max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
RecoTauTag/RecoTau/python/PFRecoTauProducer_cfi.py
ckamtsikis/cmssw
852
92663
from RecoTauTag.RecoTau.pfRecoTauProducerDef_cfi import pfRecoTauProducerDef pfRecoTauProducer = pfRecoTauProducerDef.clone()
test/test_c.py
EraYaN/transpyle
107
92668
<gh_stars>100-1000 """Tests of C language support.""" import logging import unittest import timing import typed_astunparse from transpyle.general.code_reader import CodeReader from transpyle.c.parser import C99Parser from transpyle.c.ast_generalizer import CAstGeneralizer from .common import basic_check_c_ast, basic_check_python_ast, execute_on_language_examples _LOG = logging.getLogger(__name__) _TIME = timing.get_timing_group(__name__) class ParserTests(unittest.TestCase): @execute_on_language_examples('c11') def test_parse_examples(self, input_path): code_reader = CodeReader() code = code_reader.read_file(input_path) parser = C99Parser() with _TIME.measure('parse.{}'.format(input_path.name.replace('.', '_'))) as timer: c_ast = parser.parse(code, input_path) basic_check_c_ast(self, input_path, c_ast) _LOG.info('parsed "%s" in %fs', input_path, timer.elapsed) class AstGeneralizerTests(unittest.TestCase): @execute_on_language_examples('c11') def test_generalize_examples(self, input_path): code_reader = CodeReader() code = code_reader.read_file(input_path) parser = C99Parser() c_ast = parser.parse(code, input_path) basic_check_c_ast(self, input_path, c_ast) ast_generalizer = CAstGeneralizer() with _TIME.measure('generalize.{}'.format(input_path.name.replace('.', '_'))) as timer: syntax = ast_generalizer.generalize(c_ast) basic_check_python_ast(self, input_path, syntax) _LOG.info('generalized "%s" in %fs', input_path, timer.elapsed) _LOG.debug('%s', typed_astunparse.dump(syntax)) _LOG.debug('%s', typed_astunparse.unparse(syntax))
loafer/runners.py
hartungstenio/loafer
111
92693
<filename>loafer/runners.py import asyncio import logging import signal from concurrent.futures import CancelledError, ThreadPoolExecutor from contextlib import suppress logger = logging.getLogger(__name__) class LoaferRunner: def __init__(self, max_workers=None, on_stop_callback=None): self._on_stop_callback = on_stop_callback # XXX: See https://github.com/python/asyncio/issues/258 # The minimum value depends on the number of cores in the machine # See https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor self._executor = ThreadPoolExecutor(max_workers) self.loop.set_default_executor(self._executor) @property def loop(self): return asyncio.get_event_loop() def start(self, debug=False): if debug: self.loop.set_debug(enabled=debug) self.loop.add_signal_handler(signal.SIGINT, self.prepare_stop) self.loop.add_signal_handler(signal.SIGTERM, self.prepare_stop) try: self.loop.run_forever() finally: self.stop() self.loop.close() logger.debug('loop.is_running={}'.format(self.loop.is_running())) logger.debug('loop.is_closed={}'.format(self.loop.is_closed())) def prepare_stop(self, *args): if self.loop.is_running(): # signals loop.run_forever to exit in the next iteration self.loop.stop() def stop(self, *args, **kwargs): logger.info('stopping Loafer ...') if callable(self._on_stop_callback): self._on_stop_callback() logger.info('cancel schedulled operations ...') for task in asyncio.Task.all_tasks(self.loop): task.cancel() if task.cancelled() or task.done(): continue with suppress(CancelledError): self.loop.run_until_complete(task) self._executor.shutdown(wait=True)
tests/tck/utils/mmh2.py
tom-chensf/nebula-graph
816
92740
# Copyright (c) 2020 vesoft inc. All rights reserved. # # This source code is licensed under Apache 2.0 License, # attached with Common Clause Condition 1.0, found in the LICENSES directory. def __bytes2ul(b): return int.from_bytes(b, byteorder='little', signed=False) def mmh2(bstr, seed=0xc70f6907, signed=True): MASK = 2 ** 64 - 1 size = len(bstr) m = 0xc6a4a7935bd1e995 r = 47 h = seed ^ (size * m & MASK) end = size & (0xfffffff8) for pos in range(0, end, 8): k = __bytes2ul(bstr[pos:pos+8]) k = k * m & MASK k = k ^ (k >> r) k = k * m & MASK; h = h ^ k h = h * m & MASK left = size & 0x7 if left >= 7: h = h ^ (bstr[end+6] << 48) if left >= 6: h = h ^ (bstr[end+5] << 40) if left >= 5: h = h ^ (bstr[end+4] << 32) if left >= 4: h = h ^ (bstr[end+3] << 24) if left >= 3: h = h ^ (bstr[end+2] << 16) if left >= 2: h = h ^ (bstr[end+1] << 8) if left >= 1: h = h ^ bstr[end+0] h = h * m & MASK h = h ^ (h >> r) h = h * m & MASK h = h ^ (h >> r) if signed: h = h | (-(h & 0x8000000000000000)) return h if __name__ == '__main__': assert mmh2(b'hello') == 2762169579135187400 assert mmh2(b'World') == -295471233978816215 assert mmh2(b'Hello World') == 2146989006636459346 assert mmh2(b'Hello Wo') == -821961639117166431
tests/cpydiff/modules_struct_fewargs.py
sebastien-riou/micropython
13,648
92747
""" categories: Modules,struct description: Struct pack with too few args, not checked by uPy cause: Unknown workaround: Unknown """ import struct try: print(struct.pack("bb", 1)) print("Should not get here") except: print("struct.error")
model/gac.py
hdliu21/openISP
384
92753
#!/usr/bin/python import numpy as np class GC: 'Gamma Correction' def __init__(self, img, lut, mode): self.img = img self.lut = lut self.mode = mode def execute(self): img_h = self.img.shape[0] img_w = self.img.shape[1] img_c = self.img.shape[2] gc_img = np.empty((img_h, img_w, img_c), np.uint16) for y in range(self.img.shape[0]): for x in range(self.img.shape[1]): if self.mode == 'rgb': gc_img[y, x, 0] = self.lut[self.img[y, x, 0]] gc_img[y, x, 1] = self.lut[self.img[y, x, 1]] gc_img[y, x, 2] = self.lut[self.img[y, x, 2]] gc_img[y, x, :] = gc_img[y, x, :] / 4 elif self.mode == 'yuv': gc_img[y, x, 0] = self.lut[0][self.img[y, x, 0]] gc_img[y, x, 1] = self.lut[1][self.img[y, x, 1]] gc_img[y, x, 2] = self.lut[1][self.img[y, x, 2]] self.img = gc_img return self.img
configs/__init__.py
light1726/VAENAR-TTS
125
92767
from .hparams import * from .logger import Logger
Stock/Data/Gateway/DyStockDataWind.py
AdrianGuo/DevilYuan
135
92772
<filename>Stock/Data/Gateway/DyStockDataWind.py from time import sleep import pandas as pd from collections import OrderedDict try: from WindPy import * except ImportError: pass from DyCommon.DyCommon import * from ...Common.DyStockCommon import * class DyStockDataWind(object): """ Wind数据接口 """ sectorCodeWindMap = {DyStockCommon.sz50Index: 'a00103010b000000', DyStockCommon.hs300Index: 'a001030201000000', DyStockCommon.zz500Index: 'a001030208000000' } def __init__(self, info): self._info = info self._gateway = w def getDays(self, code, startDate, endDate, fields, name=None): """ @return: df['datetime', indicators] None - errors [] - no data """ if not fields: self._info.print('没有指定获取的指标', DyLogData.error) return None # 添加'volume',由此判断停牌是否 fields_ = ','.join(fields) if 'volume' in fields else ','.join(fields + ['volume']) for _ in range(3): windData = self._gateway.wsd(code, fields_, startDate, endDate) if windData.ErrorCode != 0: errorStr = "从Wind获取{0}:{1}, [{2}, {3}]WSD错误: {4}".format(code, name, startDate, endDate, windData.Data[0][0]) if 'Timeout' in errorStr: sleep(1) continue break if windData.ErrorCode != 0: self._info.print(errorStr, DyLogData.error) return None try: df = pd.DataFrame(windData.Data, index=[x.lower() for x in windData.Fields], columns=windData.Times) df = df.T df = df.dropna(axis=1, how='all') # 去除全为NaN的列,比如指数数据,没有'mf_vol' df = df.ix[df['volume'] > 0, :] # 去除停牌的数据 if 'volume' not in fields: del df['volume'] df.reset_index(inplace=True) # 把时间索引转成列 df.rename(columns={'index': 'datetime'}, inplace=True) # 把日期的HH:MM:SS转成 00:00:00 df['datetime'] = df['datetime'].map(lambda x: x.strftime('%Y-%m-%d')) df['datetime'] = pd.to_datetime(df['datetime'], format='%Y-%m-%d') df = df[['datetime'] + fields] except: df = pd.DataFrame(columns=['datetime'] + fields) return df def _login(self): if not self._gateway.isconnected(): self._info.print("登录Wind...") data = self._gateway.start() if data.ErrorCode != 0: self._info.print("登录Wind失败", DyLogData.error) return False self._info.print("登录Wind成功") return True def getTradeDays(self, startDate, endDate): if not self._login(): return None self._info.print("开始从Wind获取交易日数据[{}, {}]...".format(startDate, endDate)) data = w.tdayscount(startDate, endDate) if data.ErrorCode == 0: if data.Data[0][0] == 0: return [] # no trade days between startDate and endDate data = self._gateway.tdays(startDate, endDate) if data.ErrorCode == 0: return [x.strftime('%Y-%m-%d') for x in data.Data[0]] self._info.print("从Wind获取交易日数据失败[{0}, {1}]: {2}".format(startDate, endDate, data.Data[0][0]), DyLogData.error) return None def getStockCodes(self): if not self._login(): return None self._info.print("开始从Wind获取股票代码表...") date = datetime.today() date = date.strftime("%Y%m%d") data = w.wset("SectorConstituent", "date={0};sectorId=a001010100000000".format(date)) if data.ErrorCode != 0: self._info.print("从Wind获取股票代码表失败: {0}!".format(data.Data[0][0]), DyLogData.error) return None codes = {} for code, name in zip(data.Data[1], data.Data[2]): codes[code] = name return codes def getSectorStockCodes(self, sectorCode, startDate, endDate): if not self._login(): return None self._info.print("开始从Wind获取[{0}]股票代码表[{1}, {2}]...".format(DyStockCommon.sectors[sectorCode], startDate, endDate)) dates = DyTime.getDates(startDate, endDate) progress = DyProgress(self._info) progress.init(len(dates)) codesDict = OrderedDict() # {date: {code: name}} for date_ in dates: date = date_.strftime("%Y%m%d") date_ = date_.strftime("%Y-%m-%d") data = w.wset("SectorConstituent", "date={0};sectorId={1}".format(date, self.sectorCodeWindMap[sectorCode])) if data.ErrorCode != 0: self._info.print("从Wind获取[{0}]股票代码表[{1}]失败: {2}!".format(DyStockCommon.sectors[sectorCode], date_, data.Data[0][0]), DyLogData.error) return None codes = {} if data.Data: for code, name in zip(data.Data[1], data.Data[2]): codes[code] = name codesDict[date_] = codes progress.update() self._info.print("从Wind获取[{0}]股票代码表[{1}, {2}]完成".format(DyStockCommon.sectors[sectorCode], startDate, endDate)) return codesDict
