad_token = args.pad_token, unk_token = args.unk_token, bos_token = args.bos_token, eos_token = args.eos_token) else: tokenizer = TOKENIZER[args.tokenizer] vocab = Vocab(vocab_size = args.vocab_size, pad_token = args.pad_token, unk_token = args.unk_token, bos_token = args.bos_token, eos_token = args.eos_token) vocab.build(args.corpus, tokenizer, args.max_sentence_length) vocab.save(args.prefix) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--corpus', required=True, type=str, help='one-sentence-per-line corpus file') parser.add_argument('--prefix', required=True, type=str, help='output vocab(or sentencepiece model) name prefix') parser.add_argument('--tokenizer', default='sentencepiece', type=str, help='tokenizer to tokenize input corpus. available: sentencepiece, '+', '.join(TOKENIZER.keys())) parser.add_argument('--vocab_size', default=16000, type=int, help='the maximum size of the vocabulary') parser.add_argument('--character_coverage', default=1.0, type=float, help='amount of characters covered by the model, good defaults are: 0.9995 for languages with rich character set\ like Japanse or Chinese and 1.0 for other languages with small character set') parser.add_argument('--model_type', default='bpe', type=str, help='sentencepiece model type. Choose from unigram, bpe, char, or word') parser.add_argument('--max_sentence_length', default=100000, type=int, help='The maximum input sequence length') parser.add_argument('--pad_token', default='[PAD]', type=str, help='token that indicates padding') parser.add_argument('--unk_token', default='[UNK]', type=str, help='token that indicates unknown word') parser.add_argument('--bos_token', default='[BOS]', type=str, help='token that indicates beginning of sentence') parser.add_argument('--eos_token', default='[EOS]', type=str, help='token that indicates end of sentence') args = parser.parse_args() build(args)
airmozilla/main/views/pages.py
mozilla/airmozilla
115
91307
<reponame>mozilla/airmozilla import datetime import hashlib import urllib import time import collections import urlparse import requests from django import http from django.conf import settings from django.contrib.sites.requests import RequestSite from django.shortcuts import get_object_or_404, redirect, render from django.core.cache import cache from django.views.decorators.cache import never_cache from django.views.generic.base import View from django.db.models import Count, Q, F from django.db import transaction from django.core.urlresolvers import reverse from django.template import engines from django.utils import timezone from jsonview.decorators import json_view from airmozilla.main.models import ( Event, EventOldSlug, Tag, Channel, EventHitStats, CuratedGroup, Picture, VidlySubmission, EventLiveHits, Chapter, VidlyTagDomain, ) from airmozilla.base.utils import ( paginate, edgecast_tokenize, akamai_tokenize, ) from airmozilla.main.templatetags.jinja_helpers import thumbnail from airmozilla.search.models import LoggedSearch from airmozilla.comments.models import Discussion from airmozilla.surveys.models import Survey # from airmozilla.subtitles.models import AmaraVideo from airmozilla.closedcaptions.models import ClosedCaptionsTranscript from airmozilla.manage import vidly from airmozilla.manage import related from airmozilla.base import mozillians from airmozilla.staticpages.views import staticpage from airmozilla.main import cloud from airmozilla.main.views import is_contributor, is_employee from airmozilla.main import forms def page(request, template): """Base page: renders templates bare, used for static pages.""" return render(request, template) def home(request, page=1, channel_slug=settings.DEFAULT_CHANNEL_SLUG): """Paginated recent videos and live videos.""" channels = Channel.objects.filter(slug=channel_slug) if not channels.count(): if channel_slug == settings.DEFAULT_CHANNEL_SLUG: # then, the Main channel hasn't been created yet Channel.objects.create( name=settings.DEFAULT_CHANNEL_NAME, slug=settings.DEFAULT_CHANNEL_SLUG ) channels = Channel.objects.filter(slug=channel_slug) else: raise http.Http404('Channel not found') request.channels = channels privacy_filter = {} privacy_exclude = {} archived_events = Event.objects.archived() if request.user.is_active: if is_contributor(request.user): privacy_exclude = {'privacy': Event.PRIVACY_COMPANY} else: # privacy_filter = {'privacy': Event.PRIVACY_PUBLIC} privacy_exclude = {'privacy': Event.PRIVACY_COMPANY} archived_events = archived_events.approved() if privacy_filter: archived_events = archived_events.filter(**privacy_filter) elif privacy_exclude: archived_events = archived_events.exclude(**privacy_exclude) archived_events = archived_events.order_by('-start_time') archived_events = archived_events.select_related('picture') found_tags = [] if request.GET.getlist('tag'): requested_tags = request.GET.getlist('tag') for each in requested_tags: found_tags.extend(Tag.objects.filter(name__iexact=each)) if len(found_tags) < len(requested_tags): # invalid tags were used in the query string url = reverse('main:home') if found_tags: # some were good url += '?%s' % urllib.urlencode({ 'tag': [x.name for x in found_tags] }, True) return redirect(url, permanent=True) archived_events = archived_events.filter(tags__in=found_tags) if found_tags: # no live events when filtering by tag live_events = Event.objects.none() else: live_events = (Event.objects.live() .order_by('start_time')) if not request.user.is_active: live_events = live_events.approved() if privacy_filter: live_events = live_events.filter(**privacy_filter) elif privacy_exclude: live_events = live_events.exclude(**privacy_exclude) # apply the mandatory channels filter # but only do this if it's not filtered by tags live_events = live_events.filter(channels=channels) archived_events = archived_events.filter(channels=channels) live_events = live_events.select_related('picture') if channels and channels[0].reverse_order: archived_events = archived_events.reverse() archived_paged = paginate(archived_events, page, 10) # to simplify the complexity of the template when it tries to make the # pagination URLs, we just figure it all out here next_page_url = prev_page_url = None channel = channels[0] if archived_paged.has_next(): if channel.slug == settings.DEFAULT_CHANNEL_SLUG: next_page_url = reverse( 'main:home', args=(archived_paged.next_page_number(),) ) else: next_page_url = reverse( 'main:home_channels', args=(channel.slug, archived_paged.next_page_number()) ) if archived_paged.has_previous(): if channel.slug == settings.DEFAULT_CHANNEL_SLUG: prev_page_url = reverse( 'main:home', args=(archived_paged.previous_page_number(),) ) else: prev_page_url = reverse( 'main:home_channels', args=(channel.slug, archived_paged.previous_page_number()) ) events_qs = Event.objects.archived().all() if request.user.is_active: if is_contributor(request.user): feed_privacy = 'contributors' events_qs = events_qs.exclude(privacy=Event.PRIVACY_COMPANY) else: feed_privacy = 'company' else: events_qs = events_qs.filter(privacy=Event.PRIVACY_PUBLIC) feed_privacy = 'public' channel_children = [] for child in channel.get_children().order_by('name'): channel_children.append(( child, events_qs.filter(channels=child).count() )) curated_groups_map = collections.defaultdict(list) curated_groups = ( CuratedGroup.objects.all() .values_list('event_id', 'name') .order_by('name') ) for event_id, name in curated_groups: curated_groups_map[event_id].append(name) def get_curated_groups(event): return curated_groups_map.get(event.id) context = { 'events': archived_paged, 'live_events': live_events, 'tags': found_tags, 'Event': Event, 'channel': channel, 'channel_children': channel_children, 'feed_privacy': feed_privacy, 'next_page_url': next_page_url, 'prev_page_url': prev_page_url, 'get_curated_groups': get_curated_groups, } return render(request, 'main/home.html', context) def can_view_event(event, user): """return True if the current user has right to view this event""" if event.privacy == Event.PRIVACY_PUBLIC: return True elif not user.is_active: return False # you're logged in if event.privacy == Event.PRIVACY_COMPANY: # but then it's not good enough to be contributor if is_contributor(user): return False else: if not is_contributor(user): # staff can always see it return True curated_groups = [ x[0] for x in CuratedGroup.objects.filter(event=event).values_list('name') ] if curated_groups: return any( [mozillians.in_group(user.email, x) for x in curated_groups] ) return True class EventView(View): """Video, description, and other metadata.""" template_name = 'main/event.html' def cant_view_event(self, event, request): """return a response appropriate when you can't view the event""" if request.user.is_authenticated(): return redirect('main:permission_denied', event.slug) else: desired_url = reverse('main:event', args=(event.slug,)) url = reverse('main:login') return redirect('%s?next=%s' % (url, urllib.quote(desired_url))) def cant_find_event(self, request, slug): """return an appropriate response if no event can be found""" return staticpage(request, slug) def can_view_event(self, event, request): """wrapper on the utility function can_view_event()""" return can_view_event(event, request.user) def get_default_context(self, event, request): context = {} prefix = request.is_secure() and 'https' or 'http' root_url = '%s://%s' % (prefix, RequestSite(request).domain) url = reverse('main:event_video', kwargs={'slug': event.slug}) absolute_url = root_url + url context['embed_code'] = ( '<iframe src="%s" ' 'width="640" height="380" frameborder="0" allowfullscreen>' '</iframe>' % absolute_url ) context['embed_code_big'] = ( '<iframe src="%s" ' 'width="896" height="524" frameborder="0" allowfullscreen>' '</iframe>' % absolute_url ) return context def get_event(self, slug, request): try: return Event.objects.get(slug=slug) except Event.DoesNotExist: try: return Event.objects.get(slug__iexact=slug) except Event.DoesNotExist: try: old_slug = EventOldSlug.objects.get(slug=slug) return redirect('main:event', slug=old_slug.event.slug) except EventOldSlug.DoesNotExist: # does it exist as a static page if slug.isdigit(): # it might be the ID of the event try: return Event.objects.get(id=slug) except Event.DoesNotExist: # not that either pass return self.cant_find_event(request, slug) @staticmethod def get_vidly_information(event, tag): cache_key = 'event_vidly_information-{}'.format(event.id) from_cache = cache.get(cache_key) if from_cache is not None: return from_cache # It was not cached, we have to figure it out vidly_tag = hd = None if ( not (event.is_pending() or event.is_processing()) and event.is_public() and event.has_vidly_template() and event.template_environment ): if event.template_environment.get('tag'): vidly_tag = tag or event.template_environment['tag'] hd = False # default vidly_submissions = ( VidlySubmission.objects .filter(event=event, tag=vidly_tag) .order_by('-submission_time') ) for vidly_submission in vidly_submissions.values('hd'): hd = vidly_submission['hd'] break cache.set(cache_key, (vidly_tag, hd), 60 * 60) return vidly_tag, hd def get(self, request, slug): event = self.get_event(slug, request) if isinstance(event, http.HttpResponse): return event if not self.can_view_event(event, request): return self.cant_view_event(event, request) tag = request.GET.get('tag') warning = None ok_statuses = ( Event.STATUS_SCHEDULED, Event.STATUS_PENDING, Event.STATUS_PROCESSING, ) if event.status not in ok_statuses: if not request.user.is_superuser: self.template_name = 'main/event_not_scheduled.html' else: warning = "Event is not publicly visible - not scheduled." if event.approval_set.filter(approved=False).exists(): if not request.user.is_active: return http.HttpResponse('Event not approved') else: warning = "Event is not publicly visible - not yet approved." hits = None # assume this to false to start with can_edit_chapters = False template_tagged = '' if event.template and not event.is_upcoming(): # The only acceptable way to make autoplay be on # is to send ?autoplay=true # All other attempts will switch it off. autoplay = request.GET.get('autoplay', 'false') == 'true' try: template_tagged = get_video_tagged( event, request, autoplay=autoplay, tag=tag, ) except VidlySubmission.DoesNotExist: return http.HttpResponseBadRequest( 'Tag %s does not exist for this event' % (tag,) ) stats_query = ( EventHitStats.objects.filter(event=event) .values_list('total_hits', flat=True) ) for total_hits in stats_query: hits = total_hits # if the event has a template is not upcoming if not event.is_live() and event.is_scheduled(): # ...and is not live, then if request.user.is_active: can_edit_chapters = True can_manage_edit_event = ( request.user.is_active and request.user.is_staff and request.user.has_perm('main.change_event') ) can_edit_event = request.user.is_active can_edit_discussion = ( can_edit_event and # This is a little trick to avoid waking up the # SimpleLazyObject on the user. If the .is_active is true # the ID will have already been set by the session. # So doing this comparison instead avoids causing a # select query on the auth_user table. request.user.pk == event.creator_id and Discussion.objects.filter(event=event).exists() ) request.channels = event.channels.all() # needed for the open graph stuff event.url = reverse('main:event', args=(event.slug,)) context = self.get_default_context(event, request) context.update({ 'event': event, 'video': template_tagged, 'warning': warning, 'can_manage_edit_event': can_manage_edit_event, 'can_edit_event': can_edit_event, 'can_edit_discussion': can_edit_discussion, 'can_edit_chapters': can_edit_chapters, 'Event': Event, 'hits': hits, 'tags': [t.name for t in event.tags.all()], 'channels': request.channels, # needed for the _event_privacy.html template 'curated_groups': CuratedGroup.get_names(event), }) context['chapters'] = Chapter.objects.filter( event=event, is_active=True, ) # By default, we want to hint in the DOM that this is an HD # video. context['hd'] = event.is_scheduled() and not event.is_upcoming() vidly_tag, vidly_hd = self.get_vidly_information(event, tag) if vidly_tag: context['vidly_tag'] = vidly_tag context['vidly_hd'] = vidly_hd if not vidly_hd: context['hd'] = False # If the event is in the processing state (or pending), we welcome # people to view it but it'll say that the video isn't ready yet. # But we'll also try to include an estimate of how long we think # it will take until it's ready to be viewed. context['estimated_time_left'] = None context['time_run'] = None if ( (event.is_processing() or event.is_pending()) and event.duration and event.template_environment.get('tag') ): vidly_submissions = ( VidlySubmission.objects .filter(event=event, tag=event.template_environment.get('tag')) .order_by('-submission_time') ) for vidly_submission in vidly_submissions[:1]: context['estimated_time_left'] = ( vidly_submission.get_estimated_time_left() ) context['time_run'] = ( ( timezone.now() - vidly_submission.submission_time ).seconds ) if event.pin: if ( not request.user.is_authenticated() or not is_employee(request.user) ): entered_pins = request.session.get('entered_pins', []) if event.pin not in entered_pins: self.template_name = 'main/event_requires_pin.html' context['pin_form'] = forms.PinForm() try: context['discussion'] = Discussion.objects.get(event=event) # The name of the channel we publish to fanout on when there's # changes to this events comments. context['subscription_channel_comments'] = 'comments-{}'.format( event.id ) except Discussion.DoesNotExist: context['discussion'] = {'enabled': False} context['subscription_channel_status'] = 'event-{}'.format(event.id) # amara_videos = AmaraVideo.objects.filter( # event=event, # transcript__isnull=False, # ) # context['amara_video'] = None # for amara_video in amara_videos.order_by('-modified')[:1]: # context['amara_video'] = amara_video context['closedcaptions'] = None for connection in ClosedCaptionsTranscript.objects.filter(event=event): assert connection.closedcaptions.transcript context['closedcaptions'] = connection.closedcaptions cache_key = 'event_survey_id_%s' % event.id context['survey_id'] = cache.get(cache_key, -1) if context['survey_id'] == -1: # not known in cache try: survey = Survey.objects.get( events=event, active=True ) cache.set(cache_key, survey.id, 60 * 60 * 24) context['survey_id'] = survey.id except Survey.DoesNotExist: cache.set(cache_key, None, 60 * 60 * 24) context['survey_id'] = None if settings.LOG_SEARCHES: if request.session.get('logged_search'): pk, time_ago = request.session.get('logged_search') age = time.time() - time_ago if age <= 5: # the search was made less than 5 seconds ago try: logged_search = LoggedSearch.objects.get(pk=pk) logged_search.event_clicked = event logged_search.save() except LoggedSearch.DoesNotExist: pass response = render(request, self.template_name, context) self._set_csp_update(response, event) return response def _set_csp_update(self, response, event): """Hack alert! We need to, potentially, update the CSP at run time if the video you're trying to watch is a Vid.ly video. Vid.ly is embedded by simply using `https://vid.ly/:shortcode` but internally they will redirect to a AWS CloudFront domain which we might not have prepared in our CSP settings. So let's update that on the fly. """ cache_key = 'custom_csp_update:{}'.format(event.id) update = cache.get(cache_key) if update is not None: # it was set, use that and exit early if update: response._csp_update = update return if not event.template: return if event.is_upcoming() or event.is_live() or not event.is_scheduled(): return if 'vid.ly' not in event.template.name.lower(): return if not event.template_environment.get('tag'): return tag = event.template_environment['tag'] update = get_vidly_csp_headers(tag, private=not event.is_public()) cache.set(cache_key, update, 60 * 60) # Now we've figured out what headers to update, set it on the response if update: response._csp_update = update def post(self, request, slug): event = get_object_or_404(Event, slug=slug) pin_form = forms.PinForm(request.POST, instance=event) if pin_form.is_valid(): entered_pins = self.request.session.get('entered_pins', []) pin = pin_form.cleaned_data['pin'] if pin not in entered_pins: entered_pins.append(pin) request.session['entered_pins'] = entered_pins return redirect('main:event', slug=slug) context = { 'event': event, 'pin_form': pin_form, } return render(request, 'main/event_requires_pin.html', context) def get_vidly_csp_headers(tag, private=False): token = None if private: token = vidly.tokenize(tag, 90) headers = {} def get_netloc(type_, url_format): netloc = None try: found = VidlyTagDomain.objects.get( tag=tag, type=type_, ) if found.private != private: # The tag has changed! found.delete() raise VidlyTagDomain.DoesNotExist elif found.domain == 'm.vid.ly': # pragma: no cover # In a previous life, airmozilla might have attempted to # look up what the CDN domain was and if it failed, # Vid.ly would just redirect to 'https://m.vid.ly' which # is NOT the right CDN domain. We shouldn't have stored # that. # This knowledge was added in June 2017 and from now on # we never save this as the domain so it should cease. found.delete() raise VidlyTagDomain.DoesNotExist else: netloc = found.domain except VidlyTagDomain.DoesNotExist: url = url_format.format( tag ) if token: url += '&token={}'.format(token) head_response = requests.head(url) if head_response.status_code == 302: if head_response.headers['Location'] == 'https://m.vid.ly': # Basically, it didn't work. # When vid.ly can't redirect to the actual file, for # some reason it instead redirects to the exact # URL 'https://m.vid.ly'. For example: # # curl -v https://vid.ly/l1c2w5/blalbla # ... # < HTTP/1.1 302 Found # ... # < Location: https://m.vid.ly # # Odd right? But it basically means to use that we # we not able to do the lookup. Sorry. return netloc = urlparse.urlparse( head_response.headers['Location'] ).netloc assert netloc, head_response.headers['Location'] VidlyTagDomain.objects.create( tag=tag, type=type_, private=private, domain=netloc, ) return netloc media_netloc = get_netloc('webm', settings.VIDLY_VIDEO_URL_FORMAT) if media_netloc: headers['media-src'] = media_netloc # In almost all cases, the poster image is on the same domain # as the video. So let's use that. # Later we're going to try to do a specific lookup for the poster. # If that's better/different that becomes the added domain # for 'img-src' instead. headers['img-src'] = media_netloc # There is no way to pre-lookup what the actual CDN domain is # for the webvtt.vtt file is so let's hope for the best and # reuse the the domain for media on the connect-src too. headers['connect-src'] = media_netloc lock_cache_key = 'poster_netloc_failed:{}'.format(tag) if not cache.get(lock_cache_key): img_netloc = get_netloc('poster', settings.VIDLY_POSTER_URL_FORMAT) if img_netloc: headers['img-src'] = img_netloc else: # If that failed, don't bother trying again. For a while. cache.set(lock_cache_key, True, 60 * 60) return headers class EventByIDView(EventView): def get(self, request, id): event = get_object_or_404(Event, id=id) if not self.can_view_event(event, request): return self.cant_view_event(event, request) return redirect('main:event', event.slug) def get_video_tagged(event, request, autoplay=False, tag=None): def poster_url(geometry='896x504', crop='center'): image = event.picture and event.picture.file or event.placeholder_img return thumbnail(image, geometry, crop=crop).url context = { 'md5': lambda s: hashlib.md5(s).hexdigest(), 'event': event, 'request': request, 'datetime': datetime.datetime.utcnow(), 'vidly_tokenize': vidly.tokenize, 'edgecast_tokenize': edgecast_tokenize, 'akamai_tokenize': akamai_tokenize, 'popcorn_url': event.popcorn_url, 'autoplay': autoplay and 'true' or 'false', # javascript 'poster_url': poster_url, } if isinstance(event.template_environment, dict): context.update(event.template_environment) if tag: submissions = VidlySubmission.objects.filter( tag=tag, event=event ) if not submissions.exists(): raise VidlySubmission.DoesNotExist(tag) context['tag'] = tag template = engines['backend'].from_string(event.template.content) try: template_tagged = template.render(context) except vidly.VidlyTokenizeError, msg: template_tagged = '<code style="color:red">%s</code>' % msg return template_tagged class EventVideoView(EventView): template_name = 'main/event_video.html' def can_view_event(self, event, request): if self.embedded: if event.privacy != Event.PRIVACY_PUBLIC: # If you are the owner of it, it's fine, if we don't # want any warnings if ( self.no_warning and request.user.is_active and request.user == event.creator ): return True return False return True else: return super(EventVideoView, self).can_view_event(event, request) def cant_view_event(self, event, request): """return a response appropriate when you can't view the event""" return render(request, self.template_name, { 'error': "Not a public event", 'event': None, }) def cant_find_event(self, request, slug): """return an appropriate response if no event can be found""" return render(request, self.template_name, { 'error': "Event not found", 'event': None }) def get_default_context(self, event, request): context = {} prefix = request.is_secure() and 'https' or 'http' root_url = '%s://%s' % (prefix, RequestSite(request).domain) url = reverse('main:event', kwargs={'slug': event.slug}) context['absolute_url'] = root_url + url context['embedded'] = self.embedded context['no_warning'] = self.no_warning context['no_footer'] = request.GET.get('no-footer') return context def get(self, request, slug): self.embedded = request.GET.get('embedded', 'true') == 'true' self.no_warning = request.GET.get('no-warning') response = super(EventVideoView, self).get(request, slug) # ALLOWALL is what YouTube uses for sharing if self.embedded: response['X-Frame-Options'] = 'ALLOWALL' return response class EventDiscussionView(EventView): template_name = 'main/event_discussion.html' def can_edit_discussion(self, event, request): # this might change in the future to only be # employees and vouched mozillians return ( request.user.is_active and request.user == event.creator and Discussion.objects.filter(event=event) ) def cant_edit_discussion(self, event, user): return redirect('main:event', event.slug) def get_event_safely(self, slug, request): event = self.get_event(slug, request) if isinstance(event, http.HttpResponse): return event if not self.can_view_event(event, request): return self.cant_view_event(event, request) if not self.can_edit_discussion(event, request): return self.cant_edit_discussion(event, request) return event def get(self, request, slug, form=None): event = self.get_event_safely(slug, request) if isinstance(event, http.HttpResponse): return event discussion = Discussion.objects.get(event=event) if form is None: initial = { 'moderators': ', '.join( x.email for x in discussion.moderators.all() ), } form = forms.EventDiscussionForm( instance=discussion, event=event, initial=initial, ) context = { 'event': event, 'form': form, } return render(request, self.template_name, context) @transaction.atomic @json_view def post(self, request, slug): event = self.get_event_safely(slug, request) if isinstance(event, http.HttpResponse): return event if 'cancel' in request.POST: return redirect('main:event', event.slug) discussion = Discussion.objects.get(event=event) form = forms.EventDiscussionForm( request.POST, instance=discussion, event=event, ) if form.is_valid(): form.save() return redirect('main:event', event.slug) return self.get(request, slug, form=form) @json_view def all_tags(request): tags = list(Tag.objects.all().values_list('name', flat=True)) return {'tags': tags} def related_content(request, slug): event = get_object_or_404(Event, slug=slug) events, __, __ = find_related_events(event, request.user) curated_groups_map = collections.defaultdict(list) def get_curated_groups(event): return curated_groups_map.get('event_id') context = { 'events': events, 'get_curated_groups': get_curated_groups, } return render(request, 'main/es.html', context) def find_related_events( event, user, boost_title=None, boost_tags=None, size=None, use_title=True, use_tags=True, explain=False ): assert use_title or use_tags if boost_title is None: boost_title = settings.RELATED_CONTENT_BOOST_TITLE if boost_tags is None: boost_tags = settings.RELATED_CONTENT_BOOST_TAGS if size is None: size = settings.RELATED_CONTENT_SIZE index = related.get_index() doc_type = 'event' es = related.get_connection() fields = ['title'] if list(event.channels.all()) != [ Channel.objects.get(slug=settings.DEFAULT_CHANNEL_SLUG)]: fields.append('channel') mlt_queries = [] if use_title: mlt_queries.append({ 'more_like_this': { 'fields': ['title'], # 'analyzer': 'snowball', 'docs': [ { '_index': index, '_type': doc_type, '_id': event.id }], 'min_term_freq': 1, 'max_query_terms': 20, 'min_doc_freq': 1, # 'max_doc_freq': 2, # 'stop_words': ['your', 'about'], 'boost': boost_title, } }) if use_tags and event.tags.all().exists(): fields.append('tags') mlt_queries.append({ 'more_like_this': { 'fields': ['tags'], 'docs': [ { '_index': index, '_type': doc_type, '_id': event.id }], 'min_term_freq': 1, 'max_query_terms': 20, 'min_doc_freq': 1, 'boost': boost_tags, } }) query_ = { 'bool': { 'should': mlt_queries, } } if user.is_active: if is_contributor(user): query = { 'fields': fields, 'query': query_, 'filter': { 'bool': { 'must_not': { 'term': { 'privacy': Event.PRIVACY_COMPANY } } } } } else: query = { 'fields': fields, 'query': query_ } else: query = { 'fields': fields, 'query': query_, "filter": { "bool": { "must": { "term": {"privacy": Event.PRIVACY_PUBLIC} } } } } ids = [] query['from'] = 0 query['size'] = size query['explain'] = explain hits = es.search(query, index=index)['hits'] scores = {} explanations = [] for doc in hits['hits']: _id = int(doc['_id']) scores[_id] = doc['_score'] ids.append(_id) if explain: explanations.append(doc['_explanation']) events = Event.objects.scheduled_or_processing().filter(id__in=ids) if user.is_active: if is_contributor(user): events = events.exclude(privacy=Event.PRIVACY_COMPANY) else: events = events.filter(privacy=Event.PRIVACY_PUBLIC) events = sorted(events, key=lambda e: ids.index(e.id)) return (events, scores, explanations) def channels(request): channels = [] privacy_filter = {} privacy_exclude = {} if request.user.is_active: if is_contributor(request.user): feed_privacy = 'contributors' privacy_exclude = {'privacy': Event.PRIVACY_COMPANY} else: feed_privacy = 'company' else: privacy_filter = {'privacy': Event.PRIVACY_PUBLIC} feed_privacy = 'public' events = Event.objects.filter(status=Event.STATUS_SCHEDULED) if privacy_filter: events = events.filter(**privacy_filter) elif privacy_exclude: events = events.exclude(**privacy_exclude) children_channels = Channel.objects.filter( parent__parent__isnull=True, parent__isnull=False, ) parents = collections.defaultdict(list) for channel in children_channels: parents[channel.parent_id].append(channel) channels_qs = ( Channel.objects .filter(parent__isnull=True) .exclude(slug=settings.DEFAULT_CHANNEL_SLUG) ) # make a dict of parental counts subchannel_counts = {} qs = ( Channel.objects .filter(parent__isnull=False) .values('parent_id') .order_by() # necessary because the model has a default ordering .annotate(Count('parent')) ) for each in qs: subchannel_counts[each['parent_id']] = each['parent__count'] # make a dict of events counts by channel event_counts = {} qs = ( Event.channels.through.objects.filter(event__in=events) .values('channel_id') .annotate(Count('channel')) ) for each in qs: event_counts[each['channel_id']] = each['channel__count'] for channel in channels_qs: event_count = event_counts.get(channel.id, 0) subchannel_count = subchannel_counts.get(channel.id, 0) subchannels = parents.get(channel.id, []) if event_count or subchannel_count: channels.append(( channel, event_count, subchannel_count, subchannels )) data = { 'channels': channels, 'feed_privacy': feed_privacy, } return render(request, 'main/channels.html', data) class _Tag(object): def __init__(self, name, count): self.name = name self.count = count def tag_cloud(request, THRESHOLD=1): context = {} qs = ( Event.tags.through.objects .values('tag_id') .annotate(Count('tag__id')) ) if request.user.is_active: if is_contributor(request.user): # because of a bug in Django we can't use qs.exclude() qs = qs.filter( Q(event__privacy=Event.PRIVACY_CONTRIBUTORS) | Q(event__privacy=Event.PRIVACY_PUBLIC) ) else: qs = qs.filter(event__privacy=Event.PRIVACY_PUBLIC) tags_map = dict( (x['id'], x['name']) for x in Tag.objects.all() .values('id', 'name') ) tags = [] for each in qs.values('tag__id__count', 'tag_id'): count = each['tag__id__count'] if count > THRESHOLD: tags.append(_Tag(tags_map[each['tag_id']], count)) context['tags'] = cloud.calculate_cloud( tags, steps=10 ) return render(request, 'main/tag_cloud.html', context) def permission_denied(request, slug): context = {} event = get_object_or_404(Event, slug=slug) context['event'] = event context['is_contributor'] = is_contributor(request.user) context['is_company_only'] = event.privacy == Event.PRIVACY_COMPANY curated_groups = CuratedGroup.objects.filter(event=event).order_by('name') context['curated_groups'] = [] for group in curated_groups: context['curated_groups'].append({ 'name': group.name, 'url': group.url }) return render(request, 'main/permission_denied.html', context) def contributors(request): context = {} cache_key = 'mozillians_contributors' cache_key += hashlib.md5(str(settings.CONTRIBUTORS)).hexdigest()[:10] users = cache.get(cache_key) if users is None: users = mozillians.get_contributors() cache.set(cache_key, users, 60 * 60 * 24) context['users'] = reversed(users) return render(request, 'main/contributors.html', context) @never_cache @json_view def event_livehits(request, id): event = get_object_or_404(Event, id=id) if request.method == 'POST' and event.is_live(): live_hits, _ = EventLiveHits.objects.get_or_create(event=event) if request.user.is_authenticated(): cache_key = 'event_livehits-%d' % request.user.id else: cache_key = '' for thing in ( 'HTTP_USER_AGENT', 'HTTP_ACCEPT_LANGUAGE', 'REMOVE_ADDR', ): value = request.META.get(thing) if value: cache_key += value cache_key = 'event_livehits' + hashlib.md5(cache_key).hexdigest() cache_key = cache_key[:30] counted = cache.get(cache_key) total_hits = live_hits.total_hits if not counted: # let's assume the longest possible time it's live is 12 hours cache.set(cache_key, True, 60 * 60 * 12) # we need to increment! ( EventLiveHits.objects.filter(event=event) .update(total_hits=F('total_hits') + 1) ) total_hits += 1 else: try: total_hits = EventLiveHits.objects.get(event=event).total_hits except EventLiveHits.DoesNotExist: total_hits = 0 return {'hits': total_hits} @json_view def event_processing_timenails(request, slug): event = get_object_or_404(Event, slug=slug) if not event.duration: return {'pictures': []} form = forms.ProcessingTimenailsForm(request.GET) if not form.is_valid(): return http.HttpResponseBadRequest(form.errors) percentage = min(100.0, form.cleaned_data['percent'] or 100.0) max_ = form.cleaned_data['max'] point = event.duration * percentage / 100.0 pictures = Picture.objects.filter( event=event, timestamp__isnull=False, timestamp__lte=point, ) pictures_ = [] for picture in pictures.order_by('-timestamp')[:max_]: # NOTE! This code is the same as used # in then EventChaptersThumbnailsView.get view. thumb = thumbnail( picture.file, '160x90', crop='center' ) pictures_.append({ 'id': picture.id, 'timestamp': picture.timestamp, 'thumbnail': { 'url': thumb.url, 'width': thumb.width, 'height': thumb.height, }, }) pictures_.reverse() return {'pictures': pictures_} @never_cache @json_view def event_status(request, slug): for values in Event.objects.filter(slug=slug).values('status'): return {'status': values['status']} raise http.Http404(slug) @json_view def thumbnails(request): form = forms.ThumbnailsForm(request.GET) if not form.is_valid(): return http.HttpResponseBadRequest(form.errors) id = form.cleaned_data['id'] width = form.cleaned_data['width'] height = form.cleaned_data['height'] geometry = '%sx%s' % (width, height) event = get_object_or_404(Event, id=id) thumbnails = [] for picture in Picture.objects.filter(event=event).order_by('created'): thumb = thumbnail(picture.file, geometry, crop='center') thumbnails.append(thumb.url) return {'thumbnails': thumbnails}
vim/autoload/conque_term/conque_sole_shared_memory.py
adifinem/dotvim
413
91312
# FILE: autoload/conque_term/conque_sole_shared_memory.py # AUTHOR: <NAME> <<EMAIL>> # WEBSITE: http://conque.googlecode.com # MODIFIED: 2011-09-02 # VERSION: 2.3, for Vim 7.0 # LICENSE: # Conque - Vim terminal/console emulator # Copyright (C) 2009-2011 <NAME> # # MIT License # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """ Wrapper class for shared memory between Windows python processes Adds a small amount of functionality to the standard mmap module. """ import mmap import sys # PYTHON VERSION CONQUE_PYTHON_VERSION = sys.version_info[0] if CONQUE_PYTHON_VERSION == 2: import cPickle as pickle else: import pickle class ConqueSoleSharedMemory(): # is the data being stored not fixed length fixed_length = False # maximum number of bytes per character, for fixed width blocks char_width = 1 # fill memory with this character when clearing and fixed_length is true FILL_CHAR = None # serialize and unserialize data automatically serialize = False # size of shared memory, in bytes / chars mem_size = None # size of shared memory, in bytes / chars mem_type = None # unique key, so multiple console instances are possible mem_key = None # mmap instance shm = None # character encoding, dammit encoding = 'utf-8' # pickle terminator TERMINATOR = None def __init__(self, mem_size, mem_type, mem_key, fixed_length=False, fill_char=' ', serialize=False, encoding='utf-8'): """ Initialize new shared memory block instance Arguments: mem_size -- Memory size in characters, depends on encoding argument to calcuate byte size mem_type -- Label to identify what will be stored mem_key -- Unique, probably random key to identify this block fixed_length -- If set to true, assume the data stored will always fill the memory size fill_char -- Initialize memory block with this character, only really helpful with fixed_length blocks serialize -- Automatically serialize data passed to write. Allows storing non-byte data encoding -- Character encoding to use when storing character data """ self.mem_size = mem_size self.mem_type = mem_type self.mem_key = mem_key self.fixed_length = fixed_length self.fill_char = fill_char self.serialize = serialize self.encoding = encoding self.TERMINATOR = str(chr(0)).encode(self.encoding) if CONQUE_PYTHON_VERSION == 3: self.FILL_CHAR = fill_char else: self.FILL_CHAR = unicode(fill_char) if fixed_length and encoding == 'utf-8': self.char_width = 4 def create(self, access='write'): """ Create a new block of shared memory using the mmap module. """ if access == 'write': mmap_access = mmap.ACCESS_WRITE else: mmap_access = mmap.ACCESS_READ name = "conque_%s_%s" % (self.mem_type, self.mem_key) self.shm = mmap.mmap(0, self.mem_size * self.char_width, name, mmap_access) if not self.shm: return False else: return True def read(self, chars=1, start=0): """ Read data from shared memory. If this is a fixed length block, read 'chars' characters from memory. Otherwise read up until the TERMINATOR character (null byte). If this memory is serialized, unserialize it automatically. """ # go to start position self.shm.seek(start * self.char_width) if self.fixed_length: chars = chars * self.char_width else: chars = self.shm.find(self.TERMINATOR) if chars == 0: return '' shm_str = self.shm.read(chars) # return unpickled byte object if self.serialize: return pickle.loads(shm_str) # decode byes in python 3 if CONQUE_PYTHON_VERSION == 3: return str(shm_str, self.encoding) # encoding if self.encoding != 'ascii': shm_str = unicode(shm_str, self.encoding) return shm_str def write(self, text, start=0): """ Write data to memory. If memory is fixed length, simply write the 'text' characters at 'start' position. Otherwise write 'text' characters and append a null character. If memory is serializable, do so first. """ # simple scenario, let pickle create bytes if self.serialize: if CONQUE_PYTHON_VERSION == 3: tb = pickle.dumps(text, 0) else: tb = pickle.dumps(text, 0).encode(self.encoding) else: tb = text.encode(self.encoding, 'replace') # write to memory self.shm.seek(start * self.char_width) if self.fixed_length: self.shm.write(tb) else: self.shm.write(tb + self.TERMINATOR) def clear(self, start=0): """ Clear memory block using self.fill_char. """ self.shm.seek(start) if self.fixed_length: self.shm.write(str(self.fill_char * self.mem_size * self.char_width).encode(self.encoding)) else: self.shm.write(self.TERMINATOR) def close(self): """ Close/destroy memory block. """ self.shm.close()
green/test/test_result.py
vck3000/green
686
91329