talkgenerator/sources/text_generator.py
korymath/talk-generator
110
92788
""" This module helps out with generating text using templates """ import json import random import re from functools import lru_cache import tracery from tracery.modifiers import base_english from talkgenerator.sources import conceptnet from talkgenerator.sources import phrasefinder from talkgenerator.sources import wikihow from talkgenerator.util import language_util from talkgenerator.util import os_util from talkgenerator.util import random_util known_functions = { "title": str.title, "lower": str.lower, "upper": str.upper, "dashes": lambda words: words.replace(" ", "-"), "first_letter": lambda words: words[0], "last_letter_is_vowel": lambda word: word if language_util.is_vowel(word[-1]) else None, "last_letter_is_consonant": lambda word: word if language_util.is_consonant(word[-1]) else None, "a": lambda word: language_util.add_article(word), "ing": language_util.to_present_participle, "plural": language_util.to_plural, "singular": language_util.to_singular, # "synonym": generator_util.FromListGenerator(language_util.get_synonyms), "2_to_1_pronouns": language_util.second_to_first_pronouns, "wikihow_action": lambda seed: random_util.choice_optional( wikihow.get_related_wikihow_actions(seed) ), "get_last_noun_and_article": language_util.get_last_noun_and_article, # Conceptnet "conceptnet_location": conceptnet.weighted_location_generator, "conceptnet_related": conceptnet.weighted_related_word_generator, "conceptnet_related_single_word": lambda word: phrasefinder.get_rarest_word( conceptnet.weighted_related_word_generator(word) ), # Checkers "is_noun": lambda word: word if language_util.is_noun(word) else None, "is_verb": lambda word: word if language_util.is_verb(word) else None, # Unique: To make a variable not be the same as something else with the same parameters "unique": lambda x: x, } class AbstractTextGenerator(object): def generate(self, variables_dictionary): raise NotImplementedError() def generate_with_seed(self, seed): return self.generate({"seed": seed}) class TemplatedTextGenerator(AbstractTextGenerator): def __init__(self, template_file=None, templates_list=None): templates = [] if template_file: templates.extend(read_lines(template_file)) if templates_list: templates.extend(templates_list) # Create a tuple so no templates can accidentally be deleted from the generator self._templates = tuple(templates) def generate(self, variables_dictionary=None): """ Generates a text from the templates using the given variables dictionary""" # Set empty dictionary if none is given if not bool(variables_dictionary): variables_dictionary = {} # Create a mutable copy of the templates list possible_templates = list(self._templates) for i in range(len(possible_templates)): template = random.choice(possible_templates) if can_format_with(template, variables_dictionary): result = apply_variables_to_template(template, variables_dictionary) if result: return result # Remove the template from the possible templates list, such that it won possible_templates.remove(template) class TraceryTextGenerator(AbstractTextGenerator): def __init__(self, tracery_json, variable="origin"): with open(os_util.to_actual_file(tracery_json)) as grammar_file: grammar = get_tracery_grammar(grammar_file) grammar.add_modifiers(base_english) self._grammar = grammar self._variable = variable def generate(self, variables_dictionary=None): """ Generates a text from internal tracery grammar using the given variables dictionary""" # Set empty dictionary if none is given if not bool(variables_dictionary): variables_dictionary = {} # Generate for i in range(100): # TODO prune the grammar instead of retrying template = self._grammar.flatten("#" + self._variable + "#") if can_format_with(template, variables_dictionary): result = apply_variables_to_template(template, variables_dictionary) if result: return result @lru_cache(maxsize=20) def get_tracery_grammar(grammar_file): return tracery.Grammar(json.load(grammar_file)) def can_format_with(template, variables_dictionary): """ Checks if the template can be fully formatted by the given variable dictionary without errors""" format_variables = get_format_variables(template) return (len(format_variables) == 0 and len(variables_dictionary) == 0) or set( format_variables ) <= set(variables_dictionary.keys()) def get_format_variables(template): """ Finds all the names of the variables used in the template """ return {x[0] for x in get_format_variables_and_functions(template)} def get_format_variables_and_functions(template): """ Finds all the names of the variables used in the template with their functions in a large tuple""" matches = re.findall(r"{(\w+)((?:[.]\w+)*)}", template) return set(matches) def apply_variables_to_template(template, variables_dictionary): variables_and_functions = get_format_variables_and_functions(template) applied = apply_functions_to_variables( template, variables_dictionary, variables_and_functions ) if applied: (template, variables_dictionary) = applied return template.format(**variables_dictionary) def apply_functions(variable, functions): """ Applies a list of functions to a variable """ result = variable for func in functions: # Check if it transformed the result into None if result is None: return None if func in known_functions: result = known_functions[func](result) # Check if it is a dictionary, as is allowed in real str.format elif isinstance(result, dict) and func in result: result = result[func] # Unique identifier to make similar functions on a variable have different effects elif func.isdigit(): result = result else: raise ValueError("Unknown function:", func) return result def apply_functions_to_variables( template, variables_dictionary, variables_and_functions ): """ Applies the functions of the variables_and_functions tuple and stores them in the variable dictionary and updates the template """ variables_and_functions = list(variables_and_functions) variables_and_functions.sort(key=lambda a: len(a), reverse=True) for var_func in variables_and_functions: # Check if it has functions to apply if len(var_func) > 1 and len(var_func[1]) > 0: old_var_name = var_func[0] + var_func[1] functions = var_func[1][1:].split(".") variable_name = var_func[0] variable = variables_dictionary[variable_name] applied_functions = apply_functions(variable, functions) if applied_functions is not None: applied_var_name = old_var_name.replace(".", "_") # Replace all occurrences with the dot to the underscore notation template = template.replace(old_var_name, applied_var_name) # Store in dictionary variables_dictionary[applied_var_name] = applied_functions else: return None return template, variables_dictionary def read_lines(filename): """ Reads all the string lines from a file """ return os_util.read_lines(filename)
server/libs/notification_enum.py
teemosauce/rpi-cube
195
92807
<reponame>teemosauce/rpi-cube<gh_stars>100-1000 from enum import Enum class NotificationEnum(Enum): config_refresh = 1 config_refresh_finished = 2 config_refresh_failed = 3 process_stop = 4 process_pause = 5 process_continue = 6
mobly/controllers/android_device_lib/services/logcat.py
booneng/mobly
532
92861