<reponame>vck3000/green # encoding: utf-8 from __future__ import unicode_literals import copy # `from doctest import DocTestCase` causes crashes, since the DocTestCase is # detected as a TestCase subclass and unittest.TestLoader.loadTestsFromModule() # called from GreenTestLoader.loadTestsFromModule() thinks it is a definition # of a test to actually try to run, and causes very weird crashes. import doctest from io import StringIO import sys import os import unittest import tempfile from green.config import default_args from green.output import Colors, GreenStream from green.result import ( GreenTestResult, proto_test, ProtoTest, proto_error, ProtoTestResult, BaseTestResult, ) try: from unittest.mock import MagicMock, patch except ImportError: from mock import MagicMock, patch from coverage import coverage, CoverageException class MyProtoTest(ProtoTest, object): """ For quickly making a ProtoTest """ def __init__(self): super(MyProtoTest, self).__init__() self.module = "my_module" self.class_name = "MyClass" self.method_name = "myMethod" self.docstr_part = "My docstring" self.subtest_part = "" class TestBaseTestResult(unittest.TestCase): def test_stdoutOutput(self): """ recordStdout records output. """ btr = BaseTestResult(None, None) pt = ProtoTest() o = "some output" btr.recordStdout(pt, o) self.assertEqual(btr.stdout_output[pt], o) def test_stdoutNoOutput(self): """ recordStdout ignores empty output sent to it """ btr = BaseTestResult(None, None) pt = ProtoTest() btr.recordStdout(pt, "") self.assertEqual(btr.stdout_output, {}) def test_displayStdout(self): """ displayStdout displays captured stdout """ stream = StringIO() noise = "blah blah blah" btr = BaseTestResult(stream, Colors(False)) pt = ProtoTest() btr.stdout_output[pt] = noise btr.displayStdout(pt) self.assertIn(noise, stream.getvalue()) def test_stderrErrput(self): """ recordStderr records errput. """ btr = BaseTestResult(None, None) pt = ProtoTest() o = "some errput" btr.recordStderr(pt, o) self.assertEqual(btr.stderr_errput[pt], o) def test_stderrNoErrput(self): """ recordStderr ignores empty errput sent to it """ btr = BaseTestResult(None, None) pt = ProtoTest() btr.recordStderr(pt, "") self.assertEqual(btr.stderr_errput, {}) def test_displayStderr(self): """ displayStderr displays captured stderr """ stream = StringIO() noise = "blah blah blah" btr = BaseTestResult(stream, Colors(False)) pt = ProtoTest() btr.stderr_errput[pt] = noise btr.displayStderr(pt) self.assertIn(noise, stream.getvalue()) class TestProtoTestResult(unittest.TestCase): def test_addSuccess(self): """ addSuccess adds a test correctly """ ptr = ProtoTestResult() test = proto_test(MagicMock()) ptr.addSuccess(test) self.assertEqual(test, ptr.passing[0]) def test_addError(self): """ addError adds a test and error correctly """ ptr = ProtoTestResult() test = proto_test(MagicMock()) try: raise Exception except: err = proto_error(sys.exc_info()) ptr.addError(test, err) self.assertEqual(test, ptr.errors[0][0]) self.assertEqual(err, ptr.errors[0][1]) def test_addFailure(self): """ addFailure adds a test and error correctly """ ptr = ProtoTestResult() test = proto_test(MagicMock()) try: raise Exception except: err = proto_error(sys.exc_info()) ptr.addFailure(test, err) self.assertEqual(test, ptr.failures[0][0]) self.assertEqual(err, ptr.failures[0][1]) def test_addSkip(self): """ addSkip adds a test and reason correctly """ ptr = ProtoTestResult() test = proto_test(MagicMock()) reason = "some plausible reason" ptr.addSkip(test, reason) self.assertEqual(test, ptr.skipped[0][0]) self.assertEqual(reason, ptr.skipped[0][1]) def test_addExpectedFailure(self): """ addExpectedFailure adds a test and error correctly """ ptr = ProtoTestResult() test = proto_test(MagicMock()) try: raise Exception except: err = proto_error(sys.exc_info()) ptr.addExpectedFailure(test, err) self.assertEqual(test, ptr.expectedFailures[0][0]) self.assertEqual(err, ptr.expectedFailures[0][1]) def test_addUnexpectedSuccess(self): """ addUnexpectedSuccess adds a test correctly """ ptr = ProtoTestResult() test = proto_test(MagicMock()) ptr.addUnexpectedSuccess(test) self.assertEqual(test, ptr.unexpectedSuccesses[0]) @patch("green.result.ProtoTestResult.addError") @patch("green.result.ProtoTestResult.addFailure") def test_addSubTest_failure(self, mock_addFailure, mock_addError): """ addSubTest calls over to addFailure for failures """ ptr = ProtoTestResult() test = proto_test(MagicMock()) test.failureException = Exception subtest = MagicMock() err = [Exception] ptr.addSubTest(test, subtest, err) mock_addFailure.assert_called_with(subtest, err) @patch("green.result.ProtoTestResult.addError") @patch("green.result.ProtoTestResult.addFailure") def test_addSubTest_error(self, mock_addFailure, mock_addError): """ addSubTest calls over to addError for errors """ ptr = ProtoTestResult() test = proto_test(MagicMock()) test.failureException = KeyError subtest = MagicMock() err = [Exception] ptr.addSubTest(test, subtest, err) mock_addError.assert_called_with(subtest, err) class TestProtoError(unittest.TestCase): def test_str(self): """ Running a ProtoError through str() should result in a traceback string """ test_str = "noetuaoe" try: raise Exception(test_str) except: err = sys.exc_info() pe = proto_error(err) self.assertIn(test_str, str(pe)) class TestProtoTest(unittest.TestCase): def test_ProtoTestBlank(self): """ ProtoTest can be instantiated empty """ pt = ProtoTest() for i in ["module", "class_name", "docstr_part", "method_name"]: self.assertEqual("", getattr(pt, i, None)) def test_str(self): """ Running a ProtoTest through str() is the same as getting .dotted_name """ pt = ProtoTest() pt.module = "aoeusnth" self.assertEqual(str(pt), pt.dotted_name) def test_ProtoTestFromTest(self): """ Passing a test into ProtoTest copies out the relevant info. """ module = "green.test.test_result" class_name = "Small" docstr_part = "stuff" method_name = "test_method" class Small(unittest.TestCase): def test_method(self): "stuff" pt = ProtoTest(Small("test_method")) for i in ["module", "class_name", "docstr_part", "method_name"]: self.assertEqual(locals()[i], getattr(pt, i, None)) def test_getDescription(self): """ getDescription() returns what we expect for all verbose levels """ # With a docstring class Fruit(unittest.TestCase): def test_stuff(self): "apple" pass t = proto_test(Fruit("test_stuff")) self.assertEqual(t.getDescription(1), "") self.assertEqual(t.getDescription(2), "test_stuff") self.assertEqual(t.getDescription(3), "apple") self.assertEqual(t.getDescription(4), "apple") # Without a docstring class Vegetable(unittest.TestCase): def test_stuff(self): pass t = proto_test(Vegetable("test_stuff")) self.assertEqual(t.getDescription(1), "") self.assertEqual(t.getDescription(2), "test_stuff") self.assertEqual(t.getDescription(3), "test_stuff") self.assertEqual(t.getDescription(4), "test_stuff") def test_newlineDocstring(self): """ Docstrings starting with a newline are properly handled. """ class MyTests(unittest.TestCase): def test_stuff(self): """ tricky """ pass test = proto_test(MyTests("test_stuff")) self.assertIn("tricky", test.getDescription(3)) def test_multilineDocstring(self): """ The description includes all of docstring until the first blank line. """ class LongDocs(unittest.TestCase): def test_long(self): """First line is tricky! garbage """ pass test = proto_test(LongDocs("test_long")) self.assertIn("tricky", test.getDescription(3)) self.assertNotIn("garbage", test.getDescription(3)) def test_doctest(self): """ If we parse a doctest, we get all the fields we need. """ test = """ >>> f() 42 """ def f(): return 42 parser = doctest.DocTestParser() dt = parser.get_doctest(test, {"f": f}, "doctest.name", "somefile.py", 20) dt.__module__ = "somefile" p = proto_test(doctest.DocTestCase(dt)) # short description self.assertEqual(p.getDescription(2), "doctest.name") # long description description = p.getDescription(3) self.assertIn("doctest.name", description) self.assertIn("somefile.py", description) self.assertIn("20", description) # dotted name self.assertEqual(p.dotted_name, "doctest.name") def test_class_or_module_failure(self): """ If we parse an error from a class or module failure, we get the correct result. """ p = ProtoTest() p.is_class_or_module_teardown_error = True p.name = "the thing" self.assertEqual(p.getDescription(1), "the thing") self.assertEqual(p.getDescription(2), "the thing") self.assertEqual(p.getDescription(3), "the thing") class TestGreenTestResult(unittest.TestCase): def setUp(self): self.args = copy.deepcopy(default_args) self.stream = StringIO() def tearDown(self): del self.stream del self.args @patch("green.result.GreenTestResult.printErrors") def test_stopTestRun(self, mock_printErrors): """ We ignore coverage's error about not having anything to cover. """ self.args.cov = MagicMock() self.args.cov.stop = MagicMock( side_effect=CoverageException("Different Exception") ) self.args.run_coverage = True gtr = GreenTestResult(self.args, GreenStream(self.stream)) gtr.startTestRun() self.assertRaises(CoverageException, gtr.stopTestRun) self.args.cov.stop = MagicMock( side_effect=CoverageException("No data to report") ) def test_tryRecordingStdoutStderr(self): """ Recording stdout and stderr works correctly. """ gtr = GreenTestResult(self.args, GreenStream(self.stream)) gtr.recordStdout = MagicMock() gtr.recordStderr = MagicMock() output = "apple" test1 = MagicMock() ptr1 = MagicMock() ptr1.stdout_output = {test1: output} ptr1.stderr_errput = {} errput = "banana" test2 = MagicMock() ptr2 = MagicMock() ptr2.stdout_output = {} ptr2.stderr_errput = {test2: errput} gtr.tryRecordingStdoutStderr(test1, ptr1) gtr.recordStdout.assert_called_with(test1, output) gtr.tryRecordingStdoutStderr(test2, ptr2) gtr.recordStderr.assert_called_with(test2, errput) def test_tryRecordingStdoutStderr_SubTest(self): """ Recording stdout and stderr works correctly for failed/errored SubTests. """ gtr = GreenTestResult(self.args, GreenStream(self.stream)) gtr.recordStdout = MagicMock() gtr.recordStderr = MagicMock() output = "apple" test1 = MagicMock() test1.dotted_name = "test 1" subtest1 = MagicMock() subtest1.dotted_name = "test 1: the subtest" subtest1.class_name = "SubTest" ptr1 = MagicMock() ptr1.stdout_output = {test1: output} ptr1.stderr_errput = {} errput = "banana" test2 = MagicMock() test2.dotted_name = "test 2" subtest2 = MagicMock() subtest2.dotted_name = "test 2: subtests are annoying" subtest2.class_name = "SubTest" ptr2 = MagicMock() ptr2.stdout_output = {} ptr2.stderr_errput = {test2: errput} gtr.tryRecordingStdoutStderr(subtest1, ptr1, err=True) gtr.recordStdout.assert_called_with(subtest1, output) gtr.tryRecordingStdoutStderr(subtest2, ptr2, err=True) gtr.recordStderr.assert_called_with(subtest2, errput) def test_failfastAddError(self): """ addError triggers failfast when it is set """ self.args.failfast = True gtr = GreenTestResult(self.args, GreenStream(self.stream)) self.assertEqual(gtr.failfast, True) try: raise Exception except: err = sys.exc_info() self.assertEqual(gtr.shouldStop, False) gtr.addError(MyProtoTest(), proto_error(err)) self.assertEqual(gtr.shouldStop, True) def test_failfastAddFailure(self): """ addFailure triggers failfast when it is set """ self.args.failfast = True gtr = GreenTestResult(self.args, GreenStream(self.stream)) self.assertEqual(gtr.failfast, True) try: raise Exception except: err = sys.exc_info() self.assertEqual(gtr.shouldStop, False) gtr.addFailure(MyProtoTest(), proto_error(err)) self.assertEqual(gtr.shouldStop, True) def test_failfastAddUnexpectedSuccess(self): """ addUnexpectedSuccess no longer triggers failfast when it is set """ self.args.failfast = True gtr = GreenTestResult(self.args, GreenStream(self.stream)) self.assertEqual(gtr.failfast, True) self.assertEqual(gtr.shouldStop, False) gtr.addUnexpectedSuccess(MyProtoTest()) self.assertEqual(gtr.shouldStop, False) def _outputFromVerboseTest(self): """ Start a test with verbose = 2 and get its output. """ class FakeCase(unittest.TestCase): def runTest(self): pass self.args.verbose = 2 gtr = GreenTestResult(self.args, GreenStream(self.stream)) tc = FakeCase() gtr.startTest(tc) output = self.stream.getvalue() return output.split("\n") def test_startTestVerboseTerminal(self): """ startTest() contains output we expect in verbose mode on a terminal """ self.stream.isatty = lambda: True output_lines = self._outputFromVerboseTest() # Output should look like (I'm not putting the termcolor formatting # here) # green.test.test_runner # FakeCase # test_it self.assertEqual(len(output_lines), 3) self.assertNotIn(" ", output_lines[0]) self.assertIn(" ", output_lines[1]) self.assertIn(" ", output_lines[2]) def test_startTestVerbosePipe(self): """ startTest() contains output we expect in verbose mode on a pipe """ self.stream.isatty = lambda: False output_lines = self._outputFromVerboseTest() # Output should look like (I'm not putting the termcolor formatting # here) # green.test.test_runner # FakeCase # test_it self.assertEqual(len(output_lines), 3) self.assertNotIn(" ", output_lines[0]) self.assertIn(" ", output_lines[1]) # No carriage return or extra lines printed self.assertIn("", output_lines[2]) def test_reportOutcome(self): """ _reportOutcome contains output we expect. """ self.args.verbose = 1 gtr = GreenTestResult(self.args, GreenStream(self.stream)) gtr._reportOutcome(None, ".", lambda x: x) self.assertIn(".", self.stream.getvalue()) @patch("green.result.proto_test") def test_reportOutcomeCursorUp(self, mock_proto_test): """ _reportOutcome moves the cursor up when it needs to. """ mockProtoTest = MagicMock() mockProtoTest.getDescription.return_value = "a description" mock_proto_test.return_value = mockProtoTest self.args.verbose = 2 def isatty(): return True gs = GreenStream(self.stream) gs.isatty = isatty gtr = GreenTestResult(self.args, gs) r = "a fake reason" t = MagicMock() t.__str__.return_value = "x" * 1000 gtr._reportOutcome(t, ".", lambda x: x, None, r) self.assertIn(r, self.stream.getvalue()) self.assertLess(len(self.stream.getvalue()), 2000) @patch("green.result.proto_test") def test_reportOutcomeVerbose(self, mock_proto_test): """ _reportOutcome contains output we expect in verbose mode. """ mockProtoTest = MagicMock() mockProtoTest.getDescription.return_value = "a description" mock_proto_test.return_value = mockProtoTest self.args.verbose = 2 def isatty(): return True gs = GreenStream(self.stream) gs.isatty = isatty gtr = GreenTestResult(self.args, gs) r = "a fake reason" t = MagicMock() t.__str__.return_value = "junk" gtr._reportOutcome(t, ".", lambda x: x, None, r) self.assertIn(r, self.stream.getvalue()) def test_printErrorsSkipreport(self): """ printErrors() prints the skip report. """ self.args.verbose = 1 gtr = GreenTestResult(self.args, GreenStream(self.stream)) pt = MyProtoTest() reason = "dog ate homework" gtr.addSkip(pt, reason) gtr.printErrors() self.assertIn(reason, self.stream.getvalue()) def test_printErrorsStdout(self): """ printErrors() prints out the captured stdout. """ self.args.verbose = 1 self.args.termcolor = False gtr = GreenTestResult(self.args, GreenStream(self.stream)) pt = MyProtoTest() output = "this is what the test spit out to stdout" gtr.recordStdout(pt, output) gtr.addSuccess(pt) gtr.printErrors() self.assertIn(output, self.stream.getvalue()) def test_printErrorsStdoutQuietStdoutOnSuccess(self): """ printErrors() prints out the captured stdout except when quiet_stdout is set to True for successful tests. """ self.args.quiet_stdout = True gtr = GreenTestResult(self.args, GreenStream(self.stream)) pt = MyProtoTest() output = "this is what the test should not spit out to stdout" gtr.recordStdout(pt, output) gtr.addSuccess(pt) gtr.printErrors() self.assertNotIn(output, self.stream.getvalue()) def test_printErrorsStdoutQuietStdoutOnError(self): """ printErrors() prints out the captured stdout except when quiet_stdout is set to True for successful tests, but here we are on a failing test. """ self.args.quiet_stdout = True try: raise Exception except: err = sys.exc_info() gtr = GreenTestResult(self.args, GreenStream(self.stream)) pt = MyProtoTest() output = "this is what the test should spit out to stdout" gtr.recordStdout(pt, output) gtr.addError(pt, proto_error(err)) gtr.printErrors() self.assertIn(output, self.stream.getvalue()) def test_printErrorsStderrQuietStdoutOnSuccess(self): """ printErrors() prints out the captured stdout except when quiet_stdout is set to True for successful tests. """ self.args.quiet_stdout = True gtr = GreenTestResult(self.args, GreenStream(self.stream)) pt = MyProtoTest() output = "this is what the test should not spit out to stdout" gtr.recordStderr(pt, output) gtr.addSuccess(pt) gtr.printErrors() self.assertNotIn(output, self.stream.getvalue()) def test_printErrorsNoTracebacks(self): """ printErrors() omits tracebacks for failures and errors when no_tracebacks is True """ self.args.no_tracebacks = True try: raise Exception except: err = sys.exc_info() gtr = GreenTestResult(self.args, GreenStream(self.stream)) pt = MyProtoTest() gtr.addError(pt, proto_error(err)) gtr.printErrors() self.assertNotIn("Exception", self.stream.getvalue()) def test_printErrorsDots(self): """ printErrors() looks correct in verbose=1 (dots) mode. """ try: raise Exception except: err = sys.exc_info() self.args.verbose = 1 self.args.termcolor = False gtr = GreenTestResult(self.args, GreenStream(self.stream)) gtr.addError(MyProtoTest(), proto_error(err)) gtr.printErrors() self.assertIn("\n\n", self.stream.getvalue()) self.assertIn("my_module.MyClass.myMethod", self.stream.getvalue()) self.assertIn("test_printErrorsDots", self.stream.getvalue()) self.assertIn("raise Exception", self.stream.getvalue()) self.assertIn("Error", self.stream.getvalue()) def test_printErrorsVerbose2(self): """ printErrors() looks correct in verbose=2 mode. """ try: raise Exception except: err = sys.exc_info() self.args.verbose = 2 self.args.termcolor = False gtr = GreenTestResult(self.args, GreenStream(self.stream)) gtr.addError(MyProtoTest(), proto_error(err)) gtr.printErrors() self.assertIn("\n\n", self.stream.getvalue()) self.assertIn("my_module.MyClass.myMethod", self.stream.getvalue()) self.assertIn("test_printErrorsVerbose2", self.stream.getvalue()) self.assertIn("raise Exception", self.stream.getvalue()) self.assertIn("Error", self.stream.getvalue()) def test_printErrorsVerbose3(self): """ printErrors() looks correct in verbose=3 mode. """ try: raise Exception except: err = sys.exc_info() self.args.verbose = 3 self.args.termcolor = False gtr = GreenTestResult(self.args, GreenStream(self.stream)) gtr.addError(MyProtoTest(), proto_error(err)) gtr.printErrors() self.assertIn("\n\n", self.stream.getvalue()) self.assertIn("my_module.MyClass.myMethod", self.stream.getvalue()) self.assertIn("test_printErrorsVerbose3", self.stream.getvalue()) self.assertIn("raise Exception", self.stream.getvalue()) self.assertIn("Error", self.stream.getvalue()) def test_printErrorsVerbose4(self): """ printErrors() looks correct in verbose=4 mode. """ try: raise Exception except: err = sys.exc_info() self.args.verbose = 4 self.args.termcolor = False gtr = GreenTestResult(self.args, GreenStream(self.stream)) gtr.addError(MyProtoTest(), err) gtr.printErrors() self.assertIn("\n\n", self.stream.getvalue()) self.assertIn("(most recent call last)", self.stream.getvalue()) self.assertIn("my_module.MyClass.myMethod", self.stream.getvalue()) self.assertIn("test_printErrorsVerbose4", self.stream.getvalue()) self.assertIn("raise Exception", self.stream.getvalue()) self.assertIn("Error", self.stream.getvalue()) def test_addProtoTestResult(self): """ addProtoTestResult adds the correct things to the correct places. """ ptr = ProtoTestResult() err_t = proto_test(MagicMock()) try: raise Exception except: err_e = proto_error(sys.exc_info()) ptr.addError(err_t, err_e) ef_t = proto_test(MagicMock()) try: raise Exception except: ef_e = proto_error(sys.exc_info()) ptr.addExpectedFailure(ef_t, ef_e) fail_t = proto_test(MagicMock()) try: raise Exception except: fail_e = proto_error(sys.exc_info()) ptr.addFailure(fail_t, fail_e) pass_t = proto_test(MagicMock()) ptr.addSuccess(pass_t) skip_t = proto_test(MagicMock()) skip_r = proto_test(MagicMock()) ptr.addSkip(skip_t, skip_r) us_t = proto_test(MagicMock()) ptr.addUnexpectedSuccess(us_t) self.args.verbose = 0 gtr = GreenTestResult(self.args, GreenStream(self.stream)) gtr.addProtoTestResult(ptr) self.assertEqual(gtr.errors, [(err_t, err_e)]) self.assertEqual(gtr.expectedFailures, [(ef_t, ef_e)]) self.assertEqual(gtr.failures, [(fail_t, fail_e)]) self.assertEqual(gtr.passing, [pass_t]) self.assertEqual(gtr.skipped, [(skip_t, skip_r)]) self.assertEqual(gtr.unexpectedSuccesses, [us_t]) def test_stopTestRun_processes_message(self): """ StopTestRun adds number of processes used to summary """ self.args.processes = 4 gtr = GreenTestResult(self.args, GreenStream(self.stream)) gtr.startTestRun() gtr.stopTestRun() self.assertIn("using 4 processes\n", self.stream.getvalue()) def test_stopTestRun_singular_process_message(self): """ StopTestRun adds correct summary when one process is used """ self.args.processes = 1 gtr = GreenTestResult(self.args, GreenStream(self.stream)) gtr.startTestRun() gtr.stopTestRun() self.assertIn("using 1 process\n", self.stream.getvalue()) class TestGreenTestResultAdds(unittest.TestCase): def setUp(self): self.stream = StringIO() self.args = copy.deepcopy(default_args) self.args.verbose = 0 self.gtr = GreenTestResult(self.args, GreenStream(self.stream)) self.gtr._reportOutcome = MagicMock() def tearDown(self): del self.stream del self.gtr def test_addSuccess(self): """ addSuccess() makes the correct calls to other functions. """ test = MagicMock() test.shortDescription.return_value = "a" test.__str__.return_value = "b" test = proto_test(test) self.gtr.addSuccess(test) self.gtr._reportOutcome.assert_called_with(test, ".", self.gtr.colors.passing) def test_addSuccess_with_test_time(self): """ addSuccess() sets test time to correct value """ test = MagicMock() test.shortDescription.return_value = "a" test.__str__.return_value = "b" test = proto_test(test) self.gtr.addSuccess(test, "0.42") self.assertEqual(test.test_time, "0.42") def test_addError(self): """ addError() makes the correct calls to other functions. """ try: raise Exception except: err = sys.exc_info() test = proto_test(MagicMock()) err = proto_error(err) self.gtr.addError(test, err) self.gtr._reportOutcome.assert_called_with( test, "E", self.gtr.colors.error, err ) def test_addError_with_test_time(self): """ addError() sets test time to correct value """ try: raise Exception except: err = sys.exc_info() test = proto_test(MagicMock()) err = proto_error(err) self.gtr.addError(test, err, "0.42") self.assertEqual(test.test_time, "0.42") def test_addFailure(self): """ addFailure() makes the correct calls to other functions. """ err = None try: raise Exception except: err = sys.exc_info() test = proto_test(MagicMock()) err = proto_error(err) self.gtr.addFailure(test, err) self.gtr._reportOutcome.assert_called_with( test, "F", self.gtr.colors.failing, err ) def test_addFailure_with_test_time(self): """ addFailure() makes test time the correct value """ err = None try: raise Exception except: err = sys.exc_info() test = proto_test(MagicMock()) err = proto_error(err) self.gtr.addFailure(test, err, "0.42") self.assertEqual(test.test_time, "0.42") def test_addFailureTwistedSkip(self): """ Twisted's practice of calling addFailure() with their skips is detected and redirected to addSkip() """ err = None try: raise Exception except: err = sys.exc_info() test = proto_test(MagicMock()) reason = "Twisted is odd" err = proto_error(err) err.traceback_lines = ["UnsupportedTrialFeature: ('skip', '{}')".format(reason)] self.gtr.addFailure(test, err) self.gtr._reportOutcome.assert_called_with( test, "s", self.gtr.colors.skipped, reason=reason ) def test_addSkip(self): """ addSkip() makes the correct calls to other functions. """ test = proto_test(MagicMock()) reason = "skip reason" self.gtr.addSkip(test, reason) self.gtr._reportOutcome.assert_called_with( test, "s", self.gtr.colors.skipped, reason=reason ) def test_addSkip_with_test_time(self): """ addSkip() makes test time the correct value """ test = proto_test(MagicMock()) reason = "skip reason" self.gtr.addSkip(test, reason, "0.42") self.assertEqual(test.test_time, "0.42") def test_addExpectedFailure(self): """ addExpectedFailure() makes the correct calls to other functions. """ try: raise Exception except: err = sys.exc_info() test = proto_test(MagicMock()) err = proto_error(err) self.gtr.addExpectedFailure(test, err) self.gtr._reportOutcome.assert_called_with( test, "x", self.gtr.colors.expectedFailure, err ) def test_addExcepectedFailure_with_test_time(self): """ addExpectedFailure() makes test time correct value """ try: raise Exception except: err = sys.exc_info() test = proto_test(MagicMock()) err = proto_error(err) self.gtr.addExpectedFailure(test, err, "0.42") self.assertEqual(test.test_time, "0.42") def test_addUnexpectedSuccess(self): """ addUnexpectedSuccess() makes the correct calls to other functions. """ test = proto_test(MagicMock()) self.gtr.addUnexpectedSuccess(test) self.gtr._reportOutcome.assert_called_with( test, "u", self.gtr.colors.unexpectedSuccess ) def test_addUnexpectedSuccess_with_test_time(self): """ addUnexpectedSuccess() makes test time with correct value """ test = proto_test(MagicMock()) self.gtr.addUnexpectedSuccess(test, "0.42") self.assertEqual(test.test_time, "0.42") def test_wasSuccessful(self): """ wasSuccessful returns what we expect. """ self.args.verbose = 1 gtr = GreenTestResult(self.args, GreenStream(self.stream)) self.assertEqual(gtr.wasSuccessful(), False) gtr.passing.append("anything") self.assertEqual(gtr.wasSuccessful(), True) gtr.all_errors.append("anything") self.assertEqual(gtr.wasSuccessful(), False) def test_wasSuccessful_expectedFailures(self): """ wasSuccessful returns what we expect when we only have expectedFailures """ self.args.verbose = 1 gtr = GreenTestResult(self.args, GreenStream(self.stream)) gtr.expectedFailures.append("anything") self.assertEqual(gtr.wasSuccessful(), True) def test_wasSuccessful_passing(self): """ wasSuccessful returns what we expect when we only have passing tests """ self.args.verbose = 1 gtr = GreenTestResult(self.args, GreenStream(self.stream)) gtr.passing.append("anything") self.assertEqual(gtr.wasSuccessful(), True) def test_wasSuccessful_skipped(self): """ wasSuccessful returns what we expect when we only have skipped tests """ self.args.verbose = 1 gtr = GreenTestResult(self.args, GreenStream(self.stream)) gtr.skipped.append("anything") self.assertEqual(gtr.wasSuccessful(), True) def test_wasSuccessful_unexpectedSuccesses(self): """ wasSuccessful returns what we expect when we only have unexpectedSuccesses """ self.args.verbose = 1 gtr = GreenTestResult(self.args, GreenStream(self.stream)) gtr.unexpectedSuccesses.append("anything") self.assertEqual(gtr.wasSuccessful(), False) def test_wasSuccessful_coverageFails(self): """ wasSuccessful fails if minimum coverage is not met """ self.args.minimum_coverage = 50 gtr = GreenTestResult(self.args, GreenStream(self.stream)) gtr.coverage_percent = 49 self.assertEqual(gtr.wasSuccessful(), False) def test_wasSuccessful_coverageSucceeds(self): """ wasSuccessful succeds if minimum coverage is met """ self.args.minimum_coverage = 50 gtr = GreenTestResult(self.args, GreenStream(self.stream)) gtr.passing.append("anything") gtr.coverage_percent = 60 self.assertEqual(gtr.wasSuccessful(), True) class TestGreenTestRunCoverage(unittest.TestCase): def setUp(self): self.args = copy.deepcopy(default_args) cov_file = tempfile.NamedTemporaryFile(delete=False) cov_file.close() self.args.cov = coverage( data_file=cov_file.name, omit=self.args.omit_patterns, include=self.args.include_patterns, ) self.args.cov.start() self.stream = StringIO() def tearDown(self): del self.stream del self.args def _outputFromTest(self, args): class FakeCase(unittest.TestCase): def runTest(self): pass gtr = GreenTestResult(args, GreenStream(self.stream)) gtr.startTestRun() gtr.startTest(FakeCase()) gtr.stopTestRun() output = self.stream.getvalue() return output.split("\n") def test_coverage(self): self.args.run_coverage = True output = self._outputFromTest(self.args) self.assertIn("Stmts Miss Cover Missing", "\n".join(output)) def test_quiet_coverage(self): self.args.run_coverage = True self.args.quiet_coverage = True output = self._outputFromTest(self.args) self.assertNotIn("Stmts Miss Cover Missing", "\n".join(output))
doc/integrations/cortx-s3-slack-bot/upload_file_to_s3.py
novium258/cortx-1
552
91347
<filename>doc/integrations/cortx-s3-slack-bot/upload_file_to_s3.py import requests import os from botocore.exceptions import ClientError from elasticsearch_connector import ElasticsearchConnector async def upload_file_to_s3(s3_client, es_client: ElasticsearchConnector, file_data, token): """ Gets a file from slack and uploads it to a Cortx S3 bucket Parameters ---------- s3_client : botocore.client.S3 A low-level client representing Cortx Simple Storage Service (S3) es_client : elasticsearch_connector.Elasticsearch Elasticsearch low-level client. Provides a straightforward mapping from Python to ES REST endpoints. file_data : dict File data from slack token: str A user access token from slack Returns ---------- bool: Returns true if the file was uploaded to S3 """ # search for existing file on elastic search try: file_id = file_data['id'] file_name = file_data['name'] created = file_data['created'] timestamp = file_data['timestamp'] mimetype = file_data['mimetype'] filetype = file_data['filetype'] user_id = file_data['user'] size = file_data['size'] url = file_data['url_private'] file_path = os.path.join(os.getcwd(), 'uploads', file_name) print("Saving to", file_name) headers = {'Authorization': 'Bearer ' + token} r = requests.get(url, headers=headers) with open(file_path, 'wb') as f: for chunk in r.iter_content(chunk_size=1024): if chunk: f.write(chunk) if os.path.exists(file_path): response = s3_client.upload_file( file_path, 'testbucket', file_name) es_client.create_doc(file_id=file_id, file_name=file_name, created=created, timestamp=timestamp, mimetype=mimetype, filetype=filetype, user_id=user_id, size=size) if os.path.exists(file_path): os.remove(path=file_path) print("File uploaded to S3 with key {}".format(file_name)) # print(response) except ClientError as e: print("Couldn't upload to s3") print(e) return False except Exception as e: print(e) return False return True
applications/popart/transformer_transducer/training/transducer_builder.py
payoto/graphcore_examples
260
91351
<reponame>payoto/graphcore_examples<filename>applications/popart/transformer_transducer/training/transducer_builder.py # Copyright (c) 2021 Graphcore Ltd. All rights reserved. import numpy as np import logging_util import transducer_blocks # set up logging logger = logging_util.get_basic_logger(__name__) class TranscriptionNetwork(transducer_blocks.Block): """ Transcription Network (or Audio Encoding network) of the Transformer-Transducer model. :param popart builder: popart builder object :param int in_feats: input dimension :param int subsampling_factor: sub-sampling factor for the initial convolutional subsampling layer :param int enc_n_hid: encoder hidden dimension :param int num_encoder_layers: the number of transformer layers for the transcription encoding network :param int encoder_dim: dimension of the transformer layers :param int num_attention_heads: number of attention heads :param float enc_dropout: dropout rate for encoder net :param int kernel_size: kernel size of the initial convolutional subsampling layer """ def __init__( self, builder, in_feats, subsampling_factor, num_encoder_layers, encoder_dim, num_attention_heads, enc_dropout, kernel_size=32, dtype=np.float32): super(TranscriptionNetwork, self).__init__(builder, dtype, block_name="transcription_network") self.encoder_dim = encoder_dim self.subsampling_factor = subsampling_factor self.conv_subsampler = transducer_blocks.ConvolutionSubSampler(builder, in_feats, encoder_dim, kernel_size, subsampling_factor, dtype=dtype, block_name="transcription_net_convolution_subsampler") self.transformer_blocks = [transducer_blocks.TransformerBlock(builder, num_attention_heads, encoder_dim, dtype=dtype, block_name="transcription_net_transformer_block_{}".format( layer_ind), dropout_rate=enc_dropout) for layer_ind in range(num_encoder_layers)] self.child_blocks = [self.conv_subsampler] + self.transformer_blocks def __call__(self, x_in, x_lens): return self.__build_graph(x_in, x_lens) def __build_graph(self, x_in, x_lens): # input shape to transcription-network must be [batch_size, channel_dim, seq_length] builder = self.builder logger.info("Shape of Transcription-Network Input: {}".format(builder.getTensorShape(x_in))) with self.builder.virtualGraph(0): x = x_in x = self.conv_subsampler(x) # scale x_lens as well after subsampling x_lens = self.builder.aiOnnx.div([x_lens, self.builder.aiOnnx.constant(np.array([self.subsampling_factor]).astype('int32'))]) builder.recomputeOutputInBackwardPass(x) # add positional encoding seq_length = self.builder.getTensorShape(x)[2] positional_encodings = self.get_constant(sinusoidal_position_encoding(seq_length, self.encoder_dim)) x = self.builder.aiOnnx.add([x, positional_encodings]) builder.recomputeOutputInBackwardPass(x) for layer_ind, transformer_block in enumerate(self.transformer_blocks): x = transformer_block(x, force_recompute=True) # transpose to shape [batch_size, seq_length, channel_dim] x = builder.aiOnnx.transpose([x], perm=[0, 2, 1]) return x, x_lens class PredictionNetwork(transducer_blocks.Block): """ Prediction Network of the Transducer model. :param popart builder: popart builder object :param int num_symbols: number of symbols to embed :param int pred_n_hid: hidden dimension for LSTM layers of prediction network :param int pred_rnn_layers: number of LSTM layers of prediction network :param float pred_dropout: dropout rate for prediction net :param float forget_gate_bias: value to initialize the forget gate bias values to :param float weights_init_scale: scaling factor for initial weights and biases of LSTM layers """ def __init__( self, builder, num_symbols, pred_n_hid, pred_rnn_layers, pred_dropout, forget_gate_bias, weights_init_scale, dtype=np.float32): super(PredictionNetwork, self).__init__(builder, dtype, block_name="prediction_network") self.num_symbols = num_symbols self.pred_n_hid = pred_n_hid self.pred_rnn_layers = pred_rnn_layers self.pred_dropout = pred_dropout self.embedding_layer = transducer_blocks.EmbeddingBlock(builder, num_symbols, pred_n_hid, dtype=dtype, block_name="prediction_net_embedding") self.prediction_rnn_layers = [transducer_blocks.LSTM(builder, pred_n_hid, pred_n_hid, dtype=dtype, block_name="prediction_net_rnn_{}".format(pred_rnn_ind), forget_gate_bias=forget_gate_bias, weights_init_scale=weights_init_scale) for pred_rnn_ind in range(pred_rnn_layers)] self.child_blocks = [self.embedding_layer] + self.prediction_rnn_layers def __call__(self, x_in): return self.__build_graph(x_in) def __build_graph(self, x_in): # input shape to this layer is assumed to be [batch_size, target_sequence_length] builder = self.builder logger.info("Shape of Prediction-Network Input: {}".format(builder.getTensorShape(x_in))) with self.builder.virtualGraph(0): x = x_in x = self.embedding_layer(x) # input shape to lstm layers must be [seq_length, batch_size, channel_dim] x = builder.aiOnnx.transpose([x], perm=[1, 0, 2]) # prepend blank symbol (zero-vector) to beginning of sequence blank_shape = builder.getTensorShape(x) blank_shape[0] = 1 blank_prepend = self.get_constant(np.zeros(blank_shape)) x = builder.aiOnnx.concat([blank_prepend, x], axis=0) for layer_ind, lstm_layer in enumerate(self.prediction_rnn_layers): x = lstm_layer(x, force_recompute=True) x = self.apply_dropout(x, self.pred_dropout) logger.info("Shape after Pred-RNN layer {}: {}".format(layer_ind, builder.getTensorShape(x))) # transposing back to shape [batch_size, seq_length, channel_dim] x = builder.aiOnnx.transpose([x], perm=[1, 0, 2]) return x class JointNetwork(transducer_blocks.Block): """ Joint Network of the Transducer model. :param popart builder: popart builder object :param int enc_n_hid: encoder hidden dimension :param int pred_n_hid: hidden dimension for LSTM layers of prediction network :param int joint_n_hid: hidden dimension of Joint Network :param int num_symbols: number of symbols to embed :param float joint_dropout: dropout rate for joint net """ def __init__( self, builder, transcription_out_len, enc_n_hid, pred_n_hid, joint_n_hid, num_symbols, joint_dropout, dtype=np.float32, transcription_out_split_size=15, shift_labels_by_one=True): super(JointNetwork, self).__init__(builder, dtype, block_name="joint_network") self.enc_n_hid = enc_n_hid self.pred_n_hid = pred_n_hid self.joint_n_hid = joint_n_hid self.num_symbols = num_symbols self.joint_dropout = joint_dropout logger.warn("For best training performance it is recommended that " "transcription output split size({}) be a divisor of " "transcription output length({}).".format(transcription_out_split_size, transcription_out_len)) self.joint_transcription_fc = transducer_blocks.RHSLinear(builder, enc_n_hid, joint_n_hid, dtype=dtype, block_name="joint_net_transcription_fc") self.joint_prediction_fc = transducer_blocks.RHSLinear(builder, pred_n_hid, joint_n_hid, dtype=dtype, block_name="joint_net_prediction_fc") self.transcription_splitter = transducer_blocks.Split(builder, total_size=transcription_out_len, split_size=transcription_out_split_size, split_axis=1, dtype=dtype, block_name="joint_net_transcription_splitter") self.joint_out_fc = transducer_blocks.RHSLinear(builder, joint_n_hid, num_symbols, dtype=dtype, block_name='joint_net_out_fc') self.child_blocks = [self.joint_transcription_fc, self.joint_prediction_fc, self.transcription_splitter, self.joint_out_fc] self.shift_labels_by_one = shift_labels_by_one def __call__(self, transcription_out, transcription_lens, prediction_out, targets, target_lens): return self.__build_graph(transcription_out, transcription_lens, prediction_out, targets, target_lens) def get_log_probs(self, transcription_out_split, prediction_out, targets, target_lens): builder = self.builder joint_out_split = builder.aiOnnx.add([transcription_out_split, prediction_out]) builder.recomputeOutputInBackwardPass(joint_out_split) joint_out_split = builder.aiOnnx.relu([joint_out_split]) builder.recomputeOutputInBackwardPass(joint_out_split) joint_out_split = self.apply_dropout(joint_out_split, self.joint_dropout) builder.recomputeOutputInBackwardPass(joint_out_split) joint_out_split = self.joint_out_fc(joint_out_split, force_recompute=True) # This flag means we need to offset labels by + 1 when passing to RNN-T Loss # The reason for offset is that we treat logits "A" dimension as [<blank>, valid characters... A-1] # Thus, blank-symbol has idx 0 and real symbols must have indices [1:A-1] # RNN-T Loss uses labels as indices of logits (in A dimension) # The opposite logic must be applied when logits are used for decoder - see transducer_decoder.py if self.shift_labels_by_one: one = self.builder.aiOnnx.constant(np.array([1]).astype(np.int32)) targets = self.builder.aiOnnx.add([targets, one]) compact_log_probs = builder.customOp( opName="SparseLogSoftmax", opVersion=1, domain="com.acme", inputs=[joint_out_split, targets, target_lens], attributes={}, numOutputs=1, ) return compact_log_probs[0] def __build_graph(self, transcription_out, transcription_lens, prediction_out, targets, target_lens): builder = self.builder logger.info("Shapes of Joint-Network Inputs: {}, {}".format(builder.getTensorShape(transcription_out), builder.getTensorShape(prediction_out))) with self.builder.virtualGraph(0): transcription_out = self.joint_transcription_fc(transcription_out, force_recompute=True) prediction_out = self.joint_prediction_fc(prediction_out, force_recompute=True) transcription_out = self.builder.aiOnnx.unsqueeze([transcription_out], axes=[2]) prediction_out = self.builder.aiOnnx.unsqueeze([prediction_out], axes=[1]) transcription_out_splits = self.transcription_splitter(transcription_out) log_probs_compact_splits = [] for split_ind, transcription_out_split in enumerate(transcription_out_splits): logger.info("Building compact log probs for split {}".format(split_ind)) with self.builder.virtualGraph(0): log_probs_compact = self.get_log_probs(transcription_out_split, prediction_out, targets, target_lens) log_probs_compact_splits.append(log_probs_compact) with self.builder.virtualGraph(0): # stack all compacted logprobs log_probs_compact_out = builder.aiOnnx.concat(log_probs_compact_splits, axis=1) # logger.info("Shape of Joint-Network output: {}".format(builder.getTensorShape(log_probs_compact_out))) return log_probs_compact_out class RNNTLoss(transducer_blocks.Block): """ Returns RNN-T loss value for given inputs """ def __init__(self, builder, dtype): super(RNNTLoss, self).__init__(builder, dtype, block_name="RNNTLoss") def __call__(self, joint_out, input_length, target_length): return self.__build_graph(joint_out, input_length, target_length) def __build_graph(self, joint_out, input_length, target_length): with self.namescope("RNNTLoss"): builder = self.builder with builder.virtualGraph(0): rnnt_outputs = builder.customOp( opName="RNNTLoss", opVersion=1, domain="com.acme", inputs=[joint_out, input_length, target_length], attributes={}, numOutputs=4, ) neg_log_likelihood = rnnt_outputs[0] return neg_log_likelihood class JointNetwork_wRNNTLoss(transducer_blocks.Block): """ Joint Network of the RNN-T model followed by RNN-Transducer loss. :param popart builder: popart builder object :param int transcription_out_len: sequence length of the transcription net output :param int enc_n_hid: encoder hidden dimension :param int pred_n_hid: hidden dimension for LSTM layers of prediction network :param int joint_n_hid: hidden dimension of Joint Network :param int num_symbols: number of symbols to embed :param float joint_dropout: dropout rate for joint net """ def __init__( self, builder, transcription_out_len, enc_n_hid, pred_n_hid, joint_n_hid, num_symbols, joint_dropout, dtype=np.float32, transcription_out_split_size=15, do_batch_serialization=False, samples_per_device=2, batch_split_size=1, shift_labels_by_one=True): super(JointNetwork_wRNNTLoss, self).__init__(builder, dtype, block_name="joint_network_w_rnnt_loss") self.joint_network = JointNetwork(builder, transcription_out_len, enc_n_hid, pred_n_hid, joint_n_hid, num_symbols, joint_dropout, dtype=dtype, transcription_out_split_size=transcription_out_split_size, shift_labels_by_one=shift_labels_by_one) self.rnnt_loss = RNNTLoss(builder, dtype=dtype) self.do_batch_serialization = do_batch_serialization self.samples_per_device = samples_per_device self.batch_split_size = batch_split_size self.child_blocks = [self.joint_network, self.rnnt_loss] if do_batch_serialization: self.batch_splitter = transducer_blocks.Split(builder, total_size=samples_per_device, split_size=batch_split_size, split_axis=0, dtype=dtype, block_name="batch_splitter") self.child_blocks.append(self.batch_splitter) def __call__(self, transcription_out, transcription_lens, prediction_out, targets, target_lens): return self.__build_graph(transcription_out, transcription_lens, prediction_out, targets, target_lens) def __build_graph(self, transcription_out, transcription_lens, prediction_out, targets, target_lens): builder = self.builder if not self.do_batch_serialization: joint_out = self.joint_network(transcription_out, transcription_lens, prediction_out, targets, target_lens) neg_log_likelihood = self.rnnt_loss(joint_out, transcription_lens, target_lens) return neg_log_likelihood else: logger.info("Doing Batch-Serialization for JointNet") tout_splits = self.batch_splitter(transcription_out) flen_splits = self.batch_splitter(transcription_lens) pout_splits = self.batch_splitter(prediction_out) tin_splits = self.batch_splitter(targets) tlen_splits = self.batch_splitter(target_lens) losses = [] for tout, flen, pout, tin, tlen in zip(tout_splits, flen_splits, pout_splits, tin_splits, tlen_splits): joint_out = self.joint_network(tout, flen, pout, tin, tlen) losses.append(self.rnnt_loss(joint_out, flen, tlen)) reduced_neg_log_likelihood = losses[0] for loss in losses[1:]: reduced_neg_log_likelihood = builder.aiOnnx.add([reduced_neg_log_likelihood, loss]) reduced_neg_log_likelihood = builder.aiOnnx.div([reduced_neg_log_likelihood, builder.aiOnnx.constant( np.array([len(losses)]).astype(np.float32))]) return reduced_neg_log_likelihood def sinusoidal_position_encoding(num_positions, num_channels, position_rate=1.0, position_weight=1.0): """ Returns a sinusoidal position encoding table """ position_encoding = np.array([ [position_rate * pos / np.power(10000, 2 * (i // 2) / num_channels) for i in range(num_channels)] if pos != 0 else np.zeros(num_channels) for pos in range(num_positions)]) position_encoding[:, 0::2] = np.sin(position_encoding[:, 0::2]) # even i position_encoding[:, 1::2] = np.cos(position_encoding[:, 1::2]) # odd i return position_weight * position_encoding.T
datasets/setup_cambridge.py
tannerliu347/dsacstar
104
91368
<gh_stars>100-1000 import os import math import numpy as np import cv2 as cv import torch from skimage import io # setup individual scene IDs and their download location scenes = [ 'https://www.repository.cam.ac.uk/bitstream/handle/1810/251342/KingsCollege.zip', 'https://www.repository.cam.ac.uk/bitstream/handle/1810/251340/OldHospital.zip', 'https://www.repository.cam.ac.uk/bitstream/handle/1810/251336/ShopFacade.zip', 'https://www.repository.cam.ac.uk/bitstream/handle/1810/251294/StMarysChurch.zip', 'https://www.repository.cam.ac.uk/bitstream/handle/1810/251291/GreatCourt.zip', ] target_height = 480 # rescale images nn_subsampling = 8 # sub sampling of our CNN architecture, for size of the initalization targets def mkdir(directory): """Checks whether the directory exists and creates it if necessacy.""" if not os.path.exists(directory): os.makedirs(directory) for scene in scenes: scene_file = scene.split('/')[-1] scene_name = scene_file[:-4] print("===== Processing " + scene_name + " ===================") print("Downloading and unzipping data...") os.system('wget ' + scene) os.system('unzip ' + scene_file) os.system('rm ' + scene_file) os.system('mv ' + scene_name + ' Cambridge_' + scene_name) os.chdir('Cambridge_' + scene_name) modes = ['train', 'test'] input_file = 'reconstruction.nvm' print("Loading SfM reconstruction...") f = open(input_file) reconstruction = f.readlines() f.close() num_cams = int(reconstruction[2]) num_pts = int(reconstruction[num_cams + 4]) # read points pts_dict = {} for cam_idx in range(0, num_cams): pts_dict[cam_idx] = [] pt = pts_start = num_cams + 5 pts_end = pts_start + num_pts while pt < pts_end: pt_list = reconstruction[pt].split() pt_3D = [float(x) for x in pt_list[0:3]] pt_3D.append(1.0) for pt_view in range(0, int(pt_list[6])): cam_view = int(pt_list[7 + pt_view * 4]) pts_dict[cam_view].append(pt_3D) pt += 1 print("Reconstruction contains %d cameras and %d 3D points." % (num_cams, num_pts)) for mode in modes: print("Converting " + mode + " data...") img_output_folder = mode + '/rgb/' cal_output_folder = mode + '/calibration/' pose_output_folder = mode + '/poses/' target_output_folder = mode + '/init/' mkdir(img_output_folder) mkdir(cal_output_folder) mkdir(pose_output_folder) mkdir(target_output_folder) # get list of images for current mode (train vs. test) image_list = 'dataset_'+mode+'.txt' f = open(image_list) camera_list = f.readlines() f.close() camera_list = camera_list[3:] image_list = [camera.split()[0] for camera in camera_list] for cam_idx in range(num_cams): print("Processing camera %d of %d." % (cam_idx, num_cams)) image_file = reconstruction[3 + cam_idx].split()[0] image_file = image_file[:-3] + 'png' if image_file not in image_list: print("Skipping image " + image_file + ". Not part of set: " + mode + ".") continue image_idx = image_list.index(image_file) # read camera camera = camera_list[image_idx].split() cam_rot = [float(r) for r in camera[4:]] #quaternion to axis-angle angle = 2 * math.acos(cam_rot[0]) x = cam_rot[1] / math.sqrt(1 - cam_rot[0]**2) y = cam_rot[2] / math.sqrt(1 - cam_rot[0]**2) z = cam_rot[3] / math.sqrt(1 - cam_rot[0]**2) cam_rot = [x * angle, y * angle, z * angle] cam_rot = np.asarray(cam_rot) cam_rot, _ = cv.Rodrigues(cam_rot) cam_trans = [float(r) for r in camera[1:4]] cam_trans = np.asarray([cam_trans]) cam_trans = np.transpose(cam_trans) cam_trans = - np.matmul(cam_rot, cam_trans) if np.absolute(cam_trans).max() > 10000: print("Skipping image " + image_file + ". Extremely large translation. Outlier?") print(cam_trans) continue cam_pose = np.concatenate((cam_rot, cam_trans), axis = 1) cam_pose = np.concatenate((cam_pose, [[0, 0, 0, 1]]), axis = 0) cam_pose = torch.tensor(cam_pose).float() focal_length = float(reconstruction[3 + cam_idx].split()[1]) #load image image = io.imread(image_file) image_file = image_file.replace('/', '_') #load 3D points from reconstruction pts_3D = torch.tensor(pts_dict[cam_idx]) img_aspect = image.shape[0] / image.shape[1] if img_aspect > 1: #portrait img_w = target_height img_h = int(math.ceil(target_height * img_aspect)) else: #landscape img_w = int(math.ceil(target_height / img_aspect)) img_h = target_height out_w = int(math.ceil(img_w / nn_subsampling)) out_h = int(math.ceil(img_h / nn_subsampling)) out_scale = out_w / image.shape[1] img_scale = img_w / image.shape[1] out_tensor = torch.zeros((3, out_h, out_w)) out_zbuffer = torch.zeros((out_h, out_w)) image = cv.resize(image, (img_w, img_h)) io.imsave(img_output_folder + image_file, image) with open(cal_output_folder + image_file[:-3] + 'txt', 'w') as f: f.write(str(focal_length * img_scale)) inv_cam_pose = cam_pose.inverse() with open(pose_output_folder + image_file[:-3] + 'txt', 'w') as f: f.write(str(float(inv_cam_pose[0, 0])) + ' ' + str(float(inv_cam_pose[0, 1])) + ' ' + str(float(inv_cam_pose[0, 2])) + ' ' + str(float(inv_cam_pose[0, 3])) + '\n') f.write(str(float(inv_cam_pose[1, 0])) + ' ' + str(float(inv_cam_pose[1, 1])) + ' ' + str(float(inv_cam_pose[1, 2])) + ' ' + str(float(inv_cam_pose[1, 3])) + '\n') f.write(str(float(inv_cam_pose[2, 0])) + ' ' + str(float(inv_cam_pose[2, 1])) + ' ' + str(float(inv_cam_pose[2, 2])) + ' ' + str(float(inv_cam_pose[2, 3])) + '\n') f.write(str(float(inv_cam_pose[3, 0])) + ' ' + str(float(inv_cam_pose[3, 1])) + ' ' + str(float(inv_cam_pose[3, 2])) + ' ' + str(float(inv_cam_pose[3, 3])) + '\n') fine = 0 conflict = 0 for pt_idx in range(0, pts_3D.size(0)): scene_pt = pts_3D[pt_idx] scene_pt = scene_pt.unsqueeze(0) scene_pt = scene_pt.transpose(0, 1) # scene to camera coordinates cam_pt = torch.mm(cam_pose, scene_pt) # projection to image img_pt = cam_pt[0:2, 0] * focal_length / cam_pt[2, 0] * out_scale y = img_pt[1] + out_h / 2 x = img_pt[0] + out_w / 2 x = int(torch.clamp(x, min=0, max=out_tensor.size(2)-1)) y = int(torch.clamp(y, min=0, max=out_tensor.size(1)-1)) if cam_pt[2, 0] > 1000: #filter some outlier points (large depth) continue if out_zbuffer[y, x] == 0 or out_zbuffer[y, x] > cam_pt[2, 0]: out_zbuffer[y, x] = cam_pt[2, 0] out_tensor[:, y, x] = pts_3D[pt_idx, 0:3] torch.save(out_tensor, target_output_folder + image_file[:-4] + '.dat') os.chdir('..')