<reponame>booneng/mobly<filename>mobly/controllers/android_device_lib/services/logcat.py # Copyright 2018 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io import logging import os import time from mobly import logger as mobly_logger from mobly import utils from mobly.controllers.android_device_lib import adb from mobly.controllers.android_device_lib import errors from mobly.controllers.android_device_lib.services import base_service CREATE_LOGCAT_FILE_TIMEOUT_SEC = 5 class Error(errors.ServiceError): """Root error type for logcat service.""" SERVICE_TYPE = 'Logcat' class Config: """Config object for logcat service. Attributes: clear_log: bool, clears the logcat before collection if True. logcat_params: string, extra params to be added to logcat command. output_file_path: string, the path on the host to write the log file to, including the actual filename. The service will automatically generate one if not specified. """ def __init__(self, logcat_params=None, clear_log=True, output_file_path=None): self.clear_log = clear_log self.logcat_params = logcat_params if logcat_params else '' self.output_file_path = output_file_path class Logcat(base_service.BaseService): """Android logcat service for Mobly's AndroidDevice controller. Attributes: adb_logcat_file_path: string, path to the file that the service writes adb logcat to by default. """ OUTPUT_FILE_TYPE = 'logcat' def __init__(self, android_device, configs=None): super().__init__(android_device, configs) self._ad = android_device self._adb_logcat_process = None self._adb_logcat_file_obj = None self.adb_logcat_file_path = None # Logcat service uses a single config obj, using singular internal # name: `_config`. self._config = configs if configs else Config() def _enable_logpersist(self): """Attempts to enable logpersist daemon to persist logs.""" # Logpersist is only allowed on rootable devices because of excessive # reads/writes for persisting logs. if not self._ad.is_rootable: return logpersist_warning = ('%s encountered an error enabling persistent' ' logs, logs may not get saved.') # Android L and older versions do not have logpersist installed, # so check that the logpersist scripts exists before trying to use # them. if not self._ad.adb.has_shell_command('logpersist.start'): logging.warning(logpersist_warning, self) return try: # Disable adb log spam filter for rootable devices. Have to stop # and clear settings first because 'start' doesn't support --clear # option before Android N. self._ad.adb.shell('logpersist.stop --clear') self._ad.adb.shell('logpersist.start') except adb.AdbError: logging.warning(logpersist_warning, self) def _is_timestamp_in_range(self, target, begin_time, end_time): low = mobly_logger.logline_timestamp_comparator(begin_time, target) <= 0 high = mobly_logger.logline_timestamp_comparator(end_time, target) >= 0 return low and high def create_output_excerpts(self, test_info): """Convenient method for creating excerpts of adb logcat. This copies logcat lines from self.adb_logcat_file_path to an excerpt file, starting from the location where the previous excerpt ended. Call this method at the end of: `setup_class`, `teardown_test`, and `teardown_class`. Args: test_info: `self.current_test_info` in a Mobly test. Returns: List of strings, the absolute paths to excerpt files. """ dest_path = test_info.output_path utils.create_dir(dest_path) filename = self._ad.generate_filename(self.OUTPUT_FILE_TYPE, test_info, 'txt') excerpt_file_path = os.path.join(dest_path, filename) with io.open(excerpt_file_path, 'w', encoding='utf-8', errors='replace') as out: # Devices may accidentally go offline during test, # check not None before readline(). while self._adb_logcat_file_obj: line = self._adb_logcat_file_obj.readline() if not line: break out.write(line) self._ad.log.debug('logcat excerpt created at: %s', excerpt_file_path) return [excerpt_file_path] @property def is_alive(self): return True if self._adb_logcat_process else False def clear_adb_log(self): """Clears cached adb content.""" try: self._ad.adb.logcat('-c') except adb.AdbError as e: # On Android O, the clear command fails due to a known bug. # Catching this so we don't crash from this Android issue. if b'failed to clear' in e.stderr: self._ad.log.warning('Encountered known Android error to clear logcat.') else: raise def _assert_not_running(self): """Asserts the logcat service is not running. Raises: Error, if the logcat service is running. """ if self.is_alive: raise Error( self._ad, 'Logcat thread is already running, cannot start another one.') def update_config(self, new_config): """Updates the configuration for the service. The service needs to be stopped before updating, and explicitly started after the update. This will reset the service. Previous output files may be orphaned if output path is changed. Args: new_config: Config, the new config to use. """ self._assert_not_running() self._ad.log.info('[LogcatService] Changing config from %s to %s', self._config, new_config) self._config = new_config def _open_logcat_file(self): """Create a file object that points to the beginning of the logcat file. Wait for the logcat file to be created by the subprocess if it doesn't exist. """ if not self._adb_logcat_file_obj: deadline = time.perf_counter() + CREATE_LOGCAT_FILE_TIMEOUT_SEC while not os.path.exists(self.adb_logcat_file_path): if time.perf_counter() > deadline: raise Error(self._ad, 'Timeout while waiting for logcat file to be created.') time.sleep(1) self._adb_logcat_file_obj = io.open(self.adb_logcat_file_path, 'r', encoding='utf-8', errors='replace') self._adb_logcat_file_obj.seek(0, os.SEEK_END) def _close_logcat_file(self): """Closes and resets the logcat file object, if it exists.""" if self._adb_logcat_file_obj: self._adb_logcat_file_obj.close() self._adb_logcat_file_obj = None def start(self): """Starts a standing adb logcat collection. The collection runs in a separate subprocess and saves logs in a file. """ self._assert_not_running() if self._config.clear_log: self.clear_adb_log() self._start() self._open_logcat_file() def _start(self): """The actual logic of starting logcat.""" self._enable_logpersist() if self._config.output_file_path: self._close_logcat_file() self.adb_logcat_file_path = self._config.output_file_path if not self.adb_logcat_file_path: f_name = self._ad.generate_filename(self.OUTPUT_FILE_TYPE, extension_name='txt') logcat_file_path = os.path.join(self._ad.log_path, f_name) self.adb_logcat_file_path = logcat_file_path utils.create_dir(os.path.dirname(self.adb_logcat_file_path)) # In debugging mode of IntelijIDEA, "patch_args" remove # double quotes in args if starting and ending with it. # Add spaces at beginning and at last to fix this issue. cmd = ' "%s" -s %s logcat -v threadtime -T 1 %s >> "%s" ' % ( adb.ADB, self._ad.serial, self._config.logcat_params, self.adb_logcat_file_path) process = utils.start_standing_subprocess(cmd, shell=True) self._adb_logcat_process = process def stop(self): """Stops the adb logcat service.""" self._close_logcat_file() self._stop() def _stop(self): """Stops the background process for logcat.""" if not self._adb_logcat_process: return try: utils.stop_standing_subprocess(self._adb_logcat_process) except Exception: self._ad.log.exception('Failed to stop adb logcat.') self._adb_logcat_process = None def pause(self): """Pauses logcat. Note: the service is unable to collect the logs when paused, if more logs are generated on the device than the device's log buffer can hold, some logs would be lost. """ self._stop() def resume(self): """Resumes a paused logcat service.""" self._assert_not_running() # Not clearing the log regardless of the config when resuming. # Otherwise the logs during the paused time will be lost. self._start()
release/stubs.min/System/ComponentModel/__init___parts/HandledEventArgs.py
htlcnn/ironpython-stubs
182
92883
<reponame>htlcnn/ironpython-stubs class HandledEventArgs(EventArgs): """ Provides data for events that can be handled completely in an event handler. HandledEventArgs() HandledEventArgs(defaultHandledValue: bool) """ @staticmethod def __new__(self,defaultHandledValue=None): """ __new__(cls: type) __new__(cls: type,defaultHandledValue: bool) """ pass Handled=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets or sets a value that indicates whether the event handler has completely handled the event or whether the system should continue its own processing. Get: Handled(self: HandledEventArgs) -> bool Set: Handled(self: HandledEventArgs)=value """
pytext/metric_reporters/intent_slot_detection_metric_reporter.py
Titousensei/pytext-1
6,199
92884
<reponame>Titousensei/pytext-1 #!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from typing import Dict, List, Optional from pytext.common.constants import DatasetFieldName, Stage from pytext.data.data_structures.annotation import CLOSE, OPEN, escape_brackets from pytext.metrics.intent_slot_metrics import ( FramePredictionPair, Node, Span, compute_all_metrics, ) from pytext.utils.data import ( byte_length, get_substring_from_offsets, merge_token_labels_to_slot, parse_slot_string, ) from .channel import Channel, ConsoleChannel, FileChannel from .metric_reporter import MetricReporter DOC_LABEL_NAMES = "doc_label_names" def create_frame(text, intent_label, slot_names_str, byte_len): frame = Node( label=intent_label, span=Span(0, byte_len), children={ Node(label=slot.label, span=Span(slot.start, slot.end)) for slot in parse_slot_string(slot_names_str) }, text=text, ) return frame def frame_to_str(frame: Node): annotation_str = OPEN + escape_brackets(frame.label) + " " cur_index = 0 for slot in sorted(frame.children, key=lambda slot: slot.span.start): annotation_str += escape_brackets( get_substring_from_offsets(frame.text, cur_index, slot.span.start) ) annotation_str += ( OPEN + escape_brackets(slot.label) + " " + escape_brackets( get_substring_from_offsets(frame.text, slot.span.start, slot.span.end) ) + " " + CLOSE ) cur_index = slot.span.end annotation_str += ( escape_brackets(get_substring_from_offsets(frame.text, cur_index, None)) + " " + CLOSE ) return annotation_str class IntentSlotMetricReporter(MetricReporter): __EXPANSIBLE__ = True def __init__( self, doc_label_names: List[str], word_label_names: List[str], use_bio_labels: bool, channels: List[Channel], slot_column_name: str = "slots", text_column_name: str = "text", token_tensorizer_name: str = "tokens", ) -> None: super().__init__(channels) self.doc_label_names = doc_label_names self.word_label_names = word_label_names self.use_bio_labels = use_bio_labels self.slot_column_name = slot_column_name self.text_column_name = text_column_name self.token_tensorizer_name = token_tensorizer_name class Config(MetricReporter.Config): pass @classmethod def from_config(cls, config, tensorizers: Optional[Dict] = None): # TODO this part should be handled more elegantly for name in ["text_feats", "tokens"]: if name in tensorizers: token_tensorizer_name = name break return cls( tensorizers["doc_labels"].vocab, tensorizers["word_labels"].vocab, getattr(tensorizers["word_labels"], "use_bio_labels", False), [ConsoleChannel(), FileChannel((Stage.TEST,), config.output_path)], tensorizers["word_labels"].slot_column, tensorizers[token_tensorizer_name].text_column, token_tensorizer_name, ) def aggregate_preds(self, batch_preds, batch_context): intent_preds, word_preds = batch_preds self.all_preds.extend( [ create_frame( text, self.doc_label_names[intent_pred], merge_token_labels_to_slot( token_range[0:seq_len], [self.word_label_names[p] for p in word_pred[0:seq_len]], self.use_bio_labels, ), byte_length(text), ) for text, intent_pred, word_pred, seq_len, token_range in zip( batch_context[self.text_column_name], intent_preds, word_preds, batch_context[DatasetFieldName.SEQ_LENS], batch_context[DatasetFieldName.TOKEN_RANGE], ) ] ) def aggregate_targets(self, batch_targets, batch_context): intent_targets = batch_targets[0] self.all_targets.extend( [ create_frame( text, self.doc_label_names[intent_target], raw_slot_label, byte_length(text), ) for text, intent_target, raw_slot_label, seq_len in zip( batch_context[self.text_column_name], intent_targets, batch_context[DatasetFieldName.RAW_WORD_LABEL], batch_context[DatasetFieldName.SEQ_LENS], ) ] ) def get_raw_slot_str(self, raw_data_row): return ",".join([str(x) for x in raw_data_row[self.slot_column_name]]) def aggregate_scores(self, batch_scores): intent_scores, slot_scores = batch_scores self.all_scores.extend( (intent_score, slot_score) for intent_score, slot_score in zip( intent_scores.tolist(), slot_scores.tolist() ) ) def predictions_to_report(self): """ Generate human readable predictions """ return [frame_to_str(frame) for frame in self.all_preds] def targets_to_report(self): """ Generate human readable targets """ return [frame_to_str(frame) for frame in self.all_targets] def calculate_metric(self): return compute_all_metrics( [ FramePredictionPair(pred_frame, target_frame) for pred_frame, target_frame in zip(self.all_preds, self.all_targets) ], frame_accuracy=True, ) def batch_context(self, raw_batch, batch): context = super().batch_context(raw_batch, batch) context[self.text_column_name] = [ row[self.text_column_name] for row in raw_batch ] context[DatasetFieldName.SEQ_LENS] = batch[self.token_tensorizer_name][ 1 ].tolist() context[DatasetFieldName.TOKEN_RANGE] = batch[self.token_tensorizer_name][ 2 ].tolist() context[DatasetFieldName.RAW_WORD_LABEL] = [ self.get_raw_slot_str(raw_data_row) for raw_data_row in raw_batch ] return context def get_model_select_metric(self, metrics): return metrics.frame_accuracy
trainer/base.py
merlinarer/scrl
102
92898
import copy import errno import os import logging import math import torch from torch import nn import torch.nn.functional as F from torch.nn.parallel import DistributedDataParallel from .helper import TensorBoardWriter from .linear_eval import iter_eval_epoch, linear_eval_online, linear_eval_offline from data import get_loaders_for_trainer from models import Backbone from models.heads import SingleLayerLinearHead, TwoLayerLinearHead from optim import get_optimizer_and_scheduler import utils log = logging.getLogger('main') C = utils.Colorer.instance() def _unwrap(wrapped_module): if isinstance(wrapped_module, DistributedDataParallel): module = wrapped_module.module else: module = wrapped_module return module def _regression_loss(x, y): # eps = 1e-6 if torch.is_autocast_enabled() else 1e-12 x = F.normalize(x, p=2, dim=1) #, eps=eps) y = F.normalize(y, p=2, dim=1) #, eps=eps) return (2 - 2 * (x * y).sum(dim=1)).view(-1) class BYOLBasedTrainer: """This trainer supports BYOL-like training framework that can be subclassed by other task-specific trainer classes. To specify a detailed algorithm, the user should implement Traniner.run(). """ def __init__(self, cfg, online_network, target_network, predictor=None, evaluator=None, train_loader=None, eval_loader=None): if cfg.train.enabled: assert train_loader is not None assert predictor is not None if cfg.train.enabled and cfg.train.online_eval: assert eval_loader is not None assert evaluator is not None self._modules = {} self._saving_targets = {} self.cfg = cfg self.device = cfg.device self.online_network = online_network self.target_network = target_network self.predictor = predictor self.evaluator = evaluator self.xent_loss = nn.CrossEntropyLoss() self.train_loader = train_loader self.eval_loader = eval_loader self._setup_device_and_distributed_parallel(cfg.device) self.cur_epoch = 0 self.max_epochs = 0 self.max_eval_score = 0. self.max_eval_epoch = 0 if self.cfg.train.enabled: self.m_base = self.m = cfg.train.m self.max_epochs = cfg.train.max_epochs self.total_global_step = len(train_loader) * cfg.train.max_epochs self.optimizer, self.scheduler = get_optimizer_and_scheduler( cfg=self.cfg, mode='train', modules=self._modules, loader=train_loader, exclude_from_lars=True, module_black_list=['target_network']) self.scaler = torch.cuda.amp.GradScaler() #init_scale=2**14) # default init_scale 2**16 will yield invalid gradient in the first interation self.tb_writer = TensorBoardWriter.init_for_train_from_config(cfg) else: self.optimizer, self.scheduler, self.scaler = None, None, None def __setattr__(self, name, value): if hasattr(value, 'state_dict') and callable(value.state_dict): self._saving_targets[name] = value # including optimzers & schedulers if isinstance(value, nn.Module): self._modules[name] = value object.__setattr__(self, name, value) def run(self): """Main training algorithm should be implemented in this method.""" raise NotImplementedError() @classmethod def init_from_config(cls, cfg): train_loader, eval_loader, num_classes = get_loaders_for_trainer(cfg) online_network = Backbone.init_from_config(cfg) target_network, predictor, evaluator = None, None, None if cfg.train.enabled: target_network = Backbone.init_from_config(cfg) predictor = TwoLayerLinearHead.init_predictor_from_config(cfg) evaluator = SingleLayerLinearHead.init_evaluator_from_config( cfg, num_classes) return cls( cfg=cfg, train_loader=train_loader, eval_loader=eval_loader, online_network=online_network, target_network=target_network, predictor=predictor, evaluator=evaluator, ) def _setup_device_and_distributed_parallel(self, device): for name, module in self._modules.items(): module = module.to(device) module = utils.wrap_if_distributed(module, device) self._modules[name] = module object.__setattr__(self, name, module) @torch.no_grad() def _update_target_network_parameters(self): """ Momentum update of the key encoder """ for param_q, param_k in zip(self.online_network.parameters(), self.target_network.parameters()): param_k.data = param_k.data * self.m + param_q.data * (1. - self.m) def _decay_ema_momentum(self, step): self.m = (1 - (1 - self.m_base) * (math.cos(math.pi * step / self.total_global_step) + 1) / 2) @staticmethod def _criterion(p_online, p_target): """Regression loss used in BYOL.""" p_online_v1, p_online_v2 = p_online.chunk(2) p_target_v1, p_target_v2 = p_target.chunk(2) assert p_online_v1.size(0) == p_online_v2.size(0) assert p_target_v1.size(0) == p_target_v2.size(0) assert p_online_v1.size(0) == p_target_v1.size(0) # symmetric loss loss = _regression_loss(p_online_v1, p_target_v2) loss += _regression_loss(p_online_v2, p_target_v1) return loss.mean() def _initialize_target_network(self, from_online): # init momentum network as encoder net for param_q, param_k in zip(self.online_network.parameters(), self.target_network.parameters()): if from_online: param_k.data.copy_(param_q.data) # initialize param_k.requires_grad = False # not update by gradient def _save_checkpoint(self, tag): save_path = f"{self.cfg.save_dir}/checkpoint_" + str(tag) + ".pth" state_dict = { 'tag': str(tag), 'epoch': self.cur_epoch, 'max_eval_score': self.max_eval_score, 