core/python/build.py
lf-shaw/kungfu
2,209
91381
<gh_stars>1000+ import os import sys import subprocess import platform import click from kungfu.version import get_version @click.group(invoke_without_command=True) @click.option('-l', '--log_level', type=click.Choice(['trace', 'debug', 'info', 'warning', 'error', 'critical']), default='warning', help='logging level') @click.option('--build_type', type=click.Choice(['Release', 'Debug']), default='Release', help='build type') @click.option('--arch', type=click.Choice(['x64', 'x86']), default='x64', help='arch') @click.option('--runtime', type=click.Choice(['electron', 'node']), default='electron', help='Node.js runtime') @click.option('--node_version', type=str, default='10.0.0', help='Node.js runtime version') @click.option('--electron_version', type=str, default='5.0.0', help='Electron runtime version') @click.pass_context def build(ctx, log_level, build_type, arch, runtime, node_version, electron_version): ctx.log_level = log_level ctx.build_type = build_type ctx.arch = arch ctx.runtime = runtime ctx.runtime_version = node_version if runtime == 'node' else electron_version if ctx.invoked_subcommand is None: click.echo(build.get_help(ctx)) pass @build.command() @click.pass_context def configure(ctx): cmake_configure = build_cmake_js_cmd(ctx, 'configure') sys.exit(subprocess.Popen(cmake_configure).wait()) @build.command() @click.pass_context def make(ctx): cmake_build = build_cmake_js_cmd(ctx, 'build') sys.exit(subprocess.Popen(cmake_build).wait()) @build.command() @click.pass_context def freeze(ctx): os.environ['CMAKE_BUILD_TYPE'] = ctx.parent.build_type with open(os.path.join(os.getcwd(), "build", ctx.parent.build_type, "version.info"), 'w') as version_file: version_file.write(f"{get_version()}") osname = platform.system() if osname == 'Linux': sys.exit(subprocess.Popen(['pyinstaller', '--clean', '-y', '--distpath=build', 'python/kfc-unix.spec']).wait()) if osname == 'Darwin': rc = subprocess.Popen(['pyinstaller', '--clean', '-y', '--distpath=build', 'python/kfc-unix.spec']).wait() os.chdir('build/kfc') if os.path.exists('.Python'): os.rename('.Python', 'Python') os.symlink('Python', '.Python') sys.exit(rc) if osname == 'Windows': sys.exit(subprocess.Popen(['pyinstaller', '--clean', '-y', r'--distpath=build', r'python\kfc-win.spec']).wait()) def find(tool): tool_path = tool if platform.system() == 'Windows': for line in subprocess.Popen(['where', tool], stdout=subprocess.PIPE).stdout.readlines(): path = line.decode('utf8').strip() if path.endswith('.cmd'): tool_path = path return tool_path def build_cmake_js_cmd(ctx, cmd): python_path = subprocess.Popen(["pipenv", "--py"], stdout=subprocess.PIPE).stdout.read().decode().strip() spdlog_levels = { 'trace': 'SPDLOG_LEVEL_TRACE', 'debug': 'SPDLOG_LEVEL_DEBUG', 'info': 'SPDLOG_LEVEL_INFO', 'warning': 'SPDLOG_LEVEL_WARN', 'error': 'SPDLOG_LEVEL_ERROR', 'critical': 'SPDLOG_LEVEL_CRITICAL' } loglevel = spdlog_levels[ctx.parent.log_level] cmake_js_cmd = [find('yarn'), 'cmake-js', '--debug' if ctx.parent.build_type == 'Debug' else '', '--arch', ctx.parent.arch, '--runtime', ctx.parent.runtime, '--runtime-version', ctx.parent.runtime_version, '--CDPYTHON_EXECUTABLE=' + python_path, '--CDSPDLOG_LOG_LEVEL_COMPILE=' + loglevel] if platform.system() == 'Windows': return cmake_js_cmd + ['--toolset', 'host=' + ctx.parent.arch, '--CDCMAKE_GENERATOR_PLATFORM=' + ctx.parent.arch, cmd] else: return cmake_js_cmd + [cmd] build(auto_envvar_prefix='KF_BUILD')
tests/test_compress.py
elkinsd/couchapp
224
91389
#!/usr/bin/env python # -*- coding: utf-8 -*- # # This software is licensed as described in the file LICENSE, which # you should have received as part of this distribution. import unittest2 as unittest import mock import os class CompressTest(unittest.TestCase): def test_compress_js(self): from couchapp.config import Config config = Config() config.conf['compress'] = {'js': {'foo':['shows/example-show.js']}} with mock.patch('couchapp.hooks.compress.default.compress', return_value='foo') as mock_compress: from couchapp.hooks.compress import Compress compress = Compress(os.path.join(os.path.dirname(__file__), 'testapp')) compress.conf = config with mock.patch('couchapp.util.write'): compress.run() self.assertTrue(mock_compress.called, 'Default compressor has been called') def test_our_jsmin_loading(self): orig_import = __import__ def import_mock(name, *args): if name == 'jsmin': raise ImportError() return orig_import(name, *args) with mock.patch('__builtin__.__import__', side_effect=import_mock): with mock.patch('couchapp.hooks.compress.jsmin.jsmin', return_value='foo'): from couchapp.hooks.compress import default result = default.compress('bar') self.assertEqual(result, 'foo', 'Our module is called when it is not installed in the system') def test_system_jsmin_loading(self): orig_import = __import__ def import_mock(name, *args): if name == 'couchapp.hooks.compress.jsmin': raise ImportError() return orig_import(name, *args) with mock.patch('__builtin__.__import__', side_effect=import_mock): with mock.patch('jsmin.jsmin', return_value='foo'): from couchapp.hooks.compress import default result = default.compress('bar') self.assertEqual(result, 'foo', 'The system module is called when it is installed') if __name__ == "__main__": # import sys;sys.argv = ['', 'Test.testName'] unittest.main()
custom_layers/pad_layer.py
bobenxia/Centripetal-SGD
767
91404
import torch.nn as nn import torch.nn.functional as F class PadLayer(nn.Module): # E.g., (-1, 0) means this layer should crop the first and last rows of the feature map. And (0, -1) crops the first and last columns def __init__(self, pad): super(PadLayer, self).__init__() self.pad = pad def forward(self, input): F.pad(input, [self.pad] * 4)
mmocr/models/textrecog/layers/satrn_layers.py
hongxuenong/mmocr
2,261
91472
<filename>mmocr/models/textrecog/layers/satrn_layers.py # Copyright (c) OpenMMLab. All rights reserved. import numpy as np import torch import torch.nn as nn from mmcv.cnn import ConvModule from mmcv.runner import BaseModule from mmocr.models.common import MultiHeadAttention class SatrnEncoderLayer(BaseModule): """""" def __init__(self, d_model=512, d_inner=512, n_head=8, d_k=64, d_v=64, dropout=0.1, qkv_bias=False, init_cfg=None): super().__init__(init_cfg=init_cfg) self.norm1 = nn.LayerNorm(d_model) self.attn = MultiHeadAttention( n_head, d_model, d_k, d_v, qkv_bias=qkv_bias, dropout=dropout) self.norm2 = nn.LayerNorm(d_model) self.feed_forward = LocalityAwareFeedforward( d_model, d_inner, dropout=dropout) def forward(self, x, h, w, mask=None): n, hw, c = x.size() residual = x x = self.norm1(x) x = residual + self.attn(x, x, x, mask) residual = x x = self.norm2(x) x = x.transpose(1, 2).contiguous().view(n, c, h, w) x = self.feed_forward(x) x = x.view(n, c, hw).transpose(1, 2) x = residual + x return x class LocalityAwareFeedforward(BaseModule): """Locality-aware feedforward layer in SATRN, see `SATRN. <https://arxiv.org/abs/1910.04396>`_ """ def __init__(self, d_in, d_hid, dropout=0.1, init_cfg=[ dict(type='Xavier', layer='Conv2d'), dict(type='Constant', layer='BatchNorm2d', val=1, bias=0) ]): super().__init__(init_cfg=init_cfg) self.conv1 = ConvModule( d_in, d_hid, kernel_size=1, padding=0, bias=False, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU')) self.depthwise_conv = ConvModule( d_hid, d_hid, kernel_size=3, padding=1, bias=False, groups=d_hid, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU')) self.conv2 = ConvModule( d_hid, d_in, kernel_size=1, padding=0, bias=False, norm_cfg=dict(type='BN'), act_cfg=dict(type='ReLU')) def forward(self, x): x = self.conv1(x) x = self.depthwise_conv(x) x = self.conv2(x) return x class Adaptive2DPositionalEncoding(BaseModule): """Implement Adaptive 2D positional encoder for SATRN, see `SATRN <https://arxiv.org/abs/1910.04396>`_ Modified from https://github.com/Media-Smart/vedastr Licensed under the Apache License, Version 2.0 (the "License"); Args: d_hid (int): Dimensions of hidden layer. n_height (int): Max height of the 2D feature output. n_width (int): Max width of the 2D feature output. dropout (int): Size of hidden layers of the model. """ def __init__(self, d_hid=512, n_height=100, n_width=100, dropout=0.1, init_cfg=[dict(type='Xavier', layer='Conv2d')]): super().__init__(init_cfg=init_cfg) h_position_encoder = self._get_sinusoid_encoding_table(n_height, d_hid) h_position_encoder = h_position_encoder.transpose(0, 1) h_position_encoder = h_position_encoder.view(1, d_hid, n_height, 1) w_position_encoder = self._get_sinusoid_encoding_table(n_width, d_hid) w_position_encoder = w_position_encoder.transpose(0, 1) w_position_encoder = w_position_encoder.view(1, d_hid, 1, n_width) self.register_buffer('h_position_encoder', h_position_encoder) self.register_buffer('w_position_encoder', w_position_encoder) self.h_scale = self.scale_factor_generate(d_hid) self.w_scale = self.scale_factor_generate(d_hid) self.pool = nn.AdaptiveAvgPool2d(1) self.dropout = nn.Dropout(p=dropout) def _get_sinusoid_encoding_table(self, n_position, d_hid): """Sinusoid position encoding table.""" denominator = torch.Tensor([ 1.0 / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid) ]) denominator = denominator.view(1, -1) pos_tensor = torch.arange(n_position).unsqueeze(-1).float() sinusoid_table = pos_tensor * denominator sinusoid_table[:, 0::2] = torch.sin(sinusoid_table[:, 0::2]) sinusoid_table[:, 1::2] = torch.cos(sinusoid_table[:, 1::2]) return sinusoid_table def scale_factor_generate(self, d_hid): scale_factor = nn.Sequential( nn.Conv2d(d_hid, d_hid, kernel_size=1), nn.ReLU(inplace=True), nn.Conv2d(d_hid, d_hid, kernel_size=1), nn.Sigmoid()) return scale_factor def forward(self, x): b, c, h, w = x.size() avg_pool = self.pool(x) h_pos_encoding = \ self.h_scale(avg_pool) * self.h_position_encoder[:, :, :h, :] w_pos_encoding = \ self.w_scale(avg_pool) * self.w_position_encoder[:, :, :, :w] out = x + h_pos_encoding + w_pos_encoding out = self.dropout(out) return out
addon/surface_heat_diffuse_skinning/__init__.py
meshonline/Surface-Heat-Diffuse-Skinning
108
91498
# ***** BEGIN GPL LICENSE BLOCK ***** # # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ***** END GPL LICENCE BLOCK ***** bl_info = { "name": "Surface Heat Diffuse Skinning", "author": "mesh online", "version": (3, 3, 1), "blender": (2, 80, 0), "location": "View3D > UI > Mesh Online", "description": "Surface Heat Diffuse Skinning", "warning": "", "wiki_url": "http://www.mesh-online.net/vhd.html", "category": "Object" } import bpy import sys import os import time import platform from subprocess import PIPE, Popen from threading import Thread from bpy.props import * from queue import Queue, Empty class SFC_OT_ModalTimerOperator(bpy.types.Operator): """Operator which runs its self from a timer""" bl_idname = "wm.surface_heat_diffuse" bl_label = "Surface Heat Diffuse Skinning" bl_options = {'REGISTER', 'UNDO'} _timer = None _pid = None _queue = None _objs = [] _permulation = [] _selected_indices = [] _selected_group_index_weights = [] _start_time = None def write_bone_data(self, obj, filepath): f = open(filepath, 'w', encoding='utf-8') f.write("# surface heat diffuse bone export.\n") amt = obj.data bpy.ops.object.mode_set(mode='EDIT') for bone in amt.edit_bones: if bone.use_deform: world_bone_head = obj.matrix_world @ bone.head world_bone_tail = obj.matrix_world @ bone.tail f.write("b,{},{:.6f},{:.6f},{:.6f},{:.6f},{:.6f},{:.6f}\n".format( bone.name, world_bone_head[0], world_bone_head[1], world_bone_head[2], world_bone_tail[0], world_bone_tail[1], world_bone_tail[2])) bpy.ops.object.mode_set(mode='OBJECT') f.close() def write_mesh_data(self, objs, filepath): f = open(filepath, 'w', encoding='utf-8') f.write("# surface heat diffuse mesh export.\n") vertex_offset = 0 for obj in objs: for v in obj.data.vertices: world_v_co = obj.matrix_world @ v.co f.write("v,{:.6f},{:.6f},{:.6f}\n".format(world_v_co[0], world_v_co[1], world_v_co[2])) for poly in obj.data.polygons: f.write("f"); for loop_ind in poly.loop_indices: vert_ind = obj.data.loops[loop_ind].vertex_index f.write(",{}".format(vertex_offset + vert_ind)) f.write("\n") vertex_offset += len(obj.data.vertices) f.close() def read_weight_data(self, objs, filepath): # make permulation for all vertices vertex_offset = 0; for obj in objs: for index in range(len(obj.data.vertices)): self._permulation.append((vertex_offset + index, index, obj)) vertex_offset += len(obj.data.vertices) if bpy.context.scene.surface_protect: for index in range(len(objs)): obj = objs[index] # get selected vertex indices self._selected_indices.append([i.index for i in obj.data.vertices if i.select]) self._selected_group_index_weights.append([]) # push protected vertices weight for vert_ind in self._selected_indices[index]: for g in obj.data.vertices[vert_ind].groups: self._selected_group_index_weights[index].append((obj.vertex_groups[g.group].name, vert_ind, g.weight)) f = open(filepath, 'r', encoding='utf-8') bones = [] for line in f: if len(line) == 0: continue tokens = line.strip("\r\n").split(",") if tokens[0] == "b": group_name = tokens[1] bones.append(group_name) for obj in objs: #check for existing group with the same name if None != obj.vertex_groups.get(group_name): group = obj.vertex_groups[group_name] obj.vertex_groups.remove(group) obj.vertex_groups.new(name = group_name) if tokens[0] == "w": group_name = bones[int(tokens[2])] index = int(tokens[1]) vert_ind = self._permulation[index][1] weight = float(tokens[3]) obj = self._permulation[index][2] # protect vertices weight if bpy.context.scene.surface_protect and vert_ind in self._selected_indices[objs.index(obj)]: continue obj.vertex_groups[group_name].add([vert_ind], weight, 'REPLACE') f.close() if bpy.context.scene.surface_protect: for index in range(len(objs)): obj = objs[index] # pop protected vertices weight for (group_name, vert_ind, weight) in self._selected_group_index_weights[index]: obj.vertex_groups[group_name].add([vert_ind], weight, 'REPLACE') def modal(self, context, event): if event.type == 'ESC': self._pid.terminate() return self.cancel(context) if event.type == 'TIMER': # background task is still running if None == self._pid.poll(): # read line without blocking try: rawline = self._queue.get_nowait() except Empty: pass else: line = rawline.decode().strip("\r\n") self.report({'INFO'}, line) else: # background task finished running self.read_weight_data(self._objs, os.path.join(os.path.dirname(__file__), "data", "untitled-weight.txt")) running_time = time.time() - self._start_time self.report({'INFO'}, "".join(("Complete, ", "running time: ", \ str(int(running_time / 60))," minutes ", str(int(running_time % 60)), " seconds"))) # bind meshes to the armature bpy.ops.object.parent_set(type='ARMATURE') return self.cancel(context) return {'RUNNING_MODAL'} def execute(self, context): self._objs = [] self._permulation = [] self._selected_indices = [] self._selected_group_index_weights = [] arm = None objs = [] # get armature and mesh for ob in bpy.context.selected_objects: if 'ARMATURE' == ob.type: arm = ob if 'MESH' == ob.type: objs.append(ob) # sort meshes by name objs.sort(key=lambda obj:obj.name); # save the reference for later use self._objs = objs for obj in objs: # focus on the mesh bpy.context.view_layer.objects.active = obj # synchronize data bpy.ops.object.mode_set(mode='OBJECT') # write mesh data self.write_mesh_data(objs, os.path.join(os.path.dirname(__file__), "data", "untitled-mesh.txt")) # we must focus on the armature before we can write bone data bpy.context.view_layer.objects.active = arm # synchronize data bpy.ops.object.mode_set(mode='OBJECT') # write bone data self.write_bone_data(arm, os.path.join(os.path.dirname(__file__), "data", "untitled-bone.txt")) # do voxel skinning in background ON_POSIX = 'posix' in sys.builtin_module_names # chmod if ON_POSIX: os.chmod(os.path.join(os.path.dirname(__file__), "bin", platform.system(), "shd"), 0o755) def enqueue_output(out, queue): for line in iter(out.readline, b''): queue.put(line) out.close() executable_path = None if platform.system() == 'Windows': if platform.machine().endswith('64'): executable_path = os.path.join(os.path.dirname(__file__), "bin", platform.system(), "x64", "shd") else: executable_path = os.path.join(os.path.dirname(__file__), "bin", platform.system(), "x86", "shd") else: executable_path = os.path.join(os.path.dirname(__file__), "bin", platform.system(), "shd") self._pid = Popen([executable_path, "untitled-mesh.txt", "untitled-bone.txt", "untitled-weight.txt", str(context.scene.surface_resolution), str(context.scene.surface_loops), str(context.scene.surface_samples), str(context.scene.surface_influence), str(context.scene.surface_falloff), context.scene.surface_sharpness, "y" if context.scene.detect_surface_solidify else "n"], cwd = os.path.join(os.path.dirname(__file__), "data"), stdout = PIPE, bufsize = 1, close_fds = ON_POSIX) self._queue = Queue() t = Thread(target=enqueue_output, args=(self._pid.stdout, self._queue)) t.daemon = True t.start() self._start_time = time.time() # start timer to poll data self._timer = context.window_manager.event_timer_add(0.1, window=context.window) context.window_manager.modal_handler_add(self) return {'RUNNING_MODAL'} def cancel(self, context): # remove timer context.window_manager.event_timer_remove(self._timer) self._objs = [] self._permulation = [] self._selected_indices = [] self._selected_group_index_weights = [] return {'CANCELLED'} def init_properties(): bpy.types.Scene.surface_resolution = IntProperty( name = "Voxel Resolution", description = "Maximum voxel grid size", default = 128, min = 32, max = 1024) bpy.types.Scene.surface_loops = IntProperty( name = "Diffuse Loops", description = "Heat diffuse pass = Voxel Resolution * Diffuse Loops", default = 5, min = 1, max = 9) bpy.types.Scene.surface_samples = IntProperty( name = "Sample Rays", description = "Ray samples count", default = 64, min = 32, max = 128) bpy.types.Scene.surface_influence = IntProperty( name = "Influence Bones", description = "Max influence bones", default = 4, min = 1, max = 8) bpy.types.Scene.surface_falloff = FloatProperty( name = "Diffuse Falloff", description = "Heat diffuse falloff", default = 0.2, min = 0.01, max = 0.99) bpy.types.Scene.surface_protect = BoolProperty( name = "Protect Selected Vertex Weight", description = "Protect selected vertex weight", default = False) bpy.types.Scene.surface_sharpness = EnumProperty( name = "Edges", description = "Edges", items = [ ('1','Soft','Soft Curvature'), ('2','Normal','Normal Curvature'), ('3','Sharp','Sharp Curvature'), ('4','Sharpest','Sharpest Curvature')], default = '3') bpy.types.Scene.detect_surface_solidify = BoolProperty( name = "Detect Solidify", description = "Detect solidified clothes, if you enable this option, make sure that all bones are in the charecter's volume, otherwise, the result may be wrong", default = False) def clear_properties(): props = ["surface_resolution", "surface_samples", "surface_falloff", "surface_loops", "surface_influence", "surface_protect"] for p in props: if p in bpy.types.Scene.bl_rna.properties: exec("del bpy.types.Scene." + p) class SFC_PT_SurfaceHeatDiffuseSkinningPanel(bpy.types.Panel): """Creates a Panel in the Object properties window""" bl_label = "Surface Heat Diffuse Skinning" bl_space_type = 'VIEW_3D' bl_region_type = 'UI' bl_category = 'Mesh Online' @classmethod def poll(self, context): arm_count = 0 obj_count = 0 for ob in bpy.context.selected_objects: if 'ARMATURE' == ob.type: arm_count += 1 if 'MESH' == ob.type: obj_count += 1 return (context.mode == 'OBJECT' and arm_count == 1 and obj_count >= 1) def draw(self, context): layout = self.layout layout.prop(context.scene, 'surface_resolution', icon='BLENDER', toggle=True) layout.prop(context.scene, 'surface_loops', icon='BLENDER', toggle=True) layout.prop(context.scene, 'surface_samples', icon='BLENDER', toggle=True) layout.prop(context.scene, 'surface_influence', icon='BLENDER', toggle=True) layout.prop(context.scene, 'surface_falloff', icon='BLENDER', toggle=True) layout.prop(context.scene, 'surface_sharpness') layout.prop(context.scene, 'surface_protect') layout.prop(context.scene, 'detect_surface_solidify') row = layout.row() row.operator("wm.surface_heat_diffuse") def register(): bpy.utils.register_class(SFC_PT_SurfaceHeatDiffuseSkinningPanel) bpy.utils.register_class(SFC_OT_ModalTimerOperator) init_properties() def unregister(): bpy.utils.unregister_class(SFC_PT_SurfaceHeatDiffuseSkinningPanel) bpy.utils.unregister_class(SFC_OT_ModalTimerOperator) clear_properties() if __name__ == "__main__": register()
tests/test_connector.py
romis2012/aiohttp-socks
158
91516
<reponame>romis2012/aiohttp-socks import asyncio import ssl import aiohttp import pytest # noqa from aiohttp import ClientResponse, TCPConnector from yarl import URL # noqa from aiohttp_socks import ( ProxyType, ProxyConnector, ChainProxyConnector, ProxyInfo, ProxyError, ProxyConnectionError, ProxyTimeoutError, open_connection, create_connection ) from tests.config import ( TEST_URL_IPV4, SOCKS5_IPV4_URL, PROXY_HOST_IPV4, SOCKS5_PROXY_PORT, LOGIN, PASSWORD, TEST_URL_IPV4_DELAY, SKIP_IPV6_TESTS, SOCKS5_IPV6_URL, SOCKS4_URL, HTTP_PROXY_URL, SOCKS4_PROXY_PORT, HTTP_PROXY_PORT, TEST_HOST_PEM_FILE, TEST_URL_IPV4_HTTPS, ) def create_ssl_context(): ssl_context = ssl.SSLContext(ssl.PROTOCOL_TLS) ssl_context.verify_mode = ssl.CERT_REQUIRED ssl_context.load_verify_locations(TEST_HOST_PEM_FILE) return ssl_context async def fetch(connector: TCPConnector, url: str, timeout=None) -> ClientResponse: url = URL(url) ssl_context = None if url.scheme == 'https': ssl_context = create_ssl_context() async with aiohttp.ClientSession(connector=connector) as session: async with session.get(url, ssl=ssl_context, timeout=timeout) as resp: return resp @pytest.mark.parametrize('url', (TEST_URL_IPV4, TEST_URL_IPV4_HTTPS)) @pytest.mark.parametrize('rdns', (True, False)) @pytest.mark.asyncio async def test_socks5_proxy_ipv4(url, rdns): connector = ProxyConnector.from_url(SOCKS5_IPV4_URL, rdns=rdns) res = await fetch(connector=connector, url=url) assert res.status == 200 @pytest.mark.asyncio async def test_socks5_proxy_with_invalid_credentials(): connector = ProxyConnector( proxy_type=ProxyType.SOCKS5, host=PROXY_HOST_IPV4, port=SOCKS5_PROXY_PORT, username=LOGIN, password=PASSWORD + '<PASSWORD>', ) with pytest.raises(ProxyError): await fetch(connector=connector, url=TEST_URL_IPV4) @pytest.mark.asyncio async def test_socks5_proxy_with_timeout(): connector = ProxyConnector( proxy_type=ProxyType.SOCKS5, host=PROXY_HOST_IPV4, port=SOCKS5_PROXY_PORT, username=LOGIN, password=PASSWORD, ) with pytest.raises(asyncio.TimeoutError): await fetch(connector=connector, url=TEST_URL_IPV4_DELAY, timeout=1) @pytest.mark.asyncio async def test_socks5_proxy_with_proxy_connect_timeout(): connector = ProxyConnector.from_url(SOCKS5_IPV4_URL) timeout = aiohttp.ClientTimeout(total=32, sock_connect=0.001) with pytest.raises(ProxyTimeoutError): await fetch(connector=connector, url=TEST_URL_IPV4, timeout=timeout) @pytest.mark.asyncio async def test_socks5_proxy_with_invalid_proxy_port(unused_tcp_port): connector = ProxyConnector( proxy_type=ProxyType.SOCKS5, host=PROXY_HOST_IPV4, port=unused_tcp_port, username=LOGIN, password=PASSWORD, ) with pytest.raises(ProxyConnectionError): await fetch(connector=connector, url=TEST_URL_IPV4) @pytest.mark.parametrize('url', (TEST_URL_IPV4, TEST_URL_IPV4_HTTPS)) @pytest.mark.skipif(SKIP_IPV6_TESTS, reason="TravisCI doesn't support ipv6") @pytest.mark.asyncio async def test_socks5_proxy_ipv6(url): connector = ProxyConnector.from_url(SOCKS5_IPV6_URL) res = await fetch(connector=connector, url=url) assert res.status == 200 @pytest.mark.parametrize('url', (TEST_URL_IPV4, TEST_URL_IPV4_HTTPS)) @pytest.mark.parametrize('rdns', (True, False)) @pytest.mark.asyncio async def test_socks4_proxy(url, rdns): connector = ProxyConnector.from_url(SOCKS4_URL, rdns=rdns, ) res = await fetch(connector=connector, url=url) assert res.status == 200 @pytest.mark.parametrize('url', (TEST_URL_IPV4, TEST_URL_IPV4_HTTPS)) @pytest.mark.asyncio async def test_http_proxy(url): connector = ProxyConnector.from_url(HTTP_PROXY_URL) res = await fetch(connector=connector, url=url) assert res.status == 200 @pytest.mark.parametrize('url', (TEST_URL_IPV4, TEST_URL_IPV4_HTTPS)) @pytest.mark.asyncio async def test_chain_proxy_from_url(url): connector = ChainProxyConnector.from_urls([ SOCKS5_IPV4_URL, SOCKS4_URL, HTTP_PROXY_URL ]) res = await fetch(connector=connector, url=url) assert res.status == 200 @pytest.mark.parametrize('url', (TEST_URL_IPV4, TEST_URL_IPV4_HTTPS)) @pytest.mark.parametrize('rdns', (True, False)) @pytest.mark.asyncio async def test_chain_proxy_ctor(url, rdns): connector = ChainProxyConnector([ ProxyInfo( proxy_type=ProxyType.SOCKS5, host=PROXY_HOST_IPV4, port=SOCKS5_PROXY_PORT, username=LOGIN, password=PASSWORD, rdns=rdns ), ProxyInfo( proxy_type=ProxyType.SOCKS4, host=PROXY_HOST_IPV4, port=SOCKS4_PROXY_PORT, username=LOGIN, rdns=rdns ), ProxyInfo( proxy_type=ProxyType.HTTP, host=PROXY_HOST_IPV4, port=HTTP_PROXY_PORT, username=LOGIN, password=PASSWORD ), ]) res = await fetch(connector=connector, url=url) assert res.status == 200 @pytest.mark.parametrize('url', (TEST_URL_IPV4, TEST_URL_IPV4_HTTPS)) @pytest.mark.parametrize('rdns', (True, False)) @pytest.mark.asyncio async def test_socks5_open_connection(url, rdns): url = URL(url) ssl_context = None if url.scheme == 'https': ssl_context = create_ssl_context() reader, writer = await open_connection( proxy_url=SOCKS5_IPV4_URL, host=url.host, port=url.port, ssl=ssl_context, server_hostname=url.host if ssl_context else None, rdns=rdns, ) request = ("GET %s HTTP/1.1\r\n" "Host: %s\r\n" "Connection: close\r\n\r\n" % (url.path_qs, url.host)) writer.write(request.encode()) response = await reader.read(-1) assert b'200 OK' in response @pytest.mark.parametrize('url', (TEST_URL_IPV4, TEST_URL_IPV4_HTTPS)) @pytest.mark.parametrize('rdns', (True, False)) @pytest.mark.asyncio async def test_socks5_http_create_connection(url, rdns, event_loop): url = URL(url) ssl_context = None if url.scheme == 'https': ssl_context = create_ssl_context() reader = asyncio.StreamReader(loop=event_loop) protocol = asyncio.StreamReaderProtocol(reader, loop=event_loop) transport, _ = await create_connection( proxy_url=SOCKS5_IPV4_URL, protocol_factory=lambda: protocol, host=url.host, port=url.port, ssl=ssl_context, server_hostname=url.host if ssl_context else None, rdns=rdns, ) writer = asyncio.StreamWriter(transport, protocol, reader, event_loop) request = ("GET %s HTTP/1.1\r\n" "Host: %s\r\n" "Connection: close\r\n\r\n" % (url.path_qs, url.host)) writer.write(request.encode()) response = await reader.read(-1) assert b'200 OK' in response
gslib/tests/test_hash.py
maxshine/gsutil
1,894
91548
# -*- coding: utf-8 -*- # Copyright 2014 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests for hash command.""" from __future__ import absolute_import from __future__ import print_function from __future__ import division from __future__ import unicode_literals import os from gslib.exception import CommandException import gslib.tests.testcase as testcase from gslib.tests.testcase.integration_testcase import SkipForS3 from gslib.tests.util import ObjectToURI as suri _TEST_FILE_CONTENTS = b'123456\n' _TEST_FILE_B64_CRC = 'nYmSiA==' _TEST_FILE_B64_MD5 = '9EeyCn/L9TpdW+AT6gsVrw==' _TEST_FILE_HEX_CRC = '9D899288' _TEST_FILE_HEX_MD5 = 'f447b20a7fcbf53a5d5be013ea0b15af' _TEST_COMPOSITE_ADDED_CONTENTS = b'tmp' _TEST_COMPOSITE_B64_CRC = 'M3DYBg==' _TEST_COMPOSITE_HEX_CRC = '3370D806' class TestHashUnit(testcase.GsUtilUnitTestCase): """Unit tests for hash command.""" def testHashContents(self): tmp_file = self.CreateTempFile(contents=_TEST_FILE_CONTENTS) stdout = self.RunCommand('hash', args=[tmp_file], return_stdout=True) self.assertIn(b'Hashes [base64]', stdout) self.assertIn( ('\tHash (crc32c):\t\t%s' % _TEST_FILE_B64_CRC).encode('ascii'), stdout) self.assertIn(('\tHash (md5):\t\t%s' % _TEST_FILE_B64_MD5).encode('ascii'), stdout) def testHashNoMatch(self): try: self.RunCommand('hash', args=['non-existent-file']) self.fail('Did not get expected CommandException') except CommandException as e: self.assertIn('No files matched', e.reason) def testHashHexFormat(self): tmp_file = self.CreateTempFile(contents=_TEST_FILE_CONTENTS) stdout = self.RunCommand('hash', args=['-h', tmp_file], return_stdout=True) self.assertIn(b'Hashes [hex]', stdout) self.assertIn( ('\tHash (crc32c):\t\t%s' % _TEST_FILE_HEX_CRC).encode('ascii'), stdout) self.assertIn(('\tHash (md5):\t\t%s' % _TEST_FILE_HEX_MD5).encode('ascii'), stdout) def testHashWildcard(self): num_test_files = 2 tmp_dir = self.CreateTempDir(test_files=num_test_files) stdout = self.RunCommand('hash', args=[os.path.join(tmp_dir, '*')], return_stdout=True) # One summary line and two hash lines per file. num_expected_lines = num_test_files * (1 + 2) self.assertEquals(len(stdout.splitlines()), num_expected_lines) def testHashSelectAlg(self): tmp_file = self.CreateTempFile(contents=_TEST_FILE_CONTENTS) stdout_crc = self.RunCommand('hash', args=['-c', tmp_file], return_stdout=True) stdout_md5 = self.RunCommand('hash', args=['-m', tmp_file], return_stdout=True) stdout_both = self.RunCommand('hash', args=['-c', '-m', tmp_file], return_stdout=True) for stdout in (stdout_crc, stdout_both): self.assertIn( ('\tHash (crc32c):\t\t%s' % _TEST_FILE_B64_CRC).encode('ascii'), stdout) for stdout in (stdout_md5, stdout_both): self.assertIn( ('\tHash (md5):\t\t%s' % _TEST_FILE_B64_MD5).encode('ascii'), stdout) self.assertNotIn(b'md5', stdout_crc) self.assertNotIn(b'crc32c', stdout_md5) class TestHash(testcase.GsUtilIntegrationTestCase): """Integration tests for hash command.""" def testHashCloudObject(self): """Test hash command on a cloud object.""" obj1 = self.CreateObject(object_name='obj1', contents=_TEST_FILE_CONTENTS) # Tests cloud object with -h. stdout = self.RunGsUtil(['hash', '-h', suri(obj1)], return_stdout=True) self.assertIn('Hashes [hex]', stdout) if self.default_provider == 'gs': # Hex hashes for cloud objects get converted to lowercase but their # meaning is the same. self.assertIn(('\tHash (crc32c):\t\t%s' % _TEST_FILE_HEX_CRC.lower()), stdout) self.assertIn(('\tHash (md5):\t\t%s' % _TEST_FILE_HEX_MD5), stdout) # Tests cloud object as base64. stdout = self.RunGsUtil(['hash', suri(obj1)], return_stdout=True) self.assertIn('Hashes [base64]', stdout) if self.default_provider == 'gs': self.assertIn(('\tHash (crc32c):\t\t%s' % _TEST_FILE_B64_CRC), stdout) self.assertIn(('\tHash (md5):\t\t%s' % _TEST_FILE_B64_MD5), stdout) @SkipForS3('No composite object or crc32c support for S3.') def testHashCompositeObject(self): """Test hash command on a composite object (which only has crc32c).""" bucket = self.CreateBucket() obj1 = self.CreateObject(bucket_uri=bucket, object_name='obj1', contents=_TEST_FILE_CONTENTS) obj2 = self.CreateObject(bucket_uri=bucket, object_name='tmp', contents=_TEST_COMPOSITE_ADDED_CONTENTS) self.RunGsUtil(['compose', suri(obj1), suri(obj2), suri(obj1)]) stdout = self.RunGsUtil(['hash', '-h', suri(obj1)], return_stdout=True) self.assertIn('Hashes [hex]', stdout) # Hex hashes for cloud objects get converted to lowercase but their # meaning is the same. self.assertIn(('\tHash (crc32c):\t\t%s' % _TEST_COMPOSITE_HEX_CRC.lower()), stdout) stdout = self.RunGsUtil(['hash', suri(obj1)], return_stdout=True) self.assertIn('Hashes [base64]', stdout) self.assertIn(('\tHash (crc32c):\t\t%s' % _TEST_COMPOSITE_B64_CRC), stdout)
src/sage_setup/util.py
UCD4IDS/sage
1,742
91556
r""" Utility functions for building Sage """ # **************************************************************************** # Copyright (C) 2017 <NAME> <<EMAIL>> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # https://www.gnu.org/licenses/ # **************************************************************************** def stable_uniq(L): """ Given an iterable L, remove duplicate items from L by keeping only the last occurrence of any item. The items must be hashable. EXAMPLES:: sage: from sage_setup.util import stable_uniq sage: stable_uniq( (1, 2, 3, 4, 5, 6, 3, 7, 5, 1, 5, 9) ) [2, 4, 6, 3, 7, 1, 5, 9] """ D = {} for pos, item in enumerate(L): D[item] = pos # Store the last position where an item appears return sorted(D, key=lambda item: D[item]) def have_module(name): """ Check whether a Python module named ``name`` can be imported. This is done by trying to import that module and returning ``True`` if that import succeeded. So, as a side effect, the module is actually imported if possible. EXAMPLES:: sage: from sage_setup.util import have_module sage: have_module("itertools") True sage: have_module("sage.rings.integer") True sage: have_module("no.such.module") False """ try: __import__(name, {}, {}, [], 0) return True except ImportError: return False
tests/test_environment_variables.py
ben-31/kas
187
91577
<reponame>ben-31/kas<gh_stars>100-1000 import os import shutil from kas import kas def test_build_dir_is_placed_inside_work_dir_by_default(changedir, tmpdir): conf_dir = str(tmpdir.mkdir('test_env_variables')) shutil.rmtree(conf_dir, ignore_errors=True) shutil.copytree('tests/test_environment_variables', conf_dir) os.chdir(conf_dir) kas.kas(['checkout', 'test.yml']) assert(os.path.exists(os.path.join(os.getcwd(), 'build', 'conf'))) def test_build_dir_can_be_specified_by_environment_variable(changedir, tmpdir): conf_dir = str(tmpdir.mkdir('test_env_variables')) build_dir = str(tmpdir.mkdir('test_build_dir')) shutil.rmtree(conf_dir, ignore_errors=True) shutil.copytree('tests/test_environment_variables', conf_dir) shutil.rmtree(build_dir, ignore_errors=True) os.chdir(conf_dir) os.environ['KAS_BUILD_DIR'] = build_dir kas.kas(['checkout', 'test.yml']) del os.environ['KAS_BUILD_DIR'] assert(os.path.exists(os.path.join(build_dir, 'conf')))
tests/apollo/test_skvbc_consensus_batching.py
definitelyNotFBI/utt
340
91578
<gh_stars>100-1000 # Concord # # Copyright (c) 2019 VMware, Inc. All Rights Reserved. # # This product is licensed to you under the Apache 2.0 license (the "License"). # You may not use this product except in compliance with the Apache 2.0 License. # # This product may include a number of subcomponents with separate copyright # notices and license terms. Your use of these subcomponents is subject to the # terms and conditions of the subcomponent's license, as noted in the LICENSE # file. import os.path import unittest from util.bft import with_trio, with_bft_network, KEY_FILE_PREFIX from util.skvbc_history_tracker import verify_linearizability from util import skvbc as kvbc NUM_OF_WRITES = 100 MAX_CONCURRENCY = 30 CONCURRENCY_LEVEL = "1" MAX_REQS_SIZE_IN_BATCH = "300" MAX_REQ_NUM_IN_BATCH = "3" BATCH_FLUSH_PERIOD = "250" BATCH_SELF_ADJUSTED = "0" BATCH_BY_REQ_SIZE = "1" BATCH_BY_REQ_NUM = "2" BATCHING_POLICY = BATCH_SELF_ADJUSTED def start_replica_cmd(builddir, replica_id): """ Return a command that starts an skvbc replica when passed to subprocess. Popen. Note each arguments is an element in a list. """ statusTimerMilli = "500" path = os.path.join(builddir, "tests", "simpleKVBC", "TesterReplica", "skvbc_replica") return [path, "-k", KEY_FILE_PREFIX, "-i", str(replica_id), "-s", statusTimerMilli, "-y", CONCURRENCY_LEVEL, "-b", BATCHING_POLICY, "-m", MAX_REQS_SIZE_IN_BATCH, "-q", MAX_REQ_NUM_IN_BATCH, "-z", BATCH_FLUSH_PERIOD ] class SkvbcConsensusBatchingPoliciesTest(unittest.TestCase): __test__ = False # so that PyTest ignores this test scenario async def launch_concurrent_requests(self, bft_network, tracker): bft_network.start_all_replicas() skvbc = kvbc.SimpleKVBCProtocol(bft_network, tracker) rw = await skvbc.send_concurrent_ops(NUM_OF_WRITES, max_concurrency=MAX_CONCURRENCY, max_size=10, write_weight=0.9) self.assertTrue(rw[0] + rw[1] >= NUM_OF_WRITES) @with_trio @with_bft_network(start_replica_cmd, selected_configs=lambda n, f, c: n == 7) @verify_linearizability(pre_exec_enabled=True, no_conflicts=True) async def test_batching_by_req_num(self, bft_network, tracker): """ This test verifies that BATCH_SELF_ADJUSTED consensus policy works """ global BATCHING_POLICY BATCHING_POLICY = BATCH_SELF_ADJUSTED await self.launch_concurrent_requests(bft_network, tracker) @with_trio @with_bft_network(start_replica_cmd, selected_configs=lambda n, f, c: n == 7) @verify_linearizability(pre_exec_enabled=True, no_conflicts=True) async def test_batching_by_req_num(self, bft_network, tracker): """ This test verifies that BATCH_BY_REQ_NUM consensus policy works """ global BATCHING_POLICY BATCHING_POLICY = BATCH_BY_REQ_NUM await self.launch_concurrent_requests(bft_network, tracker) @with_trio @with_bft_network(start_replica_cmd, selected_configs=lambda n, f, c: n == 7) @verify_linearizability(pre_exec_enabled=True, no_conflicts=True) async def test_batching_by_reqs_size(self, bft_network, tracker): """ This test verifies that BATCH_BY_REQ_SIZE consensus policy works """ global BATCHING_POLICY BATCHING_POLICY = BATCH_BY_REQ_SIZE await self.launch_concurrent_requests(bft_network, tracker)
saleor/core/utils/date_time.py
eanknd/saleor
1,392
91581
from datetime import datetime import pytz def convert_to_utc_date_time(date): """Convert date into utc date time.""" if date is None: return return datetime.combine(date, datetime.min.time(), tzinfo=pytz.UTC)
docs/_ext/djangodocs.py
Kunpors/dr.pors-
341
91592
<filename>docs/_ext/djangodocs.py # Sphinx helper for Django-specific references def setup(app): app.add_crossref_type( directivename = "label", rolename = "djterm", indextemplate = "pair: %s; label", ) app.add_crossref_type( directivename = "setting", rolename = "setting", indextemplate = "pair: %s; setting", ) app.add_crossref_type( directivename = "templatetag", rolename = "ttag", indextemplate = "pair: %s; template tag", ) app.add_crossref_type( directivename = "templatefilter", rolename = "tfilter", indextemplate = "pair: %s; template filter", ) app.add_crossref_type( directivename = "fieldlookup", rolename = "lookup", indextemplate = "pair: %s; field lookup type", )
configs/mmedit/super-resolution/super-resolution_ncnn_dynamic.py
aegis-rider/mmdeploy
746
91629
_base_ = ['./super-resolution_dynamic.py', '../../_base_/backends/ncnn.py']
sklearn/gaussian_process/tests/_mini_sequence_kernel.py
MaiRajborirug/scikit-learn
50,961
91634
from sklearn.gaussian_process.kernels import Kernel, Hyperparameter from sklearn.gaussian_process.kernels import GenericKernelMixin from sklearn.gaussian_process.kernels import StationaryKernelMixin import numpy as np from sklearn.base import clone class MiniSeqKernel(GenericKernelMixin, StationaryKernelMixin, Kernel): """ A minimal (but valid) convolutional kernel for sequences of variable length. """ def __init__(self, baseline_similarity=0.5, baseline_similarity_bounds=(1e-5, 1)): self.baseline_similarity = baseline_similarity self.baseline_similarity_bounds = baseline_similarity_bounds @property def hyperparameter_baseline_similarity(self): return Hyperparameter( "baseline_similarity", "numeric", self.baseline_similarity_bounds ) def _f(self, s1, s2): return sum( [1.0 if c1 == c2 else self.baseline_similarity for c1 in s1 for c2 in s2] ) def _g(self, s1, s2): return sum([0.0 if c1 == c2 else 1.0 for c1 in s1 for c2 in s2]) def __call__(self, X, Y=None, eval_gradient=False): if Y is None: Y = X if eval_gradient: return ( np.array([[self._f(x, y) for y in Y] for x in X]), np.array([[[self._g(x, y)] for y in Y] for x in X]), ) else: return np.array([[self._f(x, y) for y in Y] for x in X]) def diag(self, X): return np.array([self._f(x, x) for x in X]) def clone_with_theta(self, theta): cloned = clone(self) cloned.theta = theta return cloned
NLP/Conversational-Recommendation-BASELINE/conversational_recommendation/goal_planning/model/paddle_astar_goal.py
zhangyimi/Research
1,319
91665
<gh_stars>1000+ ###################################################################### # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###################################################################### """ File: """ import paddle import os import paddle.fluid as fluid import numpy as np import sys import math import random from sklearn.metrics import accuracy_score from sklearn.metrics import f1_score from sklearn.metrics import recall_score from sklearn.metrics import precision_score import paddle.fluid.dygraph.base as base class Config(object): """Config""" def __init__(self): self.CLASS_SIZE = 2 self.EMBED_SIZE = 128 self.HIDDEN_SIZE = 128 self.STACKED_NUM = 3 self.INPUT_SIZE = 21 self.TRAIN_RATE = 0.7 self.VAL_RATE = 0.15 self.SHUFFLE = False self.GOAL_FILE = True self.DOWN_SAMPLING = False self.BATCH_SIZE = 128 self.LEARNING_RATE = 0.001 self.NUM_EPOCH = 50 self.DEVICE = fluid.CPUPlace() self.SAVE_PATH = "../model_state/paddle_astar_goal_v1.mdl" def file_reader(file_path): """file_reader""" data = None with open(file_path, "r") as f: data = eval(f.read()) f.close() return data def reader_generater(datas): """reader_generater""" def reader(): """reader""" for data in datas: yield data return reader def get_data(file_path, data_tag, test=False): x = file_reader(file_path + data_tag + "_next_goal_type.txt") if test is False: y = file_reader(file_path + data_tag + "_next_goal_type_label.txt") g = file_reader(file_path + data_tag + "_final_goal_type.txt") idx = file_reader(file_path + data_tag + "_next_goal_type_idx.txt") c = [item[-1] for item in x] data = None if test is False: data = [[x[i], y[i], c[i], g[i], idx[i]] for i in range(len(x))] else: data = [[x[i], c[i], g[i][0], idx[i]] for i in range(len(x))] return data def get_point_data(train_rate, val_rate, batch_size, train_down_sampling=False, goal_file=True): """get_point_data""" file_path = "../train_data/" train_data = get_data(file_path, "train") val_data = get_data(file_path, "val") test_data = get_data(file_path, "test", test=True) train_len = len(train_data) val_len = len(val_data) data_len = train_len + val_len + len(test_data) print(train_len, val_len, len(test_data)) train_reader = paddle.batch(reader_generater(train_data), batch_size=batch_size) val_reader = paddle.batch(reader_generater(val_data), batch_size=batch_size) test_reader = paddle.batch(reader_generater(test_data), batch_size=batch_size) return train_reader, val_reader, test_reader def a_star(sequence, current, goal, config): """a_star""" input_dim = config.INPUT_SIZE class_dim = config.CLASS_SIZE embed_dim = config.EMBED_SIZE hidden_dim = config.HIDDEN_SIZE stacked_num = config.STACKED_NUM weight_data = np.random.random(size=(input_dim, embed_dim)) my_param_attrs = fluid.ParamAttr( name="embedding", learning_rate=0.5, initializer=fluid.initializer.NumpyArrayInitializer(weight_data), trainable=True ) seq_embed = fluid.embedding( input=sequence, size=[input_dim, embed_dim], param_attr=my_param_attrs) curr_embed = fluid.embedding( input=current, size=[input_dim, embed_dim], param_attr=my_param_attrs) goal_embed = fluid.embedding( input=goal, size=[input_dim, embed_dim], param_attr=my_param_attrs) fc1 = fluid.layers.fc(input=seq_embed, size=hidden_dim) lstm1, cell1 = fluid.layers.dynamic_lstm(input=fc1, size=hidden_dim) inputs = [fc1, lstm1] for i in range(2, stacked_num + 1): fc = fluid.layers.fc(input=inputs, size=hidden_dim) lstm, cell = fluid.layers.dynamic_lstm( input=fc, size=hidden_dim, is_reverse=(i % 2) == 0) inputs = [fc, lstm] fc_last = fluid.layers.sequence_pool(input=inputs[0], pool_type='max') lstm_last = fluid.layers.sequence_pool(input=inputs[1], pool_type='max') current_cost_embed = [fc_last, lstm_last, curr_embed] remain_cost_embed = [fc_last, lstm_last, goal_embed] pred_curr_fc1 = fluid.layers.fc(input=current_cost_embed, size=64, act="relu") current_cost = fluid.layers.fc(input=pred_curr_fc1, size=1, act="sigmoid") pred_goal_fc1 = fluid.layers.fc(input=remain_cost_embed, size=64, act="relu") remain_cost = fluid.layers.fc(input=pred_goal_fc1, size=1, act="sigmoid") prediction = 0.5 * current_cost + 0.5 * remain_cost return prediction def inference_program(config): """inference_program""" sequence = fluid.data(name="sequence", shape=[None, 1], dtype="int64", lod_level=1) current = fluid.data(name="current", shape=[None], dtype="int64") goal = fluid.data(name="goal", shape=[None], dtype="int64") net = a_star(sequence, current, goal, config) return net def train_program(prediction): """train_program""" label = fluid.data(name="label", shape=[None, 1], dtype="float32") idx = fluid.data(name="idx", shape=[None], dtype="int64") cost = fluid.layers.log_loss(input=prediction, label=label) avg_cost = fluid.layers.mean(cost) return avg_cost def train_accuracy(prediction, data): """train_accuracy""" y_pred = list() y_true = list() for item in prediction: if item[0] > 0.5: y_pred.append(1) else: y_pred.append(0) for item in data: y_true.append(item[1]) accuracy = accuracy_score(y_true, y_pred) return accuracy def argmax_metrics(y_pred, y_true, y_type, y_idx): """argmax_metrics""" group_data = list() idx = 0 while idx < len(y_idx): tmp_pred = list() tmp_true = list() tmp_type = list() tmp_idx = list() previous = y_idx[idx] while idx < len(y_idx) and y_idx[idx] == previous: tmp_pred.append(y_pred[idx]) tmp_true.append(y_true[idx]) tmp_type.append(y_type[idx]) tmp_idx.append(y_idx[idx]) idx += 1 group_data.append([tmp_pred, tmp_true, tmp_type, tmp_idx]) data_pred = list() data_true = list() for item in group_data: true_type = None pred_type = None max_pred = -1 for a, b, c in zip(item[0], item[1], item[2]): if a > max_pred: max_pred = a pred_type = c if b == 1: true_type = c if true_type != None and pred_type != None: data_pred.append(pred_type) data_true.append(true_type) print(len(data_true), len(data_pred)) return evaluation(data_pred, data_true) def evaluation(y_pred, y_true, flag="macro"): """evaluation""" return accuracy_score(y_true, y_pred), recall_score(y_true, y_pred, average=flag), \ precision_score(y_true, y_pred, average=flag), f1_score(y_true, y_pred, average=flag) def optimizer_func(learning_rate): """optimizer_func""" return fluid.optimizer.Adagrad(learning_rate=learning_rate) def train(config): """train""" print("Reading data...") train_reader, val_reader, test_reader = get_point_data( config.TRAIN_RATE, config.VAL_RATE, config.BATCH_SIZE, config.DOWN_SAMPLING, config.GOAL_FILE) feed_order = ["sequence", "label", "current", "goal", "idx"] main_program = fluid.default_main_program() star_program = fluid.default_startup_program() main_program.random_seed = 90 star_program.random_seed = 90 prediction = inference_program(config) avg_cost = train_program(prediction) val_program = main_program.clone(for_test=True) sgd_optimizer = optimizer_func(config.LEARNING_RATE) sgd_optimizer.minimize(avg_cost) exe = fluid.Executor(config.DEVICE) def val_loop(program, reader): """val_loop""" feed_var_list = [program.global_block().var(var_name) for var_name in feed_order] feeder_var = fluid.DataFeeder(feed_list=feed_var_list, place=config.DEVICE) val_exe = fluid.Executor(config.DEVICE) val_pred, val_prob, val_true, val_type, val_idx = list(), list(), list(), list(), list() for val_data in reader(): preds = val_exe.run( program=program, feed=feeder_var.feed(val_data), fetch_list=prediction ) preds = np.squeeze(np.array(preds)) for pred in preds: if pred <= 0.5: val_pred.append(0) else: val_pred.append(1) val_prob.append(pred) for vd in val_data: val_type.append(vd[0][-1]) val_true.append(vd[1]) val_idx.append(vd[-1]) bi_acc, bi_rec, bi_pre, bi_f1 = evaluation(val_pred, val_true) ag_acc, ag_rec, ag_pre, ag_f1 = argmax_metrics(val_prob, val_true, val_type, val_idx) return bi_acc, bi_rec, bi_pre, bi_f1, ag_acc, ag_rec, ag_pre, ag_f1 def train_loop(): """train_loop""" feed_var_list_loop = [main_program.global_block().var(var_name) for var_name in feed_order] feeder = fluid.DataFeeder(feed_list=feed_var_list_loop, place=config.DEVICE) exe.run(star_program) max_epoch, max_acc = 0, 0 for epoch_id in range(config.NUM_EPOCH): train_loss = list() train_acc = list() for batch_id, data in enumerate(train_reader()): metrics = exe.run( main_program, feed=feeder.feed(data), fetch_list=[avg_cost, prediction] ) train_loss.append(np.array(metrics[0])) train_acc.append(train_accuracy(np.array(metrics[1]), data)) bi_acc, bi_rec, bi_pre, bi_f1, ag_acc, ag_rec, ag_pre, ag_f1 = val_loop(val_program, val_reader) print("Epoch-%d, Train-Loss:%.4f, Train-Acc:%.4f, BI-Acc:%.4f, \ BI-Rec:%.4f, BI-Pre:%.4f, BI-F1:%.4f, AG-Acc:%.4f, AG-Rec:%.4f, AG-Pre:%.4f, AG-F1:%.4f" % ( epoch_id, np.mean(train_loss), np.mean(train_acc), bi_acc, bi_rec, bi_pre, bi_f1, ag_acc, ag_rec, ag_pre, ag_f1)) if bi_acc > max_acc: max_acc = bi_acc max_epoch = epoch_id fluid.io.save_inference_model(config.SAVE_PATH, ["sequence", "current", "goal"], prediction, exe) print("max_epoch: %d, max_acc: %.4f" % (max_epoch, max_acc)) train_loop() inference(config, test_reader) def inference(config, reader): """inference""" exe = fluid.Executor(config.DEVICE) inference_scope = fluid.core.Scope() with fluid.scope_guard(inference_scope): [inferencer, feed_target_names, fetch_targets] = fluid.io.load_inference_model(config.SAVE_PATH, exe) test_pred, test_prob, test_true, test_type, test_idx = list(), list(), list(), list(), list() for data in reader(): sequence = list() current = list() goal = list() for d in data: sequence.append(d[0]) current.append(d[1]) goal.append(d[2]) test_type.append(d[0][-1]) test_true.append(d[1]) test_idx.append(d[-1]) base_shape = [[len(seq) for seq in sequence]] lod_seq = fluid.create_lod_tensor(sequence, base_shape, config.DEVICE) new_data = { feed_target_names[0]: lod_seq, feed_target_names[1]: np.array(current), feed_target_names[2]: np.array(goal) } preds = exe.run( inferencer, feed=new_data, fetch_list=fetch_targets, return_numpy=False )[0] preds = np.squeeze(np.array(preds)) for pred in preds: if pred <= 0.5: test_pred.append(0) else: test_pred.append(1) test_prob.append(pred) return test_pred, test_prob if __name__ == "__main__": config = Config() train(config) train_reader, val_reader, test_reader = get_point_data( config.TRAIN_RATE, config.VAL_RATE, config.BATCH_SIZE, config.DOWN_SAMPLING, config.GOAL_FILE) inference(config, test_reader)