'max_eval_epoch': self.max_eval_epoch, } for key, target in self._saving_targets.items(): if self.cfg.fake_checkpoint: target = "fake_state_dict" else: target = utils.unwrap_if_distributed(target) target = target.state_dict() state_dict[f"{key}_state_dict"] = target torch.save(state_dict, save_path) suffix = (C.debug(" (fake_checkpoint)") if self.cfg.fake_checkpoint else "") return save_path + suffix def save_checkpoint(self, epoch): save_path = self._save_checkpoint(str(epoch)) log.info(f"[Save] restore the model's checkpoint: {save_path}") return save_path def save_best_checkpoint(self): save_path = self._save_checkpoint('best') log.info(f"[Save] restore the best model's checkpoint: {save_path}") return save_path def symlink_checkpoint_with_tag(self, epoch, tag): save_path = f"{self.cfg.save_dir}/checkpoint_{epoch}.pth" symlink_path = f"{self.cfg.save_dir}/checkpoint_{tag}.pth" if not os.path.exists(save_path): self._save_checkpoint(epoch) try: os.symlink(os.path.abspath(save_path), symlink_path) except OSError as e: if e.errno == errno.EEXIST: os.remove(symlink_path) os.symlink(os.path.abspath(save_path), symlink_path) else: raise e finally: log.info(f"[Save] make a symlink of the current model: " f"{symlink_path}") return symlink_path def load_checkpoint_if_available(self, tag='last'): if self.cfg.overwrite: assert not self.cfg.load_dir, \ "Mutually exclusive aruguements: overwrite, load_dir." log.warning("Overwrite checkpoints in save_dir.") return False try: load_dir = self.cfg.load_dir or self.cfg.save_dir load_path = f"{load_dir}/checkpoint_{tag}.pth" state_dict = torch.load(load_path) except FileNotFoundError: if self.cfg.load_dir: raise FileNotFoundError(f"Can't find checkpoint at {load_dir}") else: log.warning(f'No checkpoint to resume from {load_dir}.') return False self.cur_epoch = state_dict['epoch'] self.max_eval_score = state_dict['max_eval_score'] self.max_eval_epoch = state_dict['max_eval_epoch'] state_dict = {k[:-len('_state_dict')]: v for k, v in state_dict.items() if k.endswith('_state_dict')} log.info(f"[Resume] Loaded chekpoint (epoch: {self.cur_epoch}) " f"from: {load_path}") missing_keys = set(self._saving_targets.keys()) - set(state_dict.keys()) unexpected_keys = set(state_dict.keys()) - set(self._saving_targets.keys()) assert len(missing_keys) == 0, "Missing keys!" log.info("[Resume] Redundant keys: " f"{list(unexpected_keys) if unexpected_keys else 'None'}") for key, target in self._saving_targets.items(): if state_dict[key] == 'fake_state_dict': log.info(f"[Resume] Loaded {key}: {C.debug('(fake_chekpoint)')}") else: kwargs = {'strict': False} if isinstance(target, nn.Module) else {} loaded = _unwrap(target).load_state_dict(state_dict[key], **kwargs) if isinstance(target, nn.Module): assert len(loaded.missing_keys) == 0 if isinstance(target, Backbone): # the projector is be ignored in evaluation-only cases assert all([key.startswith('projector.') for key in loaded.unexpected_keys]) log.info(f"[Resume] Loaded {key}") return True
common/parametric_distribution.py
Timothy102/seed_rl
733
92902
<filename>common/parametric_distribution.py<gh_stars>100-1000 # coding=utf-8 # Copyright 2019 The SEED Authors # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Parametric distributions over action spaces.""" import abc from typing import Callable import dataclasses import gym import tensorflow as tf import tensorflow_probability as tfp from tensorflow_probability.python.distributions import kullback_leibler tfb = tfp.bijectors tfd = tfp.distributions class ParametricDistribution(abc.ABC): """Abstract class for parametric (action) distribution.""" def __init__(self, param_size, create_dist): """Abstract class for parametric (action) distribution. Specifies how to transform distribution parameters (i.e. actor output) into a distribution over actions. Args: param_size: Size of the parameters for the distribution create_dist: Function from parameters to tf Distribution. """ self._param_size = param_size self._create_dist = create_dist @property def create_dist(self): return self._create_dist def __call__(self, params): return self.create_dist(params) @property def param_size(self): return self._param_size @property def reparametrizable(self): return self._create_dist(tf.zeros( (self._param_size, ))).reparameterization_type == tfd.FULLY_REPARAMETERIZED def sample(self, parameters): return self._create_dist(parameters).sample() def log_prob(self, parameters, actions): return self._create_dist(parameters).log_prob(actions) def entropy(self, parameters): """Return the entropy of the given distribution.""" return self._create_dist(parameters).entropy() def kl_divergence(self, parameters_a, parameters_b): """Return KL divergence between the two distributions.""" dist_a = self._create_dist(parameters_a) dist_b = self._create_dist(parameters_b) return tfd.kl_divergence(dist_a, dist_b) def categorical_distribution(n_actions, dtype): """Initialize the categorical distribution. Args: n_actions: the number of actions available. dtype: dtype of actions, usually int32 or int64. Returns: A tuple (param size, fn(params) -> distribution) """ def create_dist(parameters): return tfd.Categorical(logits=parameters, dtype=dtype) return ParametricDistribution(n_actions, create_dist) def multi_categorical_distribution(n_dimensions, n_actions_per_dim, dtype): """Initialize the categorical distribution. Args: n_dimensions: the dimensionality of actions. n_actions_per_dim: number of actions available per dimension. dtype: dtype of actions, usually int32 or int64. Returns: A tuple (param size, fn(params) -> distribution) """ def create_dist(parameters): batch_shape = parameters.shape[:-1] logits_shape = [n_dimensions, n_actions_per_dim] logits = tf.reshape(parameters, batch_shape + logits_shape) return tfd.Independent( tfd.Categorical(logits=logits, dtype=dtype), reinterpreted_batch_ndims=1) return ParametricDistribution(n_dimensions * n_actions_per_dim, create_dist) # NB: This distribution has no gradient w.r.t the action close to boundaries. class TanhTransformedDistribution(tfd.TransformedDistribution): """Distribution followed by tanh.""" def __init__(self, distribution, threshold=.999, validate_args=False): """Initialize the distribution. Args: distribution: The distribution to transform. threshold: Clipping value of the action when computing the logprob. validate_args: Passed to super class. """ super().__init__( distribution=distribution, bijector=tfp.bijectors.Tanh(), validate_args=validate_args) # Computes the log of the average probability distribution outside the # clipping range, i.e. on the interval [-inf, -atanh(threshold)] for # log_prob_left and [atanh(threshold), inf] for log_prob_right. self._threshold = threshold inverse_threshold = self.bijector.inverse(threshold) # Let epsilon = 1 - threshold # average(pdf) on [threshold, 1] = probability([threshold, 1])/epsilon # So log(average(pdf)) = log(probability) - log(epsilon) log_epsilon = tf.math.log(1. - threshold) # Those 2 values are differentiable w.r.t. model parameters, such that the # gradient is defined everywhere. # There won't be any gradient w.r.t the action though. self._log_prob_left = self.distribution.log_cdf( -inverse_threshold) - log_epsilon self._log_prob_right = self.distribution.log_survival_function( inverse_threshold) - log_epsilon def log_prob(self, event): # Without this clip there would be NaNs in the inner tf.where and that # causes issues for some reasons. event = tf.clip_by_value(event, -self._threshold, self._threshold) # The inverse image of {threshold} is the interval [atanh(threshold), inf] # which has a probability of "log_prob_right" under the given distribution. return tf.where( event <= -self._threshold, self._log_prob_left, tf.where(event >= self._threshold, self._log_prob_right, super().log_prob(event))) def mode(self): return self.bijector.forward(self.distribution.mode()) def mean(self): return self.bijector.forward(self.distribution.mean()) def entropy(self, seed=None): # We return an estimation using a single sample of the log_det_jacobian. # We can still do some backpropagation with this estimate. return self.distribution.entropy() + self.bijector.forward_log_det_jacobian( self.distribution.sample(seed=seed), event_ndims=0) @kullback_leibler.RegisterKL(TanhTransformedDistribution, TanhTransformedDistribution) def _kl_transformed(a, b, name='kl_transformed'): return kullback_leibler.kl_divergence( a.distribution, b.distribution, name=name) def softplus_default_std_fn(scale): return tf.nn.softplus(scale) + 1e-3 def normal_tanh_distribution(num_actions, gaussian_std_fn=softplus_default_std_fn): """Normal distribution postprocessed by a tanh.""" def create_dist(parameters): loc, scale = tf.split(parameters, 2, axis=-1) scale = gaussian_std_fn(scale) normal_dist = tfd.Normal(loc=loc, scale=scale) return tfd.Independent( TanhTransformedDistribution(normal_dist), reinterpreted_batch_ndims=1) return ParametricDistribution(2 * num_actions, create_dist) class ClippedIdentity(tfb.identity.Identity): """Compute Y = clip_by_value(X, -1, 1). Note that we do not override `is_injective` despite this bijector not being injective, to not disable Identity's `forward_log_det_jacobian`. See also tensorflow_probability.bijectors.identity.Identity. """ def __init__(self, validate_args=False, name='clipped_identity'): with tf.name_scope(name) as name: super(ClippedIdentity, self).