tests/samples/threads.py
spamegg1/snoop
751
91693
<filename>tests/samples/threads.py from threading import Thread from snoop.configuration import Config snoop = Config(columns='thread').snoop @snoop def foo(): return 1 def run(name): thread = Thread(target=foo, name=name) thread.start() thread.join() def main(): run('short') run('longername') run('short')
src/main/python/pybuilder/plugins/python/pep8_plugin.py
klr8/pybuilder
1,419
91696
<filename>src/main/python/pybuilder/plugins/python/pep8_plugin.py # -*- coding: utf-8 -*- # # This file is part of PyBuilder # # Copyright 2011-2020 PyBuilder Team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pybuilder.core import use_plugin, task, after, init from pybuilder.plugins.python.python_plugin_helper import execute_tool_on_source_files from pybuilder.utils import read_file use_plugin("python.core") @init def init_pep8_properties(project): project.plugin_depends_on("pep8") @after("prepare") def check_pep8_available(project, logger, reactor): logger.debug("Checking availability of pep8") reactor.python_env_registry["pybuilder"].verify_can_execute(["pep8"], "pep8", "plugin python.pep8") @task def analyze(project, logger): logger.info("Executing pep8 on project sources") _, report_file = execute_tool_on_source_files(project, "pep8", ["pep8"]) reports = read_file(report_file) if len(reports) > 0: logger.warn("Found %d warning%s produced by pep8", len(reports), "" if len(reports) == 1 else "s")
falkon/kernels/distance_kernel.py
vishalbelsare/falkon
130
91717
from typing import Union, Optional, Dict import torch from falkon import sparse from falkon.kernels.diff_kernel import DiffKernel from falkon.la_helpers.square_norm_fn import square_norm_diff from falkon.options import FalkonOptions from falkon.sparse import SparseTensor SQRT3 = 1.7320508075688772 SQRT5 = 2.23606797749979 def validate_sigma(sigma: Union[float, torch.Tensor]) -> torch.Tensor: if isinstance(sigma, torch.Tensor): # Sigma is a 1-item tensor ('single') try: sigma.item() return sigma except ValueError: pass # Sigma is a vector ('diag') if sigma.dim() == 1 or sigma.shape[1] == 1: return sigma.reshape(-1) else: # TODO: Better error raise ValueError("sigma must be a scalar or a vector.") else: try: return torch.tensor([float(sigma)], dtype=torch.float64) except TypeError: raise TypeError("Sigma must be a scalar or a tensor.") def _sq_dist(mat1, mat2, norm_mat1, norm_mat2, out: Optional[torch.Tensor]) -> torch.Tensor: if mat1.dim() == 3: if out is None: out = torch.baddbmm(norm_mat1, mat1, mat2.transpose(-2, -1), alpha=-2, beta=1) # b*n*m else: out = torch.baddbmm(norm_mat1, mat1, mat2.transpose(-2, -1), alpha=-2, beta=1, out=out) # b*n*m else: if out is None: out = torch.addmm(norm_mat1, mat1, mat2.transpose(-2, -1), alpha=-2, beta=1) # n*m else: out = torch.addmm(norm_mat1, mat1, mat2.transpose(-2, -1), alpha=-2, beta=1, out=out) # n*m out.add_(norm_mat2.transpose(-2, -1)) out.clamp_min_(1e-20) return out def _sparse_sq_dist(X1_csr: SparseTensor, X2_csr: SparseTensor, X1: SparseTensor, X2: SparseTensor, out: torch.Tensor) -> torch.Tensor: sq1 = torch.empty(X1_csr.size(0), dtype=X1_csr.dtype, device=X1_csr.device) sparse.sparse_square_norm(X1_csr, sq1) # TODO: This must be implemented for CUDA tensors sq1 = sq1.reshape(-1, 1) sq2 = torch.empty(X2_csr.size(0), dtype=X2_csr.dtype, device=X2_csr.device) sparse.sparse_square_norm(X2_csr, sq2) sq2 = sq2.reshape(-1, 1) sparse.sparse_matmul(X1, X2, out) out.mul_(-2.0) out.add_(sq1.to(device=X1.device)) out.add_(sq2.to(device=X2.device).t()) out.clamp_min_(1e-20) return out def rbf_core(mat1, mat2, out: Optional[torch.Tensor], sigma): """ Note 1: if out is None, then this function will be differentiable wrt all three remaining inputs. Note 2: this function can deal with batched inputs Parameters ---------- sigma mat1 mat2 out Returns ------- """ mat1_div_sig = mat1 / sigma mat2_div_sig = mat2 / sigma norm_sq_mat1 = square_norm_diff(mat1_div_sig, -1, True) # b*n*1 or n*1 norm_sq_mat2 = square_norm_diff(mat2_div_sig, -1, True) # b*m*1 or m*1 out = _sq_dist(mat1_div_sig, mat2_div_sig, norm_sq_mat1, norm_sq_mat2, out) out.mul_(-0.5) out.exp_() return out def rbf_core_sparse(mat1: SparseTensor, mat2: SparseTensor, mat1_csr: SparseTensor, mat2_csr: SparseTensor, out: torch.Tensor, sigma) -> torch.Tensor: gamma = 0.5 / (sigma ** 2) out = _sparse_sq_dist(X1_csr=mat1_csr, X2_csr=mat2_csr, X1=mat1, X2=mat2, out=out) out.mul_(-gamma) out.exp_() return out def laplacian_core(mat1, mat2, out: Optional[torch.Tensor], sigma): mat1_div_sig = mat1 / sigma mat2_div_sig = mat2 / sigma norm_sq_mat1 = square_norm_diff(mat1_div_sig, -1, True) # b*n*1 norm_sq_mat2 = square_norm_diff(mat2_div_sig, -1, True) # b*m*1 orig_out = out out = _sq_dist(mat1_div_sig, mat2_div_sig, norm_sq_mat1, norm_sq_mat2, out) out.sqrt_() # Laplacian: sqrt of squared-difference # The gradient calculation needs the output of sqrt_ if orig_out is None: # TODO: We could be more explicit in the parameters about whether the gradient is or isn't needed out = out.neg() else: out.neg_() out.exp_() return out def laplacian_core_sparse(mat1: SparseTensor, mat2: SparseTensor, mat1_csr: SparseTensor, mat2_csr: SparseTensor, out: torch.Tensor, sigma) -> torch.Tensor: gamma = 1 / sigma out = _sparse_sq_dist(X1_csr=mat1_csr, X2_csr=mat2_csr, X1=mat1, X2=mat2, out=out) out.sqrt_() out.mul_(-gamma) out.exp_() return out def matern_core(mat1, mat2, out: Optional[torch.Tensor], sigma, nu): if nu == 0.5: return laplacian_core(mat1, mat2, out, sigma) elif nu == float('inf'): return rbf_core(mat1, mat2, out, sigma) orig_out = out mat1_div_sig = mat1 / sigma mat2_div_sig = mat2 / sigma norm_sq_mat1 = square_norm_diff(mat1_div_sig, -1, True) # b*n*1 norm_sq_mat2 = square_norm_diff(mat2_div_sig, -1, True) # b*m*1 out = _sq_dist(mat1_div_sig, mat2_div_sig, norm_sq_mat1, norm_sq_mat2, out) if nu == 1.5: # (1 + sqrt(3)*D) * exp(-sqrt(3)*D)) out.sqrt_() if orig_out is None: # TODO: We could be more explicit in the parameters about whether the gradient is or isn't needed out = out.mul(SQRT3) else: out.mul_(SQRT3) out_neg = torch.neg(out) # extra n*m block out_neg.exp_() out.add_(1.0).mul_(out_neg) elif nu == 2.5: # (1 + sqrt(5)*D + (sqrt(5)*D)^2 / 3 ) * exp(-sqrt(5)*D) out_sqrt = torch.sqrt(out) if orig_out is None: # TODO: We could be more explicit in the parameters about whether the gradient is or isn't needed out_sqrt = out_sqrt.mul(SQRT5) else: out_sqrt.mul_(SQRT5) out.mul_(5.0 / 3.0).add_(out_sqrt).add_(1.0) out_sqrt.neg_().exp_() out.mul_(out_sqrt) return out def matern_core_sparse(mat1: SparseTensor, mat2: SparseTensor, mat1_csr: SparseTensor, mat2_csr: SparseTensor, out: torch.Tensor, sigma, nu) -> torch.Tensor: if nu == 0.5: return laplacian_core_sparse(mat1, mat2, mat1_csr, mat2_csr, out, sigma) elif nu == float('inf'): return rbf_core_sparse(mat1, mat2, mat1_csr, mat2_csr, out, sigma) gamma = 1 / (sigma ** 2) out = _sparse_sq_dist(X1_csr=mat1_csr, X2_csr=mat2_csr, X1=mat1, X2=mat2, out=out) out.mul_(gamma) # For certain nu = 1.5, 2.5 we will need an extra n*m block if nu == 1.5: # (1 + sqrt(3)*D) * exp(-sqrt(3)*D)) out.sqrt_() out.mul_(SQRT3) out_neg = torch.neg(out) out_neg.exp_() out.add_(1.0).mul_(out_neg) elif nu == 2.5: # (1 + sqrt(5)*D + (sqrt(5)*D)^2 / 3 ) * exp(-sqrt(5)*D) out_sqrt = torch.sqrt(out) out_sqrt.mul_(SQRT5) out.mul_(5.0 / 3.0).add_(out_sqrt).add_(1.0) out_sqrt.neg_().exp_() out.mul_(out_sqrt) return out class GaussianKernel(DiffKernel): r"""Class for computing the Gaussian kernel and related kernel-vector products The Gaussian kernel is one of the most common and effective kernel embeddings since it is infinite dimensional, and governed by a single parameter. The kernel length-scale determines the width of the Gaussian distribution which is placed on top of each point. A larger sigma corresponds to a wide Gaussian, so that the relative influence of far away points will be high for computing the kernel at a given datum. On the opposite side of the spectrum, a small sigma means that only nearby points will influence the kernel. Parameters ----------- sigma The length-scale of the kernel. This can be a scalar, and then it corresponds to the standard deviation of the Gaussian distribution from which the kernel is derived. If `sigma` is a vector of size `d` (where `d` is the dimensionality of the data), it is interpreted as the diagonal standard deviation of the Gaussian distribution. It can also be a matrix of size `d*d` where `d`, in which case sigma will be the precision matrix (inverse covariance). opt Additional options to be forwarded to the matrix-vector multiplication routines. Examples -------- Creating a Gaussian kernel with a single length-scale. Operations on this kernel will not use KeOps. >>> K = GaussianKernel(sigma=3.0, opt=FalkonOptions(keops_active="no")) Creating a Gaussian kernel with a different length-scale per dimension >>> K = GaussianKernel(sigma=torch.tensor([1.0, 3.5, 7.0])) Creating a Gaussian kernel object with full covariance matrix (randomly chosen) >>> mat = torch.randn(3, 3, dtype=torch.float64) >>> sym_mat = mat @ mat.T >>> K = GaussianKernel(sigma=sym_mat) >>> K GaussianKernel(sigma=tensor([[ 2.0909, 0.0253, -0.2490], [ 0.0253, 0.3399, -0.5158], [-0.2490, -0.5158, 4.4922]], dtype=torch.float64)) #random Notes ----- The Gaussian kernel with a single length-scale follows .. math:: k(x, x') = \exp{-\dfrac{\lVert x - x' \rVert^2}{2\sigma^2}} When the length-scales are specified as a matrix, the RBF kernel is determined by .. math:: k(x, x') = \exp{-\dfrac{1}{2}x\Sigma x'} In both cases, the actual computation follows a different path, working on the expanded norm. """ kernel_name = "gaussian" core_fn = rbf_core def __init__(self, sigma: Union[float, torch.Tensor], opt: Optional[FalkonOptions] = None): self.sigma = validate_sigma(sigma) super().__init__(self.kernel_name, opt, core_fn=GaussianKernel.core_fn, sigma=self.sigma) def _keops_mmv_impl(self, X1, X2, v, kernel, out, opt: FalkonOptions): formula = 'Exp(SqDist(x1 / g, x2 / g) * IntInv(-2)) * v' aliases = [ 'x1 = Vi(%d)' % (X1.shape[1]), 'x2 = Vj(%d)' % (X2.shape[1]), 'v = Vj(%d)' % (v.shape[1]), 'g = Pm(%d)' % (self.sigma.shape[0]) ] other_vars = [self.sigma.to(device=X1.device, dtype=X1.dtype)] return self.keops_mmv(X1, X2, v, out, formula, aliases, other_vars, opt) def extra_mem(self) -> Dict[str, float]: return { # Data-matrix / sigma in prepare + Data-matrix / sigma in apply 'nd': 2, 'md': 1, # Norm results in prepare 'm': 1, 'n': 1, } def detach(self) -> 'GaussianKernel': detached_params = self._detach_params() return GaussianKernel(detached_params["sigma"], opt=self.params) # noinspection PyMethodOverriding def compute_sparse(self, X1: SparseTensor, X2: SparseTensor, out: torch.Tensor, X1_csr: SparseTensor, X2_csr: SparseTensor) -> torch.Tensor: if len(self.sigma) > 1: raise NotImplementedError("Sparse kernel is only implemented for scalar sigmas.") dev_kernel_tensor_params = self._move_kernel_params(X1) return rbf_core_sparse(X1, X2, X1_csr, X2_csr, out, dev_kernel_tensor_params["sigma"]) def __repr__(self): return f"GaussianKernel(sigma={self.sigma})" def __str__(self): return f"Gaussian kernel<{self.sigma}>" class LaplacianKernel(DiffKernel): r"""Class for computing the Laplacian kernel, and related kernel-vector products. The Laplacian kernel is similar to the Gaussian kernel, but less sensitive to changes in the parameter `sigma`. Parameters ---------- sigma The length-scale of the Laplacian kernel Notes ----- The Laplacian kernel is determined by the following formula .. math:: k(x, x') = \exp{-\frac{\lVert x - x' \rVert}{\sigma}} """ kernel_name = "laplacian" def __init__(self, sigma: Union[float, torch.Tensor], opt: Optional[FalkonOptions] = None): self.sigma = validate_sigma(sigma) super().__init__(self.kernel_name, opt, core_fn=laplacian_core, sigma=self.sigma) def _keops_mmv_impl(self, X1, X2, v, kernel, out, opt: FalkonOptions): formula = 'Exp(-Sqrt(SqDist(x1 / g, x2 / g))) * v' aliases = [ 'x1 = Vi(%d)' % (X1.shape[1]), 'x2 = Vj(%d)' % (X2.shape[1]), 'v = Vj(%d)' % (v.shape[1]), 'g = Pm(%d)' % (self.sigma.shape[0]) ] other_vars = [self.sigma.to(device=X1.device, dtype=X1.dtype)] return self.keops_mmv(X1, X2, v, out, formula, aliases, other_vars, opt) def extra_mem(self) -> Dict[str, float]: return { # Data-matrix / sigma in prepare + Data-matrix / sigma in apply 'nd': 2, 'md': 1, # Norm results in prepare 'm': 1, 'n': 1, } def detach(self) -> 'LaplacianKernel': detached_params = self._detach_params() return LaplacianKernel(detached_params["sigma"], opt=self.params) # noinspection PyMethodOverriding def compute_sparse(self, X1: SparseTensor, X2: SparseTensor, out: torch.Tensor, X1_csr: SparseTensor, X2_csr: SparseTensor) -> torch.Tensor: if len(self.sigma) > 1: raise NotImplementedError("Sparse kernel is only implemented for scalar sigmas.") dev_kernel_tensor_params = self._move_kernel_params(X1) return laplacian_core_sparse(X1, X2, X1_csr, X2_csr, out, dev_kernel_tensor_params["sigma"]) def __repr__(self): return f"LaplacianKernel(sigma={self.sigma})" def __str__(self): return f"Laplaciankernel<{self.sigma}>" class MaternKernel(DiffKernel): r"""Class for computing the Matern kernel, and related kernel-vector products. The Matern kernels define a generic class of kernel functions which includes the Laplacian and Gaussian kernels. The class is parametrized by 'nu'. When `nu = 0.5` this kernel is equivalent to the Laplacian kernel, when `nu = float('inf')`, the Matern kernel is equivalent to the Gaussian kernel. This class implements the Matern kernel only for the values of nu which have a closed form solution, which are 0.5, 1.5, 2.5, and infinity. Parameters ---------- sigma The length-scale of the Matern kernel. The length-scale can be either a scalar or a vector. Matrix-valued length-scales are not allowed for the Matern kernel. nu The parameter of the Matern kernel. It should be one of `0.5`, `1.5`, `2.5` or `inf`. Notes ----- While for `nu = float('inf')` this kernel is equivalent to the :class:`GaussianKernel`, the implementation is more general and using the :class:`GaussianKernel` directly may be computationally more efficient. """ _valid_nu_values = frozenset({0.5, 1.5, 2.5, float('inf')}) def __init__(self, sigma: Union[float, torch.Tensor], nu: Union[float, torch.Tensor], opt: Optional[FalkonOptions] = None): self.sigma = validate_sigma(sigma) self.nu = self.validate_nu(nu) self.kernel_name = f"{self.nu:.1f}-matern" super().__init__(self.kernel_name, opt, core_fn=matern_core, sigma=self.sigma, nu=self.nu) def _keops_mmv_impl(self, X1, X2, v, kernel, out, opt: FalkonOptions): if self.nu == 0.5: formula = 'Exp(-Norm2(x1 / s - x2 / s)) * v' elif self.nu == 1.5: formula = ('(IntCst(1) + Sqrt(IntCst(3)) * Norm2(x1 / s - x2 / s)) * ' '(Exp(-Sqrt(IntCst(3)) * Norm2(x1 / s - x2 / s)) * v)') elif self.nu == 2.5: formula = ('(IntCst(1) + Sqrt(IntCst(5)) * Norm2(x1 / s - x2 / s) + ' '(IntInv(3) * IntCst(5)) * SqNorm2(x1 / s - x2 / s)) * ' '(Exp(-Sqrt(IntCst(5)) * Norm2(x1 / s - x2 / s)) * v)') elif self.nu == float('inf'): formula = 'Exp(IntInv(-2) * SqDist(x1 / s, x2 / s)) * v' else: raise RuntimeError(f"Unrecognized value of nu ({self.nu}). " f"The onnly allowed values are 0.5, 1.5, 2.5, inf.") aliases = [ 'x1 = Vi(%d)' % (X1.shape[1]), 'x2 = Vj(%d)' % (X2.shape[1]), 'v = Vj(%d)' % (v.shape[1]), 's = Pm(%d)' % (self.sigma.shape[0]) ] other_vars = [self.sigma.to(device=X1.device, dtype=X1.dtype)] return self.keops_mmv(X1, X2, v, out, formula, aliases, other_vars, opt) def extra_mem(self) -> Dict[str, float]: extra_mem = { # Data-matrix / sigma 'nd': 1, 'md': 1, # Norm results in prepare 'm': 1, 'n': 1, } if self.nu in {1.5, 2.5}: # Extra kernel block in transform extra_mem['nm'] = 1 return extra_mem def detach(self) -> 'MaternKernel': detached_params = self._detach_params() return MaternKernel(detached_params["sigma"], detached_params["nu"], opt=self.params) @staticmethod def validate_nu(nu: Union[torch.Tensor, float]) -> float: if isinstance(nu, torch.Tensor): if nu.requires_grad: raise ValueError("The nu parameter of the Matern kernel is not differentiable, " "and must not require gradients.") try: out_nu = round(nu.item(), ndigits=2) except ValueError: raise ValueError("nu=%s is not convertible to a scalar." % (nu)) elif isinstance(nu, float): out_nu = round(nu, ndigits=2) else: raise TypeError(f"nu must be a float or a tensor, not a {type(nu)}") if out_nu not in MaternKernel._valid_nu_values: raise ValueError(f"The given value of nu = {out_nu} can only take " f"values {MaternKernel._valid_nu_values}.") return out_nu # noinspection PyMethodOverriding def compute_sparse(self, X1: SparseTensor, X2: SparseTensor, out: torch.Tensor, X1_csr: SparseTensor, X2_csr: SparseTensor) -> torch.Tensor: if len(self.sigma) > 1: raise NotImplementedError("Sparse kernel is only implemented for scalar sigmas.") dev_kernel_tensor_params = self._move_kernel_params(X1) return matern_core_sparse(X1, X2, X1_csr, X2_csr, out, dev_kernel_tensor_params["sigma"], self.nu) def __repr__(self): return f"MaternKernel(sigma={self.sigma}, nu={self.nu:.1f})" def __str__(self): return f"Matern kernel<{self.sigma}, {self.nu:.1f}>"
cctbx/examples/exp_i_alpha_derivatives.py
dperl-sol/cctbx_project
155
91759
from __future__ import absolute_import, division, print_function import cmath import math from six.moves import zip class least_squares: def __init__(self, obs, calc): self.obs = obs self.calc = calc a, b = self.calc.real, self.calc.imag self.abs_calc = math.sqrt(a**2 + b**2) self.delta = self.obs - self.abs_calc def f(self): "Mathematica: f=(obs-Sqrt[a^2+b^2])^2" return self.delta**2 def da(self): "Mathematica: D[f,a]" if (self.abs_calc == 0): return 0 return -2 * self.delta * self.calc.real / self.abs_calc def db(self): "Mathematica: D[f,b]" if (self.abs_calc == 0): return 0 return -2 * self.delta * self.calc.imag / self.abs_calc def daa(self): "Mathematica: FortranForm[FullSimplify[D[f,a,a]]]" ac = self.abs_calc if (ac == 0): if (self.obs == 0): return 2 return -1.e160 return 2 - (2*self.calc.imag**2*self.obs)/ac/ac/ac def dbb(self): "Mathematica: FortranForm[FullSimplify[D[f,b,b]]]" ac = self.abs_calc if (ac == 0): if (self.obs == 0): return 2 return -1.e160 return 2 - (2*self.calc.real**2*self.obs)/ac/ac/ac def dab(self): "Mathematica: FortranForm[FullSimplify[D[f,a,b]]]" ac = self.abs_calc if (ac == 0): if (self.obs == 0): return 0 return 1.e160 return (2*self.calc.real*self.calc.imag*self.obs)/ac/ac/ac class exp_i_alpha_sum: def __init__(self, alphas): self.alphas = alphas def f(self): "Mathematica: f=Exp[I alpha]" result = 0 for alpha in self.alphas: result += cmath.exp(1j*alpha) return result def d_alphas(self): "Mathematica: D[f,alpha]" return [1j*cmath.exp(1j*alpha) for alpha in self.alphas] def d2_alphas(self): "Mathematica: D[f,alpha,alpha]" return [-cmath.exp(1j*alpha) for alpha in self.alphas] def d_target_d_alphas(self, target): "Rule for derivatives of sum of roots of unity." da, db = target.da(), target.db() return [da * d.real + db * d.imag for d in self.d_alphas()] def d2_target_d_alphas(self, target): "Product rule applied to da * d.real + db * d.imag." result = [] da, db = target.da(), target.db() daa, dbb, dab = target.daa(), target.dbb(), target.dab() d = self.d_alphas() d2 = self.d2_alphas() for di,d2i in zip(d, d2): row = [] for dj in d: sum = daa * di.real * dj.real \ + dbb * di.imag * dj.imag \ + dab * (di.real * dj.imag + di.imag * dj.real) if (di is dj): sum += da * d2i.real + db * d2i.imag row.append(sum) result.append(row) return result
python/tinyflow/_util.py
irvingzhang0512/tinyflow
2,035
91760
<reponame>irvingzhang0512/tinyflow from __future__ import absolute_import as _abs import json from nnvm import symbol, graph def infer_variable_shapes(net, feed_dict): """Inference shape of all variables in the net. Parameters ---------- net : tf.Symbol The symbolic network containing all the variables. feed_dict : dict dict of placeholder to known shape Returns ------- Generator of (var, vname, vshape) Enables enumeration of variables in the net with corresponding name and shape. """ g = graph.create(net) jgraph = json.loads(g.apply('SaveJSON').json_attr('json')) jnode_row_ptr = jgraph["node_row_ptr"] jnodes = jgraph["nodes"] shape = [[]] * jnode_row_ptr[-1] nindex = {n['name']: i for i, n in enumerate(jnodes)} for k, v in feed_dict.items(): node_name = k.attr("name") shape[jnode_row_ptr[nindex[node_name]]] = v g._set_json_attr("shape", shape, "list_shape") g = g.apply("InferShape") shape = g.json_attr("shape") ret = {} for v in net.list_input_variables(): vname = v.attr("name") vshape = shape[jnode_row_ptr[nindex[vname]]] if len(vshape) == 0: raise ValueError("not sufficient information in feed_dict") yield (v, vname, vshape)
DQM/EcalPreshowerMonitorModule/python/EcalPreshowerMonitorTasks_withFEDIntegrity_cfi.py
ckamtsikis/cmssw
852
91770
<filename>DQM/EcalPreshowerMonitorModule/python/EcalPreshowerMonitorTasks_withFEDIntegrity_cfi.py<gh_stars>100-1000 import FWCore.ParameterSet.Config as cms from DQM.EcalPreshowerMonitorModule.ESRawDataTask_cfi import * from DQM.EcalPreshowerMonitorModule.ESIntegrityTask_cfi import * from DQM.EcalPreshowerMonitorModule.ESFEDIntegrityTask_cfi import * #from DQM.EcalPreshowerMonitorModule.ESPedestalTask_cfi import * from DQM.EcalPreshowerMonitorModule.ESOccupancyTask_cfi import * from DQM.EcalPreshowerMonitorModule.ESTimingTask_cfi import * from DQMServices.Core.DQMEDAnalyzer import DQMEDAnalyzer dqmInfoES = DQMEDAnalyzer('DQMEventInfo', subSystemFolder = cms.untracked.string('EcalPreshower') ) #ecalPreshowerDefaultTasksSequence = cms.Sequence(ecalPreshowerOccupancyTask*ecalPreshowerPedestalTask) ecalPreshowerDefaultTasksSequence = cms.Sequence(ecalPreshowerRawDataTask*ecalPreshowerFEDIntegrityTask*ecalPreshowerIntegrityTask*ecalPreshowerOccupancyTask*ecalPreshowerTimingTask)
tests/components/ecobee/test_util.py
tbarbette/core
30,023
91785
"""Tests for the ecobee.util module.""" import pytest import voluptuous as vol from homeassistant.components.ecobee.util import ecobee_date, ecobee_time async def test_ecobee_date_with_valid_input(): """Test that the date function returns the expected result.""" test_input = "2019-09-27" assert ecobee_date(test_input) == test_input async def test_ecobee_date_with_invalid_input(): """Test that the date function raises the expected exception.""" test_input = "20190927" with pytest.raises(vol.Invalid): ecobee_date(test_input) async def test_ecobee_time_with_valid_input(): """Test that the time function returns the expected result.""" test_input = "20:55:15" assert ecobee_time(test_input) == test_input async def test_ecobee_time_with_invalid_input(): """Test that the time function raises the expected exception.""" test_input = "20:55" with pytest.raises(vol.Invalid): ecobee_time(test_input)
larq_compute_engine/mlir/python/converter_test.py
simonmaurer/compute-engine
193
91791
import sys import unittest from packaging import version from unittest import mock import tensorflow as tf import larq_zoo as lqz from tensorflow.python.eager import context sys.modules["importlib.metadata"] = mock.MagicMock() sys.modules["importlib_metadata"] = mock.MagicMock() sys.modules["larq_compute_engine.mlir._tf_tfl_flatbuffer"] = mock.MagicMock() sys.modules[ "larq_compute_engine.tflite.python.interpreter_wrapper_lite" ] = mock.MagicMock() sys.modules["larq_compute_engine.mlir.python.tflite_schema"] = mock.MagicMock() from larq_compute_engine.mlir.python.converter import convert_keras_model from larq_compute_engine.mlir._tf_tfl_flatbuffer import ( convert_graphdef_to_tflite_flatbuffer as mocked_graphdef_converter, convert_saved_model_to_tflite_flatbuffer as mocked_saved_model_converter, ) class TestConverter(unittest.TestCase): def test_larq_zoo_models(self): with context.eager_mode(): model = lqz.sota.QuickNet(weights=None) convert_keras_model(model) if version.parse(tf.__version__) < version.parse("2.2"): mocked_graphdef_converter.assert_called_once_with( mock.ANY, ["input_1"], ["DT_FLOAT"], [[1, 224, 224, 3]], ["Identity"], False, "arm", None, False, ) else: mocked_saved_model_converter.assert_called_once_with( mock.ANY, ["serve"], ["serving_default"], 1, "arm", None, False ) def test_wrong_arg(self): with self.assertRaises(ValueError): convert_keras_model("./model.h5") def test_target_arg(self): with context.eager_mode(): model = lqz.sota.QuickNet(weights=None) # These should work convert_keras_model(model, target="arm") convert_keras_model(model, target="xcore") # Anything else shouldn't with self.assertRaises( ValueError, msg='Expected `target` to be "arm" or "xcore"' ): convert_keras_model(model, target="x86") if __name__ == "__main__": unittest.main()
pymagnitude/third_party/_apsw/setup.py
tpeng/magnitude
1,520
91813
<reponame>tpeng/magnitude #!/usr/bin/env python # See the accompanying LICENSE file. import os import sys import shlex import glob import re import time import zipfile import tarfile try: if not os.environ.get("APSW_FORCE_DISTUTILS"): from setuptools import setup, Extension, Command else: raise ImportError() except ImportError: from distutils.core import setup, Extension, Command from distutils.command import build_ext, build, sdist ## ## Do your customizations here or by creating a setup.cfg as documented at ## http://www.python.org/doc/2.5.2/dist/setup-config.html ## include_dirs=['src'] library_dirs=[] define_macros=[] libraries=[] # This includes the functionality marked as experimental in SQLite 3. # Comment out the line to exclude them define_macros.append( ('EXPERIMENTAL', '1') ) ## ## End of customizations ## # python 2 and 3 print equivalent def write(*args): # py2 won't allow optional keyword arg on end, so work around it dest=sys.stdout if args[-1]==sys.stderr: dest=args[-1] args=args[:-1] dest.write(" ".join(args)+"\n") dest.flush() py3=sys.version_info>=(3,0) # ensure files are closed def read_whole_file(name, mode): if sys.version_info<(2,4): if "r" in mode and "U" in mode: # python 2.3 returns file not found if "U" present! mode="".join([m for m in mode if m!="U"]) f=open(name, mode) try: return f.read() finally: f.close() def write_whole_file(name, mode, data): f=open(name, mode) try: f.write(data) finally: f.close() # They keep messing with where files are in URI def fixup_download_url(url): ver=re.search("3[0-9]{6}", url) if ver: ver=int(ver.group(0)) if ver>=3071600: if ver>=3220000: year="2018" elif ver>=3160000: year="2017" elif ver>=3100000: year="2016" elif ver>=3080800: year="2015" elif ver>=3080300: year="2014" else: year="2013" if "/"+year+"/" not in url: url=url.split("/") url.insert(3, year) return "/".join(url) return url # Run test suite class run_tests(Command): description="Run test suite" # I did originally try using 'verbose' as the option but it turns # out that is builtin and defaults to 1 (--quiet is also builtin # and forces verbose to 0) user_options=[ ("show-tests", "s", "Show each test being run"), ] # see if you can find boolean_options documented anywhere boolean_options=['show-tests'] def initialize_options(self): self.show_tests=0 def finalize_options(self): pass def run(self): import unittest import tests tests.setup() suite=unittest.TestLoader().loadTestsFromModule(tests) # verbosity of zero doesn't print anything, one prints a dot # per test and two prints each test name result=unittest.TextTestRunner(verbosity=self.show_tests+1).run(suite) if not result.wasSuccessful(): sys.exit(1) # A hack we dont't document class build_test_extension(Command): description="Compiles APSW test loadable extension" user_options=[] def initialize_options(self): pass def finalize_options(self): pass def run(self): # On 64 bit windows we have to use MSVC if sys.platform=='win32': # yes even on 64 bit try: import platform if platform.architecture()[0]=='64bit': res=os.system("cl /Gd src/testextension.c /I sqlite3 /I . /DDLL /LD /link /export:sqlite3_extension_init /export:alternate_sqlite3_extension_init /out:testextension.sqlext") if res!=0: raise RuntimeError("Building test extension failed") return except ImportError: pass shared="shared" if sys.platform.startswith("darwin"): shared="bundle" res=os.system("gcc -fPIC -%s -o testextension.sqlext -Isqlite3 -I. src/testextension.c" % (shared,)) if res!=0: raise RuntimeError("Building test extension failed") # Another hack. Visual Studio 2008 & 2010 ship with 64 # compilers, headers and the Windows SDK but claims it doesn't and # distutils can't find it. The separate Windows SDK can't find this # and gets very confused not to mention being one of the buggiest cmd # scripts I have ever seen. This hack just sets some environment # variables directly since all the "proper" ways are very broken. class win64hackvars(Command): description="Set env vars for Visual Studio 2008/2010 Express 64 bit" user_options=[] def initialize_options(self): pass def finalize_options(self): pass def run(self): vcver=9 if sys.version_info>=(3,3): vcver=10 sdkdir=r"C:\Program Files\Microsoft SDKs\Windows\v6.0A" vsdir=r"C:\Program Files (x86)\Microsoft Visual Studio %d.0\VC" % vcver assert os.path.isdir(sdkdir), "Expected sdk dir "+sdkdir assert os.path.isdir(vsdir), "Expected visual studio dir "+vsdir os.environ["PATH"]=r"%s\bin\amd64;%s\bin" % (vsdir, sdkdir) os.environ["INCLUDE"]=r"%s\include;%s\include" % (vsdir, sdkdir) os.environ["LIB"]=r"%s\lib\amd64;%s\lib\x64" % (vsdir, sdkdir) os.environ["DISTUTILS_USE_SDK"]="1" os.environ["MSSdk"]=sdkdir # deal with various python version compatibility issues with how # to treat returned web data as lines of text def fixupcode(code): if sys.version_info<(2,5): if type(code)!=str: code=code.read() if sys.version_info>=(3,0): if type(code)!=bytes: code=code.read() if type(code)==bytes: code=code.decode("iso8859-1") if type(code)==str: return [l+"\n" for l in code.split("\n")] return code fetch_parts=[] class fetch(Command): description="Automatically downloads SQLite and components" user_options=[ ("version=", None, "Which version of SQLite/components to get (default current)"), ("missing-checksum-ok", None, "Continue on a missing checksum (default abort)"), ("sqlite", None, "Download SQLite amalgamation"), ("all", None, "Download all downloadable components"), ] fetch_options=['sqlite'] boolean_options=fetch_options+['all', 'missing-checksum-ok'] def initialize_options(self): self.version=None self.sqlite=False self.all=False self.missing_checksum_ok=False def finalize_options(self): # If all is selected then turn on all components global fetch_parts if self.all: for i in self.fetch_options: setattr(self, i, True) for i in self.fetch_options: fetch_parts.append(i) def run(self): # work out the version if self.version is None: write(" Getting download page to work out current SQLite version") page=self.download("https://sqlite.org/download.html", text=True, checksum=False) match=re.search(r'sqlite-amalgamation-3([0-9][0-9])([0-9][0-9])([0-9][0-9])\.zip', page) if match: self.version="3.%d.%d.%d" % tuple([int(match.group(n)) for n in range(1,4)]) if self.version.endswith(".0"): self.version=self.version[:-len(".0")] else: write("Unable to determine current SQLite version. Use --version=VERSION", sys.stderr) write("to set version - eg setup.py fetch --version=3.6.18", sys.stderr) sys.exit(17) write(" Version is "+self.version) # now get each selected component downloaded=0 if not self.version.startswith("fossil"): v=[int(x) for x in self.version.split(".")] if len(v)<4: v.append(0) self.webversion="%d%02d%02d%02d" % tuple(v) ## The amalgamation if self.sqlite: if self.version.startswith("fossil"): write(" Getting code from fossil") else: write(" Getting the SQLite amalgamation") if self.version.startswith("fossil"): if self.version=="fossil": uuid="trunk" else: showmsg=False if not self.version.startswith("fossil-"): showmsg=True else: uuid=self.version.split("-", 1)[1] if not uuid: showmsg=True if showmsg: write("Use fossil-HASH to identify a particular commit", sys.stderr) write("eg fossil-3a82c8e6", sys.stderr) sys.exit(18) AURL="https://sqlite.org/src/zip/sqlite3.zip?uuid="+uuid checksum=False else: if sys.platform=="win32": AURL="https://sqlite.org/sqlite-amalgamation-%s.zip" % (self.webversion,) else: AURL="https://sqlite.org/sqlite-autoconf-%s.tar.gz" % (self.webversion,) checksum=True AURL=fixup_download_url(AURL) data=self.download(AURL, checksum=checksum) if AURL.endswith(".zip"): zip=zipfile.ZipFile(data, "r") for name in "sqlite3.c", "sqlite3.h", "sqlite3ext.h": write("Extracting", name) f=[n for n in zip.namelist() if n.endswith(name)] if len(f)!=1: raise Exception("Can't find %s in zip. Candidates are %s" % (name, f)) # Work around SQLite 3.7.13 bug where a symbol was # declared SQLITE_API and extern data=zip.read(f[0]) if name=="sqlite3.c": data=data.decode("utf8") data=data.replace("SQLITE_API extern", "SQLITE_API") data=data.encode("utf8") open(name, "wb").write(data) zip.close() else: # we need to run configure to get various -DHAVE_foo flags on non-windows platforms # delete existing sqlite3 directory if it exists, but save sqlite3config.h if it exists sqlite3config_h=None if os.path.exists("sqlite3/sqlite3config.h"): sqlite3config_h=read_whole_file("sqlite3/sqlite3config.h", "rb") if os.path.exists('sqlite3'): for dirpath, dirnames, filenames in os.walk('sqlite3', topdown=False): for file in filenames: os.remove(os.path.join(dirpath, file)) for dir in dirnames: os.rmdir(os.path.join(dirpath, dir)) os.rmdir('sqlite3') if self.version.startswith("fossil"): zip=zipfile.ZipFile(data, "r") for name in zip.namelist(): # extract if name.endswith("/"): os.mkdir(name) else: open(name, "wb").write(zip.read(name)) zip.close() else: # if you get an exception here it is likely that you don't have the python zlib module import zlib tar=tarfile.open("nonexistentname to keep old python happy", 'r', data) configmember=None for member in tar.getmembers(): tar.extract(member) # find first file named configure if not configmember and member.name.endswith("/configure"): configmember=member tar.close() # the directory name has changed a bit with each release so try to work out what it is if not configmember: write("Unable to determine directory it extracted to.", dest=sys.stderr) sys.exit(19) dirname=configmember.name.split('/')[0] os.rename(dirname, 'sqlite3') os.chdir('sqlite3') if self.version.startswith("fossil"): write(" Building amalgamation from fossil") res=os.system("make TOP=. -f Makefile.linux-gcc sqlite3.c && cp src/sqlite3ext.h .") defs=[] if sqlite3config_h: open("sqlite3config.h", "wb").write(sqlite3config_h) else: write(" Running configure to work out SQLite compilation flags") res=os.system("./configure >/dev/null") defline=None for line in read_whole_file("Makefile", "rtU").split("\n"): if line.startswith("DEFS = "): defline=line break if not defline: write("Unable to determine compile flags. Create sqlite3/sqlite3config.h to manually set.", sys.stderr) sys.exit(18) defs=[] for part in shlex.split(defline): if part.startswith("-DHAVE"): part=part[2:] if '=' in part: part=part.split('=', 1) else: part=(part, ) defs.append(part) if res!=0: raise ValueError("Command execution failed") if defs: op=open("sqlite3config.h", "wt") op.write(""" /* This file was generated by parsing how configure altered the Makefile which isn't used when building python extensions. It is specific to the machine and developer components on which it was run. */ \n""") for define in defs: op.write('#define %s %s\n' % tuple(define)) op.close() os.chdir("..") downloaded+=1 if not downloaded: write("You didn't specify any components to fetch. Use") write(" setup.py fetch --help") write("for a list and details") raise ValueError("No components downloaded") # A function for verifying downloads def verifyurl(self, url, data): d=["%s" % (len(data),)] try: import hashlib d.append(hashlib.sha1(data).hexdigest()) d.append(hashlib.md5(data).hexdigest()) except ImportError: import sha d.append(sha.new(data).hexdigest()) import md5 d.append(md5.new(data).hexdigest()) write(" Length:", d[0], " SHA1:", d[1], " MD5:", d[2]) sums=os.path.join(os.path.dirname(__file__), "checksums") for line in read_whole_file(sums, "rt").split("\n"): line=line.strip() if len(line)==0 or line[0]=="#": continue l=[l.strip() for l in line.split()] if len(l)!=4: write("Invalid line in checksums file:", line, sys.stderr) raise ValueError("Bad checksums file") if l[0]==url: if l[1:]==d: write(" Checksums verified") return if l[1]!=d[0]: write("Length does not match. Expected", l[1], "download was", d[0]) if l[2]!=d[1]: write("SHA does not match. Expected", l[2], "download was", d[1]) if l[3]!=d[2]: write("MD5 does not match. Expected", l[3], "download was", d[2]) write("The download does not match the checksums distributed with APSW.\n" "The download should not have changed since the checksums were\n" "generated. The cause could be anything from network corruption\n" "to a malicious attack.") raise ValueError("Checksums do not match") # no matching line write(" (Not verified. No match in checksums file)") if not self.missing_checksum_ok: raise ValueError("No checksum available. Use --missing-checksum-ok option to continue") # download a url def download(self, url, text=False, checksum=True): if py3: import urllib.request urlopen=urllib.request.urlopen import io bytesio=io.BytesIO else: import urllib2 urlopen=urllib2.urlopen import cStringIO bytesio=cStringIO.StringIO write(" Fetching", url) count=0 while True: try: if count: write(" Try #",str(count+1)) try: page=urlopen(url).read() except: # Degrade to http if https is not supported e=sys.exc_info()[1] if "eof occurred in violation of protocol" in str(e).lower() or getattr(e, "reason")=="unknown url type: https": write(" [Python has https issues - using http instead]") page=urlopen(url.replace("https://", "http://")).read() else: raise break except: write(" Error ", str(sys.exc_info()[1])) time.sleep(1.3) count+=1 if count>=5: raise if text: if py3: page=page.decode("iso8859_1") if checksum: self.verifyurl(url, page) if not text: page=bytesio(page) return page # We allow enable/omit to be specified to build and then pass them to build_ext build_enable=None build_omit=False # PLASTICITY build_enable_all_extensions=True # PLASTICITY bparent=build.build class apsw_build(bparent): user_options=bparent.user_options+\ [ ("enable=", None, "Enable SQLite options (comma separated list)"), ("omit=", None, "Omit SQLite functionality (comma separated list)"), ("enable-all-extensions", None, "Enable all SQLite extensions"), ] boolean_options=bparent.boolean_options+["enable-all-extensions"] def initialize_options(self): v=bparent.initialize_options(self) self.enable=None self.omit=None self.enable_all_extensions=build_enable_all_extensions return v def finalize_options(self): global build_enable, build_omit, build_enable_all_extensions build_enable=self.enable build_omit=self.omit build_enable_all_extensions=self.enable_all_extensions return bparent.finalize_options(self) def findamalgamation(): amalgamation=( os.path.join(os.path.dirname(os.path.abspath(__file__)), "sqlite3.c"), os.path.join(os.path.dirname(os.path.abspath(__file__)), "sqlite3", "sqlite3.c") ) for path in amalgamation: if os.path.exists(path): return path return None def find_in_path(name): for loc in os.getenv("PATH").split(os.pathsep): f=os.path.abspath(os.path.join(loc, name)) if os.path.exists(f) or os.path.exists(f.lower()) or os.path.exists(f.lower()+".exe"): return f return None beparent=build_ext.build_ext class apsw_build_ext(beparent): user_options=beparent.user_options+\ [ ("enable=", None, "Enable SQLite options (comma separated list)"), ("omit=", None, "Omit SQLite functionality (comma separated list)"), ("enable-all-extensions", None, "Enable all SQLite extensions"), ] boolean_options=beparent.boolean_options+["enable-all-extensions"] def initialize_options(self): v=beparent.initialize_options(self) self.enable=build_enable self.omit=build_omit self.enable_all_extensions=build_enable_all_extensions return v def finalize_options(self): v=beparent.finalize_options(self) if self.enable_all_extensions: exts=["fts4", "fts3", "fts3_parenthesis", "rtree", "stat4", "json1", "fts5", "rbu"] if find_in_path("icu-config"): exts.append("icu") if not self.enable: self.enable=",".join(exts) else: self.enable=self.enable+","+",".join(exts) ext=self.extensions[0] if not ext.define_macros: ext.define_macros=[] if not ext.depends: ext.depends=[] if not ext.include_dirs: ext.include_dirs=[] if not ext.library_dirs: ext.library_dirs=[] if not ext.libraries: ext.libraries=[] # Fixup debug setting if self.debug: # distutils forces NDEBUG even with --debug so overcome that ext.define_macros.append( ('APSW_NO_NDEBUG', '1') ) # double negatives are bad ext.define_macros.append( ('APSW_TESTFIXTURES', '1') ) # extra test harness code ext.define_macros.append( ('SQLITE_DEBUG', '1') ) # also does NDEBUG mangling else: ext.define_macros.append( ('NDEBUG', '1') ) # fork checker? if hasattr(os, "fork"): ext.define_macros.append( ('APSW_FORK_CHECKER', '1') ) ext.define_macros.append( ("SQLITE_MAX_COLUMN", "32767") ) # PLASTICITY ext.define_macros.append( ("SQLITE_MAX_VARIABLE_NUMBER", "99999") ) # PLASTICITY # SQLite 3 # Look for amalgamation in our directory or in sqlite3 subdirectory path=findamalgamation() if path: if sys.platform=="win32": # double quotes get consumed by windows arg processing ext.define_macros.append( ('APSW_USE_SQLITE_AMALGAMATION', '\\"'+path+'\\"') ) else: ext.define_macros.append( ('APSW_USE_SQLITE_AMALGAMATION', '"'+path+'"') ) ext.depends.append(path) # we also add the directory to include path since icu tries to use it ext.include_dirs.append(os.path.dirname(path)) write("SQLite: Using amalgamation", path) load_extension=True else: load_extension=False d=os.path.join(os.path.dirname(os.path.abspath(__file__)), "sqlite3") if os.path.isdir(d): write("SQLite: Using include/libraries in sqlite3 subdirectory") ext.include_dirs.append(d) ext.library_dirs.append(d) else: write("SQLite: Using system sqlite include/libraries") # ext.libraries.append('sqlite3') PLASTICITY s3config=os.path.join(os.path.dirname(os.path.abspath(__file__)), "sqlite3", "sqlite3config.h") if os.path.exists(s3config): if sys.platform=="win32": ext.define_macros.append( ('APSW_USE_SQLITE_CONFIG', '\\"'+s3config+'\\"') ) else: ext.define_macros.append( ('APSW_USE_SQLITE_CONFIG', '"'+s3config+'"') ) # enables addicuinclib=False if self.enable: for e in self.enable.split(","): e=e.strip() if e.lower()=="load_extension": load_extension=True continue ext.define_macros.append( ("SQLITE_ENABLE_"+e.upper(), 1) ) if e.upper()=="ICU": addicuinclib=True os.putenv("APSW_TEST_"+e.upper(), "1") # See issue #55 where I had left off the 3 in fts3. This code # tries to catch misspelling the name of an extension. # However the SQLITE_ENABLE prefix is also used by other # options - see https://sqlite.org/compile.html but almost # all of those have _ in them, so our abbreviated and # hopefully future proof test if "_" not in e.lower() and \ "memsys" not in e.lower() and \ e.lower() not in ("fts4", "fts3", "rtree", "icu", "iotrace", "stat2", "stat3", "stat4", "dbstat_vtab", "fts5", "json1", "rbu"): write("Unknown enable "+e, sys.stderr) raise ValueError("Bad enable "+e) # omits if self.omit: for e in self.omit.split(","): e=e.strip() if e.lower()=="load_extension": load_extension=False ext.define_macros.append( ("SQLITE_OMIT_"+e.upper(), 1) ) if not load_extension: ext.define_macros.append( ("SQLITE_OMIT_LOAD_EXTENSION", 1) ) # icu if addicuinclib: foundicu=False kwargs={} if sys.version_info>=(2, 6): # if posix is true then quotes get stripped such as from -Dfoo="bar" kwargs["posix"]=False for part in shlex.split(os.popen("icu-config --cppflags", "r").read(), **kwargs): if part.startswith("-I"): ext.include_dirs.append(part[2:]) foundicu=True elif part.startswith("-D"): part=part[2:] if '=' in part: part=tuple(part.split('=', 1)) else: part=(part, '1') ext.define_macros.append(part) foundicu=True for part in shlex.split(os.popen("icu-config --ldflags", "r").read(), **kwargs): if part.startswith("-L"): ext.library_dirs.append(part[2:]) foundicu=True elif part.startswith("-l"): ext.libraries.append(part[2:]) foundicu=True if foundicu: write("ICU: Added includes, flags and libraries from icu-config") else: write("ICU: Unable to determine includes/libraries for ICU using icu-config") write("ICU: You will need to manually edit setup.py or setup.cfg to set them") # shell if not os.path.exists("src/shell.c") or \ os.path.getmtime("src/shell.c")<os.path.getmtime("tools/shell.py") or \ os.path.getmtime(__file__)>os.path.getmtime("src/shell.c"): create_c_file("tools/shell.py", "src/shell.c") # done ... return v def run(self): v=beparent.run(self) return v sparent=sdist.sdist class apsw_sdist(sparent): user_options=sparent.user_options+[ ("add-doc", None, "Includes built documentation from doc/build/html into source"), ] boolean_options=sparent.boolean_options+["add-doc"] def initialize_options(self): sparent.initialize_options(self) self.add_doc=False # Were we made from a source archive? If so include the help again if os.path.isfile("doc/index.html") and os.path.isfile("doc/_sources/pysqlite.txt"): self.add_doc=True self.use_defaults=False # they are useless # Make sure the manifest is regenerated self.force_manifest=True # Now do some chicanery. If a source distribution is requested and # fetch --sqlite was requested then make sure the sqlite amalgamation # ends up as part of the source distribution. if fetch_parts: # Use a temporary file for the manifest tmpmanifest="MANIFEST.in.tmp" self.template=tmpmanifest try: os.remove(tmpmanifest) except: pass min=open("MANIFEST.in", "rU") mout=open(tmpmanifest, "wt") for line in min: mout.write(line) min.close() # os.path.relpath emulation if "sqlite" in fetch_parts: amalgamationpath=findamalgamation() amalrelpath=amalgamationpath[len(os.path.dirname(os.path.abspath(__file__)))+1:] mout.write("include "+amalrelpath+"\n") # also include headers and extension headers mout.write("include "+amalrelpath.replace("sqlite3.c", "sqlite3.h")+"\n") mout.write("include "+amalrelpath.replace("sqlite3.c", "sqlite3ext.h")+"\n") if os.path.exists("sqlite3/sqlite3config.h"): mout.write("include sqlite3/sqlite3config.h\n") mout.close() def run(self): v=sparent.run(self) if self.add_doc: if len(list(help_walker('')))==0: raise Exception("The help is not built") for archive in self.get_archive_files(): add_doc(archive, self.distribution.get_fullname()) return v def help_walker(arcdir): # Provides a list of (archive name, disk name) for all the help files if os.path.isfile("doc/index.html") and os.path.isfile("doc/_sources/pysqlite.txt"): topdir="doc/" else: topdir="doc/build/html/" for dirpath, _, filenames in os.walk(topdir): prefix=dirpath[len(topdir):] for f in filenames: yield os.path.join(arcdir, "doc", prefix, f), os.path.join(dirpath, f) def add_doc(archive, topdir): write("Add help files to",archive) if archive.endswith(".tar") or ".tar." in archive: if archive.endswith(".Z"): raise Exception("tarfile module doesn't support old school compress so we can't add doc "+archive) fmt="" if archive.endswith(".gz") or archive.endswith(".tgz"): fmt=":gz" elif archive.endswith(".bz2") or archive.endswith(".tbz2"): fmt=":bz2" oldarchive=tarfile.open(archive) newarchive=tarfile.open(archive+"-", mode="w"+fmt) for mem in oldarchive.getmembers(): newarchive.addfile(mem, oldarchive.extractfile(mem)) oldarchive.close() for arcname, fname in help_walker(topdir): newarchive.add(fname, arcname) newarchive.close() os.rename(archive+"-", archive) elif archive.endswith(".zip"): ofile=zipfile.ZipFile(archive, "a", zipfile.ZIP_DEFLATED) for arcname, fname in help_walker(topdir): ofile.write(fname, arcname) ofile.close() else: raise Exception("Don't know what to do with "+archive) def create_c_file(src, dest): # Transforms Python src into C dest as a sequence of strings. # Because of the pathetic microsoft compiler we have to break it # up into small chunks out=["/* Automatically generated by setup.py from "+src+" */", ""] percents=1 size=0 for line in read_whole_file(src, "rt").split("\n"): if "if__name__=='__main__':" in line.replace(" ",""): break if line.strip().startswith('#'): # full line comment continue if line.strip()=="import apsw": continue size=size+len(line) comma=size>32000 if comma: size=0 percents+=1 line=line.replace("\\", "\\\\").\ replace('"', '\\"') out.append(' "'+line.rstrip()+'\\n"') if comma: out[-1]=out[-1]+"," if out[-1].endswith(","): out[-1]=out[-1][:-1] out[1]='"%s",' % ("%s" * percents,) write_whole_file(dest, "wt", "\n".join(out)) # We depend on every .[ch] file in src depends=[f for f in glob.glob("src/*.[ch]") if f!="src/apsw.c"] for f in (findamalgamation(), ): if f: depends.append(f) # we produce a .c file from this depends.append("tools/shell.py") # work out version number version=read_whole_file(os.path.join("src", "apswversion.h"), "rt").split()[2].strip('"') # msi can't use normal version numbers because distutils is retarded, # so mangle ours to suit it if "bdist_msi" in sys.argv: if version.endswith("-r1"): version=version[:-len("-r1")] else: assert False, "MSI version needs help" version=[int(v) for v in re.split(r"[^\d]+", version)] # easy pad to 3 items long while len(version)<3: version.append(0) # 4 is our normal length (eg 3.7.3-r1) but sometimes it is more eg # 3.7.16.1-r1 so combine last elements if longer than 4 while len(version)>4: version[-2]=10*version[-2]+version-1 del version[-1] # combine first two elements if len(version)>3: version[0]=100*version[0]+version[1] del version[1] version=".".join([str(v) for v in version]) setup(name="apsw", version=version, description="Another Python SQLite Wrapper", long_description=\ """A Python wrapper for the SQLite embedded relational database engine. In contrast to other wrappers such as pysqlite it focuses on being a minimal layer over SQLite attempting just to translate the complete SQLite API into Python.""", author="<NAME>", author_email="<EMAIL>", url="https://github.com/rogerbinns/apsw/", classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "License :: OSI Approved", "Operating System :: OS Independent", "Programming Language :: C", "Programming Language :: Python :: 2", "Programming Language :: Python :: 3", "Topic :: Database :: Front-Ends", ], keywords=["database", "sqlite"], license="OSI Approved ::", ext_modules=[Extension("apsw", ["src/apsw.c", "src/sqlite3.c"], # PLASTICITY include_dirs=include_dirs, library_dirs=library_dirs, libraries=libraries, define_macros=define_macros, depends=depends)], cmdclass={'test': run_tests, 'build_test_extension': build_test_extension, 'fetch': fetch, 'build_ext': apsw_build_ext, 'build': apsw_build, 'sdist': apsw_sdist, 'win64hackvars': win64hackvars} )
tests/errors/semantic/non_blocking/var_is_none.py
dina-fouad/pyccel
206
91838
<filename>tests/errors/semantic/non_blocking/var_is_none.py<gh_stars>100-1000 # pylint: disable=missing-function-docstring, missing-module-docstring/ from pyccel.decorators import types @types('int') def f(a): b = 0 if a is not None: b = b + a return b
osf/migrations/0122_auto_20180801_2105.py
gaybro8777/osf.io
628
91855
<gh_stars>100-1000 # -*- coding: utf-8 -*- # Generated by Django 1.11.13 on 2018-08-01 21:05 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('contenttypes', '0002_remove_content_type_name'), ('osf', '0121_merge_20180801_1458'), ] operations = [ migrations.AlterIndexTogether( name='basefilenode', index_together=set([('target_content_type', 'target_object_id')]), ), ]
test/fixture/mycompile.py
Valkatraz/scons
1,403
91868
<filename>test/fixture/mycompile.py r""" Phony "compiler" for testing SCons. Copies its source files to the target file, dropping lines that match a pattern, so we can recognize the tool has made a modification. """ import sys if __name__ == '__main__': line = ('/*' + sys.argv[1] + '*/\n').encode() with open(sys.argv[2], 'wb') as ofp: for f in sys.argv[3:]: with open(f, 'rb') as ifp: lines = [ln for ln in ifp if ln != line] for ln in lines: ofp.write(ln) sys.exit(0)
databricks/koalas/tests/test_window.py
varunsh-coder/koalas
3,211
91871
<reponame>varunsh-coder/koalas<filename>databricks/koalas/tests/test_window.py<gh_stars>1000+ # # Copyright (C) 2019 Databricks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import inspect from databricks import koalas as ks from databricks.koalas.exceptions import PandasNotImplementedError from databricks.koalas.missing.window import ( MissingPandasLikeExpanding, MissingPandasLikeRolling, MissingPandasLikeExpandingGroupby, MissingPandasLikeRollingGroupby, ) from databricks.koalas.testing.utils import ReusedSQLTestCase, TestUtils class ExpandingRollingTest(ReusedSQLTestCase, TestUtils): def test_missing(self): kdf = ks.DataFrame({"a": [1, 2, 3, 4, 5, 6, 7, 8, 9]}) # Expanding functions missing_functions = inspect.getmembers(MissingPandasLikeExpanding, inspect.isfunction) unsupported_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "unsupported_function" ] for name in unsupported_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*Expanding.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.expanding(1), name)() # Frame with self.assertRaisesRegex( PandasNotImplementedError, "method.*Expanding.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.a.expanding(1), name)() # Series deprecated_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "deprecated_function" ] for name in deprecated_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*Expanding.*{}.*is deprecated".format(name) ): getattr(kdf.expanding(1), name)() # Frame with self.assertRaisesRegex( PandasNotImplementedError, "method.*Expanding.*{}.*is deprecated".format(name) ): getattr(kdf.a.expanding(1), name)() # Series # Rolling functions missing_functions = inspect.getmembers(MissingPandasLikeRolling, inspect.isfunction) unsupported_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "unsupported_function" ] for name in unsupported_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*Rolling.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.rolling(1), name)() # Frame with self.assertRaisesRegex( PandasNotImplementedError, "method.*Rolling.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.a.rolling(1), name)() # Series deprecated_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "deprecated_function" ] for name in deprecated_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*Rolling.*{}.*is deprecated".format(name) ): getattr(kdf.rolling(1), name)() # Frame with self.assertRaisesRegex( PandasNotImplementedError, "method.*Rolling.*{}.*is deprecated".format(name) ): getattr(kdf.a.rolling(1), name)() # Series # Expanding properties missing_properties = inspect.getmembers( MissingPandasLikeExpanding, lambda o: isinstance(o, property) ) unsupported_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "unsupported_property" ] for name in unsupported_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*Expanding.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.expanding(1), name) # Frame with self.assertRaisesRegex( PandasNotImplementedError, "property.*Expanding.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.a.expanding(1), name) # Series deprecated_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "deprecated_property" ] for name in deprecated_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*Expanding.*{}.*is deprecated".format(name) ): getattr(kdf.expanding(1), name) # Frame with self.assertRaisesRegex( PandasNotImplementedError, "property.*Expanding.*{}.*is deprecated".format(name) ): getattr(kdf.a.expanding(1), name) # Series # Rolling properties missing_properties = inspect.getmembers( MissingPandasLikeRolling, lambda o: isinstance(o, property) ) unsupported_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "unsupported_property" ] for name in unsupported_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*Rolling.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.rolling(1), name)() # Frame with self.assertRaisesRegex( PandasNotImplementedError, "property.*Rolling.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.a.rolling(1), name)() # Series deprecated_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "deprecated_property" ] for name in deprecated_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*Rolling.*{}.*is deprecated".format(name) ): getattr(kdf.rolling(1), name)() # Frame with self.assertRaisesRegex( PandasNotImplementedError, "property.*Rolling.*{}.*is deprecated".format(name) ): getattr(kdf.a.rolling(1), name)() # Series def test_missing_groupby(self): kdf = ks.DataFrame({"a": [1, 2, 3, 4, 5, 6, 7, 8, 9]}) # Expanding functions missing_functions = inspect.getmembers( MissingPandasLikeExpandingGroupby, inspect.isfunction ) unsupported_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "unsupported_function" ] for name in unsupported_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*Expanding.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.groupby("a").expanding(1), name)() # Frame with self.assertRaisesRegex( PandasNotImplementedError, "method.*Expanding.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.a.groupby(kdf.a).expanding(1), name)() # Series deprecated_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "deprecated_function" ] for name in deprecated_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*Expanding.*{}.*is deprecated".format(name) ): getattr(kdf.groupby("a").expanding(1), name)() # Frame with self.assertRaisesRegex( PandasNotImplementedError, "method.*Expanding.*{}.*is deprecated".format(name) ): getattr(kdf.a.groupby(kdf.a).expanding(1), name)() # Series # Rolling functions missing_functions = inspect.getmembers(MissingPandasLikeRollingGroupby, inspect.isfunction) unsupported_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "unsupported_function" ] for name in unsupported_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*Rolling.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.groupby("a").rolling(1), name)() # Frame with self.assertRaisesRegex( PandasNotImplementedError, "method.*Rolling.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.a.groupby(kdf.a).rolling(1), name)() # Series deprecated_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "deprecated_function" ] for name in deprecated_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*Rolling.*{}.*is deprecated".format(name) ): getattr(kdf.rolling(1), name)() # Frame with self.assertRaisesRegex( PandasNotImplementedError, "method.*Rolling.*{}.*is deprecated".format(name) ): getattr(kdf.a.rolling(1), name)() # Series # Expanding properties missing_properties = inspect.getmembers( MissingPandasLikeExpandingGroupby, lambda o: isinstance(o, property) ) unsupported_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "unsupported_property" ] for name in unsupported_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*Expanding.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.groupby("a").expanding(1), name)() # Frame with self.assertRaisesRegex( PandasNotImplementedError, "property.*Expanding.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.a.groupby(kdf.a).expanding(1), name)() # Series deprecated_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "deprecated_property" ] for name in deprecated_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*Expanding.*{}.*is deprecated".format(name) ): getattr(kdf.expanding(1), name) # Frame with self.assertRaisesRegex( PandasNotImplementedError, "property.*Expanding.*{}.*is deprecated".format(name) ): getattr(kdf.a.expanding(1), name) # Series # Rolling properties missing_properties = inspect.getmembers( MissingPandasLikeRollingGroupby, lambda o: isinstance(o, property) ) unsupported_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "unsupported_property" ] for name in unsupported_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*Rolling.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.groupby("a").rolling(1), name)() # Frame with self.assertRaisesRegex( PandasNotImplementedError, "property.*Rolling.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(kdf.a.groupby(kdf.a).rolling(1), name)() # Series deprecated_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "deprecated_property" ] for name in deprecated_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*Rolling.*{}.*is deprecated".format(name) ): getattr(kdf.rolling(1), name)() # Frame with self.assertRaisesRegex( PandasNotImplementedError, "property.*Rolling.*{}.*is deprecated".format(name) ): getattr(kdf.a.rolling(1), name)() # Series
rl_baselines/rl_algorithm/acer.py
anonymous-authors-2018/robotics-repo
524
91879
<filename>rl_baselines/rl_algorithm/acer.py from stable_baselines import ACER from rl_baselines.base_classes import StableBaselinesRLObject class ACERModel(StableBaselinesRLObject): """ object containing the interface between baselines.acer and this code base ACER: Sample Efficient Actor-Critic with Experience Replay """ LOG_INTERVAL = 1 # log RL model performance every 1 steps SAVE_INTERVAL = 20 # Save RL model every 20 steps def __init__(self): super(ACERModel, self).__init__(name="acer", model_class=ACER) def customArguments(self, parser): super().customArguments(parser) parser.add_argument('--num-cpu', help='Number of processes', type=int, default=1) parser.add_argument('--lr-schedule', help='Learning rate schedule', default='constant', choices=['linear', 'constant', 'double_linear_con', 'middle_drop', 'double_middle_drop']) return parser @classmethod def getOptParam(cls): return { "n_steps": (int, (1, 100)), "q_coef": (float, (0, 1)), "ent_coef": (float, (0, 1)), "max_grad_norm": (float, (0.1, 5)), "learning_rate": (float, (0, 0.1)), "rprop_epsilon": (float, (0, 0.01)), "rprop_alpha": (float, (0.5, 1)), "gamma": (float, (0.5, 1)), "alpha": (float, (0.5, 1)), "replay_ratio": (int, (0, 10)), "correction_term": (float, (1, 10)), "delta": (float, (0.1, 10)), "lr_schedule": ((list, str), ['linear', 'constant', 'double_linear_con', 'middle_drop', 'double_middle_drop']) } def train(self, args, callback, env_kwargs=None, train_kwargs=None): if train_kwargs is None: train_kwargs = {} param_kwargs = { "verbose": 1, "n_steps": 20, "q_coef": 0.5, "ent_coef": 0.01, "max_grad_norm": 10, "learning_rate": 7e-4, "rprop_epsilon": 1e-5, "rprop_alpha": 0.99, "gamma": 0.99, "buffer_size": 5000, "replay_ratio": 4, "replay_start": 1000, "correction_term": 10.0, "trust_region": True, "alpha": 0.99, "delta": 1, "lr_schedule": args.lr_schedule } super().train(args, callback, env_kwargs, {**param_kwargs, **train_kwargs})
lona/shell/shell.py
korantu/lona
230
91917
<gh_stars>100-1000 from rlpython import embed def load_commands(server): import_strings = server.settings.CORE_COMMANDS + server.settings.COMMANDS commands = [] for import_string in import_strings: commands.append(server.acquire(import_string)) return commands def embed_shell(server, **embed_kwargs): embed_kwargs['commands'] = load_commands(server) embed(**embed_kwargs) def generate_shell_server(server, **embed_kwargs): embed_kwargs['commands'] = load_commands(server) embed_kwargs['multi_session'] = True return embed(**embed_kwargs)
tests/basic/for_range2.py
MoonStarCZW/py2rb
124
91932
for i in range(5): for j in range(i+1, 5): print("i:%s, j:%s" % (i,j))
Machine Learning/Online Search Relevance Metrics/metrics/resources.py
endorama/examples
2,561
91983
<gh_stars>1000+ import json import os import time from timeit import default_timer as timer IGNORES = [400, 404] INDEX = 'ecs-search-metrics' TRANSFORM_NAMES = [f'{INDEX}_transform_queryid', f'{INDEX}_transform_completion'] INDEX_NAMES = [INDEX] + TRANSFORM_NAMES PIPELINE_NAMES = INDEX_NAMES class Timer: def __enter__(self): self.start = timer() return self def __exit__(self, *args): self.end = timer() self.interval = self.end - self.start def list_filenames(directory): """Lists all files in a directory without traversal.""" listings = [os.path.join(directory, x) for x in os.listdir(directory)] return [x for x in listings if os.path.isfile(x)] def file_length(filename): """ Count the number of lines in a file. See: https://gist.github.com/zed/0ac760859e614cd03652#file-gistfile1-py-L48-L49 """ return sum(1 for _ in open(filename, 'r')) def load_json(filename): """Loads a JSON file.""" with open(filename, 'r') as f: return json.load(f) def load_config(kind, name): f = os.path.join('config', kind, f'{name}.json') return load_json(f) def delete_index(es, name): """Deletes an index, if it exists.""" print(f"Deleting index: {name}") es.indices.delete(name, ignore=IGNORES) def recreate_index(es, name): """Creates a new index, deleting any existing index.""" delete_index(es, name) print(f"Creating new index: {name}") es.indices.create(name, body=load_config('indices', name)) def recreate_indices(es, names): for name in names: recreate_index(es, name) def delete_transform(es, name): print(f"Deleting transform: {name}") es.transform.delete_transform(name, ignore=IGNORES) def create_transform(es, name): print(f"Creating new transform: {name}") with open(os.path.join('config', 'transforms', f'{name}.json'), 'r') as f: transform = json.load(f) es.transform.put_transform(name, transform) def recreate_transform(es, name): """Creates transform, deleting any existing transform.""" delete_transform(es, name) create_transform(es, name) def recreate_transforms(es, names): for name in names: recreate_transform(es, name) def get_transform_state(es, name): response = es.transform.get_transform_stats(name) assert response['count'] == 1 return response['transforms'][0]['state'] def start_transform(es, name): print(f"Starting batch transform: {name}") es.transform.start_transform(name) time.sleep(1) state = get_transform_state(es, name) if state != 'stopped': print(f"Waiting for batch transform: {name} ", end='') while state != 'stopped': print(".", end='') time.sleep(5) state = get_transform_state(es, name) print() es.indices.refresh(name) def start_transforms(es, names): for name in names: start_transform(es, name) def create_pipeline(es, name): print(f"Creating pipeline: {name}") es.ingest.put_pipeline(name, body=load_config('pipelines', name)) def recreate_pipelines(es, names): for name in names: create_pipeline(es, name) def prepare(es, index_names=INDEX_NAMES, pipeline_names=PIPELINE_NAMES, transform_names=TRANSFORM_NAMES): """Prepares resources: indices, pipelines, transforms""" recreate_indices(es, index_names) recreate_pipelines(es, pipeline_names) recreate_transforms(es, transform_names) for x in transform_names: delete_index(es, f'{x}_failed')
examples/cs_maml/cs_maml_edge.py
cuiboyuan/plato
135
92003
""" A federated learning client at the edge server in a cross-silo training workload. """ from dataclasses import dataclass import logging import os import pickle import sys from plato.clients import edge @dataclass class Report(edge.Report): """Report from an Axiothea edge server, to be sent to the central server.""" class Client(edge.Client): """A federated learning client at the edge server in a cross-silo training workload.""" def __init__(self, server, algorithm=None, trainer=None): super().__init__(server, algorithm=algorithm, trainer=trainer) self.do_personalization_test = False def process_server_response(self, server_response): """Additional client-specific processing on the server response.""" if 'personalization_test' in server_response: self.do_personalization_test = True else: super().process_server_response(server_response) async def test_personalization(self): """Test personalization by passing the global meta model to its clients, and let them train their personlized models and test accuracy.""" logging.info( "[Edge Server #%d] Passing the global meta model to its clients.", self.client_id) # Edge server select clients to conduct personalization test await self.server.select_testing_clients() # Wait for clients conducting personalization test await self.server.per_accuracy_aggregated.wait() self.server.per_accuracy_aggregated.clear() report = self.server.personalization_accuracy payload = 'personalization_accuracy' return report, payload async def payload_done(self, client_id, object_key) -> None: """Upon receiving all the new payload from the server.""" payload_size = 0 if object_key is None: if isinstance(self.server_payload, list): for _data in self.server_payload: payload_size += sys.getsizeof(pickle.dumps(_data)) elif isinstance(self.server_payload, dict): for key, value in self.server_payload.items(): payload_size += sys.getsizeof(pickle.dumps({key: value})) else: payload_size = sys.getsizeof(pickle.dumps(self.server_payload)) else: self.server_payload = self.s3_client.receive_from_s3(object_key) payload_size = sys.getsizeof(pickle.dumps(self.server_payload)) assert client_id == self.client_id logging.info( "[Client #%d] Received %s MB of payload data from the server.", client_id, round(payload_size / 1024**2, 2)) self.load_payload(self.server_payload) self.server_payload = None if self.do_personalization_test: report, payload = await self.test_personalization() self.do_personalization_test = False else: report, payload = await self.train() logging.info( "[Server #%d] Model aggregated on edge server (client #%d).", os.getpid(), client_id) # Sending the client report as metadata to the server (payload to follow) await self.sio.emit('client_report', {'report': pickle.dumps(report)}) # Sending the client training payload to the server await self.send(payload)
algorithm/sliding_window_examples.py
ganeshskudva/Algorithm_Templates
190
92011
from collections import Counter from collections import defaultdict # [3] https://leetcode.com/problems/longest-substring-without-repeating-characters/ # Given a string, find the length of the longest substring without repeating characters. # # variation with no pattern def lengthOfLongestSubstring(s): # create a default dict to maintain state counter = defaultdict(int) count, start, end, res = 0, 0, 0, 0 while end < len(s): counter[s[end]] += 1 if counter[s[end]] > 1: count += 1 end += 1 while count > 0: counter[s[start]] -= 1 if counter[s[start]] > 0: count -= 1 start += 1 res = max(res, end - start) return res # [76] https://leetcode.com/problems/minimum-window-substring/ # Given a string S and a string T, find the minimum window in S which will contain all the characters in T # # variation with finding minimum def minWindow(s: str, t: str) -> str: counter = Counter(t) count, start, end, res = len(t), 0, 0, [float('inf'), 0] while end < len(s): counter[s[end]] -= 1 # consider duplicate char in t if counter[s[end]] >= 0: count -= 1 end += 1 # valid in while while count == 0: # update minimum here, inner while loop if end - start < res[0]: res = (end - start, start) counter[s[start]] += 1 if counter[s[start]] > 0: count += 1 start += 1 return s[res[1]:res[0] + res[1]] if res[0] != float('inf') else '' # [904] https://leetcode.com/problems/fruit-into-baskets/ # You have two baskets, and each basket can carry any quantity of fruit, but you want each basket to only carry one type of fruit each. # What is the total amount of fruit you can collect with this procedure? # # variation with list def totalFruit(tree: 'List[int]') -> int: counter = defaultdict(int) count, start, end, res = 0, 0, 0, 0 while end < len(tree): counter[tree[end]] += 1 if counter[tree[end]] == 1: count += 1 end += 1 while count > 2: counter[tree[start]] -= 1 if counter[tree[start]] == 0: count -= 1 start += 1 res = max(res, end - start) return res # [438] https://leetcode.com/problems/find-all-anagrams-in-a-string/ # Given a string s and a non-empty string p, find all the start indices of p's anagrams in s. # # variation with restrict between start and end def findAnagrams(s: str, p: str) -> 'List[int]': len_p, len_s = len(p), len(s) if len_p > len_s: return [] counter = Counter(p) count, start, end, res = len_p, 0, 0, [] while end < len_s: # only update counter when match char in p counter[s[end]] -= 1 if counter[s[end]] >= 0: count -= 1 end += 1 if count == 0: res.append(start) # not use a while, because restrict the length if end - start == len_p: counter[s[start]] += 1 # exclude char not in p, because always negative if counter[s[start]] > 0: count += 1 start += 1 return res # [30] https://leetcode.com/problems/substring-with-concatenation-of-all-words/ # Find all starting indices of substring(s) in s that is a concatenation of each word in words exactly once and without any intervening characters. # # variation with complex match policy def findSubstring(s: str, words: 'List[str]') -> 'List[int]': if not words: return [] word_len, res = len(words[0]), [] # start offset from 0 to word_len, and step is word_len for i in range(word_len): # reset state every epoch counter = Counter(words) start, end, count = i, i, len(words) while end < len(s): cur_word = s[end:end + word_len] # check is not necessary here, just for performance if cur_word in counter: counter[cur_word] -= 1 if counter[cur_word] >= 0: count -= 1 end += word_len if count == 0: res.append(start) # ensure consecutive words if end - start == word_len * len(words): cur_word = s[start:start + word_len] if cur_word in counter: counter[cur_word] += 1 if counter[cur_word] > 0: count += 1 start += word_len # the order is not necessary here return res
examples/eph/00-simple_eph.py
QuESt-Calculator/pyscf
501
92030
<reponame>QuESt-Calculator/pyscf #!/usr/bin/env python ''' A simple example to run EPH calculation. ''' from pyscf import gto, dft, eph mol = gto.M(atom='N 0 0 0; N 0 0 2.100825', basis='def2-svp', verbose=4, unit="bohr") # this is a pre-computed relaxed molecule # for geometry relaxation, refer to pyscf/example/geomopt mf = dft.RKS(mol, xc='pbe,pbe') mf.run() grad = mf.nuc_grad_method().kernel() assert (abs(grad).sum()<1e-5) # making sure the geometry is relaxed myeph = eph.EPH(mf) mat, omega = myeph.kernel() print(mat.shape, omega)
lldb/packages/Python/lldbsuite/test/lang/cpp/class-template-parameter-pack/TestClassTemplateParameterPack.py
medismailben/llvm-project
765
92036
<filename>lldb/packages/Python/lldbsuite/test/lang/cpp/class-template-parameter-pack/TestClassTemplateParameterPack.py from lldbsuite.test import lldbinline from lldbsuite.test import decorators lldbinline.MakeInlineTest( __file__, globals(), [ decorators.expectedFailureAll( compiler="gcc")])
tests/utils_tests/test_glob.py
MikeAmy/django
5,079
92046
<reponame>MikeAmy/django from __future__ import unicode_literals from django.test import SimpleTestCase from django.utils.glob import glob_escape class TestUtilsGlob(SimpleTestCase): def test_glob_escape(self): filename = '/my/file?/name[with special chars*' expected = '/my/file[?]/name[[]with special chars[*]' filename_b = b'/my/file?/name[with special chars*' expected_b = b'/my/file[?]/name[[]with special chars[*]' self.assertEqual(glob_escape(filename), expected) self.assertEqual(glob_escape(filename_b), expected_b)
match.py
pammirato/image_vatic
571
92050
<reponame>pammirato/image_vatic<filename>match.py import munkres def match(first, second, method): """ Attempts to match every path in 'first' with a path in 'second'. Returns the association along with its score. Note: if two paths have nothing to do with each other, but there is no other suitable candidate, the two seeminly unrelated paths will be associated. It is up to the caller to handle this situation. The 'validate' method may provide some help. Further, if len(first) != len(second), then some elements will be associated with None. """ if len(first) == len(second) == 0: return [] costs = buildmatrix(first, second, method) response = [] for f, s in munkres.Munkres().compute(costs): response.append((first[f] if f < len(first) else None, second[s] if s < len(second) else None, costs[f][s])) return response def buildmatrix(first, second, method): """ Builds the matrix for the Hungarian algorithm. Pads with the worst to make the matrix square. """ costs = [[method(f,s) for s in second] for f in first] if len(first) and len(second): horrible = [max(max(costs)) + 1] else: horrible = [1e10] if len(first) > len(second): for row in costs: row.extend(horrible * (len(first) - len(second))) elif len(first) < len(second): costs.extend([horrible * len(second)] * (len(second) - len(first))) return costs
tools/optimize/convert_model_batch.py
zhouzy-creator/Tengine
4,697
92067
# -*- coding: utf-8 -*- # OPEN AI LAB is pleased to support the open source community by supporting Tengine available. # # Copyright (C) 2021 OPEN AI LAB. All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. """ This tool is used for converting models in batches. Usage: file struct as belows Tengine ├── build ├──convert_model_batch.py ├──onnx_node ├──tools/convert_tool/convert_tool $ python convert_model_batch.py -f "./tools/convert_tool/convert_tool" -m "onnx_node" -s -sp "./convert_result" Author: <EMAIL> """ import argparse import os import subprocess support_onnx_op_list = ["Abs", "Acos", "And", "ArgMax", "ArgMin", "Asin", "Atan", "AveragePool", "Add", "BatchNormalization", "Conv", "ConvTranspose", "Concat", "Clip", "Ceil", "Cos", "Cast", "Dropout", "DepthToSpace", "Div", "Elu", "Exp", "Expand", "Equal", "Flatten", "Floor", "Gemm", "Gather", "Greater", "GlobalAveragePool", "HardSwish", "HardSigmoid", "InstanceNormalization", "Log", "LRN", "Less", "LSTM", "LeakyRelu", "LogSoftmax", "Mul", "Max", "Min", "Mean", "MatMul", "MaxPool", "Neg", "Or", "Pad", "Pow", "PRelu", "Relu", "Resize", "Reshape", "ReduceL2", "ReduceMean", "ReduceLogSumExp", "ReduceLogSum", "ReduceMax", "ReduceMin", "ReduceProd", "ReduceSumSquare", "ReduceSum", "Reciprocal", "Sub", "Selu", "Sqrt", "Slice", "Split", "Shape", "Squeeze", "Scatter", "Sigmoid", "Softmax", "Softplus", "Tanh", "Tile", "Transpose", "Upsample", "Unsqueeze", "Where"] support_onnx_op_list = [x.lower() for x in support_onnx_op_list] def usage_info(): """ usage info """ print("Input params is illegal...╮(╯3╰)╭") def parse_args(): parser = argparse.ArgumentParser(description='convert tools in batch') parser.add_argument('-f', help='convert tool path', type=str) parser.add_argument('-m', help='model folder path', type=str) parser.add_argument('-c', help='convert type', default='onnx', type=str) parser.add_argument('-s', help='save convert result', action='store_true') parser.add_argument('-sp', help='save result path', default='./convert_results', type=str) args = parser.parse_args() return args def convert_model_onnx(convert_tool_path, onnx_model_path): """ convert single model :param convert_tool_path: :param onnx_model_path: :return: """ folder_dir, file_name = os.path.split(onnx_model_path) shell_commad = './' if './' not in convert_tool_path else '' shell_commad += f"{convert_tool_path} -f onnx -m {onnx_model_path} -o {folder_dir}/onnx.tmfile" # print(shell_commad) (status, output) = subprocess.getstatusoutput(shell_commad) if status != 0: if os.path.exists(f"{folder_dir}/onnx.tmfile"): shell_commad = f"rm {folder_dir}/onnx.tmfile" os.system(shell_commad) return False, output else: return True, output def main(): """ main function """ print("---- batch convert tools ----\n") args = parse_args() if args.m == None or args.f == None: usage_info() return None print("convert tool path: ", args.f) print("model folder path: ", args.m) print("convert type : ", args.c) print("save result : ", args.s) print("save folder : ", args.sp) shell_log_dir = args.sp if args.s: if os.path.exists(shell_log_dir) is not True: os.mkdir(shell_log_dir) with open(f"{shell_log_dir}/convert_batch_models.txt", 'w') as f: f.write(f"{'Model Path':<80} Convert Result\n") if args.c.lower() == 'onnx': folder_lists = os.listdir(args.m) folder_lists.sort() for sub_folder in folder_lists: sub_folder_path = f"{args.m}/{sub_folder}" try: op_type = sub_folder.split('_')[1].lower() except: continue if os.path.isdir(sub_folder_path) and op_type in support_onnx_op_list: for item in os.listdir(sub_folder_path): if '.onnx' in item: result, log = convert_model_onnx(args.f, f"{sub_folder_path}/{item}") print(f"{sub_folder_path:<80} {result}") if args.s: with open(f"{shell_log_dir}/convert_batch_models.txt", 'a') as f: f.write(f"{sub_folder_path:<80} {result}\n") with open(f"{shell_log_dir}/{sub_folder}.txt", 'w') as f: f.write(log) if __name__ == '__main__': main()
vbdiar/utils/utils.py
VarunSrivastava19/VBDiarization
101
92069
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2018 Brno University of Technology FIT # Author: <NAME> <<EMAIL>> # All Rights Reserved import os import re import random from os import listdir from os.path import isfile, join import fnmatch import math import numpy as np import yaml class Utils(object): """ Class tools handles basic operations with files and directories. """ def __init__(self): """ tools class constructor. """ return @staticmethod def list_directory_by_suffix(directory, suffix): """ Return listed directory of files based on their suffix. :param directory: directory to be listed :type directory: str :param suffix: suffix of files in directory :type suffix: str :returns: list of files specified byt suffix in directory :rtype: list >>> Utils.list_directory_by_suffix('../../tests/tools', '.test') ['empty1.test', 'empty2.test'] >>> Utils.list_directory_by_suffix('../../tests/tools_no_ex', '.test') Traceback (most recent call last): ... toolsException: [listDirectoryBySuffix] No directory found! >>> Utils.list_directory_by_suffix('../../tests/tools', '.py') [] """ abs_dir = os.path.abspath(directory) try: ofiles = [f for f in listdir(abs_dir) if isfile(join(abs_dir, f))] except OSError: raise ValueError('No directory named {} found!'.format(directory)) out = [] for file_in in ofiles: if file_in.find(suffix) != -1: out.append(file_in) out.sort() return out @staticmethod def list_directory(directory): """ List directory. :param directory: directory to be listed :type directory: str :returns: list with files in directory :rtype: list >>> Utils.list_directory('../../tests/tools') ['empty1.test', 'empty2.test', 'test', 'test.txt'] >>> Utils.list_directory('../../tests/tools_no_ex') Traceback (most recent call last): ... toolsException: [listDirectory] No directory found! """ directory = os.path.abspath(directory) try: out = [f for f in listdir(directory)] except OSError: raise ValueError('No directory found!') out.sort() return out @staticmethod def recursively_list_directory_by_suffix(directory, suffix): """ Return recursively listed directory of files based on their suffix. :param directory: directory to be listed :type directory: str :param suffix: suffix of files in directory :type suffix: str :returns: list of files specified by suffix in directory :rtype: list >>> Utils.recursively_list_directory_by_suffix( \ '../../tests/tools', '.test') ['empty1.test', 'empty2.test', 'test/empty.test'] >>> Utils.recursively_list_directory_by_suffix( \ '../../tests/tools_no_ex', '.test') [] """ matches = [] for root, dirnames, filenames in os.walk(directory): for filename in fnmatch.filter(filenames, '*' + suffix): app = os.path.join(root, filename).replace(directory + '/', '') matches.append(app) matches.sort() return matches @staticmethod def sed_in_file(input_file, regex1, regex2): """ Replace in input file by regex. :param input_file: input file :type input_file: str :param regex1: regular expression 1 :type regex1: str :param regex2: regular expression 2 :type regex2: str """ with open(input_file, 'r') as sources: lines = sources.readlines() with open(input_file, 'w') as sources: for line in lines: sources.write(re.sub(regex1, regex2, line)) @staticmethod def remove_lines_in_file_by_indexes(input_file, lines_indexes): """ Remove specified lines in file. :param input_file: input file name :type input_file: str :param lines_indexes: list with lines :type lines_indexes: list """ with open(input_file, 'r') as sources: lines = sources.readlines() with open(input_file, 'w') as sources: for i in range(len(lines)): if i not in lines_indexes: sources.write(lines[i]) @staticmethod def get_method(instance, method): """ Get method pointer. :param instance: input object :type instance: object :param method: name of method :type method: str :returns: pointer to method :rtype: method """ try: attr = getattr(instance, method) except AttributeError: raise ValueError('Unknown class method!') return attr @staticmethod def configure_instance(instance, input_list): """ Configures instance base on methods list. :param instance: reference to class instance :type instance: object :param input_list: input list with name of class members :type input_list: list :returns: configured instance :rtype: object """ for line in input_list: variable = line[:line.rfind('=')] value = line[line.rfind('=') + 1:] method_callback = Utils.get_method(instance, 'Set' + variable) method_callback(value) return instance @staticmethod def sort(scores, col=None): """ Sort scores list where score is in n-th-1 column. :param scores: scores list to be sorted :type scores: list :param col: index of column :type col: int :returns: sorted scores list :rtype: list >>> Utils.sort([['f1', 'f2', 10.0], \ ['f3', 'f4', -10.0], \ ['f5', 'f6', 9.58]], col=2) [['f3', 'f4', -10.0], ['f5', 'f6', 9.58], ['f1', 'f2', 10.0]] >>> Utils.sort([4.59, 8.8, 6.9, -10001.478]) [-10001.478, 4.59, 6.9, 8.8] """ if col is None: return sorted(scores, key=float) else: return sorted(scores, key=lambda x: x[col]) @staticmethod def reverse_sort(scores, col=None): """ Reversively sort scores list where score is in n-th column. :param scores: scores list to be sorted :type scores: list :param col: number of columns :type col: int :returns: reversively sorted scores list :rtype: list >>> Utils.reverse_sort([['f1', 'f2', 10.0], \ ['f3', 'f4', -10.0], \ ['f5', 'f6', 9.58]], col=2) [['f1', 'f2', 10.0], ['f5', 'f6', 9.58], ['f3', 'f4', -10.0]] >>> Utils.reverse_sort([4.59, 8.8, 6.9, -10001.478]) [8.8, 6.9, 4.59, -10001.478] """ if col is None: return sorted(scores, key=float, reverse=True) else: return sorted(scores, key=lambda x: x[col], reverse=True) @staticmethod def get_nth_col(in_list, col): """ Extract n-th-1 columns from list. :param in_list: input list :type in_list: list :param col: column :type col: int :returns: list only with one column :rtype: list >>> Utils.get_nth_col([['1', '2'], ['3', '4'], ['5', '6']], col=1) ['2', '4', '6'] >>> Utils.get_nth_col([['1', '2'], ['3', '4'], ['5', '6']], col=42) Traceback (most recent call last): ... toolsException: [getNthCol] Column out of range! """ try: out = [row[col] for row in in_list] except IndexError: raise ValueError('Column out of range!') return out @staticmethod def find_in_dictionary(in_dict, value): """ Find value in directory whose items are lists and return key. :param in_dict: dictionary to search in :type in_dict: dict :param value: value to find :type value: any :returns: dictionary key :rtype: any >>> Utils.find_in_dictionary({ 0 : [42], 1 : [88], 2 : [69]}, 69) 2 >>> Utils.find_in_dictionary(dict(), 69) Traceback (most recent call last): ... toolsException: [findInDictionary] Value not found! """ for key in in_dict: if value in in_dict[key]: return key raise ValueError('Value not found!') @staticmethod def get_scores(scores, key): """ Get scores from scores list by key. :param scores: input scores list :type scores: list :param key: key to find :type key: list :returns: score if key is present in score, None otherwise :rtype: float >>> Utils.get_scores([['f1', 'f2', 10.1], ['f3', 'f4', 20.1], \ ['f5', 'f6', 30.1]], ['f6', 'f5']) 30.1 """ if len(key) != 2: raise ValueError('Unexpected key!') if len(scores[0]) != 3: raise ValueError('Invalid input list!') for score in scores: a = score[0] b = score[1] if (key[0] == a and key[1] == b) or (key[0] == b and key[1] == a): return score[2] return None @staticmethod def get_line_from_file(line_num, infile): """ Get specified line from file. :param line_num: number of line :type line_num: int :param infile: file name :type infile: str :returns: specified line, None otherwise :rtype: str >>> Utils.get_line_from_file(3, '../../tests/tools/test.txt') 'c\\n' >>> Utils.get_line_from_file(10, '../../tests/tools/test.txt') Traceback (most recent call last): ... toolsException: [getLineFromFile] Line number not found! """ with open(infile) as fp: for i, line in enumerate(fp): if i == line_num - 1: return line raise ValueError('Line number {} not found in file.'.format(line_num, infile)) @staticmethod def list2dict(input_list): """ Create dictionary from list in format [key1, key2, score]. :param input_list: list to process :type input_list: list :returns: preprocessed dictionary :rtype: dict >>> Utils.list2dict([['f1', 'f2', 10.1], ['f3', 'f4', 20.1], \ ['f5', 'f6', 30.1], ['f1', 'f3', 40.1]]) {'f1 f2': 10.1, 'f5 f6': 30.1, 'f3 f4': 20.1, 'f1 f3': 40.1} >>> Utils.list2dict([['f1', 'f2', 10.1], ['f3', 'f4']]) Traceback (most recent call last): ... toolsException: [list2Dict] Invalid format of input list! """ dictionary = dict() for item in input_list: if len(item) != 3: raise ValueError('Invalid format of input list!') tmp_list = [item[0], item[1]] tmp_list.sort() dictionary[tmp_list[0] + ' ' + tmp_list[1]] = item[2] return dictionary @staticmethod def merge_dicts(*dict_args): """ Merge dictionaries into single one. :param dict_args: input dictionaries :type dict_args: dict array :returns: merged dictionaries into single one :rtype: dict >>> Utils.merge_dicts( \ {'f1 f2': 10.1, 'f5 f6': 30.1, 'f1 f3': 40.1}, {'f6 f2': 50.1}) {'f1 f2': 10.1, 'f5 f6': 30.1, 'f6 f2': 50.1, 'f1 f3': 40.1} """ result = {} for dictionary in dict_args: result.update(dictionary) return result @staticmethod def save_object(obj, path): """ Saves object to disk. :param obj: reference to object :type obj: any :param path: path to file :type path: str """ np.save(path, obj) @staticmethod def load_object(path): """ Loads object from disk. :param path: path to file :type path: str """ np.load(path) @staticmethod def common_prefix(m): """ Given a list of pathnames, returns the longest prefix." :param m: input list :type m: list :returns: longest prefix in list :rtype: str """ if not m: return '' s1 = min(m) s2 = max(m) for i, c in enumerate(s1): if c != s2[i]: return s1[:i] return s1 @staticmethod def root_name(d): """ Return a root directory by name. :param d: directory name :type d: str :returns: root directory name :rtype d: str """ pass @staticmethod def read_config(config_path): """ Read config in yaml format. Args: config_path (str): path to config file Returns: """ with open(config_path, 'r') as ymlfile: return yaml.load(ymlfile) @staticmethod def l2_norm(ivecs): """ Perform L2 normalization. Args: ivecs (np.array): input i-vector Returns: np.array: normalized i-vectors """ ret_ivecs = ivecs.copy() ret_ivecs /= np.sqrt((ret_ivecs ** 2).sum(axis=1)[:, np.newaxis]) return ret_ivecs @staticmethod def cos_sim(v1, v2): """ Args: v1 (np.array): first vector v2 (np.array): second vector Returns: """ sumxx, sumxy, sumyy = 0, 0, 0 for i in range(len(v1)): x = v1[i] y = v2[i] sumxx += x * x sumyy += y * y sumxy += x * y return sumxy / math.sqrt(sumxx * sumyy) @staticmethod def partition(large_list, n_sublists, shuffle=False): """Partition a list ``l`` into ``n`` sublists.""" return np.array_split(large_list, n_sublists) if __name__ == "__main__": import doctest doctest.testmod()
funsor/compat/ops.py
fritzo/funsor
198
92076
<reponame>fritzo/funsor<gh_stars>100-1000 # Copyright Contributors to the Pyro project. # SPDX-License-Identifier: Apache-2.0 from torch import ones, randn, tensor, zeros # noqa F401 from funsor.testing import allclose # noqa F401 from .ops import * # noqa F401
quaternion/quat_test.py
IhorNehrutsa/micropython-samples
268
92090
# quat_test.py Test for quat.py # Released under the MIT License (MIT). See LICENSE. # Copyright (c) 2020 <NAME> from math import sin, cos, isclose, pi, sqrt from quat import * print('Properties') q1 = Quaternion(1, 2, 3, 4) q1.w = 5 q1.x = 6 q1.y = 7 q1.z = 8 assert q1 == Quaternion(5, 6, 7, 8) assert (q1.w, q1.x, q1.y, q1.z) == (5, 6, 7, 8) # Numpy demo at https://quaternion.readthedocs.io/en/latest/README.html print('Hamilton product') q1 = Quaternion(1, 2, 3, 4) q2 = Quaternion(5, 6, 7, 8) q3 = Quaternion(-60, 12, 30, 24) assert q3 == q1 * q2 print('Iterator protocol') assert Quaternion(*q1) == q1 assert list(q1[1:]) == [2,3,4] foo = iter(q1) assert next(foo) == 1 print('Assign from tuple') q1[1:] = (9, 10, 11) assert list(q1[1:]) == [9, 10, 11] q1[:] = (8, 9, 10, 99) assert list(q1[:]) == [8, 9, 10, 99] print('Assign from scalar') q1[0] = 88 assert list(q1[:]) == [88, 9, 10, 99] print('Negation') q1 = Quaternion(1, 2, 3, 4) q2 = Quaternion(-1, -2, -3, -4) assert -q1 == q2 print('Comparison operators and unary +') assert (q1 is +q1) == False assert q1 == +q1 assert (q1 is q1.copy()) == False assert q1 == q1.copy() assert q1 >= q1.copy() assert q1 <= q1.copy() assert (q1 < q1.copy()) == False assert (q1 > q1.copy()) == False q2 = Quaternion(1, 2.1, 3, 4) assert q2 > q1 assert q1 < q2 assert q2 >= q1 assert q1 <= q2 assert (q1 == q2) == False assert q1 != q2 print('Scalar add') q2 = Quaternion(5, 2, 3, 4) assert q2 == q1 + 4 print('Scalar subtract') q2 = Quaternion(-3, 2, 3, 4) assert q2 == q1 - 4 print('Scalar multiply') q2 = Quaternion(2, 4, 6, 8) assert q2 == q1 * 2 print('Scalar divide') q2 = Quaternion(0.5, 1, 1.5, 2) assert q2 == q1/2 print('Conjugate') assert q1.conjugate() == Quaternion(1, -2, -3, -4) print('Inverse') assert q1.inverse() * q1 == Quaternion(1, 0, 0, 0) print('Multiply by tuple') assert q1*(2,3,4) == Quaternion(0, 4, 9, 16) assert q1*(4,5,6,7) == Quaternion(4, 10, 18, 28) print('Add tuple') assert q1 + (2,3,4) == Quaternion(0, 4, 6, 8) assert q1 + (4,5,6,7) == Quaternion(5, 7, 9, 11) print('abs(), len(), str()') assert abs(Quaternion(2,2,2,2)) == 4 assert len(q1) == 4 assert str(q1) == 'w = 1.00 x = 2.00 y = 3.00 z = 4.00' print('Rotation') p = Vector(0, 1, 0) r = Rotator(pi/4, 0, 0, 1) rv = p @ r # Anticlockwise about z axis assert isclose(rv.w, 0, abs_tol=mdelta) assert isclose(rv.x, -sin(pi/4), rel_tol=mdelta) assert isclose(rv.y, sin(pi/4), rel_tol=mdelta) assert isclose(rv.z, 0, abs_tol=mdelta) p = Vector(1, 0, 0) r = Rotator(-pi/4, 0, 0, 1) rv = p @ r # Clockwise about z axis assert isclose(rv.w, 0, abs_tol=mdelta) assert isclose(rv.x, sin(pi/4), rel_tol=mdelta) assert isclose(rv.y, -sin(pi/4), rel_tol=mdelta) assert isclose(rv.z, 0, abs_tol=mdelta) p = Vector(0, 1, 0) r = Rotator(-pi/4, 1, 0, 0) rv = p @ r # Clockwise about x axis assert isclose(rv.w, 0, abs_tol=mdelta) assert isclose(rv.x, 0, abs_tol=mdelta) assert isclose(rv.y, sin(pi/4), rel_tol=mdelta) assert isclose(rv.z, -sin(pi/4), rel_tol=mdelta) print('Rotation using Euler angles') # Tait-Brian angles DIN9300: I thought z axis is down towards ground. # However https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles # and this implementation implies z is towards sky. # https://github.com/moble/quaternion/wiki/Euler-angles-are-horrible # Test heading # Yaw/Heading: a +ve value is counter clockwise p = Vector(1, 0, 0) # x is direction of motion r = Euler(pi/4, 0, 0) # Heading 45°. rv = p @ r assert isclose(rv.w, 0, abs_tol=mdelta) assert isclose(rv.x, sin(pi/4), rel_tol=mdelta) assert isclose(rv.y, sin(pi/4), rel_tol=mdelta) assert isclose(rv.z, 0, abs_tol=mdelta) # Test pitch # A +ve value is aircraft nose down i.e. z +ve p = Vector(1, 0, 0) # x is direction of motion r = Euler(0, pi/4, 0) # Pitch 45°. rv = p @ r assert isclose(rv.w, 0, abs_tol=mdelta) assert isclose(rv.x, sin(pi/4), rel_tol=mdelta) assert isclose(rv.y, 0, abs_tol=mdelta) assert isclose(rv.z, -sin(pi/4), rel_tol=mdelta) # Implies z is towards sky # Test roll # A +ve value is y +ve p = Vector(0, 1, 0) # x is direction of motion. Vector is aircraft wing r = Euler(0, 0, pi/4) # Roll 45°. rv = p @ r assert isclose(rv.w, 0, abs_tol=mdelta) assert isclose(rv.x, 0, abs_tol=mdelta) assert isclose(rv.y, sin(pi/4), rel_tol=mdelta) assert isclose(rv.z, sin(pi/4), rel_tol=mdelta) # Implies z is towards sky print('euler() test') r = Euler(pi/4, 0, 0) assert isclose(euler(r)[0], pi/4, rel_tol=mdelta) r = Euler(0, pi/4, 0) assert isclose(euler(r)[1], pi/4, rel_tol=mdelta) r = Euler(0, 0, pi/4) assert isclose(euler(r)[2], pi/4, rel_tol=mdelta) print('isrot() and isvec()') assert Quaternion(0, 1, 2, 3).isvec() assert not Quaternion(0, 1, 2, 3).isrot() assert not Quaternion(1, 2, 3, 4).isvec() q = Rotator(1, 1, 1, 1) assert q.isrot() print('to_angle_axis()') t = Rotator(1, 1, 1, 1).to_angle_axis() assert isclose(t[0], 1, rel_tol=mdelta) for v in t[1:]: assert isclose(v, sqrt(1/3), rel_tol=mdelta) s = ''' *** Standard tests PASSED. *** The following test of reflected arithmetic operators will fail unless the firmware was compiled with MICROPY_PY_REVERSE_SPECIAL_METHODS. Runs on the Unix build.''' print(s) q1 = Quaternion(1, 2, 3, 4) assert 10 + Quaternion(1, 2, 3, 4) == Quaternion(11, 2, 3, 4) assert 1/q1 == q1.inverse() assert 2 * q1 == q1 + q1 assert 1 - q1 == -q1 + 1 s = ''' Reverse/reflected operators OK. *** All tests PASSED. *** ''' print(s)
tools/converters/torchvision_resnet_to_zcls_resnet.py