__init__( validate_args=validate_args, name=name) @classmethod def _is_increasing(cls): return False def _forward(self, x): return tf.clip_by_value(x, -1., 1.) CLIPPED_IDENTITY = ClippedIdentity() def normal_clipped_distribution(num_actions, gaussian_std_fn=softplus_default_std_fn): """Normal distribution postprocessed by a clipped identity.""" def create_dist(parameters): loc, scale = tf.split(parameters, 2, axis=-1) scale = gaussian_std_fn(scale) normal_dist = tfd.Normal(loc=loc, scale=scale) return tfd.Independent( CLIPPED_IDENTITY(normal_dist), reinterpreted_batch_ndims=1) return ParametricDistribution(2 * num_actions, create_dist) def deterministic_tanh_distribution(num_actions): def create_dist(parameters): return tfd.Independent( TanhTransformedDistribution(tfd.Deterministic(loc=parameters)), reinterpreted_batch_ndims=1) return ParametricDistribution(num_actions, create_dist) def joint_distribution(parametric_distributions, dtype_override=tf.float32): """Initialize the distribution. Args: parametric_distributions: A list of ParametricDistributions. dtype_override: The type to output the actions in. Returns: A tuple (param size, fn(params) -> distribution) """ param_sizes = [ dist.param_size for dist in parametric_distributions ] def create_dist(parameters): split_params = tf.split(parameters, param_sizes, axis=-1) dists = [ dist(param) for (dist, param) in zip(parametric_distributions, split_params) ] return tfd.Blockwise(dists, dtype_override=dtype_override) return ParametricDistribution(sum(param_sizes), create_dist) def check_multi_discrete_space(space): if min(space.nvec) != max(space.nvec): raise ValueError('space nvec must be constant: {}'.format(space.nvec)) def check_box_space(space): assert len(space.shape) == 1, space.shape if any(l != -1 for l in space.low): raise ValueError( f'Learner only supports actions bounded to [-1,1]: {space.low}') if any(h != 1 for h in space.high): raise ValueError( f'Learner only supports actions bounded to [-1,1]: {space.high}') def get_parametric_distribution_for_action_space(action_space, continuous_config=None): """Returns an action distribution parametrization based on the action space. Args: action_space: action space of the environment continuous_config: Configuration for the continuous action distribution (used when needed by the action space).. """ if isinstance(action_space, gym.spaces.Discrete): return categorical_distribution(action_space.n, dtype=action_space.dtype) elif isinstance(action_space, gym.spaces.MultiDiscrete): check_multi_discrete_space(action_space) return multi_categorical_distribution( n_dimensions=len(action_space.nvec), n_actions_per_dim=action_space.nvec[0], dtype=action_space.dtype) elif isinstance(action_space, gym.spaces.Box): # continuous actions check_box_space(action_space) if continuous_config is None: continuous_config = ContinuousDistributionConfig() if continuous_config.postprocessor == 'Tanh': return normal_tanh_distribution( num_actions=action_space.shape[0], gaussian_std_fn=continuous_config.gaussian_std_fn) elif continuous_config.postprocessor == 'ClippedIdentity': return normal_clipped_distribution( num_actions=action_space.shape[0], gaussian_std_fn=continuous_config.gaussian_std_fn) else: raise ValueError( f'Postprocessor {continuous_config.postprocessor} not supported.') elif isinstance(action_space, gym.spaces.Tuple): # mixed actions return joint_distribution([ get_parametric_distribution_for_action_space(subspace, continuous_config) for subspace in action_space ]) else: raise ValueError(f'Unsupported action space {action_space}') @tf.custom_gradient def safe_exp(x): e = tf.exp(tf.clip_by_value(x, -15, 15)) def grad(dy): return dy * e return e, grad def safe_exp_std_fn(std_for_zero_param: float, min_std): std_shift = tf.math.log(std_for_zero_param - min_std) fn = lambda scale: safe_exp(scale + std_shift) + min_std assert abs(fn(0) - std_for_zero_param) < 1e-3 return fn def softplus_std_fn(std_for_zero_param: float, min_std: float): std_shift = tfp.math.softplus_inverse(std_for_zero_param - min_std) fn = lambda scale: tf.nn.softplus(scale + std_shift) + min_std assert abs(fn(0) - std_for_zero_param) < 1e-3 return fn @dataclasses.dataclass class ContinuousDistributionConfig(object): """Configuration for continuous distributions. Currently, only NormalSquashedDistribution is supported. The default configuration corresponds to a normal distribution (with standard deviation computed from params using an unshifted softplus offset by 1e-3), followed by tanh. """ # Transforms parameters into non-negative values for standard deviation of the # gaussian. gaussian_std_fn: Callable[[tf.Tensor], tf.Tensor] = softplus_default_std_fn # The squashing postprocessor. # Accepted values are Tanh and ClippedIdentity. postprocessor: str = 'Tanh' def continuous_action_config( action_min_gaussian_std: float = 1e-3, action_gaussian_std_fn: str = 'softplus', action_std_for_zero_param: float = 1, action_postprocessor: str = 'Tanh') -> ContinuousDistributionConfig: """Configures continuous distributions from numerical and string inputs. Currently, only NormalSquashedDistribution is supported. The default configuration corresponds to a normal distribution with standard deviation computed from params using an unshifted softplus, followed by tanh. Args: action_min_gaussian_std: minimal standard deviation. action_gaussian_std_fn: transform for standard deviation parameters. action_std_for_zero_param: shifts the transform to get this std when parameters are zero. action_postprocessor: the non-linearity applied to the sample from the gaussian. Returns: A continuous distribution setup, with the parameters transform to get the standard deviation applied with a shift, as configured. """ config = ContinuousDistributionConfig() config.min_gaussian_std = float(action_min_gaussian_std) if action_gaussian_std_fn == 'safe_exp': config.gaussian_std_fn = safe_exp_std_fn(action_std_for_zero_param, config.min_gaussian_std) elif action_gaussian_std_fn == 'softplus': config.gaussian_std_fn = softplus_std_fn(action_std_for_zero_param, config.min_gaussian_std) else: raise ValueError('Flag `action_gaussian_std_fn` only supports safe_exp and' f' softplus, got: {action_gaussian_std_fn}') config.postprocessor = action_postprocessor return config
Notebooks/Target-lane.py
keuntaeklee/pytorch-PPUU
159
92912
<gh_stars>100-1000 # --- # jupyter: # jupytext: # formats: ipynb,py:percent # text_representation: # extension: .py # format_name: percent # format_version: '1.2' # jupytext_version: 1.2.1 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # %% from mpl_toolkits import mplot3d from matplotlib.pylab import * # %% style.use(['dark_background', 'bmh']) rc('axes', facecolor='k') rc('figure', facecolor='k') rc('figure', figsize=(10,5)) # %% # Lanes from -1 to 3 --> 0 is target lane y = r_[-1:3.1:.1] # 2 lane widths in front and in back x = r_[-2:2.1:.1] # %% # Target lane cost # target_lane_cost = y ** 2 / 4 target_lane_cost = abs(y) * .5 # %% # Color shorthands r, g, b, p = 'C1', 'C3', 'C0', 'C2' set_color = lambda c: dict(linefmt=c, basefmt=" ", markerfmt='o'+c) # %% # Target Lane 0, Ego Car Lane 2, Other Car Lane 1 figure() y_proximity = maximum(1 - abs(1 - y), 0) stem(y, target_lane_cost + y_proximity, **set_color(p), label='Total Cost') stem(y, target_lane_cost, **set_color(b), label='Target Lane Cost') stem(y, y_proximity, **set_color(g), label='Y Proximity Cost') arrow_props = dict(width=1.5, facecolor='white') # annotate('Ego Car', (2.0, 0.0), (2, -0.25), arrowprops=arrow_props) annotate('Other Car', (1.0, 0.0), (1, -0.25), arrowprops=arrow_props) annotate('Target Lane', (0.0, 0.0), (0, -0.25), arrowprops=arrow_props) axis('equal') title('Target Lane Cost + Proximity Cost') legend() savefig('car_1_left.png') # Target Lane 0, Ego Car Lane 2, Other Car Lane 0 figure() y_proximity = maximum(1 - abs(0 - y), 0) stem(y, target_lane_cost + y_proximity, **set_color(p), label='Total Cost') stem(y, target_lane_cost, **set_color(b), label='Target Lane Cost') stem(y, y_proximity, **set_color(g), label='Y Proximity Cost') # annotate('Ego Car', (2.0, 0.0), (2, -0.25), arrowprops=arrow_props) annotate('Other Car', (0.0, 0.0), (0.8, -0.25), arrowprops=arrow_props) annotate('Target Lane', (0.0, 0.0), (0, -0.25), arrowprops=arrow_props) axis('equal') title('Target Lane Cost + Proximity Cost') legend() savefig('car_2_left.png') # Target Lane 0, Ego Car Lane 1, Lane Cost accounted for figure() lane_cost = (maximum(0.5 - abs(0.5 - y), 0) + maximum(0.5 - abs(1.5 - y), 0)) * 0.4 stem(y, target_lane_cost + lane_cost, **set_color(p), label='Total Cost') stem(y, target_lane_cost, **set_color(b), label='Target Lane Cost') stem(y, lane_cost, **set_color(r), label='Lane Cost') annotate('Ego Car', (1.0, 0.0), (1, -0.25), arrowprops=arrow_props) annotate('Target Lane', (0.0, 0.0), (0, -0.25), arrowprops=arrow_props) axis('equal') title('Target Lane Cost + Lane Cost') legend(); savefig('lane_change.png') # %% figure() plot(y, lane_cost) ylim(-0.05, 0.2) annotate('Ego Car', (1.0, 0.0), (1, -0.04), arrowprops=arrow_props) title('Lane Cost'); # %% set_color_3d = lambda c: dict(color=c, marker='o', markeredgecolor=c, markevery=(0.1, 0.1)) x_proximity = maximum(0, 1 - abs(x)) figure() ax = axes(projection='3d'); ax.set_xlabel('x-direction') ax.set_ylabel('y-direction') ax.set_zlabel('Cost') for i in range(len(y)): # Target lane cost line = mplot3d.art3d.Line3D(*zip((0, y[i], 0), (0, y[i], target_lane_cost[i])), **set_color_3d(b)) ax.add_line(line) # Lane cost line = mplot3d.art3d.Line3D(*zip((0, y[i], 0), (0, y[i], lane_cost[i])), **set_color_3d(r)) ax.add_line(line) # X-Proximity cost line = mplot3d.art3d.Line3D(*zip((x[i], 1, 0), (x[i], 1, x_proximity[i])), **set_color_3d(g)) ax.add_line(line) ax.set_xlim3d(-2, 2) ax.set_ylim3d(-1, 3) ax.set_zlim3d(-0.25, 2); # %%