YinAoXiong/ZCls
110
92113
# -*- coding: utf-8 -*- """ @date: 2021/5/4 下午7:11 @file: torchvision_resnet_to_zcls_resnet.py @author: zj @description: Transform torchvision pretrained model into zcls format """ import os from torchvision.models.resnet import resnet18, resnet34, resnet50, resnet101, resnet152, resnext50_32x4d, \ resnext101_32x8d from zcls.model.recognizers.resnet.resnet import ResNet from zcls.config import cfg from zcls.util.checkpoint import CheckPointer def convert(torchvision_resnet, zcls_resnet): torchvision_resnet_dict = torchvision_resnet.state_dict() zcls_resnet_dict = zcls_resnet.state_dict() for k, v in torchvision_resnet_dict.items(): if 'downsample' in k: zcls_resnet_dict[f"backbone.{k.replace('downsample', 'down_sample')}"] = v elif 'layer' in k: zcls_resnet_dict[f'backbone.{k}'] = v elif 'fc' in k: zcls_resnet_dict[f'head.{k}'] = v elif 'conv1.weight' == k: zcls_resnet_dict['backbone.stem.0.weight'] = v elif 'bn1' in k: zcls_resnet_dict[k.replace('bn1', 'backbone.stem.1')] = v else: raise ValueError("{k} doesn't exist") return zcls_resnet_dict def process(item, cfg_file): if item == 'resnet18': torchvision_resnet = resnet18(pretrained=True) elif item == 'resnet34': torchvision_resnet = resnet34(pretrained=True) elif item == 'resnet50': torchvision_resnet = resnet50(pretrained=True) elif item == 'resnet101': torchvision_resnet = resnet101(pretrained=True) elif item == 'resnet152': torchvision_resnet = resnet152(pretrained=True) elif item == 'resnext50_32x4d': torchvision_resnet = resnext50_32x4d(pretrained=True) elif item == 'resnext101_32x8d': torchvision_resnet = resnext101_32x8d(pretrained=True) else: raise ValueError(f"{item} doesn't exists") cfg.merge_from_file(cfg_file) zcls_resnet = ResNet(cfg) zcls_resnet_dict = convert(torchvision_resnet, zcls_resnet) zcls_resnet.load_state_dict(zcls_resnet_dict) res_dir = 'outputs/converters/' if not os.path.exists(res_dir): os.makedirs(res_dir) checkpoint = CheckPointer(model=zcls_resnet, save_dir=res_dir, save_to_disk=True) checkpoint.save(f'{item}_imagenet') if __name__ == '__main__': item_list = ['resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d'] cfg_file_list = [ 'r18_zcls_imagenet_224.yaml', 'r34_zcls_imagenet_224.yaml', 'r50_zcls_imagenet_224.yaml', 'r101_zcls_imagenet_224.yaml', 'r152_zcls_imagenet_224.yaml', 'rxt50_32x4d_zcls_imagenet_224.yaml', 'rxt101_32x8d_zcls_imagenet_224.yaml' ] prefix_path = 'configs/benchmarks/resnet' for item, cfg_file in zip(item_list, cfg_file_list): config_path = os.path.join(prefix_path, cfg_file) print(config_path) process(item, config_path)
src/pretix/base/exporters/json.py
fabm3n/pretix
1,248
92126
# # This file is part of pretix (Community Edition). # # Copyright (C) 2014-2020 <NAME> and contributors # Copyright (C) 2020-2021 rami.io GmbH and contributors # # This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General # Public License as published by the Free Software Foundation in version 3 of the License. # # ADDITIONAL TERMS APPLY: Pursuant to Section 7 of the GNU Affero General Public License, additional terms are # applicable granting you additional permissions and placing additional restrictions on your usage of this software. # Please refer to the pretix LICENSE file to obtain the full terms applicable to this work. If you did not receive # this file, see <https://pretix.eu/about/en/license>. # # This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied # warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more # details. # # You should have received a copy of the GNU Affero General Public License along with this program. If not, see # <https://www.gnu.org/licenses/>. # # This file is based on an earlier version of pretix which was released under the Apache License 2.0. The full text of # the Apache License 2.0 can be obtained at <http://www.apache.org/licenses/LICENSE-2.0>. # # This file may have since been changed and any changes are released under the terms of AGPLv3 as described above. A # full history of changes and contributors is available at <https://github.com/pretix/pretix>. # # This file contains Apache-licensed contributions copyrighted by: <NAME> # # Unless required by applicable law or agreed to in writing, software distributed under the Apache License 2.0 is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under the License. import json from decimal import Decimal from django.core.serializers.json import DjangoJSONEncoder from django.dispatch import receiver from ..exporter import BaseExporter from ..signals import register_data_exporters class JSONExporter(BaseExporter): identifier = 'json' verbose_name = 'Order data (JSON)' def render(self, form_data): jo = { 'event': { 'name': str(self.event.name), 'slug': self.event.slug, 'organizer': { 'name': str(self.event.organizer.name), 'slug': self.event.organizer.slug }, 'categories': [ { 'id': category.id, 'name': str(category.name), 'internal_name': category.internal_name } for category in self.event.categories.all() ], 'items': [ { 'id': item.id, 'name': str(item.name), 'internal_name': str(item.internal_name), 'category': item.category_id, 'price': item.default_price, 'tax_rate': item.tax_rule.rate if item.tax_rule else Decimal('0.00'), 'tax_name': str(item.tax_rule.name) if item.tax_rule else None, 'admission': item.admission, 'active': item.active, 'variations': [ { 'id': variation.id, 'active': variation.active, 'price': variation.default_price if variation.default_price is not None else item.default_price, 'name': str(variation) } for variation in item.variations.all() ] } for item in self.event.items.select_related('tax_rule').prefetch_related('variations') ], 'questions': [ { 'id': question.id, 'question': str(question.question), 'type': question.type } for question in self.event.questions.all() ], 'orders': [ { 'code': order.code, 'status': order.status, 'user': order.email, 'datetime': order.datetime, 'fees': [ { 'type': fee.fee_type, 'description': fee.description, 'value': fee.value, } for fee in order.fees.all() ], 'total': order.total, 'positions': [ { 'id': position.id, 'item': position.item_id, 'variation': position.variation_id, 'price': position.price, 'attendee_name': position.attendee_name, 'attendee_email': position.attendee_email, 'secret': position.secret, 'addon_to': position.addon_to_id, 'answers': [ { 'question': answer.question_id, 'answer': answer.answer } for answer in position.answers.all() ] } for position in order.positions.all() ] } for order in self.event.orders.all().prefetch_related('positions', 'positions__answers', 'fees') ], 'quotas': [ { 'id': quota.id, 'size': quota.size, 'items': [item.id for item in quota.items.all()], 'variations': [variation.id for variation in quota.variations.all()], } for quota in self.event.quotas.all().prefetch_related('items', 'variations') ] } } return '{}_pretixdata.json'.format(self.event.slug), 'application/json', json.dumps(jo, cls=DjangoJSONEncoder) @receiver(register_data_exporters, dispatch_uid="exporter_json") def register_json_export(sender, **kwargs): return JSONExporter
cctbx/regression/tst_pair_asu_table.py
dperl-sol/cctbx_project
155
92135
from __future__ import absolute_import, division, print_function from iotbx.kriber import strudat from cctbx import geometry_restraints from cctbx import crystal from cctbx.array_family import flex import scitbx.math from scitbx import matrix from libtbx.test_utils import approx_equal, show_diff from libtbx.utils import format_cpu_times import libtbx.load_env from libtbx import dict_with_default_0 from six.moves import cStringIO as StringIO import math import sys, os from six.moves import range from six.moves import zip def exercise_icosahedron(max_level=2, verbose=0): for level in range(0,max_level+1): if (0 or verbose): print("level:", level) icosahedron = scitbx.math.icosahedron(level=level) try: distance_cutoff = icosahedron.next_neighbors_distance()*(1+1.e-3) estimated_distance_cutoff = False except RuntimeError as e: assert str(e) == "next_neighbors_distance not known." distance_cutoff = 0.4/(2**(level-1)) estimated_distance_cutoff = True asu_mappings = crystal.direct_space_asu.non_crystallographic_asu_mappings( sites_cart=icosahedron.sites) pair_asu_table = crystal.pair_asu_table(asu_mappings=asu_mappings) pair_asu_table.add_all_pairs(distance_cutoff=distance_cutoff) if (0 or verbose): ps = pair_asu_table.show_distances(sites_cart=icosahedron.sites) \ .distances_info print("level", level, "min", flex.min(ps.distances)) print(" ", " ", "max", flex.max(ps.distances)) assert ps.pair_counts.all_eq(pair_asu_table.pair_counts()) if (level == 0): for d in ps.distances: assert approx_equal(d, 1.0514622242382672) elif (level < 2): s = StringIO() ps = pair_asu_table.show_distances(sites_cart=icosahedron.sites, out=s) \ .distances_info assert ps.pair_counts.all_eq(pair_asu_table.pair_counts()) assert len(s.getvalue().splitlines()) == [72,320][level] del s if (level == 0): assert pair_asu_table.pair_counts().all_eq(5) else: assert pair_asu_table.pair_counts().all_eq(3) del pair_asu_table max_distance = crystal.neighbors_fast_pair_generator( asu_mappings=asu_mappings, distance_cutoff=distance_cutoff).max_distance_sq()**.5 if (0 or verbose): print("max_distance:", max_distance) if (not estimated_distance_cutoff): assert approx_equal(max_distance, icosahedron.next_neighbors_distance()) assert approx_equal(max_distance/icosahedron.next_neighbors_distance(),1) def is_sym_equiv_interaction_simple(unit_cell, i_seq, site_frac_i, j_seq, site_frac_j, special_op_j, rt_mx_ji_1, rt_mx_ji_2): f = unit_cell.shortest_vector_sq()**.5*.1 trial_shifts = [f*x for x in [math.sqrt(2),math.sqrt(3),math.sqrt(5)]] frac = unit_cell.fractionalize orth = unit_cell.orthogonalize dist = unit_cell.distance for shifts in [[0,0,0], trial_shifts]: site_j_mod = special_op_j * frac([x+s for x,s in zip(orth(site_frac_j),shifts)]) if (shifts == [0,0,0] or j_seq != i_seq): site_i_mod = site_frac_i else: site_i_mod = site_j_mod d1 = dist(rt_mx_ji_1 * site_j_mod, site_i_mod) d2 = dist(rt_mx_ji_2 * site_j_mod, site_i_mod) if (shifts == [0,0,0]): if (abs(d1-d2) >= 1.e-3): return False return abs(d1-d2) < 1.e-3 def check_sym_equiv(structure, bond_asu_table, weak=False): unit_cell = structure.unit_cell() asu_mappings = bond_asu_table.asu_mappings() sites_frac = structure.scatterers().extract_sites() for i_seq,records in enumerate(bond_asu_table.table()): rt_mx_i_inv = asu_mappings.get_rt_mx(i_seq, 0).inverse() for j_seq,j_sym_groups in records.items(): i_group_rt_mx_jis = [] for i_group,j_sym_group in enumerate(j_sym_groups): for j_sym in j_sym_group: rt_mx_ji = rt_mx_i_inv.multiply(asu_mappings.get_rt_mx(j_seq, j_sym)) i_group_rt_mx_jis.append((i_group,rt_mx_ji)) for gi,ri in i_group_rt_mx_jis: for gj,rj in i_group_rt_mx_jis: is_sym_equiv = is_sym_equiv_interaction_simple( unit_cell=unit_cell, i_seq=i_seq, site_frac_i=sites_frac[i_seq], j_seq=j_seq, site_frac_j=sites_frac[j_seq], special_op_j=asu_mappings.special_op(j_seq), rt_mx_ji_1=ri, rt_mx_ji_2=rj) if (is_sym_equiv): if (not weak): assert gi == gj else: assert gi != gj def check_connectivities(bond_asu_table, connectivities, verbose=0): n_mismatches = 0 for records,connectivity in zip(bond_asu_table.table(), connectivities): n = 0 for j_seq,j_sym_groups in records.items(): for j_sym_group in j_sym_groups: n += len(j_sym_group) if (0 or verbose): print("n, connectivity:", n, connectivity) assert n == connectivity def exercise_incremental_pairs( structure, distance_cutoff, reference_pair_asu_table): ip = structure.incremental_pairs(distance_cutoff=distance_cutoff) for site_frac in structure.sites_frac(): ip.process_site_frac(original_site=site_frac) assert ip.pair_asu_table().pair_counts().all_eq( reference_pair_asu_table.pair_counts()) assert ip.pair_asu_table() == reference_pair_asu_table def exercise_site_cluster_analysis( structure, distance_cutoff, reference_pair_asu_table): pat_selection = flex.size_t() pat_keep = [] for i_seq,pair_asu_dict in enumerate(reference_pair_asu_table.table()): for j_seq,pair_asu_j_sym_groups in pair_asu_dict.items(): if (j_seq == i_seq): for j_sym_group in pair_asu_j_sym_groups: assert 0 not in j_sym_group pat_keep.append(False) break if (j_seq < i_seq and pat_keep[j_seq]): pat_keep.append(False) break else: pat_keep.append(True) pat_selection.append(i_seq) assert reference_pair_asu_table.cluster_pivot_selection().all_eq( pat_selection) assert reference_pair_asu_table.cluster_pivot_selection( max_clusters=3).all_eq(pat_selection[:3]) # sca = structure.site_cluster_analysis(min_distance=distance_cutoff) sca_selection = flex.size_t() for i_seq,site_frac in enumerate(structure.sites_frac()): if (sca.process_site_frac(original_site=site_frac)): sca_selection.append(i_seq) assert sca_selection.all_eq(pat_selection) # sca = structure.site_cluster_analysis(min_distance=distance_cutoff) sca_selection = sca.process_sites_frac( original_sites=structure.sites_frac(), site_symmetry_table=structure.site_symmetry_table()) assert sca_selection.all_eq(pat_selection) # sca = structure.site_cluster_analysis(min_distance=distance_cutoff) sca_selection = sca.process_sites_frac( original_sites=structure.sites_frac(), site_symmetry_table=structure.site_symmetry_table(), max_clusters=3) assert sca_selection.all_eq(pat_selection[:3]) # sca = structure.site_cluster_analysis(min_distance=distance_cutoff) sca_selection = sca.process_sites_frac( original_sites=structure.sites_frac()) assert sca_selection.all_eq(pat_selection) # sca = structure.site_cluster_analysis(min_distance=distance_cutoff) sca_selection = sca.process_sites_frac( original_sites=structure.sites_frac(), max_clusters=3) assert sca_selection.all_eq(pat_selection[:3]) # sca = structure.site_cluster_analysis(min_distance=distance_cutoff) sca_selection = sca.process_sites_cart( original_sites=structure.sites_cart(), site_symmetry_table=structure.site_symmetry_table()) assert sca_selection.all_eq(pat_selection) # sca = structure.site_cluster_analysis(min_distance=distance_cutoff) sca_selection = sca.process_sites_cart( original_sites=structure.sites_cart(), site_symmetry_table=structure.site_symmetry_table(), max_clusters=3) assert sca_selection.all_eq(pat_selection[:3]) # sca = structure.site_cluster_analysis(min_distance=distance_cutoff) sca_selection = sca.process_sites_cart( original_sites=structure.sites_cart()) assert sca_selection.all_eq(pat_selection) # sca = structure.site_cluster_analysis(min_distance=distance_cutoff) sca_selection = sca.process_sites_cart( original_sites=structure.sites_cart(), max_clusters=3) assert sca_selection.all_eq(pat_selection[:3]) # sca = structure.site_cluster_analysis( min_distance=distance_cutoff, general_positions_only=True) sca_selection = sca.process_sites_frac( original_sites=structure.sites_frac(), site_symmetry_table=structure.site_symmetry_table()) pat_selection = reference_pair_asu_table.cluster_pivot_selection( general_positions_only=True) assert sca_selection.all_eq(pat_selection) def exercise( structure, distance_cutoff, connectivities=None, weak_check_sym_equiv=False, verbose=0): if (0 or verbose): print("distance_cutoff:", distance_cutoff) asu_mappings = structure.asu_mappings(buffer_thickness=distance_cutoff) for i_pass in range(2): if (i_pass == 0): bond_asu_table = crystal.pair_asu_table(asu_mappings=asu_mappings) bond_asu_table.add_all_pairs( distance_cutoff=distance_cutoff) exercise_incremental_pairs( structure=structure, distance_cutoff=distance_cutoff, reference_pair_asu_table=bond_asu_table) exercise_site_cluster_analysis( structure=structure, distance_cutoff=distance_cutoff, reference_pair_asu_table=bond_asu_table) else: bond_sym_table = bond_asu_table.extract_pair_sym_table() bond_asu_table = crystal.pair_asu_table(asu_mappings=asu_mappings) bond_asu_table.add_pair_sym_table( sym_table=bond_sym_table) def exercise_symmetry_equivalent_pair_interactions(): asu_mappings = bond_asu_table.asu_mappings() for i_seq, j_seq_dict in enumerate(bond_asu_table.table()): rt_mx_i = asu_mappings.get_rt_mx(i_seq, 0) rt_mx_i_inv = rt_mx_i.inverse() for j_seq,j_sym_group in j_seq_dict.items(): scs = structure.scatterers() def get_coords(symops): result = [] for s in symops: result.append(numstr(s * scs[j_seq].site)) result.sort() return result prev_equiv_rt_mx_ji = None for j_syms in j_sym_group: equiv_rt_mx_ji = [] for j_sym in j_syms: rt_mx_ji = rt_mx_i_inv.multiply( asu_mappings.get_rt_mx(j_seq, j_sym)) equiv_rt_mx_ji.append(rt_mx_ji) old_coords = get_coords(equiv_rt_mx_ji) all_sepi = set() for rt_mx_ji in equiv_rt_mx_ji: _ = asu_mappings.site_symmetry_table() sepi_obj = _.symmetry_equivalent_pair_interactions( i_seq=i_seq, j_seq=j_seq, rt_mx_ji=rt_mx_ji) sepi = sepi_obj.get() new_coords = get_coords(sepi) assert new_coords == old_coords all_sepi.add(";".join([str(_) for _ in sepi])) for _ in equiv_rt_mx_ji: assert sepi_obj.is_equivalent(rt_mx_ji=_) if (prev_equiv_rt_mx_ji is not None): for _ in prev_equiv_rt_mx_ji: assert not sepi_obj.is_equivalent(rt_mx_ji=_) assert len(all_sepi) == 1 prev_equiv_rt_mx_ji = equiv_rt_mx_ji exercise_symmetry_equivalent_pair_interactions() def exercise_pair_sym_table_tidy_and_full_connectivity(): def check_one_way(pst): for sym_pair in pst.iterator(): i_seq, j_seq = sym_pair.i_seqs() assert i_seq <= j_seq assert len(pst[i_seq][j_seq]) > 0 if (i_seq != j_seq): assert i_seq not in pst[j_seq] def check_two_way(pst): for sym_pair in pst.iterator(): i_seq, j_seq = sym_pair.i_seqs() assert len(pst[i_seq][j_seq]) > 0 assert len(pst[j_seq][i_seq]) > 0 pst_extracted = bond_sym_table.tidy( site_symmetry_table=structure.site_symmetry_table()) check_one_way(pst_extracted) sio_extracted = StringIO() structure.pair_sym_table_show(pst_extracted, out=sio_extracted) pst = pst_extracted.tidy( site_symmetry_table=structure.site_symmetry_table()) check_one_way(pst) sio = StringIO() structure.pair_sym_table_show(pst, out=sio) assert not show_diff(sio.getvalue(), sio_extracted.getvalue()) pst = pst_extracted.full_connectivity() check_two_way(pst) pst_full = pst_extracted.full_connectivity( site_symmetry_table=structure.site_symmetry_table()) check_two_way(pst_full) sio = StringIO() structure.pair_sym_table_show( pst_full, is_full_connectivity=True, out=sio) assert sio.getvalue().find("sym. equiv.") < 0 pst = pst_full.tidy( site_symmetry_table=structure.site_symmetry_table()) check_one_way(pst) sio = StringIO() structure.pair_sym_table_show(pst, out=sio) assert not show_diff(sio.getvalue(), sio_extracted.getvalue()) pst_full2 = pst_full.full_connectivity( site_symmetry_table=structure.site_symmetry_table()) check_two_way(pst_full2) pst = pst_full2.tidy( site_symmetry_table=structure.site_symmetry_table()) check_one_way(pst) sio = StringIO() structure.pair_sym_table_show(pst, out=sio) assert not show_diff(sio.getvalue(), sio_extracted.getvalue()) exercise_pair_sym_table_tidy_and_full_connectivity() if (connectivities is not None): check_connectivities(bond_asu_table, connectivities, verbose) check_sym_equiv( structure=structure, bond_asu_table=bond_asu_table, weak=weak_check_sym_equiv) def exercise_bond_sorted_asu_proxies( structure, distance_cutoff): asu_mappings = structure.asu_mappings(buffer_thickness=distance_cutoff) bond_asu_table = crystal.pair_asu_table(asu_mappings=asu_mappings) bond_asu_table.add_all_pairs(distance_cutoff=distance_cutoff) bond_sym_table = bond_asu_table.extract_pair_sym_table() el = bond_sym_table.simple_edge_list() es = bond_sym_table.full_simple_connectivity() assert es.size() == bond_sym_table.size() for i,j in el: assert j in es[i] assert i in es[j] npis = bond_sym_table.number_of_pairs_involving_symmetry() assert len(list(bond_sym_table.iterator())) == len(el) + npis bond_params_table = geometry_restraints.bond_params_table( structure.scatterers().size()) for i_seq,bond_sym_dict in enumerate(bond_sym_table): for j_seq in bond_sym_dict.keys(): if (i_seq > j_seq): j_seq,i_seq = i_seq,j_seq bond_params_table[i_seq][j_seq] = geometry_restraints.bond_params( distance_ideal=3.1, weight=1) proxies_fast = geometry_restraints.bond_sorted_asu_proxies( bond_params_table=bond_params_table, bond_asu_table=bond_asu_table) proxies_conservative = geometry_restraints.bond_sorted_asu_proxies( pair_asu_table=bond_asu_table) pair_generator = crystal.neighbors_simple_pair_generator( asu_mappings=asu_mappings, distance_cutoff=distance_cutoff, minimal=False) proxies_slow = geometry_restraints.bond_sorted_asu_proxies( asu_mappings=asu_mappings) for pair in pair_generator: proxies_slow.process(geometry_restraints.bond_asu_proxy( pair=pair, distance_ideal=3.1, weight=1)) def compare_proxies(proxies_1, proxies_2): assert proxies_1.simple.size() == proxies_2.simple.size() assert proxies_1.asu.size() == proxies_2.asu.size() ctrl = {} for proxy in proxies_1.simple: assert proxy.i_seqs not in ctrl ctrl[proxy.i_seqs] = 0 for proxy in proxies_2.simple: assert proxy.i_seqs in ctrl ctrl[proxy.i_seqs] += 1 assert list(ctrl.values()) == [1]*len(ctrl) ctrl = {} for proxy in proxies_1.asu: key = proxy.i_seq,proxy.j_seq,proxy.j_sym assert key not in ctrl ctrl[key] = 0 for proxy in proxies_2.asu: key = proxy.i_seq,proxy.j_seq,proxy.j_sym assert key in ctrl ctrl[key] += 1 assert list(ctrl.values()) == [1]*len(ctrl) compare_proxies(proxies_1=proxies_fast, proxies_2=proxies_conservative) compare_proxies(proxies_1=proxies_fast, proxies_2=proxies_slow) sites_cart = structure.sites_cart() for proxy in proxies_conservative.simple: i,j = proxy.i_seqs assert approx_equal( abs(matrix.col(sites_cart[i]) - matrix.col(sites_cart[j])), proxy.distance_ideal) assert proxy.weight == 1 distance = proxies_conservative.asu_mappings().unit_cell().distance get_rt_mx_ji = proxies_conservative.asu_mappings().get_rt_mx_ji sites_frac = structure.sites_frac() for proxy in proxies_conservative.asu: assert approx_equal( distance( sites_frac[proxy.i_seq], get_rt_mx_ji(pair=proxy) * sites_frac[proxy.j_seq]), proxy.distance_ideal) assert proxy.weight == 1 def py_pair_asu_table_angle_pair_asu_table(self): asu_mappings = self.asu_mappings() result = crystal.pair_asu_table(asu_mappings=asu_mappings) for i_seq,asu_dict in enumerate(self.table()): pair_list = [] for j_seq,j_sym_groups in asu_dict.items(): for i_group,j_sym_group in enumerate(j_sym_groups): for j_sym in j_sym_group: pair_list.append((j_seq,j_sym)) for i_jj1 in range(0,len(pair_list)-1): jj1 = pair_list[i_jj1] rt_mx_jj1_inv = asu_mappings.get_rt_mx(*jj1).inverse() for i_jj2 in range(i_jj1+1,len(pair_list)): jj2 = pair_list[i_jj2] result.add_pair( i_seq=jj1[0], j_seq=jj2[0], rt_mx_ji=rt_mx_jj1_inv.multiply(asu_mappings.get_rt_mx(*jj2))) return result def exercise_angle_pair_asu_table( structure, distance_cutoff, connectivities, reference_apatanl, reference_cppc): sg_asu_mappings = structure.asu_mappings( buffer_thickness=2*distance_cutoff) sg_pat = crystal.pair_asu_table(asu_mappings=sg_asu_mappings) sg_pat.add_all_pairs( distance_cutoff=distance_cutoff, min_cubicle_edge=0) # compare connectivities with reference assert list(sg_pat.pair_counts()) == connectivities # p1_structure = structure.expand_to_p1() p1_asu_mappings = p1_structure.asu_mappings( buffer_thickness=2*distance_cutoff) p1_pat = crystal.pair_asu_table(asu_mappings=p1_asu_mappings) p1_pat.add_all_pairs( distance_cutoff=distance_cutoff, min_cubicle_edge=0) sg_labels = structure.scatterers().extract_labels() p1_labels = p1_structure.scatterers().extract_labels() label_connect = dict(zip(sg_labels, sg_pat.pair_counts())) for l,c in zip(p1_labels, p1_pat.pair_counts()): # compare connectivities in original space group and in P1 assert label_connect[l] == c # sg_apat_py = py_pair_asu_table_angle_pair_asu_table(self=sg_pat) sg_apat = sg_pat.angle_pair_asu_table() assert sg_apat.as_nested_lists() == sg_apat_py.as_nested_lists() sg_counts = {} for i_seq,pair_asu_dict in enumerate(sg_apat.table()): lbl_i = sg_labels[i_seq] for j_seq,pair_asu_j_sym_groups in pair_asu_dict.items(): lbl_j = sg_labels[j_seq] for j_sym_group in pair_asu_j_sym_groups: sg_counts.setdefault(lbl_i, dict_with_default_0())[ lbl_j] += len(j_sym_group) p1_apat = p1_pat.angle_pair_asu_table() p1_counts = {} for i_seq,pair_asu_dict in enumerate(p1_apat.table()): lbl_i = p1_labels[i_seq] for j_seq,pair_asu_j_sym_groups in pair_asu_dict.items(): lbl_j = p1_labels[j_seq] for j_sym_group in pair_asu_j_sym_groups: p1_counts.setdefault(lbl_i, dict_with_default_0())[ lbl_j] += len(j_sym_group) # self-consistency check multiplicities = {} for sc in structure.scatterers(): multiplicities[sc.label] = sc.multiplicity() assert sorted(p1_counts.keys()) == sorted(sg_counts.keys()) for lbl_i,sg_lc in sg_counts.items(): p1_lc = p1_counts[lbl_i] assert sorted(p1_lc.keys()) == sorted(sg_lc.keys()) for lbl_j,sg_c in sg_lc.items(): p1_c = p1_lc[lbl_j] assert p1_c == sg_c * multiplicities[lbl_i] # compare with reference apatanl = str(sg_apat.as_nested_lists()).replace(" ","") if (reference_apatanl is not None): assert apatanl == reference_apatanl # counts = [] for conserve_angles in [False, True]: proxies = structure.conservative_pair_proxies( bond_sym_table=sg_pat.extract_pair_sym_table(), conserve_angles=conserve_angles) counts.extend([proxies.bond.simple.size(), proxies.bond.asu.size()]) if (not conserve_angles): assert proxies.angle is None else: counts.extend([proxies.angle.simple.size(), proxies.angle.asu.size()]) cppc = ",".join([str(c) for c in counts]) if (reference_cppc is not None): assert cppc == reference_cppc def exercise_all(): verbose = "--verbose" in sys.argv[1:] exercise_icosahedron(verbose=verbose) default_distance_cutoff = 3.5 regression_misc = libtbx.env.find_in_repositories("phenix_regression/misc") if (regression_misc is None): print("Skipping exercise_all(): phenix_regression/misc not available") return def get_reference_dict(file_name): path = os.path.join(regression_misc, file_name) if (not os.path.isfile(path)): print("Skipping some tests: reference file not available:", path) return None result = {} with open(path) as f: lines = f.read().splitlines() for line in lines: tag, data = line.split() assert not tag in result result[tag] = data return result reference_apatanl_dict = get_reference_dict( "angle_pair_asu_tables_as_nested_lists") reference_cppc_dict = get_reference_dict( "conservative_pair_proxies_counts") file_names = [] for file_name in ["strudat_zeolite_atlas", "strudat_special_bonds"]: path = os.path.join(regression_misc, file_name) if (not os.path.isfile(path)): print("Skipping %s test: input file not available" % file_name) else: file_names.append(path) for file_name in file_names: with open(file_name) as f: strudat_entries = strudat.read_all_entries(f) for i_entry,entry in enumerate(strudat_entries.entries): if ( file_name.endswith("strudat_zeolite_atlas") and not ("--full" in sys.argv[1:] or i_entry % 20 == 0)): continue if (0 or verbose): print("strudat tag:", entry.tag) structure = entry.as_xray_structure() if (0 or verbose): structure.show_summary().show_scatterers() if (entry.title.startswith("cutoff")): distance_cutoff = float(entry.title.split()[1]) else: distance_cutoff = default_distance_cutoff weak_check_sym_equiv = ( entry.reference.find("weak_check_sym_equiv") >= 0) connectivities = entry.connectivities(all_or_nothing=True) if (1): exercise( structure=structure, distance_cutoff=distance_cutoff, connectivities=connectivities, weak_check_sym_equiv=weak_check_sym_equiv, verbose=verbose) if (0 or verbose): print() if (file_name.endswith("strudat_zeolite_atlas")): exercise_bond_sorted_asu_proxies( structure=structure, distance_cutoff=distance_cutoff) if (reference_apatanl_dict is None): reference_apatanl = None else: assert entry.tag in reference_apatanl_dict reference_apatanl = reference_apatanl_dict[entry.tag] if (reference_cppc_dict is None): reference_cppc = None else: assert entry.tag in reference_cppc_dict reference_cppc = reference_cppc_dict[entry.tag] exercise_angle_pair_asu_table( structure=structure, distance_cutoff=distance_cutoff, connectivities=connectivities, reference_apatanl=reference_apatanl, reference_cppc=reference_cppc) def run(): exercise_all() print(format_cpu_times()) if (__name__ == "__main__"): run()
platypush/backend/http/app/routes/plugins/camera/pi.py
BlackLight/platypush
228
92137
<filename>platypush/backend/http/app/routes/plugins/camera/pi.py import os import tempfile from flask import Response, Blueprint, send_from_directory from platypush.backend.http.app import template_folder from platypush.backend.http.app.utils import authenticate, send_request from platypush.config import Config from platypush.plugins.camera.pi import CameraPiPlugin camera_pi = Blueprint('camera-pi', __name__, template_folder=template_folder) # Declare routes list __routes__ = [ camera_pi, ] def video_feed(): camera_conf = Config.get('camera.pi') or {} camera = CameraPiPlugin(**camera_conf) with camera: while True: output = camera.get_stream() with output.ready: output.ready.wait() frame = output.frame if frame and len(frame): yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n') @camera_pi.route('/camera/pi/frame', methods=['GET']) @authenticate() def get_frame_img(): filename = os.path.join(tempfile.gettempdir(), 'camera_pi.jpg') response = send_request('camera.pi.take_picture', image_file=filename) frame_file = (response.output or {}).get('image_file') assert frame_file is not None return send_from_directory(os.path.dirname(frame_file), os.path.basename(frame_file)) @camera_pi.route('/camera/pi/stream', methods=['GET']) @authenticate() def get_stream_feed(): return Response(video_feed(), mimetype='multipart/x-mixed-replace; boundary=frame') # vim:sw=4:ts=4:et:
Python3/721.py
rakhi2001/ecom7
854
92140
__________________________________________________________________________________________________ sample 196 ms submission class Solution: def accountsMerge(self, accounts: List[List[str]]) -> List[List[str]]: email_to_name = {} graph = collections.defaultdict(set) for acc in accounts: # each account name = acc[0] # e.g. John for email in acc[1:]: # each email for an account, e.g. <EMAIL>, <EMAIL> graph[acc[1]].add(email) # draw an edge from the first email to itself and all other emails graph[email].add(acc[1]) # draw an edge from email to first account email_to_name[email] = name # map from emails to names using the same data structure # DFS seen = set() merged = [] for email in graph: # each email if email not in seen: seen.add(email) stack = [email] component = [] while stack: node = stack.pop() component.append(node) for nei in graph[node]: if nei not in seen: seen.add(nei) stack.append(nei) merged.append([email_to_name[email]] + sorted(component)) return merged __________________________________________________________________________________________________ sample 17712 kb submission class Solution: def accountsMerge(self, accounts: List[List[str]]) -> List[List[str]]: visited = [False] * len(accounts) email_acct_map = collections.defaultdict(list) for idx, acct in enumerate(accounts): emails = acct[1:] for email in emails: email_acct_map[email].append(idx) stack = [] rslts = [] for idx, acct in enumerate(accounts): if visited[idx]: continue stack.append(idx) emails = set() name = None while stack: acct_idx_next = stack.pop() visited[acct_idx_next] = True acct_next = accounts[acct_idx_next] name = acct_next[0] for email in acct_next[1:]: emails.add(email) nbrs = email_acct_map[email] for nbr in nbrs: if not visited[nbr]: stack.append(nbr) rslts.append([name] + sorted(list(emails))) return rslts __________________________________________________________________________________________________
sdk/python/pulumi_azure/core/subscription.py
henriktao/pulumi-azure
109
92163
<reponame>henriktao/pulumi-azure # coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = ['SubscriptionArgs', 'Subscription'] @pulumi.input_type class SubscriptionArgs: def __init__(__self__, *, subscription_name: pulumi.Input[str], alias: Optional[pulumi.Input[str]] = None, billing_scope_id: Optional[pulumi.Input[str]] = None, subscription_id: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, workload: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a Subscription resource. :param pulumi.Input[str] subscription_name: The Name of the Subscription. This is the Display Name in the portal. :param pulumi.Input[str] alias: The Alias name for the subscription. This provider will generate a new GUID if this is not supplied. Changing this forces a new Subscription to be created. :param pulumi.Input[str] billing_scope_id: The Azure Billing Scope ID. Can be a Microsoft Customer Account Billing Scope ID, a Microsoft Partner Account Billing Scope ID or an Enrollment Billing Scope ID. :param pulumi.Input[str] subscription_id: The ID of the Subscription. Changing this forces a new Subscription to be created. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A mapping of tags to assign to the Subscription. :param pulumi.Input[str] workload: The workload type of the Subscription. Possible values are `Production` (default) and `DevTest`. Changing this forces a new Subscription to be created. """ pulumi.set(__self__, "subscription_name", subscription_name) if alias is not None: pulumi.set(__self__, "alias", alias) if billing_scope_id is not None: pulumi.set(__self__, "billing_scope_id", billing_scope_id) if subscription_id is not None: pulumi.set(__self__, "subscription_id", subscription_id) if tags is not None: pulumi.set(__self__, "tags", tags) if workload is not None: pulumi.set(__self__, "workload", workload) @property @pulumi.getter(name="subscriptionName") def subscription_name(self) -> pulumi.Input[str]: """ The Name of the Subscription. This is the Display Name in the portal. """ return pulumi.get(self, "subscription_name") @subscription_name.setter def subscription_name(self, value: pulumi.Input[str]): pulumi.set(self, "subscription_name", value) @property @pulumi.getter def alias(self) -> Optional[pulumi.Input[str]]: """ The Alias name for the subscription. This provider will generate a new GUID if this is not supplied. Changing this forces a new Subscription to be created. """ return pulumi.get(self, "alias") @alias.setter def alias(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "alias", value) @property @pulumi.getter(name="billingScopeId") def billing_scope_id(self) -> Optional[pulumi.Input[str]]: """ The Azure Billing Scope ID. Can be a Microsoft Customer Account Billing Scope ID, a Microsoft Partner Account Billing Scope ID or an Enrollment Billing Scope ID. """ return pulumi.get(self, "billing_scope_id") @billing_scope_id.setter def billing_scope_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "billing_scope_id", value) @property @pulumi.getter(name="subscriptionId") def subscription_id(self) -> Optional[pulumi.Input[str]]: """ The ID of the Subscription. Changing this forces a new Subscription to be created. """ return pulumi.get(self, "subscription_id") @subscription_id.setter def subscription_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "subscription_id", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ A mapping of tags to assign to the Subscription. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) @property @pulumi.getter def workload(self) -> Optional[pulumi.Input[str]]: """ The workload type of the Subscription. Possible values are `Production` (default) and `DevTest`. Changing this forces a new Subscription to be created. """ return pulumi.get(self, "workload") @workload.setter def workload(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "workload", value) @pulumi.input_type class _SubscriptionState: def __init__(__self__, *, alias: Optional[pulumi.Input[str]] = None, billing_scope_id: Optional[pulumi.Input[str]] = None, subscription_id: Optional[pulumi.Input[str]] = None, subscription_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, tenant_id: Optional[pulumi.Input[str]] = None, workload: Optional[pulumi.Input[str]] = None): """ Input properties used for looking up and filtering Subscription resources. :param pulumi.Input[str] alias: The Alias name for the subscription. This provider will generate a new GUID if this is not supplied. Changing this forces a new Subscription to be created. :param pulumi.Input[str] billing_scope_id: The Azure Billing Scope ID. Can be a Microsoft Customer Account Billing Scope ID, a Microsoft Partner Account Billing Scope ID or an Enrollment Billing Scope ID. :param pulumi.Input[str] subscription_id: The ID of the Subscription. Changing this forces a new Subscription to be created. :param pulumi.Input[str] subscription_name: The Name of the Subscription. This is the Display Name in the portal. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A mapping of tags to assign to the Subscription. :param pulumi.Input[str] tenant_id: The ID of the Tenant to which the subscription belongs. :param pulumi.Input[str] workload: The workload type of the Subscription. Possible values are `Production` (default) and `DevTest`. Changing this forces a new Subscription to be created. """ if alias is not None: pulumi.set(__self__, "alias", alias) if billing_scope_id is not None: pulumi.set(__self__, "billing_scope_id", billing_scope_id) if subscription_id is not None: pulumi.set(__self__, "subscription_id", subscription_id) if subscription_name is not None: pulumi.set(__self__, "subscription_name", subscription_name) if tags is not None: pulumi.set(__self__, "tags", tags) if tenant_id is not None: pulumi.set(__self__, "tenant_id", tenant_id) if workload is not None: pulumi.set(__self__, "workload", workload) @property @pulumi.getter def alias(self) -> Optional[pulumi.Input[str]]: """ The Alias name for the subscription. This provider will generate a new GUID if this is not supplied. Changing this forces a new Subscription to be created. """ return pulumi.get(self, "alias") @alias.setter def alias(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "alias", value) @property @pulumi.getter(name="billingScopeId") def billing_scope_id(self) -> Optional[pulumi.Input[str]]: """ The Azure Billing Scope ID. Can be a Microsoft Customer Account Billing Scope ID, a Microsoft Partner Account Billing Scope ID or an Enrollment Billing Scope ID. """ return pulumi.get(self, "billing_scope_id") @billing_scope_id.setter def billing_scope_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "billing_scope_id", value) @property @pulumi.getter(name="subscriptionId") def subscription_id(self) -> Optional[pulumi.Input[str]]: """ The ID of the Subscription. Changing this forces a new Subscription to be created. """ return pulumi.get(self, "subscription_id") @subscription_id.setter def subscription_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "subscription_id", value) @property @pulumi.getter(name="subscriptionName") def subscription_name(self) -> Optional[pulumi.Input[str]]: """ The Name of the Subscription. This is the Display Name in the portal. """ return pulumi.get(self, "subscription_name") @subscription_name.setter def subscription_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "subscription_name", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ A mapping of tags to assign to the Subscription. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) @property @pulumi.getter(name="tenantId") def tenant_id(self) -> Optional[pulumi.Input[str]]: """ The ID of the Tenant to which the subscription belongs. """ return pulumi.get(self, "tenant_id") @tenant_id.setter def tenant_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "tenant_id", value) @property @pulumi.getter def workload(self) -> Optional[pulumi.Input[str]]: """ The workload type of the Subscription. Possible values are `Production` (default) and `DevTest`. Changing this forces a new Subscription to be created. """ return pulumi.get(self, "workload") @workload.setter def workload(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "workload", value) class Subscription(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, alias: Optional[pulumi.Input[str]] = None, billing_scope_id: Optional[pulumi.Input[str]] = None, subscription_id: Optional[pulumi.Input[str]] = None, subscription_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, workload: Optional[pulumi.Input[str]] = None, __props__=None): """ Manages an Alias for a Subscription - which adds an Alias to an existing Subscription, allowing it to be managed in the provider - or create a new Subscription with a new Alias. > **NOTE:** Destroying a Subscription controlled by this resource will place the Subscription into a cancelled state. It is possible to re-activate a subscription within 90-days of cancellation, after which time the Subscription is irrevocably deleted, and the Subscription ID cannot be re-used. For further information see [here](https://docs.microsoft.com/en-us/azure/cost-management-billing/manage/cancel-azure-subscription#what-happens-after-subscription-cancellation). Users can optionally delete a Subscription once 72 hours have passed, however, this functionality is not suitable for this provider. A `Deleted` subscription cannot be reactivated. > **NOTE:** It is not possible to destroy (cancel) a subscription if it contains resources. If resources are present that are not managed by the provider then these will need to be removed before the Subscription can be destroyed. > **NOTE:** Azure supports Multiple Aliases per Subscription, however, to reliably manage this resource in this provider only a single Alias is supported. ## Example Usage ### Creating A New Alias And Subscription For An Enrollment Account ```python import pulumi import pulumi_azure as azure example_enrollment_account_scope = azure.billing.get_enrollment_account_scope(billing_account_name="1234567890", enrollment_account_name="0123456") example_subscription = azure.core.Subscription("exampleSubscription", subscription_name="My Example EA Subscription", billing_scope_id=example_enrollment_account_scope.id) ``` ### Creating A New Alias And Subscription For A Microsoft Customer Account ```python import pulumi import pulumi_azure as azure example_mca_account_scope = azure.billing.get_mca_account_scope(billing_account_name="e879cf0f-2b4d-5431-109a-f72fc9868693:024cabf4-7321-4cf9-be59-df0c77ca51de_2019-05-31", billing_profile_name="PE2Q-NOIT-BG7-TGB", invoice_section_name="MTT4-OBS7-PJA-TGB") example_subscription = azure.core.Subscription("exampleSubscription", subscription_name="My Example MCA Subscription", billing_scope_id=example_mca_account_scope.id) ``` ### Creating A New Alias And Subscription For A Microsoft Partner Account ```python import pulumi import pulumi_azure as azure example_mpa_account_scope = azure.billing.get_mpa_account_scope(billing_account_name="e879cf0f-2b4d-5431-109a-f72fc9868693:024cabf4-7321-4cf9-be59-df0c77ca51de_2019-05-31", customer_name="2281f543-7321-4cf9-1e23-edb4Oc31a31c") example_subscription = azure.core.Subscription("exampleSubscription", subscription_name="My Example MPA Subscription", billing_scope_id=example_mpa_account_scope.id) ``` ### Adding An Alias To An Existing Subscription ```python import pulumi import pulumi_azure as azure example = azure.core.Subscription("example", alias="examplesub", subscription_id="12345678-12234-5678-9012-123456789012", subscription_name="My Example Subscription") ``` ## Import Subscriptions can be imported using the `resource id`, e.g. ```sh $ pulumi import azure:core/subscription:Subscription example "/providers/Microsoft.Subscription/aliases/subscription1" ``` In this scenario, the `subscription_id` property can be completed and the provider will assume control of the existing subscription by creating an Alias. See the `adding an Alias to an existing Subscription` above. This provider requires an alias to correctly manage Subscription resources due to Azure Subscription API design. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] alias: The Alias name for the subscription. This provider will generate a new GUID if this is not supplied. Changing this forces a new Subscription to be created. :param pulumi.Input[str] billing_scope_id: The Azure Billing Scope ID. Can be a Microsoft Customer Account Billing Scope ID, a Microsoft Partner Account Billing Scope ID or an Enrollment Billing Scope ID. :param pulumi.Input[str] subscription_id: The ID of the Subscription. Changing this forces a new Subscription to be created. :param pulumi.Input[str] subscription_name: The Name of the Subscription. This is the Display Name in the portal. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A mapping of tags to assign to the Subscription. :param pulumi.Input[str] workload: The workload type of the Subscription. Possible values are `Production` (default) and `DevTest`. Changing this forces a new Subscription to be created. """ ... @overload def __init__(__self__, resource_name: str, args: SubscriptionArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Manages an Alias for a Subscription - which adds an Alias to an existing Subscription, allowing it to be managed in the provider - or create a new Subscription with a new Alias. > **NOTE:** Destroying a Subscription controlled by this resource will place the Subscription into a cancelled state. It is possible to re-activate a subscription within 90-days of cancellation, after which time the Subscription is irrevocably deleted, and the Subscription ID cannot be re-used. For further information see [here](https://docs.microsoft.com/en-us/azure/cost-management-billing/manage/cancel-azure-subscription#what-happens-after-subscription-cancellation). Users can optionally delete a Subscription once 72 hours have passed, however, this functionality is not suitable for this provider. A `Deleted` subscription cannot be reactivated. > **NOTE:** It is not possible to destroy (cancel) a subscription if it contains resources. If resources are present that are not managed by the provider then these will need to be removed before the Subscription can be destroyed. > **NOTE:** Azure supports Multiple Aliases per Subscription, however, to reliably manage this resource in this provider only a single Alias is supported. ## Example Usage ### Creating A New Alias And Subscription For An Enrollment Account ```python import pulumi import pulumi_azure as azure example_enrollment_account_scope = azure.billing.get_enrollment_account_scope(billing_account_name="1234567890", enrollment_account_name="0123456") example_subscription = azure.core.Subscription("exampleSubscription", subscription_name="My Example EA Subscription", billing_scope_id=example_enrollment_account_scope.id) ``` ### Creating A New Alias And Subscription For A Microsoft Customer Account ```python import pulumi import pulumi_azure as azure example_mca_account_scope = azure.billing.get_mca_account_scope(billing_account_name="e879cf0f-2b4d-5431-109a-f72fc9868693:024cabf4-7321-4cf9-be59-df0c77ca51de_2019-05-31", billing_profile_name="PE2Q-NOIT-BG7-TGB", invoice_section_name="MTT4-OBS7-PJA-TGB") example_subscription = azure.core.Subscription("exampleSubscription", subscription_name="My Example MCA Subscription", billing_scope_id=example_mca_account_scope.id) ``` ### Creating A New Alias And Subscription For A Microsoft Partner Account ```python import pulumi import pulumi_azure as azure example_mpa_account_scope = azure.billing.get_mpa_account_scope(billing_account_name="e879cf0f-2b4d-5431-109a-f72fc9868693:024cab<PASSWORD>-<PASSWORD>-<PASSWORD>-df0c77ca51de_2019-05-31", customer_name="<PASSWORD>") example_subscription = azure.core.Subscription("exampleSubscription", subscription_name="My Example MPA Subscription", billing_scope_id=example_mpa_account_scope.id) ``` ### Adding An Alias To An Existing Subscription ```python import pulumi import pulumi_azure as azure example = azure.core.Subscription("example", alias="examplesub", subscription_id="12345678-12234-5678-9012-123456789012", subscription_name="My Example Subscription") ``` ## Import Subscriptions can be imported using the `resource id`, e.g. ```sh $ pulumi import azure:core/subscription:Subscription example "/providers/Microsoft.Subscription/aliases/subscription1" ``` In this scenario, the `subscription_id` property can be completed and the provider will assume control of the existing subscription by creating an Alias. See the `adding an Alias to an existing Subscription` above. This provider requires an alias to correctly manage Subscription resources due to Azure Subscription API design. :param str resource_name: The name of the resource. :param SubscriptionArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(SubscriptionArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, alias: Optional[pulumi.Input[str]] = None, billing_scope_id: Optional[pulumi.Input[str]] = None, subscription_id: Optional[pulumi.Input[str]] = None, subscription_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, workload: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = SubscriptionArgs.__new__(SubscriptionArgs) __props__.__dict__["alias"] = alias __props__.__dict__["billing_scope_id"] = billing_scope_id __props__.__dict__["subscription_id"] = subscription_id if subscription_name is None and not opts.urn: raise TypeError("Missing required property 'subscription_name'") __props__.__dict__["subscription_name"] = subscription_name __props__.__dict__["tags"] = tags __props__.__dict__["workload"] = workload __props__.__dict__["tenant_id"] = None super(Subscription, __self__).__init__( 'azure:core/subscription:Subscription', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, alias: Optional[pulumi.Input[str]] = None, billing_scope_id: Optional[pulumi.Input[str]] = None, subscription_id: Optional[pulumi.Input[str]] = None, subscription_name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, tenant_id: Optional[pulumi.Input[str]] = None, workload: Optional[pulumi.Input[str]] = None) -> 'Subscription': """ Get an existing Subscription resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] alias: The Alias name for the subscription. This provider will generate a new GUID if this is not supplied. Changing this forces a new Subscription to be created. :param pulumi.Input[str] billing_scope_id: The Azure Billing Scope ID. Can be a Microsoft Customer Account Billing Scope ID, a Microsoft Partner Account Billing Scope ID or an Enrollment Billing Scope ID. :param pulumi.Input[str] subscription_id: The ID of the Subscription. Changing this forces a new Subscription to be created. :param pulumi.Input[str] subscription_name: The Name of the Subscription. This is the Display Name in the portal. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: A mapping of tags to assign to the Subscription. :param pulumi.Input[str] tenant_id: The ID of the Tenant to which the subscription belongs. :param pulumi.Input[str] workload: The workload type of the Subscription. Possible values are `Production` (default) and `DevTest`. Changing this forces a new Subscription to be created. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _SubscriptionState.__new__(_SubscriptionState) __props__.__dict__["alias"] = alias __props__.__dict__["billing_scope_id"] = billing_scope_id __props__.__dict__["subscription_id"] = subscription_id __props__.__dict__["subscription_name"] = subscription_name __props__.__dict__["tags"] = tags __props__.__dict__["tenant_id"] = tenant_id __props__.__dict__["workload"] = workload return Subscription(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def alias(self) -> pulumi.Output[str]: """ The Alias name for the subscription. This provider will generate a new GUID if this is not supplied. Changing this forces a new Subscription to be created. """ return pulumi.get(self, "alias") @property @pulumi.getter(name="billingScopeId") def billing_scope_id(self) -> pulumi.Output[Optional[str]]: """ The Azure Billing Scope ID. Can be a Microsoft Customer Account Billing Scope ID, a Microsoft Partner Account Billing Scope ID or an Enrollment Billing Scope ID. """ return pulumi.get(self, "billing_scope_id") @property @pulumi.getter(name="subscriptionId") def subscription_id(self) -> pulumi.Output[str]: """ The ID of the Subscription. Changing this forces a new Subscription to be created. """ return pulumi.get(self, "subscription_id") @property @pulumi.getter(name="subscriptionName") def subscription_name(self) -> pulumi.Output[str]: """ The Name of the Subscription. This is the Display Name in the portal. """ return pulumi.get(self, "subscription_name") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ A mapping of tags to assign to the Subscription. """ return pulumi.get(self, "tags") @property @pulumi.getter(name="tenantId") def tenant_id(self) -> pulumi.Output[str]: """ The ID of the Tenant to which the subscription belongs. """ return pulumi.get(self, "tenant_id") @property @pulumi.getter def workload(self) -> pulumi.Output[Optional[str]]: """ The workload type of the Subscription. Possible values are `Production` (default) and `DevTest`. Changing this forces a new Subscription to be created. """ return pulumi.get(self, "workload")