rest_client/clients/core.py
js882829/tars
371
92929
<reponame>js882829/tars from __future__ import absolute_import import json import urlparse import requests from requests.exceptions import RequestException from django.conf import settings from rest_client.decorators import json_format from rest_client.utils import ConfigDict, get_logger, Guardor from rest_client.exceptions import ( ServerResponseException, InvalidRestMethodException, ConfigMissing) logger = get_logger() ALLOWED_HTTP_METHODS = frozenset(('GET', 'POST', 'PUT', 'DELETE', 'PATCH')) class Client(object): _timeout = 3 _env = 'default' _default_env = 'default' _use_default = False _parser = staticmethod(json.loads) _error_parser = staticmethod(lambda x: x) def __new__(cls): raise AssertionError # Client can't have instances @classmethod def config(cls, name=None, key=None): name = name or cls.__name__.upper() configs = settings.REST_CLIENT_SETTINGS.get(name, {}) try: if cls._use_default and cls._env not in configs: profile = cls._default_env else: profile = cls._env config = configs[profile] except KeyError: raise ConfigMissing('Configuration for {} is not found' .format(cls.__name__)) config = ConfigDict(config) config.host = cls.__name__ return config if key is None else config.get(key) @classmethod def build_url_base(cls): cfg = cls.config() url = urlparse.urlparse('http://' + cfg['HOSTNAME']) port = cfg.get('PORT') or '80' hostname = url.hostname url_str = url.geturl() cls._url_base = url_str.replace( hostname, '{}:{}'.format(hostname, port), 1) @classmethod def _get_sanitized_url(cls, url): if cls._url_base is None: cls.build_url_base() return urlparse.urljoin(cls._url_base, url) @classmethod def _rest_call(cls, url, method='GET', **kwargs): url = cls._get_sanitized_url(url) if method in ALLOWED_HTTP_METHODS: try: kwargs.setdefault('timeout', cls._timeout) response = requests.request(method.lower(), url, verify=True, **kwargs) except RequestException as e: raise ServerResponseException('Connection error {}' .format(e.message)) else: raise InvalidRestMethodException( 'Invalid method "{}" is used for the HTTP request. Can only' 'use the following: {!s}'.format(method, ALLOWED_HTTP_METHODS) ) if 200 <= response.status_code < 300: response_data = response.text data = cls._parser(response_data) if response_data else None return data else: cleansed_kwargs = Guardor.cleanse_content(kwargs) msg = '%s returned HTTP %d: %s\nResponse\nHeaders: %s\nBody: %s' % ( url, response.status_code, cleansed_kwargs, response.headers, cls._error_parser(response.text)) logger.error(msg) cls._error_handler(response) raise ServerResponseException( 'Server response not OK. Verbose: {0}'.format(msg)) @classmethod def _error_handler(cls, response): pass class JsonClient(Client): @classmethod @json_format def _rest_call(cls, url, method, **kwargs): return super(JsonClient, cls)._rest_call(url, method, **kwargs)
test/tst_create_mem.py
timgates42/netcdf4-python
574
92939
<filename>test/tst_create_mem.py import unittest import netCDF4 import numpy as np from numpy.testing import assert_array_equal class TestCreateMem(unittest.TestCase): def test_mem_create(self): def check_inmemory(format): # memory is 'advisory size' - not needed for NETCDF4/HDF5 # but is used for NETCDF3. nc = netCDF4.Dataset('test.nc','w',memory=1028,format=format) d = nc.createDimension('x',None) v = nc.createVariable('v',np.int32,'x') data = np.arange(5) v[0:5] = data # retrieve memory buffer b = nc.close() # open a new file using this memory buffer nc2 = netCDF4.Dataset('test2.nc','r',memory=b) assert_array_equal(nc2['v'][:],data) nc2.close() check_inmemory('NETCDF3_CLASSIC') check_inmemory('NETCDF4_CLASSIC') if __name__ == '__main__': unittest.main()
metal/mmtl/metal_model.py
inimino/metal
437
92980
<gh_stars>100-1000 from collections import defaultdict import numpy as np import torch import torch.nn as nn from metal.utils import move_to_device, recursive_merge_dicts, set_seed model_defaults = { "seed": None, "device": 0, # gpu id (int) or -1 for cpu "verbose": True, "fp16": False, "model_weights": None, # the path to a saved checkpoint to initialize with } class MetalModel(nn.Module): """A dynamically constructed discriminative classifier Args: tasks: a list of Task objects which bring their own (named) modules We currently support up to N input modules -> middle layers -> up to N heads TODO: Accept specifications for more exotic structure (e.g., via user-defined graph) """ def __init__(self, tasks, **kwargs): self.config = recursive_merge_dicts(model_defaults, kwargs, misses="insert") # Set random seed before initializing module weights if self.config["seed"] is None: self.config["seed"] = np.random.randint(1e6) set_seed(self.config["seed"]) super().__init__() # Build network self._build(tasks) self.task_map = {task.name: task for task in tasks} # Load weights if self.config["model_weights"]: self.load_weights(self.config["model_weights"]) # Half precision if self.config["fp16"]: print("metal_model.py: Using fp16") self.half() # Move model to device now, then move data to device in forward() or calculate_loss() if self.config["device"] >= 0: if torch.cuda.is_available(): if self.config["verbose"]: print("Using GPU...") self.to(torch.device(f"cuda:{self.config['device']}")) else: if self.config["verbose"]: print("No cuda device available. Using cpu instead.") # Show network if self.config["verbose"]: print("\nNetwork architecture:") print(self) print() num_params = sum(p.numel() for p in self.parameters() if p.requires_grad) print(f"Total number of parameters: {num_params}") def _build(self, tasks): """Iterates over tasks, adding their input_modules and head_modules""" # TODO: Allow more flexible specification of network structure self.input_modules = nn.ModuleDict( {task.name: nn.DataParallel(task.input_module) for task in tasks} ) self.middle_modules = nn.ModuleDict( {task.name: nn.DataParallel(task.middle_module) for task in tasks} ) self.head_modules = nn.ModuleDict( {task.name: nn.DataParallel(task.head_module) for task in tasks} ) self.loss_hat_funcs = {task.name: task.loss_hat_func for task in tasks} self.output_hat_funcs = {task.name: task.output_hat_func for task in tasks} def forward(self, X, task_names): """Returns the outputs of the requested task heads in a dictionary The output of each task is the result of passing the input through the input_module, middle_module, and head_module for that task, in that order. Before calculating any intermediate values, we first check whether a previously evaluated task has produced that intermediate result. If so, we use that. Args: X: a [batch_size, ...] batch from a DataLoader Returns: output_dict: {task_name (str): output (Tensor)} """ input = move_to_device(X, self.config["device"]) outputs = {} # TODO: Replace this naive caching scheme with a more intelligent and feature- # complete approach where arbitrary DAGs of modules are specified and we only # cache things that will be reused by another task for task_name in task_names: # Extra .module call is to get past DataParallel wrapper input_module = self.input_modules[task_name].module if input_module not in outputs: output = input_module(input) outputs[input_module] = output middle_module = self.middle_modules[task_name].module if middle_module not in outputs: output = middle_module(outputs[input_module]) outputs[middle_module] = output head_module = self.head_modules[task_name].module if head_module not in outputs: output = head_module(outputs[middle_module]) outputs[head_module] = output return {t: outputs[self.head_modules[t].module] for t in task_names} def calculate_loss(self, X, Ys, payload_name, labels_to_tasks): """Returns a dict of {task_name: loss (a FloatTensor scalar)}. Args: X: an appropriate input for forward(), either a Tensor or tuple Ys: a dict of {task_name: labels} where