tricks/copy_variant_set_to_prim/python/copy_variant_set_to_prim.py
jingtaoh/USD-Cookbook
332
92170
<filename>tricks/copy_variant_set_to_prim/python/copy_variant_set_to_prim.py #!/usr/bin/env python # -*- coding: utf-8 -*- """An example module that shows how to copy SdfPath objects using the SDF API.""" # IMPORT THIRD-PARTY LIBRARIES from pxr import Sdf def main(): """Run the main execution of the current script.""" source = Sdf.Layer.CreateAnonymous() root = source.pseudoRoot prim = Sdf.PrimSpec(root, "SomePrim", Sdf.SpecifierDef) variant_set = Sdf.VariantSetSpec(prim, "SomeVariantSet") variant = Sdf.VariantSpec(variant_set, "SomeVariant") Sdf.PrimSpec(variant.primSpec, "InnerPrim", Sdf.SpecifierDef) destination = Sdf.Layer.CreateAnonymous() Sdf.CopySpec( source, "/SomePrim{SomeVariantSet=SomeVariant}", destination, "/DestinationPrim" ) # XXX : Notice that we have to call `CreatePrimInLayer` here but # we didn't need to run it in the last example. That's because # in this example, the parent Prim path "/Another" doesn't # exist yet and has to be created before data can be copied to # "/Another/DestinationPrim". # # In the previous example, "/" is the parent of "/DestinationPrim". # And "/" always exists. So we didn't need to call # `CreatePrimInLayer`. But generally, you usually should. # destination_prim = "/Another/DestinationPrim" Sdf.CreatePrimInLayer(destination, destination_prim) Sdf.CopySpec( source, "/SomePrim{SomeVariantSet=SomeVariant}", destination, destination_prim, ) print(destination.ExportToString()) if __name__ == "__main__": main()
applications/graph/motif/model/autoencoder.py
jonesholger/lbann
194
92179
<filename>applications/graph/motif/model/autoencoder.py<gh_stars>100-1000 import lbann import lbann.modules class FullyConnectedAutoencoder(lbann.modules.Module): """Multilayer perceptron autoencoder.""" global_count = 0 # Static counter, used for default names def __init__( self, data_dim, latent_dim, encoder_hidden_dims=[], decoder_hidden_dims=[], activation=lbann.Relu, data_layout='data_parallel', name=None, ): super().__init__() FullyConnectedAutoencoder.global_count += 1 # Module name self.name = name if not self.name: self.name = f'fcautoencoder{FullyConnectedAutoencoder.global_count}' # Encoder self.encoder = [] for i, dim in enumerate(encoder_hidden_dims): self.encoder.append( lbann.modules.FullyConnectedModule( size=dim, bias=False, activation=activation, name=f'{self.name}_encoder{i}', data_layout=data_layout, ) ) self.encoder.append( lbann.modules.FullyConnectedModule( size=latent_dim, bias=False, activation=activation, name=f'{self.name}_encoder{len(self.encoder)}', data_layout=data_layout, ) ) # Decoder self.decoder = [] for i, dim in enumerate(decoder_hidden_dims): self.decoder.append( lbann.modules.FullyConnectedModule( size=dim, bias=False, activation=activation, name=f'{self.name}_decoder{i}', data_layout=data_layout, ) ) self.decoder.append( lbann.modules.FullyConnectedModule( size=data_dim, bias=False, activation=activation, name=f'{self.name}_decoder{len(self.decoder)}', data_layout=data_layout, ) ) def forward(self, x): for l in self.encoder: x = l(x) for l in self.decoder: x = l(x) return x
pyclient/confluo/rpc/schema.py
Mu-L/confluo
1,398
92181
import struct import time import yaml import yaml.resolver from collections import OrderedDict import data_types from data_types import TypeID def now_ns(): return int(time.time() * 10 ** 6) class Schema: """ The schema for the data in the atomic multilog. """ def __init__(self, columns): """ Initializes the schema to the list of columns passed in. Args: columns: The list of columns that make up the schema. """ self.record_size_ = 0 self.columns_ = columns for c in self.columns_: self.record_size_ += c.data_type_.size_ def __str__(self): """ Convert to string Returns: String representation of schema """ return str(self.columns_) def record_size(self): """ Get record size in bytes Returns: Record size in bytes """ return self.record_size_ def columns(self): """ Get list of columns Returns: List of columns """ return self.columns_ def apply(self, data): """ Adds data to the schema. Args: data: The data to add. Returns: The record. """ return Record(data, self) def pack(self, rec): """ Pack data into a record. Args: rec: The record to pack Returns: Packed record """ packed = "" if len(rec) == len(self.columns_): off = 1 packed += struct.pack('Q', rec[0]) elif len(rec) == len(self.columns_) - 1: off = 0 packed += struct.pack('Q', now_ns()) else: raise ValueError("Record does not conform to schema: incorrect number of fields") for f, c in zip(rec[off:], self.columns_[1:]): packed += c.data_type_.pack(f) return packed class Column: """ Container of values for a specific type in the schema. """ def __init__(self, idx, offset, data_type, name, min_value, max_value): """ Initializes a column in the schema. Args: idx: The index of the column. offset: The offset of the column. data_type: The data type of values in the column. name: The name of the column. min_value: The minimum value of the column. max_value: The maximum value of the column. """ self.idx_ = idx self.offset_ = offset self.data_type_ = data_type self.name_ = name.upper() self.value = min_value self.min_value_ = self.value self.max_value = max_value def __str__(self): """ Convert to string Returns: String representation of the column """ return '{} : {}'.format(self.name_, self.data_type_) def apply(self, data): """ Adds data to the column. Args: data: The data to add. Returns: A field containing the data. """ return Field(self.idx_, self.data_type_, data[self.offset_: self.offset_ + self.data_type_.size_]) class Record: """ A collection of values containing different types. """ def __init__(self, data, schema): """ Initializes a record to the specified values. Args: data: The data the record should hold. schema: The schema for the record. """ self.data_ = data self.fields_ = [c.apply(self.data_) for c in schema.columns()] def __str__(self): """ Converts to string Returns: String representation of record """ return str([str(x.unpack()) for x in self.fields_]) def __getitem__(self, idx): """ Get element at specified index Args: idx: Index into record Returns: Element at specified index """ return self.fields_[idx].unpack() class Field: """ Contains data stored as part of a record. """ def __init__(self, idx, data_type, data): """ Initializes the field to the data passed in. Args: idx: The index of the field. data_type: The data type the value of the field contains. data: The data that the field contains. """ self.idx_ = idx self.data_type_ = data_type self.data_ = data def unpack(self): """ Unpacks the field to get the data. Returns: The data in the field. """ tid = self.data_type_.type_id_ if tid == TypeID.STRING: format_code = str(self.data_type_.size_) + data_types.FORMAT_CODES[tid] else: format_code = data_types.FORMAT_CODES[tid] return struct.unpack(format_code, self.data_)[0] class SchemaBuilder: """ Builder of a schema for the atomic multilog. """ def __init__(self): """ Initializes a default schema builder. """ self.user_provided_ts_ = False self.offset_ = 0 self.columns_ = [] timestamp_col = Column(0, 0, data_types.ULONG_TYPE, "TIMESTAMP", None, None) self.columns_.append(timestamp_col) self.offset_ += data_types.ULONG_TYPE.size_ def add_column(self, data_type, name, min_value=None, max_value=None): """ Adds a column to the schema builder. Args: data_type: The data type of the column. name: The name of the column. min_value: The minimum value of the column. max_value: The maximum value of the column. """ if name.upper() == "TIMESTAMP": self.user_provided_ts_ = True if data_type != data_types.ULONG_TYPE: raise ValueError("TIMESTAMP must be of ULONG_TYPE") return self col = Column(len(self.columns_), self.offset_, data_type, name, min_value, max_value) self.columns_.append(col) self.offset_ += data_type.size_ return self def build(self): """ Builds a schema by returning the list of columns. Returns: A list of columns that make up the schema. """ return self.columns_ def make_schema(s): """Converts a JSON-like string representation of the schema to our internal representation of the schema. Args: s: A JSON-like schema string Returns: Our internal representation of the schema. """ def ordered_load(stream): class OrderedLoader(yaml.Loader): pass def construct_mapping(loader, node): loader.flatten_mapping(node) return OrderedDict(loader.construct_pairs(node)) OrderedLoader.add_constructor(yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG, construct_mapping) return yaml.load(stream, OrderedLoader) s_parsed = ordered_load(s) sb = SchemaBuilder() for k in s_parsed: sb.add_column(data_types.make_type(s_parsed[k]), k) return Schema(sb.build())
examples/image/cath/scripts/cath/networks/ResNet34/ResNet34.py
mariogeiger/se3cnn
170
92190
<reponame>mariogeiger/se3cnn import torch.nn as nn from functools import partial from experiments.util.arch_blocks import * class network(ResNet): def __init__(self, n_input, n_output, args): features = [[[32]], [[32] * 2] * 3, [[64] * 2] * 4, [[128] * 2] * 6, [[256] * 2] * 3] common_params = { 'downsample_by_pooling': args.downsample_by_pooling, 'conv_dropout_p': args.p_drop_conv, } global OuterBlock OuterBlock = partial(OuterBlock, res_block=partial(ResBlock, **common_params)) super().__init__( OuterBlock(n_input, features[0], size=7), OuterBlock(features[0][-1][-1], features[1], size=args.kernel_size, stride=1), OuterBlock(features[1][-1][-1], features[2], size=args.kernel_size, stride=2), OuterBlock(features[2][-1][-1], features[3], size=args.kernel_size, stride=2), OuterBlock(features[3][-1][-1], features[4], size=args.kernel_size, stride=2), AvgSpacial(), nn.Dropout(p=args.p_drop_fully, inplace=True) if args.p_drop_fully is not None else None, nn.Linear(features[4][-1][-1], n_output))
app/api/models/Base.py
nurely/lxdui
589
92202
<filename>app/api/models/Base.py<gh_stars>100-1000 from abc import ABC, abstractmethod class Base(ABC): @abstractmethod def info(self): raise NotImplementedError() @abstractmethod def create(self): raise NotImplementedError() @abstractmethod def delete(self): raise NotImplementedError() @abstractmethod def start(self): raise NotImplementedError() @abstractmethod def stop(self): raise NotImplementedError() @abstractmethod def restart(self): raise NotImplementedError() @abstractmethod def update(self): raise NotImplementedError() @abstractmethod def move(self): raise NotImplementedError() @abstractmethod def clone(self): raise NotImplementedError() @abstractmethod def snapshot(self): raise NotImplementedError()
randomcrop.py
createnewdemo/SPANet
177
92206
#!/usr/bin/env python # from __future__ import division import torch import math import random from PIL import Image, ImageOps, ImageEnhance import numbers import torchvision.transforms.functional as F import numpy as np class RandomCrop(object): """Crop the given PIL Image at a random location. Args: size (sequence or int): Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is made. padding (int or sequence, optional): Optional padding on each border of the image. Default is 0, i.e no padding. If a sequence of length 4 is provided, it is used to pad left, top, right, bottom borders respectively. pad_if_needed (boolean): It will pad the image if smaller than the desired size to avoid raising an exception. """ def __init__(self, size, padding=0, pad_if_needed=False): if isinstance(size, numbers.Number): self.size = (int(size), int(size)) else: self.size = size self.padding = padding self.pad_if_needed = pad_if_needed @staticmethod def get_params(img, output_size): """Get parameters for ``crop`` for a random crop. Args: img (PIL Image): Image to be cropped. output_size (tuple): Expected output size of the crop. Returns: tuple: params (i, j, h, w) to be passed to ``crop`` for random crop. """ h,w,_ = img.shape th, tw = output_size if w == tw and h == th: return 0, 0, h, w i = random.randint(0, h - th) j = random.randint(0, w - tw) return i, j, th, tw def __call__(self, img,img_gt): """ Args: img (PIL Image): Image to be cropped. Returns: PIL Image: Cropped image. """ if self.padding > 0: img = F.pad(img, self.padding) # pad the width if needed if self.pad_if_needed and img.size[0] < self.size[1]: img = F.pad(img, (int((1 + self.size[1] - img.size[0]) / 2), 0)) # pad the height if needed if self.pad_if_needed and img.size[1] < self.size[0]: img = F.pad(img, (0, int((1 + self.size[0] - img.size[1]) / 2))) i, j, h, w = self.get_params(img, self.size) return img[i:i+self.size[0],j:j+self.size[1],:],img_gt[i:i+self.size[0],j:j+self.size[1],:] # return F.crop(img, i, j, h, w),F.crop(img_gt, i, j, h, w) def __repr__(self): return self.__class__.__name__ + '(size={0}, padding={1})'.format(self.size, self.padding) class RandomResizedCrop(object): """Crop the given PIL Image to random size and aspect ratio. A crop of random size (default: of 0.08 to 1.0) of the original size and a random aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop is finally resized to given size. This is popularly used to train the Inception networks. Args: size: expected output size of each edge scale: range of size of the origin size cropped ratio: range of aspect ratio of the origin aspect ratio cropped interpolation: Default: PIL.Image.BILINEAR """ def __init__(self, size, scale=(0.8, 1), ratio=(3/4., 4/3), interpolation=Image.BICUBIC): self.size = (size, size) self.interpolation = interpolation self.scale = scale self.ratio = ratio @staticmethod def get_params(img, scale, ratio): """Get parameters for ``crop`` for a random sized crop. Args: img (PIL Image): Image to be cropped. scale (tuple): range of size of the origin size cropped ratio (tuple): range of aspect ratio of the origin aspect ratio cropped Returns: tuple: params (i, j, h, w) to be passed to ``crop`` for a random sized crop. """ for attempt in range(10): area = img.size[0] * img.size[1] target_area = random.uniform(*scale) * area aspect_ratio = random.uniform(*ratio) w = int(round(math.sqrt(target_area * aspect_ratio))) h = int(round(math.sqrt(target_area / aspect_ratio))) if random.random() < 0.5: w, h = h, w if w <= img.size[0] and h <= img.size[1]: i = random.randint(0, img.size[1] - h) j = random.randint(0, img.size[0] - w) return i, j, h, w # Fallback w = min(img.size[0], img.size[1]) i = (img.size[1] - w) // 2 j = (img.size[0] - w) // 2 return i, j, w, w def __call__(self, img,img_gt): """ Args: img (PIL Image): Image to be cropped and resized. Returns: PIL Image: Randomly cropped and resized image. """ i, j, h, w = self.get_params(img, self.scale, self.ratio) return (F.resized_crop(img, i, j, h, w, self.size, self.interpolation),F.resized_crop(img_gt, i, j, h, w, self.size, self.interpolation)) def __repr__(self): interpolate_str = _pil_interpolation_to_str[self.interpolation] format_string = self.__class__.__name__ + '(size={0}'.format(self.size) format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale)) format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio)) format_string += ', interpolation={0})'.format(interpolate_str) return format_string class RandomRotation(object): """Rotate the image by angle. Args: degrees (sequence or float or int): Range of degrees to select from. If degrees is a number instead of sequence like (min, max), the range of degrees will be (-degrees, +degrees). resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional): An optional resampling filter. See http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#filters If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST. expand (bool, optional): Optional expansion flag. If true, expands the output to make it large enough to hold the entire rotated image. If false or omitted, make the output image the same size as the input image. Note that the expand flag assumes rotation around the center and no translation. center (2-tuple, optional): Optional center of rotation. Origin is the upper left corner. Default is the center of the image. """ def __init__(self, degrees, resample=Image.BICUBIC, expand=1, center=None): if isinstance(degrees, numbers.Number): if degrees < 0: raise ValueError("If degrees is a single number, it must be positive.") self.degrees = (-degrees, degrees) else: if len(degrees) != 2: raise ValueError("If degrees is a sequence, it must be of len 2.") self.degrees = degrees self.resample = resample self.expand = expand self.center = center @staticmethod def get_params(degrees): """Get parameters for ``rotate`` for a random rotation. Returns: sequence: params to be passed to ``rotate`` for random rotation. """ angle = np.random.uniform(degrees[0], degrees[1]) return angle def __call__(self, img,img_gt): """ img (PIL Image): Image to be rotated. Returns: PIL Image: Rotated image. """ angle = self.get_params(self.degrees) return (F.rotate(img, angle, self.resample, self.expand, self.center),F.rotate(img_gt, angle, self.resample, self.expand, self.center)) def __repr__(self): return self.__class__.__name__ + '(degrees={0})'.format(self.degrees) class RandomHorizontallyFlip(object): def __call__(self, img, mask): if random.random() < 0.5: return img.transpose(Image.FLIP_LEFT_RIGHT), mask.transpose(Image.FLIP_LEFT_RIGHT) return img, mask class RandomVerticallyFlip(object): def __call__(self, img, mask): if random.random() < 0.5: return img.transpose(Image.FLIP_TOP_BOTTOM), mask.transpose(Image.FLIP_TOP_BOTTOM) return img, mask
inverse_rl/models/tf_util.py
SaminYeasar/inverse_rl
220
92211
<filename>inverse_rl/models/tf_util.py import tensorflow as tf import numpy as np REG_VARS = 'reg_vars' def linear(X, dout, name, bias=True): with tf.variable_scope(name): dX = int(X.get_shape()[-1]) W = tf.get_variable('W', shape=(dX, dout)) tf.add_to_collection(REG_VARS, W) if bias: b = tf.get_variable('b', initializer=tf.constant(np.zeros(dout).astype(np.float32))) else: b = 0 return tf.matmul(X, W)+b def discounted_reduce_sum(X, discount, axis=-1): if discount != 1.0: disc = tf.cumprod(discount*tf.ones_like(X), axis=axis) else: disc = 1.0 return tf.reduce_sum(X*disc, axis=axis) def assert_shape(tens, shape): assert tens.get_shape().is_compatible_with(shape) def relu_layer(X, dout, name): return tf.nn.relu(linear(X, dout, name)) def softplus_layer(X, dout, name): return tf.nn.softplus(linear(X, dout, name)) def tanh_layer(X, dout, name): return tf.nn.tanh(linear(X, dout, name)) def get_session_config(): session_config = tf.ConfigProto() session_config.gpu_options.allow_growth = True #session_config.gpu_options.per_process_gpu_memory_fraction = 0.2 return session_config def load_prior_params(pkl_fname): import joblib with tf.Session(config=get_session_config()): params = joblib.load(pkl_fname) tf.reset_default_graph() #joblib.dump(params, file_name, compress=3) params = params['irl_params'] #print(params) assert params is not None return params
demos/usage-remove-selected-elements.py
kinimesi/dash-cytoscape
432
92213
<gh_stars>100-1000 import json import os import random import dash from dash.dependencies import Input, Output, State import dash_core_components as dcc import dash_html_components as html import dash_cytoscape as cyto asset_path = os.path.join( os.path.dirname(os.path.abspath(__file__)), '..', 'assets' ) app = dash.Dash(__name__, assets_folder=asset_path) server = app.server random.seed(2019) nodes = [ {'data': {'id': str(i), 'label': 'Node {}'.format(i)}} for i in range(1, 21) ] edges = [ {'data': {'source': str(random.randint(1, 20)), 'target': str(random.randint(1, 20))}} for _ in range(30) ] default_elements = nodes + edges styles = { 'json-output': { 'overflow-y': 'scroll', 'height': 'calc(50% - 25px)', 'border': 'thin lightgrey solid' }, 'tab': {'height': 'calc(98vh - 115px)'} } app.layout = html.Div([ html.Div(className='eight columns', children=[ cyto.Cytoscape( id='cytoscape', elements=default_elements, layout={ 'name': 'grid' }, style={ 'height': '95vh', 'width': '100%' } ) ]), html.Div(className='four columns', children=[ dcc.Tabs(id='tabs', children=[ dcc.Tab(label='Actions', children=[ html.Button("Remove Selected Node", id='remove-button') ]), dcc.Tab(label='Tap Data', children=[ html.Div(style=styles['tab'], children=[ html.P('Node Data JSON:'), html.Pre( id='tap-node-data-json-output', style=styles['json-output'] ), html.P('Edge Data JSON:'), html.Pre( id='tap-edge-data-json-output', style=styles['json-output'] ) ]) ]), dcc.Tab(label='Selected Data', children=[ html.Div(style=styles['tab'], children=[ html.P('Node Data JSON:'), html.Pre( id='selected-node-data-json-output', style=styles['json-output'] ), html.P('Edge Data JSON:'), html.Pre( id='selected-edge-data-json-output', style=styles['json-output'] ) ]) ]) ]), ]) ]) @app.callback(Output('cytoscape', 'elements'), [Input('remove-button', 'n_clicks')], [State('cytoscape', 'elements'), State('cytoscape', 'selectedNodeData')]) def remove_selected_nodes(_, elements, data): if elements and data: ids_to_remove = {ele_data['id'] for ele_data in data} print("Before:", elements) new_elements = [ele for ele in elements if ele['data']['id'] not in ids_to_remove] print("After:", new_elements) return new_elements return elements @app.callback(Output('tap-node-data-json-output', 'children'), [Input('cytoscape', 'tapNodeData')]) def displayTapNodeData(data): return json.dumps(data, indent=2) @app.callback(Output('tap-edge-data-json-output', 'children'), [Input('cytoscape', 'tapEdgeData')]) def displayTapEdgeData(data): return json.dumps(data, indent=2) @app.callback(Output('selected-node-data-json-output', 'children'), [Input('cytoscape', 'selectedNodeData')]) def displaySelectedNodeData(data): return json.dumps(data, indent=2) @app.callback(Output('selected-edge-data-json-output', 'children'), [Input('cytoscape', 'selectedEdgeData')]) def displaySelectedEdgeData(data): return json.dumps(data, indent=2) if __name__ == '__main__': app.run_server(debug=True)
tests/functions/test_count.py
hodgesrm/clickhouse-sqlalchemy
251
92234
from sqlalchemy import Column, func from clickhouse_sqlalchemy import types, Table from tests.testcase import CompilationTestCase class CountTestCaseBase(CompilationTestCase): table = Table( 't1', CompilationTestCase.metadata(), Column('x', types.Int32, primary_key=True) ) def test_count(self): self.assertEqual( self.compile(self.session.query(func.count(self.table.c.x))), 'SELECT count(t1.x) AS count_1 FROM t1' ) def test_count_distinct(self): query = self.session.query(func.count(func.distinct(self.table.c.x))) self.assertEqual( self.compile(query), 'SELECT count(distinct(t1.x)) AS count_1 FROM t1' ) def test_count_no_column_specified(self): query = self.session.query(func.count()).select_from(self.table) self.assertEqual( self.compile(query), 'SELECT count(*) AS count_1 FROM t1' )
analysis/MxnetA.py
YifeiCN/nn_tools
370
92261
<gh_stars>100-1000 from __future__ import absolute_import import mxnet as mx import mxnet.symbol as sym import json from analysis.layers import * import re import ctypes from mxnet.ndarray import NDArray import mxnet.ndarray as nd from mxnet.base import NDArrayHandle, py_str blob_dict=[] tracked_layers = [] def tmpnet(): x=sym.Variable('data') y=sym.Convolution(x,kernel=(3,3),num_filter=32) y=sym.Activation(y,'relu') y = sym.Convolution(y, kernel=(3, 3), num_filter=64,stride=(2,2),num_group=2) y=sym.softmax(y) return y def analyse(data_infos,module_json,data_name='data'): datas={} for info in data_infos: datas[info[1]]=info[2] nodes=json.loads(module_json)['nodes'] input=[] out=None for node in nodes: name=node['name'] bottoms=[str(nodes[i[0]]['name']) for i in node['inputs']] for i,bottom in enumerate(bottoms): if bottom+'_output' in datas: bottoms[i]=datas[bottom+'_output'] elif bottom+'_0' in datas: bottoms[i]=datas[bottom+'_0'] elif bottom in datas: bottoms[i]=datas[bottom] else: cur_node=node while True: bottom = [str(nodes[inp[0]]['name']) for inp in cur_node['inputs']][0] if bottom + '_output' in datas: bottoms[i] = datas[bottom + '_output'] break elif bottom + '_0' in datas: bottoms[i] = datas[bottom + '_0'] break elif bottom in datas: bottoms[i] = datas[bottom] break try: bottom_node = nodes[cur_node['inputs'][0][0]] except: pass cur_node=bottom_node if data_name==name: input.append(Blob(datas[data_name])) elif node['op']=='Convolution': kernel=eval(node['attrs']['kernel']) num_out=eval(node['attrs']['num_filter']) group_size=eval(node['attrs'].get('num_group','1')) pad=eval(node['attrs'].get('pad','(0,0)')) stride=eval(node['attrs'].get('stride','(1,1)')) x=Blob(bottoms[0]) out=Conv(x,kernel_size=kernel,stride=stride,pad=pad, num_out=num_out,group_size=group_size,name=name) tracked_layers.append(out) elif node['op']=='BatchNorm': x=Blob(bottoms[0]) out = Norm(x, 'batch_norm',name=name) tracked_layers.append(out) elif node['op']=='FullyConnected': x=Blob(bottoms[0]) num_hidden=eval(node['attrs']['num_hidden']) out=Fc(x,num_hidden,name=name) tracked_layers.append(out) elif node['op']=='Activation': pass elif 'elemwise' in node['op']: pass class Monitor(object): def __init__(self, interval=1, pattern='.*', sort=False): def stat(x): return x.shape self.stat_func = stat self.interval = interval self.activated = False self.queue = [] self.step = 0 self.exes = [] self.re_prog = re.compile(pattern) self.sort = sort def stat_helper(name, array): array = ctypes.cast(array, NDArrayHandle) array = NDArray(array, writable=False) if not self.activated or not self.re_prog.match(py_str(name)): return self.queue.append((self.step, py_str(name), stat(array))) self.stat_helper = stat_helper def install(self, exe): exe.set_monitor_callback(self.stat_helper) self.exes.append(exe) def tic(self): if self.step % self.interval == 0: for exe in self.exes: for array in exe.arg_arrays: array.wait_to_read() for array in exe.aux_arrays: array.wait_to_read() self.queue = [] self.activated = True self.step += 1 def toc(self): if not self.activated: return [] for exe in self.exes: for array in exe.arg_arrays: array.wait_to_read() for array in exe.aux_arrays: array.wait_to_read() for exe in self.exes: for name, array in zip(exe._symbol.list_arguments(), exe.arg_arrays): self.queue.append((self.step, name, self.stat_func(array))) for name, array in zip(exe._symbol.list_auxiliary_states(), exe.aux_arrays): # if self.re_prog.match(name): self.queue.append((self.step, name, self.stat_func(array))) self.activated = False res = [] if self.sort: self.queue.sort(key=lambda x: x[1]) for n, k, v_list in self.queue: res.append((n, k, v_list)) self.queue = [] return res def toc_print(self): pass def profiling_symbol(symbol,data_shape,data_name='data'): monitor = Monitor() model=mx.mod.Module(symbol) model.bind(data_shapes=[(data_name,tuple(data_shape))]) model.install_monitor(monitor) model.init_params() monitor.tic() model.forward(mx.io.DataBatch(data=(nd.ones(data_shape),))) data_infos=monitor.toc() module_json=symbol.tojson() analyse(data_infos,module_json,data_name)
vis/max_bar_plot.py
SurvivorT/SRTP
489
92264
#!/usr/bin/env python # # File: bar_plot.py # import argparse import os import pickle import matplotlib import numpy as np params = { 'axes.labelsize': 12, 'font.size': 16, 'font.family': 'serif', 'legend.fontsize': 12, 'xtick.labelsize': 12, 'ytick.labelsize': 12, #'text.usetex': True, 'figure.figsize': [4.5, 4.5] } matplotlib.rcParams.update(params) import matplotlib.pyplot as plt plt.style.use('seaborn-colorblind') import pandas as pd def main(): parser = argparse.ArgumentParser() parser.add_argument('dir', type=str) parser.add_argument('--random', type=float, default=None) args = parser.parse_args() if args.random: random = args.random else: random = 0 with open(os.path.join(args.dir, 'results.pkl'), 'rb') as f: res = pickle.load(f) control_params = ['decentralized', 'concurrent', 'centralized'] nn_params = ['mlp', 'gru', 'heuristic'] header = ['training'] for nnp in nn_params: header.append(nnp) header.append(nnp + '_error') mat = [] for cp in control_params: row = [cp] for nnp in nn_params: key = cp + '-' + nnp if key in res: if res[key]: row.append(res[key]['retlist'].mean() - random) row.append(res[key]['retlist'].std()) else: row.append(None) row.append(None) elif 'heuristic' in key: row.append(res['heuristic']['retlist'].mean() - random) row.append(res['heuristic']['retlist'].std()) mat.append(row) dat = pd.DataFrame(mat, columns=header) print(dat.to_csv(index=False, float_format='%.3f', na_rep='nan')) csv_errors = dat[['mlp_error', 'gru_error']].rename( columns={'mlp_error': 'mlp', 'gru_error': 'gru'}) ax = dat[['mlp', 'gru']].plot(kind='bar', title='', legend=True, yerr=csv_errors, alpha=0.7) ax.plot(dat['heuristic'], linewidth=1.2, linestyle='--', alpha=0.7) leg = ax.legend(['Heuristic', 'MLP', 'GRU']) leg.get_frame().set_alpha(0.7) ax.set_xticklabels(dat.training, rotation=0) ax.set_ylabel('Normalized Returns') plt.savefig(os.path.join(args.dir, 'bar.pdf'), bbox_inches='tight') if __name__ == '__main__': main()
app/grandchallenge/notifications/filters.py
nlessmann/grand-challenge.org
101
92268
import re from functools import reduce from operator import or_ from actstream.models import Follow from django.contrib.contenttypes.models import ContentType from django.db.models import Q from django_filters import CharFilter, ChoiceFilter, FilterSet from machina.apps.forum.models import Forum from machina.apps.forum_conversation.models import Topic from grandchallenge.core.filters import FilterForm from grandchallenge.notifications.models import Notification BOOLEAN_CHOICES = ( ("1", "Read"), ("0", "Unread"), ) class NotificationFilter(FilterSet): forum = CharFilter(method="search_filter", label="Forum") topic = CharFilter(method="search_filter", label="Forum post subject") read = ChoiceFilter(choices=BOOLEAN_CHOICES, label="Status") class Meta: model = Notification form = FilterForm fields = ("forum", "topic", "read") def search_filter(self, queryset, name, value): if name == "forum": name_qs = [ x.id for x in Forum.objects.filter(name__icontains=value).all() ] elif name == "topic": name_qs = [ x.id for x in Topic.objects.filter(subject__icontains=value).all() ] search_fields = ( "action__target_object_id", "action__action_object_object_id", ) return queryset.filter( reduce( or_, [Q(**{f"{f}__in": name_qs}) for f in search_fields], Q(), ) ) FOLLOW_CHOICES = ( ("forum_forum", "Forums"), ("topic_forum_conversation", "Topics"), ("readerstudy_reader_studies", "Reader studies"), ("archive_archives", "Archives"), ("algorithm_algorithms", "Algorithms"), ("challenge_challenges", "Challenges"), ("externalchallenge_challenges", "External Challenges"), ("phase_evaluation", "Challenge Phase"), ) class FollowFilter(FilterSet): forum = CharFilter(method="search_filter", label="Search for a forum") topic = CharFilter( method="search_filter", label="Search for a forum topic" ) forums_for_user = CharFilter( method="search_forum_topics", label="Show all topic subscriptions for a specific forum", ) content_type = ChoiceFilter( choices=FOLLOW_CHOICES, method="get_content_type", label="Filter by subscription type", ) class Meta: model = Follow form = FilterForm fields = ("forum", "topic", "forums_for_user", "content_type") def search_filter(self, queryset, name, value): model_name = name if model_name == "forum": app_label = "forum" model = Forum kwargs = {"name__icontains": value} elif model_name == "topic": app_label = "forum_conversation" model = Topic kwargs = {"subject__icontains": value} name_qs = [x.id for x in model.objects.filter(**kwargs).all()] return queryset.filter( **{"object_id__in": name_qs}, **{ "content_type__exact": ContentType.objects.filter( model=model_name, app_label=app_label ).get() }, ) def search_forum_topics(self, queryset, name, value): forums = [ x.id for x in Forum.objects.filter(name__icontains=value).all() ] name_qs = [ x.id for x in Topic.objects.filter(forum__id__in=forums).all() ] return queryset.filter( **{"object_id__in": name_qs}, **{ "content_type__exact": ContentType.objects.filter( model="topic", app_label="forum_conversation" ).get() }, ) def get_content_type(self, queryset, name, value): ct = ContentType.objects.filter( model=re.split(r"_", value, 1)[0], app_label=re.split(r"_", value, 1)[1], ).get() return queryset.filter(content_type__exact=ct)
services/workers/emails/tests/test_welcome_email.py
paulowe/aws-boilerplate
711
92275
<gh_stars>100-1000 import settings from .. import handlers def test_send_welcome_email(mocker, ses_client): ses_send_email = mocker.patch.object(ses_client, 'send_email', autospec=True) mocker.patch('emails.sender.get_ses_client', return_value=ses_client) event = {'to': '<EMAIL>', 'name': '<NAME>', 'type': 'WelcomeEmail'} handlers.send_email(event, {}) ses_send_email.assert_called_once() kwargs = ses_send_email.call_args.kwargs assert kwargs['Source'] == settings.FROM_EMAIL assert kwargs['Destination']['ToAddresses'] == [event['to']] assert event['name'] in kwargs['Message']['Body']['Html']['Data']
databuilder/databuilder/serializers/neo4_serializer.py
defendercrypt/amundsen
2,072
92282
# Copyright Contributors to the Amundsen project. # SPDX-License-Identifier: Apache-2.0 from typing import ( Any, Dict, Optional, ) from databuilder.models.graph_node import GraphNode from databuilder.models.graph_relationship import GraphRelationship from databuilder.models.graph_serializable import ( NODE_KEY, NODE_LABEL, RELATION_END_KEY, RELATION_END_LABEL, RELATION_REVERSE_TYPE, RELATION_START_KEY, RELATION_START_LABEL, RELATION_TYPE, ) from databuilder.publisher.neo4j_csv_publisher import UNQUOTED_SUFFIX def serialize_node(node: Optional[GraphNode]) -> Dict[str, Any]: if node is None: return {} node_dict = { NODE_LABEL: node.label, NODE_KEY: node.key } for key, value in node.attributes.items(): key_suffix = _get_neo4j_suffix_value(value) formatted_key = f'{key}{key_suffix}' node_dict[formatted_key] = value return node_dict def serialize_relationship(relationship: Optional[GraphRelationship]) -> Dict[str, Any]: if relationship is None: return {} relationship_dict = { RELATION_START_KEY: relationship.start_key, RELATION_START_LABEL: relationship.start_label, RELATION_END_KEY: relationship.end_key, RELATION_END_LABEL: relationship.end_label, RELATION_TYPE: relationship.type, RELATION_REVERSE_TYPE: relationship.reverse_type, } for key, value in relationship.attributes.items(): key_suffix = _get_neo4j_suffix_value(value) formatted_key = f'{key}{key_suffix}' relationship_dict[formatted_key] = value return relationship_dict def _get_neo4j_suffix_value(value: Any) -> str: if isinstance(value, int): return UNQUOTED_SUFFIX if isinstance(value, bool): return UNQUOTED_SUFFIX return ''
Chapter02/animals/sheep.py
RoyMcCrain/Mastering-Vim
155
92288
"""A sheep.""" import animal class Sheep(animal.Animal): def __init__(self): self.kind = 'sheep'
powerline/matchers/vim/plugin/commandt.py
MrFishFinger/powerline
11,435
92289
<filename>powerline/matchers/vim/plugin/commandt.py<gh_stars>1000+ # vim:fileencoding=utf-8:noet from __future__ import (unicode_literals, division, absolute_import, print_function) import os from powerline.bindings.vim import vim_getbufoption, buffer_name def commandt(matcher_info): name = buffer_name(matcher_info) return ( vim_getbufoption(matcher_info, 'filetype') == 'command-t' or (name and os.path.basename(name) == b'GoToFile') )
doc/examples/scripts/structure/md_analysis.py
danijoo/biotite
208
92305
r""" Basic analysis of a MD simulation ================================= In this example, we will analyze a trajectory of a *Gromacs* MD simulation: The trajectory contains simulation data of lysozyme over the course of 1 ns. The data is the result of the famous *Gromacs* '`Lysozyme in Water <http://www.mdtutorials.com/gmx/lysozyme/index.html>`_' tutorial. The trajectory file can be downloaded :download:`here </examples/download/lysozyme_md.xtc>` and the template PDB can be downloaded :download:`here </examples/download/lysozyme_md.pdb>`. We begin by loading the template PDB file as :class:`AtomArray`, sanitizing it and using it to load the trajectory as :class:`AtomArrayStack`. """ # Code source: <NAME> # License: BSD 3 clause import biotite import biotite.structure as struc import biotite.structure.io as strucio import biotite.structure.io.xtc as xtc import numpy as np import matplotlib.pyplot as plt # Put here the path of the downloaded files templ_file_path = "../../download/lysozyme_md.pdb" traj_file_path = "../../download/lysozyme_md.xtc" # Gromacs does not set the element symbol in its PDB files, # but Biotite guesses the element names from the atom names, # emitting a warning template = strucio.load_structure(templ_file_path) # The structure still has water and ions, that are not needed for our # calculations, we are only interested in the protein itself # These are removed for the sake of computational speed using a boolean # mask protein_mask = struc.filter_amino_acids(template) template = template[protein_mask] # We could have loaded the trajectory also with # 'strucio.load_structure()', but in this case we only want to load # those coordinates that belong to the already selected atoms of the # template structure. # Hence, we use the 'XTCFile' class directly to load the trajectory # This gives us the additional option that allows us to select the # coordinates belonging to the amino acids. xtc_file = xtc.XTCFile.read(traj_file_path, atom_i=np.where(protein_mask)[0]) trajectory = xtc_file.get_structure(template) # Get simulation time for plotting purposes time = xtc_file.get_time() ######################################################################## # Since the MD simulation used periodic boundaries, the protein might be # segmented over the box boundary. # For further analysis we need to reassemble the protein chain into a # whole molecule, without periodic boundaries. # in *Gromacs* we could have used ``gmx trjconv`` for this, but this # problem can be handled in *Biotite*, too. trajectory = struc.remove_pbc(trajectory) ######################################################################## # Now our trajectory is ready for some analysis! # At first we want to see if the simulation converged. # For this purpose we take the RMSD of a frame compared to the initial # model as measure. In order to calculate the RMSD we must # superimpose all models onto a reference, in this case we also choose # the initial structure. trajectory, transform = struc.superimpose(trajectory[0], trajectory) rmsd = struc.rmsd(trajectory[0], trajectory) figure = plt.figure(figsize=(6,3)) ax = figure.add_subplot(111) ax.plot(time, rmsd, color=biotite.colors["dimorange"]) ax.set_xlim(time[0], time[-1]) ax.set_ylim(0, 2) ax.set_xlabel("Time (ps)") ax.set_ylabel("RMSD (Å)") figure.tight_layout() ######################################################################## # As we can see the simulation seems to converge already early in the # simulation. # After a about 200 ps the RMSD stays in a range of approx. 1 - 2 Å. # # In order to futher evaluate the unfolding of our enzyme in the # course of simulation, we calculate and plot the radius of gyration # (a measure for the protein radius). radius = struc.gyration_radius(trajectory) figure = plt.figure(figsize=(6,3)) ax = figure.add_subplot(111) ax.plot(time, radius, color=biotite.colors["dimorange"]) ax.set_xlim(time[0], time[-1]) ax.set_ylim(14.0, 14.5) ax.set_xlabel("Time (ps)") ax.set_ylabel("Radius of gyration (Å)") figure.tight_layout() ######################################################################## # From this perspective, the protein seems really stable. # The radius does merely fluctuate in a range of approximately 0.3 Å # during the entire simulation. # # Let's have a look at single amino acids: # Which residues fluctuate most? # For answering this question we calculate the RMSF # (Root mean square fluctuation). # It is similar to the RMSD, but instead of averaging over the atoms # and looking at each time step, we average over the time and look at # each residue. # Usually the average model is taken as reference # (compared to the starting model for RMSD). # # Since side chain atoms fluctuate quite a lot, they are not suitable # for evaluation of the residue flexibility. Therefore, we consider only # CA atoms. # In all models, mask the CA atoms ca_trajectory = trajectory[:, trajectory.atom_name == "CA"] rmsf = struc.rmsf(struc.average(ca_trajectory), ca_trajectory) figure = plt.figure(figsize=(6,3)) ax = figure.add_subplot(111) res_count = struc.get_residue_count(trajectory) ax.plot(np.arange(1, res_count+1), rmsf, color=biotite.colors["dimorange"]) ax.set_xlim(1, res_count) ax.set_ylim(0, 1.5) ax.set_xlabel("Residue") ax.set_ylabel("RMSF (Å)") figure.tight_layout() plt.show()
api/tacticalrmm/logs/tests.py
juaromu/tacticalrmm
903
92313
from itertools import cycle from unittest.mock import patch from django.utils import timezone as djangotime from model_bakery import baker, seq from tacticalrmm.test import TacticalTestCase from logs.models import PendingAction class TestAuditViews(TacticalTestCase): def setUp(self): self.authenticate() self.setup_coresettings() def create_audit_records(self): # create clients for client filter site = baker.make("clients.Site") agent1 = baker.make_recipe("agents.agent", site=site, hostname="AgentHostname1") agent2 = baker.make_recipe("agents.agent", hostname="AgentHostname2") agent0 = baker.make_recipe("agents.agent", hostname="AgentHostname") # user jim agent logs baker.make_recipe( "logs.agent_logs", username="jim", agent="AgentHostname1", agent_id=agent1.id, _quantity=15, ) baker.make_recipe( "logs.agent_logs", username="jim", agent="AgentHostname2", agent_id=agent2.id, _quantity=8, ) # user james agent logs baker.make_recipe( "logs.agent_logs", username="james", agent="AgentHostname1", agent_id=agent1.id, _quantity=7, ) baker.make_recipe( "logs.agent_logs", username="james", agent="AgentHostname2", agent_id=agent2.id, _quantity=10, ) # generate agent logs with random usernames baker.make_recipe( "logs.agent_logs", agent=seq("AgentHostname"), agent_id=seq(agent1.id), _quantity=5, ) # generate random object data baker.make_recipe( "logs.object_logs", username="james", _quantity=17, ) # generate login data for james baker.make_recipe( "logs.login_logs", username="james", _quantity=11, ) # generate login data for jim baker.make_recipe( "logs.login_logs", username="jim", _quantity=13, ) return {"site": site, "agents": [agent0, agent1, agent2]} def test_get_audit_logs(self): url = "/logs/auditlogs/" # create data data = self.create_audit_records() # test data and result counts data = [ {"filter": {"timeFilter": 30}, "count": 86}, { "filter": { "timeFilter": 45, "agentFilter": [data["agents"][2].id], }, "count": 19, }, { "filter": { "userFilter": ["jim"], "agentFilter": [data["agents"][1].id], }, "count": 15, }, { "filter": { "timeFilter": 180, "userFilter": ["james"], "agentFilter": [data["agents"][1].id], }, "count": 7, }, {"filter": {}, "count": 86}, {"filter": {"agentFilter": [500]}, "count": 0}, { "filter": { "timeFilter": 35, "userFilter": ["james", "jim"], "agentFilter": [ data["agents"][1].id, data["agents"][2].id, ], }, "count": 40, }, {"filter": {"timeFilter": 35, "userFilter": ["james", "jim"]}, "count": 81}, {"filter": {"objectFilter": ["user"]}, "count": 26}, {"filter": {"actionFilter": ["login"]}, "count": 12}, { "filter": {"clientFilter": [data["site"].client.id]}, "count": 23, }, ] pagination = { "rowsPerPage": 25, "page": 1, "sortBy": "entry_time", "descending": True, } for req in data: resp = self.client.patch( url, {**req["filter"], "pagination": pagination}, format="json" ) self.assertEqual(resp.status_code, 200) self.assertEqual( len(resp.data["audit_logs"]), # type:ignore pagination["rowsPerPage"] if req["count"] > pagination["rowsPerPage"] else req["count"], ) self.assertEqual(resp.data["total"], req["count"]) # type:ignore self.check_not_authenticated("patch", url) def test_get_pending_actions(self): url = "/logs/pendingactions/" agent1 = baker.make_recipe("agents.online_agent") agent2 = baker.make_recipe("agents.online_agent") baker.make( "logs.PendingAction", agent=agent1, action_type="chocoinstall", details={"name": "googlechrome", "output": None, "installed": False}, _quantity=12, ) baker.make( "logs.PendingAction", agent=agent2, action_type="chocoinstall", status="completed", details={"name": "adobereader", "output": None, "installed": False}, _quantity=14, ) data = {"showCompleted": False} r = self.client.patch(url, data, format="json") self.assertEqual(r.status_code, 200) self.assertEqual(len(r.data["actions"]), 12) # type: ignore self.assertEqual(r.data["completed_count"], 14) # type: ignore self.assertEqual(r.data["total"], 26) # type: ignore PendingAction.objects.filter(action_type="chocoinstall").update( status="completed" ) data = {"showCompleted": True} r = self.client.patch(url, data, format="json") self.assertEqual(r.status_code, 200) self.assertEqual(len(r.data["actions"]), 26) # type: ignore self.assertEqual(r.data["completed_count"], 26) # type: ignore self.assertEqual(r.data["total"], 26) # type: ignore data = {"showCompleted": True, "agentPK": agent1.pk} r = self.client.patch(url, data, format="json") self.assertEqual(r.status_code, 200) self.assertEqual(len(r.data["actions"]), 12) # type: ignore self.assertEqual(r.data["completed_count"], 12) # type: ignore self.assertEqual(r.data["total"], 12) # type: ignore self.check_not_authenticated("patch", url) @patch("agents.models.Agent.nats_cmd") def test_cancel_pending_action(self, nats_cmd): nats_cmd.return_value = "ok" url = "/logs/pendingactions/" agent = baker.make_recipe("agents.online_agent") action = baker.make( "logs.PendingAction", agent=agent, action_type="schedreboot", details={ "time": "2021-01-13 18:20:00", "taskname": "TacticalRMM_SchedReboot_wYzCCDVXlc", }, ) data = {"pk": action.pk} # type: ignore r = self.client.delete(url, data, format="json") self.assertEqual(r.status_code, 200) nats_data = { "func": "delschedtask", "schedtaskpayload": {"name": "TacticalRMM_SchedReboot_wYzCCDVXlc"}, } nats_cmd.assert_called_with(nats_data, timeout=10) # try request again and it should 404 since pending action doesn't exist r = self.client.delete(url, data, format="json") self.assertEqual(r.status_code, 404) nats_cmd.reset_mock() action2 = baker.make( "logs.PendingAction", agent=agent, action_type="schedreboot", details={ "time": "2021-01-13 18:20:00", "taskname": "TacticalRMM_SchedReboot_wYzCCDVXlc", }, ) data = {"pk": action2.pk} # type: ignore nats_cmd.return_value = "error deleting sched task" r = self.client.delete(url, data, format="json") self.assertEqual(r.status_code, 400) self.assertEqual(r.data, "error deleting sched task") # type: ignore self.check_not_authenticated("delete", url) def test_get_debug_log(self): url = "/logs/debuglog/" # create data agent = baker.make_recipe("agents.agent") baker.make( "logs.DebugLog", log_level=cycle(["error", "info", "warning", "critical"]), log_type="agent_issues", agent=agent, _quantity=4, ) logs = baker.make( "logs.DebugLog", log_type="system_issues", log_level=cycle(["error", "info", "warning", "critical"]), _quantity=15, ) # test agent filter data = {"agentFilter": agent.id} resp = self.client.patch(url, data, format="json") self.assertEqual(resp.status_code, 200) self.assertEqual(len(resp.data), 4) # type: ignore # test log type filter and agent data = {"agentFilter": agent.id, "logLevelFilter": "warning"} resp = self.client.patch(url, data, format="json") self.assertEqual(resp.status_code, 200) self.assertEqual(len(resp.data), 1) # type: ignore # test time filter with other data = {"logTypeFilter": "system_issues", "logLevelFilter": "error"} resp = self.client.patch(url, data, format="json") self.assertEqual(resp.status_code, 200) self.assertEqual(len(resp.data), 4) # type: ignore self.check_not_authenticated("patch", url) class TestLogTasks(TacticalTestCase): def test_prune_debug_log(self): from .models import DebugLog from .tasks import prune_debug_log # setup data debug_log = baker.make( "logs.DebugLog", _quantity=50, ) days = 0 for item in debug_log: # type:ignore item.entry_time = djangotime.now() - djangotime.timedelta(days=days) item.save() days = days + 5 # delete AgentHistory older than 30 days prune_debug_log(30) self.assertEqual(DebugLog.objects.count(), 6) def test_prune_audit_log(self): from .models import AuditLog from .tasks import prune_audit_log # setup data audit_log = baker.make( "logs.AuditLog", _quantity=50, ) days = 0 for item in audit_log: # type:ignore item.entry_time = djangotime.now() - djangotime.timedelta(days=days) item.save() days = days + 5 # delete AgentHistory older than 30 days prune_audit_log(30) self.assertEqual(AuditLog.objects.count(), 6)
scaffoldgraph/vis/base.py
UCLCheminformatics/ScaffoldGraph
121
92361
<filename>scaffoldgraph/vis/base.py """ scaffoldgraph.vis.base """ import networkx as nx from abc import ABC from scaffoldgraph.core import ScaffoldGraph from scaffoldgraph.utils import canonize_smiles from .utils import remove_node_mol_images class Visualizer(ABC): """Base class for ScaffoldGraph visualizers. A Visualizer contains functions for creating visualizations of ScaffoldGraphs. See Also -------- scaffoldgraph.vis.notebook.cytoscape.CytoscapeVisualizer """ def __init__(self, graph, requires_tree=False, refresh_images=False): """Initialize the visualizer. Parameters ---------- graph : ScaffoldGraph ScaffoldGraph to visualize requires_tree : bool, optional Whether the visualizer requires a tree structure to create a visualization. refresh_images: bool, optional If True remove all embeded images from the input graph and regenerate when required. The default is False. """ self._requires_tree = requires_tree self._refresh = refresh_images self._graph = self._validate_graph(graph) @property def graph(self): """ScaffoldGraph: return the graph associated with the visualizer.""" return self._graph @graph.setter def graph(self, graph): self._graph = self._validate_graph(graph) def _validate_graph(self, graph): """Private: Validate a graph is suitable for visualizer.""" if not issubclass(type(graph), ScaffoldGraph): raise ValueError( f'{graph} must be a subclass of ScaffoldGraph' ) if self._requires_tree: if not nx.is_tree(graph) or nx.is_forest(graph): msg = '{} requires a tree/forest structured graph' msg.format(self.__class__.__name__) raise ValueError(msg) if self._refresh is True: remove_node_mol_images(graph) return graph def _subgraph_from_mol(self, molecule): """Private: Select a subgraph starting at a molecule node. Parameters ---------- molecule : str Molecule node identifier. Returns ------- subgraph : ScaffoldGraph A subgraph starting at `molecule`. """ G = self._graph if not G.molecule_in_graph(molecule): raise ValueError(f'molecule: {molecule} not in graph {G}') scaffolds = G.get_scaffolds_for_molecule(molecule) subgraph = G.subgraph([molecule] + scaffolds) return subgraph def _subgraph_from_scf(self, scaffold, traversal): """Private: Select a subgraph starting at a scaffold node. Parameters ---------- scaffold : str Scaffold node identifier. traversal : str {'parent', 'child', 'bidirectional'} The direction of traversal to create the subgraph. If 'bidirectional' both directions are considered. Returns ------- subgraph : ScaffoldGraph A subgraph starting at `scaffold`. """ G = self._graph query = canonize_smiles(scaffold) if not G.scaffold_in_graph(query): raise ValueError(f'scaffold: {query} not in graph {G}') if traversal == 'parent': nodes = G.get_parent_scaffolds(query) elif traversal == 'child': nodes = list(nx.descendants(G, query)) elif traversal == 'bidirectional': nodes = G.get_parent_scaffolds(query) nodes += list(nx.descendants(G, query)) else: msg = 'traversal must be one of {child, parent, bidirectional}' raise ValueError(msg) subgraph = G.subgraph([query] + nodes) return subgraph def __repr__(self): return '<{_cls} at {address}>'.format( _cls=self.__class__.__name__, address=hex(id(self)) )
proximal/utils/timings_log.py
kyleaj/ProxImaL
101
92406
import timeit class TimingsEntry(object): """A log of the runtime for an operation. """ def __init__(self, op): self.op = op self.evals = 0 self.total_time = 0 self.lastticstamp = None @property def avg_time(self): if self.evals == 0: return 0 else: return self.total_time / self.evals def record_timing(self, elapsed): """Updates the log with the new time. """ self.evals += 1 self.total_time += elapsed def tic(self): """ Default timer Example: t = tic() ... code elapsed = toc(t) print( '{0}: {1:.4f}ms'.format(message, elapsed) ) """ t = timeit.default_timer() self.lastticstamp = t return t def toc(self): """ See tic f """ # Last tic if self.lastticstamp is None: raise Exception('Error: Call to toc did never call tic before.') else: t = self.lastticstamp # Measure time in ms elapsed = (timeit.default_timer() - t) * 1000.0 # in ms # Update recrod. self.record_timing(elapsed) self.lastticstamp = None return elapsed def __str__(self): return "op = %s, evals = %s, total_time (ms) = %s, avg_time (ms) = %s" % ( self.op, self.evals, self.total_time, self.avg_time) class TimingsLog(object): """A log of the runtime for a set of operations. """ def __init__(self, ops): self.ops = ops self.data = {} for op in self.ops: self.data[op] = TimingsEntry(op) def __getitem__(self, item): return self.data[item] def __str__(self): logs = [] for op in self.ops: if self[op].evals > 0: logs += [str(self.data[op])] return '\n'.join(logs)
PaddleKG/CoKE/bin/pathquery_data_preprocess.py
shippingwang/models
1,319
92435
<reponame>shippingwang/models # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ data preprocess for pathquery datasets """ import os import sys import time import logging import argparse from kbc_data_preprocess import write_vocab from kbc_data_preprocess import load_vocab from kbc_data_preprocess import generate_mask_type from collections import defaultdict, Counter logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S') logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) inverted = lambda r: r[:2] == '**' invert = lambda r: r[2:] if inverted(r) else '**' + r class EvalDataset(object): def __init__(self, train_file, test_file): self.spo_train_fp = train_file self.spo_test_fp = test_file train_triples = self._load_spo_triples(self.spo_train_fp) test_triples = self._load_spo_triples(self.spo_test_fp) #logger.debug(">>train triples cnt:%d" % len(train_triples)) #logger.debug(">>test triples cnt:%d" % len(test_triples)) _train_cnt = len(train_triples) all_triples = train_triples all_triples.update(test_triples) self.full_graph = Graph(all_triples) logger.debug(self.full_graph) def _load_spo_triples(self, spo_path): """ :param spo_path: :return: set of (s,r,t) original triples """ logger.debug(">> Begin load base spo for %s at %s" % (spo_path, time.ctime())) triples = set() for line in open(spo_path): segs = line.strip().split("\t") assert len(segs) == 3 s, p, o = segs triples.add((s, p, o)) logger.debug(">> Loaded spo triples :%s cnt:%d" % (spo_path, len(triples))) logger.debug(">> End load spo for %s at %s" % (spo_path, time.ctime())) return triples class Graph(object): def __init__(self, triples): self.triples = triples neighbors = defaultdict(lambda: defaultdict(set)) relation_args = defaultdict(lambda: defaultdict(set)) logger.info(">> Begin building graph at %s" % (time.ctime())) self._node_set = set() for s, r, t in triples: relation_args[r]['s'].add(s) relation_args[r]['t'].add(t) neighbors[s][r].add(t) neighbors[t][invert(r)].add(s) self._node_set.add(t) self._node_set.add(s) def freeze(d): frozen = {} for key, subdict in d.iteritems(): frozen[key] = {} for subkey, set_val in subdict.iteritems(): frozen[key][subkey] = tuple(set_val) return frozen self.neighbors = freeze(neighbors) self.relation_args = freeze(relation_args) logger.info(">> Done building graph at %s" % (time.ctime())) def __repr__(self): s = "" s += "graph.relations_args cnt %d\t" % len(self.relation_args) s += "graph.neighbors cnt %d\t" % len(self.neighbors) s += "graph.neighbors node set cnt %d" % len(self._node_set) return s def walk_all(self, start, path): """ walk from start and get all the paths :param start: start entity :param path: (r1, r2, ...,rk) :return: entities set for candidates path """ set_s = set() set_t = set() set_s.add(start) for _, r in enumerate(path): if len(set_s) == 0: return set() for _s in set_s: if _s in self.neighbors and r in self.neighbors[_s]: _tset = set(self.neighbors[_s][r]) #tupe to set set_t.update(_tset) set_s = set_t.copy() set_t.clear() return set_s def repr_walk_all_ret(self, start, path, MAX_T=20): cand_set = self.walk_all(start, path) if len(cand_set) == 0: return ">>start{} path:{} end: EMPTY!".format( start, "->".join(list(path))) _len = len(cand_set) if len(cand_set) < MAX_T else MAX_T cand_node_str = ", ".join(cand_set[:_len]) return ">>start{} path:{} end: {}".format( start, "->".join(list(path)), cand_node_str) def type_matching_entities(self, path, position="t"): assert (position == "t") if position == "t": r = path[-1] elif position == "s": r = path[0] else: logger.error(">>UNKNOWN position at type_matching_entities") raise ValueError(position) try: if not inverted(r): return r, self.relation_args[r][position] else: inv_pos = 's' if position == "t" else "t" return r, self.relation_args[invert(r)][inv_pos] except KeyError: logger.error( ">>UNKNOWN path value at type_matching_entities :%s from path:%s" % (r, path)) return None, tuple() def is_trival_query(self, start, path): """ :param path: :return: Boolean if True/False, is all candidates are right answers, return True """ #todo: check right again cand_set = self.type_matching_entities(path, "t") ans_set = self.walk_all(start, path) _set = cand_set - ans_set if len(_set) == 0: return True else: return False def get_unique_entities_relations(train_file, dev_file, test_file): entity_lst = dict() relation_lst = dict() all_files = [train_file, dev_file, test_file] for input_file in all_files: with open(input_file, "r") as f: for line in f.readlines(): tokens = line.strip().split("\t") assert len(tokens) == 3 entity_lst[tokens[0]] = len(entity_lst) entity_lst[tokens[2]] = len(entity_lst) relations = tokens[1].split(",") for relation in relations: relation_lst[relation] = len(relation_lst) print(">> Number of unique entities: %s" % len(entity_lst)) print(">> Number of unique relations: %s" % len(relation_lst)) return entity_lst, relation_lst def filter_base_data(raw_train_file, raw_dev_file, raw_test_file, train_base_file, dev_base_file, test_base_file): def fil_base(input_file, output_file): fout = open(output_file, "w") base_n = 0 with open(input_file, "r") as f: for line in f.readlines(): tokens = line.strip().split("\t") assert len(tokens) == 3 relations = tokens[1].split(",") if len(relations) == 1: fout.write(line) base_n += 1 fout.close() return base_n train_base_n = fil_base(raw_train_file, train_base_file) dev_base_n = fil_base(raw_dev_file, dev_base_file) test_base_n = fil_base(raw_test_file, test_base_file) print(">> Train base cnt:%d" % train_base_n) print(">> Valid base cnt:%d" % dev_base_n) print(">> Test base cnt:%d" % test_base_n) def generate_onlytail_mask_type(input_file, output_file): with open(output_file, "w") as fw: with open(input_file, "r") as fr: for line in fr.readlines(): fw.write(line.strip('\r \n') + "\tMASK_TAIL\n") def generate_eval_files(vocab_path, raw_test_file, train_base_file, dev_base_file, test_base_file, sen_candli_file, trivial_sen_file): token2id = load_vocab(vocab_path) eval_data = EvalDataset(train_base_file, test_base_file) fout_sen_cand = open(sen_candli_file, "w") fout_q_trival = open(trivial_sen_file, "w") sen_candli_cnt = trivial_sen_cnt = 0 j = 0 for line in open(raw_test_file): line = line.strip() j += 1 segs = line.split("\t") s = segs[0] t = segs[2] path = tuple(segs[1].split(",")) q_set = eval_data.full_graph.walk_all(s, path) r, cand_set = eval_data.full_graph.type_matching_entities(path, "t") cand_set = set(cand_set) neg_set = cand_set - q_set sen_tokens = [] sen_tokens.append(line.split("\t")[0]) sen_tokens.extend(line.split("\t")[1].split(",")) sen_tokens.append(line.split("\t")[2]) sen_id = [str(token2id[x]) for x in sen_tokens] if len(neg_set) == 0: trivial_sen_cnt += 1 #fout_q_trival.write(line + "\n") fout_q_trival.write(" ".join(sen_id) + "\n") else: sen_candli_cnt += 1 candli_id_set = [str(token2id[x]) for x in neg_set] sen_canli_str = "%s\t%s" % (" ".join(sen_id), " ".join(list(candli_id_set))) fout_sen_cand.write(sen_canli_str + "\n") if len(cand_set) < len(q_set): logger.error("ERROR! cand_set %d < q_set %d at line[%d]:%s" % (len(cand_set), len(q_set), j, line)) if j % 100 == 0: logger.debug(" ...processing %d at %s" % (j, time.ctime())) if -100 > 0 and j >= 100: break logger.info(">> sen_canli_set count:%d " % sen_candli_cnt) logger.info(">> trivial sen count:%d " % trivial_sen_cnt) logger.info(">> Finish generate evaluation candidates for %s file at %s" % (raw_test_file, time.ctime())) def pathquery_data_preprocess(raw_train_file, raw_dev_file, raw_test_file, vocab_path, sen_candli_file, trivial_sen_file, new_train_file, new_dev_file, new_test_file, train_base_file, dev_base_file, test_base_file): entity_lst, relation_lst = get_unique_entities_relations( raw_train_file, raw_dev_file, raw_test_file) write_vocab(vocab_path, entity_lst, relation_lst) filter_base_data(raw_train_file, raw_dev_file, raw_test_file, train_base_file, dev_base_file, test_base_file) generate_mask_type(raw_train_file, new_train_file) generate_onlytail_mask_type(raw_dev_file, new_dev_file) generate_onlytail_mask_type(raw_test_file, new_test_file) vocab = load_vocab(vocab_path) generate_eval_files(vocab_path, raw_test_file, train_base_file, dev_base_file, test_base_file, sen_candli_file, trivial_sen_file) def get_args(): parser = argparse.ArgumentParser() parser.add_argument( "--task", type=str, required=True, default=None, help="task name: fb15k, fb15k237, wn18rr, wn18, pathqueryFB, pathqueryWN" ) parser.add_argument( "--dir", type=str, required=True, default=None, help="task data directory") parser.add_argument( "--train", type=str, required=False, default="train", help="train file name, default train.txt") parser.add_argument( "--valid", type=str, required=False, default="dev", help="valid file name, default valid.txt") parser.add_argument( "--test", type=str, required=False, default="test", help="test file name, default test.txt") args = parser.parse_args() return args if __name__ == "__main__": args = get_args() task = args.task.lower() assert task in ["pathqueryfb", "pathquerywn"] raw_train_file = os.path.join(args.dir, args.train) raw_dev_file = os.path.join(args.dir, args.valid) raw_test_file = os.path.join(args.dir, args.test) new_train_file = os.path.join(args.dir, "train.coke.txt") new_test_file = os.path.join(args.dir, "test.coke.txt") new_dev_file = os.path.join(args.dir, "dev.coke.txt") vocab_file = os.path.join(args.dir, "vocab.txt") sen_candli_file = os.path.join(args.dir, "sen_candli.txt") trivial_sen_file = os.path.join(args.dir, "trivial_sen.txt") train_base_file = os.path.join(args.dir, "train.base.txt") test_base_file = os.path.join(args.dir, "test.base.txt") dev_base_file = os.path.join(args.dir, "dev.base.txt") pathquery_data_preprocess(raw_train_file, raw_dev_file, raw_test_file, vocab_file, sen_candli_file, trivial_sen_file, new_train_file, new_dev_file, new_test_file, train_base_file, dev_base_file, test_base_file)
headless/examples/generate_traffic.py
aclk/abstreet
5,680
92498
#!/usr/bin/python3 # This example loads an exported JSON map, finds different buildings, and # generates a simple travel demand model. # # 1) cargo run --bin dump_map data/system/us/seattle/maps/montlake.bin > montlake.json # 2) ./headless/examples/generate_traffic.py --map=montlake.json --out=traffic.json # 3) cargo run --bin import_traffic -- --map=data/system/us/seattle/maps/montlake.bin --input=traffic.json # 4) Use data/system/us/seattle/scenarios/montlake/monday.bin in the game or from the API. # # Keep this script formatted with autopep8 -i import argparse import json import random def main(): parser = argparse.ArgumentParser() parser.add_argument('--map', type=str, required=True) parser.add_argument('--out', type=str, required=True) args = parser.parse_args() # Load the map and find all buildings residential_building_ids = [] commercial_building_ids = [] with open(args.map, encoding='utf8') as f: map = json.load(f) for b in map['buildings']: # These categories are inferred from OpenStreetMap tags if 'Residential' in b['bldg_type'] or 'ResidentialCommercial' in b['bldg_type']: residential_building_ids.append(b['id']) if 'Commercial' in b['bldg_type'] or 'ResidentialCommercial' in b['bldg_type']: commercial_building_ids.append(b['id']) # Randomly generate a few people who take just one trip scenario = { 'scenario_name': 'monday', 'people': [] } for _ in range(100): src = random.choice(residential_building_ids) dst = random.choice(commercial_building_ids) scenario['people'].append({ 'origin': { 'TripEndpoint': { 'Bldg': src, } }, 'trips': [{ 'departure': 1.0, 'destination': { 'TripEndpoint': { 'Bldg': dst, } }, 'mode': 'Bike', 'purpose': 'Shopping' }] }) with open(args.out, 'w') as f: f.write(json.dumps(scenario, indent=2)) if __name__ == '__main__': main()
utils/lr_scheduler.py
happywu/simpledet-1
3,195
92514
<reponame>happywu/simpledet-1 import logging from math import cos, pi from mxnet.lr_scheduler import LRScheduler class WarmupMultiFactorScheduler(LRScheduler): def __init__(self, step, factor=1, warmup=False, warmup_type='constant', warmup_lr=0, warmup_step=0): super().__init__() assert isinstance(step, list) for i, _step in enumerate(step): if i != 0 and step[i] <= step[i-1]: raise ValueError("Schedule step must be an increasing integer list") if factor > 1.0: raise ValueError("Factor must be no more than 1 to make lr reduce") if warmup: if warmup_step >= step[0]: raise ValueError("Warmup step must be smaller than schedule step") if warmup_type not in ['constant', 'gradual']: raise ValueError("Warmup scheduler only support constant or gradual") self.step = step self.cur_step_ind = 0 self.factor = factor self.count = 0 self.warmup = warmup self.warmup_type = warmup_type self.warmup_lr = warmup_lr self.warmup_step = warmup_step def __call__(self, num_update): if self.warmup and num_update <= self.warmup_step: if self.warmup_type == 'constant': return self.warmup_lr elif self.warmup_type == 'gradual': return (self.base_lr - self.warmup_lr) / self.warmup_step * num_update + self.warmup_lr while self.cur_step_ind <= len(self.step) - 1: if num_update > self.step[self.cur_step_ind]: self.count = self.step[self.cur_step_ind] self.cur_step_ind += 1 self.base_lr *= self.factor logging.info("Update[%d]: Change learning rate to %0.5e", num_update, self.base_lr) else: return self.base_lr return self.base_lr # from gluoncv class LRSequential(LRScheduler): r"""Compose Learning Rate Schedulers Parameters ---------- schedulers: list list of LRScheduler objects """ def __init__(self, schedulers): super().__init__() assert(len(schedulers) > 0) self.update_sep = [] self.count = 0 self.learning_rate = 0 self.schedulers = [] for lr in schedulers: self.add(lr) def add(self, scheduler): assert(isinstance(scheduler, LRScheduler)) scheduler.offset = self.count self.count += scheduler.niters self.update_sep.append(self.count) self.schedulers.append(scheduler) def __call__(self, num_update): self.update(num_update) return self.learning_rate def update(self, num_update): num_update = min(num_update, self.count - 1) ind = len(self.schedulers) - 1 for i, sep in enumerate(self.update_sep): if sep > num_update: ind = i break lr = self.schedulers[ind] lr.update(num_update) self.learning_rate = lr.learning_rate # from gluoncv class AdvancedLRScheduler(LRScheduler): r"""Learning Rate Scheduler Parameters ---------- mode : str Modes for learning rate scheduler. Currently it supports 'constant', 'step', 'linear', 'poly' and 'cosine'. base_lr : float Base learning rate, i.e. the starting learning rate. target_lr : float Target learning rate, i.e. the ending learning rate. With constant mode target_lr is ignored. niters : int Number of iterations to be scheduled. nepochs : int Number of epochs to be scheduled. iters_per_epoch : int Number of iterations in each epoch. offset : int Number of iterations before this scheduler. power : float Power parameter of poly scheduler. step_iter : list A list of iterations to decay the learning rate. step_epoch : list A list of epochs to decay the learning rate. step_factor : float Learning rate decay factor. """ def __init__(self, mode, base_lr=0.1, target_lr=0, niters=0, nepochs=0, iters_per_epoch=0, offset=0, power=2, step_iter=None, step_epoch=None, step_factor=0.1, baselr=None, targetlr=None): super().__init__() assert(mode in ['constant', 'step', 'linear', 'poly', 'cosine']) self.mode = mode if mode == 'step': assert(step_iter is not None or step_epoch is not None) if baselr is not None: warnings.warn("baselr is deprecated. Please use base_lr.") if base_lr == 0.1: base_lr = baselr self.base_lr = base_lr if targetlr is not None: warnings.warn("targetlr is deprecated. Please use target_lr.") if target_lr == 0: target_lr = targetlr self.target_lr = target_lr if self.mode == 'constant': self.target_lr = self.base_lr self.niters = niters self.step = step_iter epoch_iters = nepochs * iters_per_epoch if epoch_iters > 0: self.niters = epoch_iters if step_epoch is not None: self.step = [s*iters_per_epoch for s in step_epoch] self.offset = offset self.power = power self.step_factor = step_factor def __call__(self, num_update): self.update(num_update) return self.learning_rate def update(self, num_update): N = self.niters - 1 T = num_update - self.offset T = min(max(0, T), N) if self.mode == 'constant': factor = 0 elif self.mode == 'linear': factor = 1 - T / N elif self.mode == 'poly': factor = pow(1 - T / N, self.power) elif self.mode == 'cosine': factor = (1 + cos(pi * T / N)) / 2 elif self.mode == 'step': if self.step is not None: count = sum([1 for s in self.step if s <= T]) factor = pow(self.step_factor, count) else: factor = 1 else: raise NotImplementedError if self.mode == 'step': self.learning_rate = self.base_lr * factor else: self.learning_rate = self.target_lr + (self.base_lr - self.target_lr) * factor
alipay/aop/api/domain/InsurancePeriod.py
antopen/alipay-sdk-python-all
213
92554
<reponame>antopen/alipay-sdk-python-all<gh_stars>100-1000 #!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class InsurancePeriod(object): def __init__(self): self._period = None self._period_unit = None @property def period(self): return self._period @period.setter def period(self, value): self._period = value @property def period_unit(self): return self._period_unit @period_unit.setter def period_unit(self, value): self._period_unit = value def to_alipay_dict(self): params = dict() if self.period: if hasattr(self.period, 'to_alipay_dict'): params['period'] = self.period.to_alipay_dict() else: params['period'] = self.period if self.period_unit: if hasattr(self.period_unit, 'to_alipay_dict'): params['period_unit'] = self.period_unit.to_alipay_dict() else: params['period_unit'] = self.period_unit return params @staticmethod def from_alipay_dict(d): if not d: return None o = InsurancePeriod() if 'period' in d: o.period = d['period'] if 'period_unit' in d: o.period_unit = d['period_unit'] return o
utils/swift_build_support/swift_build_support/build_graph.py
gandhi56/swift
72,551
92608
# swift_build_support/build_graph.py ----------------------------*- python -*- # # This source file is part of the Swift.org open source project # # Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors # Licensed under Apache License v2.0 with Runtime Library Exception # # See https://swift.org/LICENSE.txt for license information # See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors # # ---------------------------------------------------------------------------- # # This is a simple implementation of an acyclic build graph. We require no # cycles, so we just perform a reverse post order traversal to get a topological # ordering. We check during the reverse post order traversal that we do not # visit any node multiple times. # # Nodes are assumed to be a product's class. # # ---------------------------------------------------------------------------- def _get_po_ordered_nodes(root, invertedDepMap): # Then setup our worklist/visited node set. worklist = [root] visitedNodes = set([]) # TODO: Can we unify po_ordered_nodes and visitedNodes in some way? po_ordered_nodes = [] # Until we no longer have nodes to visit... while not len(worklist) == 0: # First grab the last element of the worklist. If we have already # visited this node, just pop it and skip it. # # DISCUSSION: Consider the following build graph: # # A -> [C, B] # B -> [C] # # In this case, we will most likely get the following worklist # before actually processing anything: # # A, C, B, C # # In this case, we want to ignore the initial C pushed onto the # worklist by visiting A since we will have visited C already due to # the edge from B -> C. node = worklist[-1] if node in visitedNodes: worklist.pop() continue # Then grab the dependents of our node. deps = invertedDepMap.get(node, set([])) assert(isinstance(deps, set)) # Then visit those and see if we have not visited any of them. Push # any such nodes onto the worklist and continue. If we have already # visited all of our dependents, then we can actually process this # node. foundDep = False for d in deps: if d not in visitedNodes: foundDep = True worklist.append(d) if foundDep: continue # Now process the node by popping it off the worklist, adding it to # the visited nodes set, and append it to the po_ordered_nodes in # its final position. worklist.pop() visitedNodes.add(node) po_ordered_nodes.append(node) return po_ordered_nodes class BuildDAG(object): def __init__(self): self.root = None # A map from a node to a list of nodes that depend on the given node. # # NOTE: This is an inverted dependency map implying that the root will # be a "final element" of the graph. self.invertedDepMap = {} def add_edge(self, pred, succ): self.invertedDepMap.setdefault(pred, set([succ])) \ .add(succ) def set_root(self, root): # Assert that we always only have one root. assert(self.root is None) self.root = root def produce_schedule(self): # Grab the root and make sure it is not None root = self.root assert(root is not None) # Then perform a post order traversal from root using our inverted # dependency map to compute a list of our nodes in post order. # # NOTE: The index of each node in this list is the post order number of # the node. po_ordered_nodes = _get_po_ordered_nodes(root, self.invertedDepMap) # Ok, we have our post order list. We want to provide our user a reverse # post order, so we take our array and construct a dictionary of an # enumeration of the list. This will give us a dictionary mapping our # product names to their reverse post order number. rpo_ordered_nodes = list(reversed(po_ordered_nodes)) node_to_rpot_map = dict((y, x) for x, y in enumerate(rpo_ordered_nodes)) # Now before we return our rpo_ordered_nodes and our node_to_rpot_map, lets # verify that we didn't find any cycles. We can do this by traversing # our dependency graph in reverse post order and making sure all # dependencies of each node we visit has a later reverse post order # number than the node we are checking. for n, node in enumerate(rpo_ordered_nodes): for dep in self.invertedDepMap.get(node, []): if node_to_rpot_map[dep] < n: print('n: {}. node: {}.'.format(n, node)) print('dep: {}.'.format(dep)) print('inverted dependency map: {}'.format(self.invertedDepMap)) print('rpo ordered nodes: {}'.format(rpo_ordered_nodes)) print('rpo node to rpo number map: {}'.format(node_to_rpot_map)) raise RuntimeError('Found cycle in build graph!') return (rpo_ordered_nodes, node_to_rpot_map) def produce_scheduled_build(input_product_classes): """For a given a subset input_input_product_classes of all_input_product_classes, compute a topological ordering of the input_input_product_classes + topological closures that respects the dependency graph. """ dag = BuildDAG() worklist = list(input_product_classes) visited = set(input_product_classes) # Construct the DAG. while len(worklist) > 0: entry = worklist.pop() deps = entry.get_dependencies() if len(deps) == 0: dag.set_root(entry) for d in deps: dag.add_edge(d, entry) if d not in visited: worklist.append(d) visited = visited.union(deps) # Then produce the schedule. schedule = dag.produce_schedule() # Finally check that all of our input_product_classes are in the schedule. if len(set(input_product_classes) - set(schedule[0])) != 0: raise RuntimeError('Found disconnected graph?!') return schedule
wagtail/core/tests/test_comments.py
brownaa/wagtail
8,851
92627
<reponame>brownaa/wagtail from django.contrib.auth import get_user_model from django.test import TestCase from wagtail.core.models import Comment, Page class CommentTestingUtils: def setUp(self): self.page = Page.objects.get(title="Welcome to the Wagtail test site!") self.revision_1 = self.page.save_revision() self.revision_2 = self.page.save_revision() def create_comment(self, revision_created): return Comment.objects.create( page=self.page, user=get_user_model().objects.first(), text='test', contentpath='title', revision_created=revision_created, ) class TestRevisionDeletion(CommentTestingUtils, TestCase): fixtures = ['test.json'] def setUp(self): super().setUp() self.revision_3 = self.page.save_revision() self.old_comment = self.create_comment(self.revision_1) self.new_comment = self.create_comment(self.revision_3) def test_deleting_old_revision_moves_comment_revision_created_forwards(self): # test that when a revision is deleted, a comment linked to it via revision_created has its revision_created moved # to the next revision self.revision_1.delete() self.old_comment.refresh_from_db() self.assertEqual(self.old_comment.revision_created, self.revision_2) def test_deleting_most_recent_revision_deletes_created_comments(self): # test that when the most recent revision is deleted, any comments created on it are also deleted self.revision_3.delete() with self.assertRaises(Comment.DoesNotExist): self.new_comment.refresh_from_db()
examples/integrations/sklearn/svm.py
anukaal/opytimizer
528
92653
<gh_stars>100-1000 import numpy as np from sklearn import svm from sklearn.datasets import load_digits from sklearn.model_selection import KFold, cross_val_score from opytimizer import Opytimizer from opytimizer.core import Function from opytimizer.optimizers.swarm import PSO from opytimizer.spaces import SearchSpace # Loads digits dataset digits = load_digits() # Gathers samples and targets X = digits.data Y = digits.target def _svm(opytimizer): # Gathers params C = opytimizer[0][0] # Instanciating an SVC class svc = svm.SVC(C=C, kernel='linear') # Creates a cross-validation holder k_fold = KFold(n_splits=5) # Fitting model using cross-validation scores = cross_val_score(svc, X, Y, cv=k_fold, n_jobs=-1) # Calculates scores mean mean_score = np.mean(scores) return 1 - mean_score # Number of agents and decision variables n_agents = 10 n_variables = 1 # Lower and upper bounds (has to be the same size as `n_variables`) lower_bound = [0.000001] upper_bound = [10] # Creates the space, optimizer and function space = SearchSpace(n_agents, n_variables, lower_bound, upper_bound) optimizer = PSO() function = Function(_svm) # Bundles every piece into Opytimizer class opt = Opytimizer(space, optimizer, function) # Runs the optimization task opt.start(n_iterations=100)
third_party/py/gflags/gflags/flags_unicode_literals_test.py
sevki/bazel
218
92656
#!/usr/bin/env python """Test the use of flags when from __future__ import unicode_literals is on.""" from __future__ import unicode_literals import unittest import gflags gflags.DEFINE_string('seen_in_crittenden', 'alleged mountain lion', 'This tests if unicode input to these functions works.') class FlagsUnicodeLiteralsTest(unittest.TestCase): def testUnicodeFlagNameAndValueAreGood(self): alleged_mountain_lion = gflags.FLAGS.seen_in_crittenden self.assertTrue( isinstance(alleged_mountain_lion, type(u'')), msg='expected flag value to be a {} not {}'.format( type(u''), type(alleged_mountain_lion))) self.assertEqual(alleged_mountain_lion, u'alleged mountain lion') if __name__ == '__main__': unittest.main()
app/src/thirdparty/telemetry/internal/platform/tracing_agent/chrome_tracing_agent_unittest.py
ta2edchimp/big-rig
925
92660
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import unittest from telemetry.internal.platform.tracing_agent import chrome_tracing_agent class FakePlatformBackend(object): pass class FakeDevtoolsClient(object): def __init__(self, remote_port): self.is_alive = True self.tracing_started = False self.remote_port = remote_port self.will_raise_exception_in_stop_tracing = False def IsAlive(self): return self.is_alive def StartChromeTracing(self, _trace_options, _filter_string, _timeout=10): self.tracing_started = True def StopChromeTracing(self, _trace_data_builder): self.tracing_started = False if self.will_raise_exception_in_stop_tracing: raise Exception def IsChromeTracingSupported(self): return True class FakeTraceOptions(object): def __init__(self): self.enable_chrome_trace = True class FakeCategoryFilter(object): def __init__(self): self.filter_string = 'foo' class ChromeTracingAgentUnittest(unittest.TestCase): def setUp(self): self.platform1 = FakePlatformBackend() self.platform2 = FakePlatformBackend() self.platform3 = FakePlatformBackend() def StartTracing(self, platform_backend, enable_chrome_trace=True): assert chrome_tracing_agent.ChromeTracingAgent.IsSupported(platform_backend) agent = chrome_tracing_agent.ChromeTracingAgent(platform_backend) trace_options = FakeTraceOptions() trace_options.enable_chrome_trace = enable_chrome_trace agent.Start(trace_options, FakeCategoryFilter(), 10) return agent def StopTracing(self, tracing_agent): tracing_agent.Stop(None) def testRegisterDevtoolsClient(self): chrome_tracing_agent.ChromeTracingAgent.RegisterDevToolsClient( FakeDevtoolsClient(1), self.platform1) chrome_tracing_agent.ChromeTracingAgent.RegisterDevToolsClient( FakeDevtoolsClient(2), self.platform1) chrome_tracing_agent.ChromeTracingAgent.RegisterDevToolsClient( FakeDevtoolsClient(3), self.platform1) tracing_agent_of_platform1 = self.StartTracing(self.platform1) with self.assertRaises(chrome_tracing_agent.ChromeTracingStartedError): chrome_tracing_agent.ChromeTracingAgent.RegisterDevToolsClient( FakeDevtoolsClient(4), self.platform1) chrome_tracing_agent.ChromeTracingAgent.RegisterDevToolsClient( FakeDevtoolsClient(5), self.platform2) self.StopTracing(tracing_agent_of_platform1) chrome_tracing_agent.ChromeTracingAgent.RegisterDevToolsClient( FakeDevtoolsClient(6), self.platform1) def testIsSupport(self): self.assertFalse( chrome_tracing_agent.ChromeTracingAgent.IsSupported(self.platform1)) self.assertFalse( chrome_tracing_agent.ChromeTracingAgent.IsSupported(self.platform2)) self.assertFalse( chrome_tracing_agent.ChromeTracingAgent.IsSupported(self.platform3)) devtool1 = FakeDevtoolsClient(1) devtool2 = FakeDevtoolsClient(2) chrome_tracing_agent.ChromeTracingAgent.RegisterDevToolsClient( devtool1, self.platform1) chrome_tracing_agent.ChromeTracingAgent.RegisterDevToolsClient( devtool2, self.platform2) devtool2.is_alive = False # Chrome tracing is only supported on platform 1 since only platform 1 has # an alive devtool. self.assertTrue( chrome_tracing_agent.ChromeTracingAgent.IsSupported(self.platform1)) self.assertFalse( chrome_tracing_agent.ChromeTracingAgent.IsSupported(self.platform2)) self.assertFalse( chrome_tracing_agent.ChromeTracingAgent.IsSupported(self.platform3)) def testStartAndStopTracing(self): devtool1 = FakeDevtoolsClient(1) devtool2 = FakeDevtoolsClient(2) devtool3 = FakeDevtoolsClient(3) devtool4 = FakeDevtoolsClient(2) # Register devtools 1, 2, 3 on platform1 and devtool 4 on platform 2 chrome_tracing_agent.ChromeTracingAgent.RegisterDevToolsClient( devtool1, self.platform1) chrome_tracing_agent.ChromeTracingAgent.RegisterDevToolsClient( devtool2, self.platform1) chrome_tracing_agent.ChromeTracingAgent.RegisterDevToolsClient( devtool3, self.platform1) chrome_tracing_agent.ChromeTracingAgent.RegisterDevToolsClient( devtool4, self.platform2) devtool2.is_alive = False tracing_agent1 = self.StartTracing(self.platform1) with self.assertRaises(chrome_tracing_agent.ChromeTracingStartedError): self.StartTracing(self.platform1) self.assertTrue(devtool1.tracing_started) self.assertFalse(devtool2.tracing_started) self.assertTrue(devtool3.tracing_started) # Devtool 4 shouldn't have tracing started although it has the same remote # port as devtool 2 self.assertFalse(devtool4.tracing_started) self.StopTracing(tracing_agent1) self.assertFalse(devtool1.tracing_started) self.assertFalse(devtool2.tracing_started) self.assertFalse(devtool3.tracing_started) self.assertFalse(devtool4.tracing_started) # Test that it should be ok to start & stop tracing on platform1 again. tracing_agent1 = self.StartTracing(self.platform1) self.StopTracing(tracing_agent1) tracing_agent2 = self.StartTracing(self.platform2) self.assertTrue(devtool4.tracing_started) self.StopTracing(tracing_agent2) self.assertFalse(devtool4.tracing_started) def testExceptionRaisedInStopTracing(self): devtool1 = FakeDevtoolsClient(1) devtool2 = FakeDevtoolsClient(2) # Register devtools 1, 2 on platform 1 chrome_tracing_agent.ChromeTracingAgent.RegisterDevToolsClient( devtool1, self.platform1) chrome_tracing_agent.ChromeTracingAgent.RegisterDevToolsClient( devtool2, self.platform1) tracing_agent1 = self.StartTracing(self.platform1) self.assertTrue(devtool1.tracing_started) self.assertTrue(devtool2.tracing_started) devtool2.will_raise_exception_in_stop_tracing = True with self.assertRaises(chrome_tracing_agent.ChromeTracingStoppedError): self.StopTracing(tracing_agent1) devtool1.is_alive = False devtool2.is_alive = False # Register devtools 3 on platform 1 should not raise any exception. devtool3 = FakeDevtoolsClient(3) chrome_tracing_agent.ChromeTracingAgent.RegisterDevToolsClient( devtool3, self.platform1) # Start & Stop tracing on platform 1 should work just fine. tracing_agent2 = self.StartTracing(self.platform1) self.StopTracing(tracing_agent2)
codalab/apps/queues/migrations/0001_initial.py
AIMultimediaLab/AI4Media-EaaS-prototype-Py2-public
333
92661
<reponame>AIMultimediaLab/AI4Media-EaaS-prototype-Py2-public # -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): depends_on = ( ("authenz", "0002_auto__add_cluser"), ) def forwards(self, orm): # Adding model 'Queue' db.create_table(u'queues_queue', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('name', self.gf('django.db.models.fields.CharField')(max_length=64)), ('vhost', self.gf('django.db.models.fields.CharField')(unique=True, max_length=36, blank=True)), ('is_public', self.gf('django.db.models.fields.BooleanField')(default=False)), ('owner', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['authenz.ClUser'])), )) db.send_create_signal(u'queues', ['Queue']) # Adding M2M table for field organizers on 'Queue' m2m_table_name = db.shorten_name(u'queues_queue_organizers') db.create_table(m2m_table_name, ( ('id', models.AutoField(verbose_name='ID', primary_key=True, auto_created=True)), ('queue', models.ForeignKey(orm[u'queues.queue'], null=False)), ('cluser', models.ForeignKey(orm[u'authenz.cluser'], null=False)) )) db.create_unique(m2m_table_name, ['queue_id', 'cluser_id']) def backwards(self, orm): # Deleting model 'Queue' db.delete_table(u'queues_queue') # Removing M2M table for field organizers on 'Queue' db.delete_table(db.shorten_name(u'queues_queue_organizers')) models = { u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'authenz.cluser': { 'Meta': {'object_name': 'ClUser'}, 'bibtex': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'contact_email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'null': 'True', 'blank': 'True'}), 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'email_on_submission_finished_successfully': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "u'user_set'", 'blank': 'True', 'to': u"orm['auth.Group']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'method_description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'method_name': ('django.db.models.fields.CharField', [], {'max_length': '20', 'null': 'True', 'blank': 'True'}), 'organization_or_affiliation': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'organizer_direct_message_updates': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'organizer_status_updates': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'participation_status_updates': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'password': ('<PASSWORD>', [], {'max_length': '128'}), 'project_url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'publication_url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'team_members': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'team_name': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True', 'blank': 'True'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "u'user_set'", 'blank': 'True', 'to': u"orm['auth.Permission']"}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'queues.queue': { 'Meta': {'object_name': 'Queue'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_public': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'organizers': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'organizers'", 'null': 'True', 'symmetrical': 'False', 'to': u"orm['authenz.ClUser']"}), 'owner': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['authenz.ClUser']"}), 'vhost': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '36', 'blank': 'True'}) } } complete_apps = ['queues']