labels is [n, ?] labels_to_tasks: a dict of {label_name: task_name} indicating which task head to use to calculate the loss for each labelset. """ task_names = set(labels_to_tasks.values()) outputs = self.forward(X, task_names) loss_dict = {} # Stores the loss by task count_dict = {} # Stores the number of active examples by task for label_name, task_name in labels_to_tasks.items(): loss_name = f"{task_name}/{payload_name}/{label_name}/loss" Y = Ys[label_name] assert isinstance(Y, torch.Tensor) out = outputs[task_name] # Identify which instances have at least one non-zero target labels active = torch.any(Y.detach() != 0, dim=1) count_dict[loss_name] = active.sum().item() # If there are inactive instances, slice them out to save computation # and ignore their contribution to the loss if 0 in active: Y = Y[active] if isinstance(out, torch.Tensor): out = out[active] # If the output of the head has multiple fields, slice them all elif isinstance(out, dict): out = move_to_device({k: v[active] for k, v in out.items()}) # Convert to half precision last thing if applicable if self.config["fp16"] and Y.dtype == torch.float32: out["data"] = out["data"].half() Y = Y.half() # If no examples in this batch have labels for this task, skip loss calc # Active has type torch.uint8; avoid overflow with long() if active.long().sum(): label_loss = self.loss_hat_funcs[task_name]( out, move_to_device(Y, self.config["device"]) ) assert isinstance(label_loss.item(), float) loss_dict[loss_name] = ( label_loss * self.task_map[task_name].loss_multiplier ) return loss_dict, count_dict @torch.no_grad() def calculate_probs(self, X, task_names): """Returns a dict of {task_name: probs} Args: X: instances to feed through the network task_names: the names of the tasks for which to calculate outputs Returns: {task_name: probs}: probs is the output of the output_hat for the given task_head The type of each entry in probs depends on the task type: instance-based tasks: each entry in probs is a [k]-len array token-based tasks: each entry is a [seq_len, k] array """ assert self.eval() return { t: [probs.cpu().numpy() for probs in self.output_hat_funcs[t](out)] for t, out in self.forward(X, task_names).items() } def update_config(self, update_dict): """Updates self.config with the values in a given update dictionary.""" self.config = recursive_merge_dicts(self.config, update_dict) def load_weights(self, model_path): """Load model weights from checkpoint.""" if self.config["device"] >= 0: device = torch.device(f"cuda:{self.config['device']}") else: device = torch.device("cpu") try: self.load_state_dict(torch.load(model_path, map_location=device)["model"]) except RuntimeError: print("Your destination state dict has different keys for the update key.") self.load_state_dict( torch.load(model_path, map_location=device)["model"], strict=False ) def save_weights(self, model_path): """Saves weight in checkpoint directory""" raise NotImplementedError @torch.no_grad() def score(self, payload, metrics=[], verbose=True, **kwargs): """Calculate the requested metrics for the given payload Args: payload: a Payload to score metrics: a list of full metric names, a single full metric name, or []: list: a list of full metric names supported by the tasks' Scorers. (full metric names are of the form task/payload/labelset/metric) Only these metrics will be calculated and returned. []: defaults to all supported metrics for the given payload's Tasks str: a single full metric name A single score will be returned instead of a dictionary Returns: scores: a dict of the form {metric_name: score} corresponding to the requested metrics (optionally a single score if metrics is a string instead of a list) """ self.eval() return_unwrapped = isinstance(metrics, str) # If no specific metrics were requested, calculate all available metrics if metrics: metrics_list = metrics if isinstance(metrics, list) else [metrics] assert all(len(metric.split("/")) == 4 for metric in metrics_list) target_metrics = defaultdict(list) target_tasks = [] target_labels = [] for full_metric_name in metrics: task_name, payload_name, label_name, metric_name = full_metric_name.split( "/" ) target_tasks.append(task_name) target_labels.append(label_name) target_metrics[label_name].append(metric_name) else: target_tasks = set(payload.labels_to_tasks.values()) target_labels = set(payload.labels_to_tasks.keys()) target_metrics = { label_name: None for label_name in payload.labels_to_tasks } Ys, Ys_probs, Ys_preds = self.predict_with_gold( payload, target_tasks, target_labels, return_preds=True, **kwargs ) metrics_dict = {} for label_name, task_name in payload.labels_to_tasks.items(): scorer = self.task_map[task_name].scorer task_metrics_dict = scorer.score( Ys[label_name], Ys_probs[task_name], Ys_preds[task_name], target_metrics=target_metrics[label_name], ) # Expand short metric names into full metric names for metric_name, score in task_metrics_dict.items(): full_metric_name = ( f"{task_name}/{payload.name}/{label_name}/{metric_name}" ) metrics_dict[full_metric_name] = score # If a single metric was given as a string (not list), return a float if return_unwrapped: metric, score = metrics_dict.popitem() return score else: return metrics_dict @torch.no_grad() def predict_with_gold( self, payload, target_tasks=None, target_labels=None, return_preds=False, max_examples=0, **kwargs, ): """Extracts Y and calculates Y_prods, Y_preds for the given payload and tasks To get just the probabilities or predictions for a single task, consider using predict() or predict_probs(). Args: payload: the Payload to make predictions for target_tasks: if not None, predict probs only for the specified tasks; otherwise, predict probs for all tasks with corresponding labelsets in the payload target_labels: if not None, return labels for only the specified labelsets; otherwise, return all labelsets return_preds: if True, also include preds in return values max_examples: if > 0, predict for a maximum of this many examples # TODO: consider returning Ys as tensors instead of lists (padded if necessary) Returns: Ys: a {label_name: Y} dict where Y is an [n] list of labels (often ints) Ys_probs: a {task_name: Y_probs} dict where Y_probs is a [n] list of probabilities Ys_preds: a {task_name: Y_preds} dict where Y_preds is a [n] list of predictions """ validate_targets(payload, target_tasks, target_labels) if target_tasks is None: target_tasks = set(payload.labels_to_tasks.values()) elif isinstance(target_tasks, str): target_tasks = [target_tasks] Ys = defaultdict(list) Ys_probs = defaultdict(list) total = 0 for batch_num, (Xb, Yb) in enumerate(payload.data_loader): Yb_probs = self.calculate_probs(Xb, target_tasks) for task_name, yb_probs in Yb_probs.items(): Ys_probs[task_name].extend(yb_probs) for label_name, yb in Yb.items(): if target_labels is None or label_name in target_labels: Ys[label_name].extend(yb.cpu().numpy()) total += len(Xb) if max_examples > 0 and total >= max_examples: break if max_examples: Ys = {label_name: Y[:max_examples] for label_name, Y in Ys.items()} Ys_probs = { task_name: Y_probs[:max_examples] for task_name, Y_probs in Ys_probs.items() } if return_preds: Ys_preds = { task_name: [probs_to_preds(y_probs) for y_probs in Y_probs] for task_name, Y_probs in Ys_probs.items() } return Ys, Ys_probs, Ys_preds else: return Ys, Ys_probs # Single-task prediction helpers (for convenience) @torch.no_grad() def predict_probs(self, payload, task_name=None, **kwargs): """Return probabilistic labels for a single task of a payload Args: payload: a Payload task_name: the task to calculate probabilities for If task_name is None and the payload includes labels for only one task, return predictions for that task. If task_name is None and the payload includes labels for more than one task, raise an exception. Returns: Y_probs: an [n] list of probabilities """ self.eval() if task_name is None: if len(payload.labels_to_tasks) > 1: msg = ( "The payload you provided contains labels for more than one " "task, so task_name cannot be None." ) raise Exception(msg) else: task_name = next(iter(payload.labels_to_tasks.values())) target_tasks = [task_name] _, Ys_probs = self.predict_with_gold(payload, target_tasks, **kwargs) return Ys_probs[task_name] @torch.no_grad() def predict(self, payload, task_name=None, return_probs=False, **kwargs): """Return predicted labels for a single task of a payload Args: payload: a Payload task_name: the task to calculate predictions for If task_name is None and the payload includes labels for only one task, return predictions for that task. If task_name is None and the payload includes labels for more than one task, raise an exception. Returns: Y_probs: an [n] list of probabilities Y_preds: an [n] list of predictions """ self.eval() if task_name is None: if len(payload.labels_to_tasks) > 1: msg = ( "The payload you provided contains labels for more than one " "task, so task_name cannot be None." ) raise Exception(msg) else: task_name = next(iter(payload.labels_to_tasks.values())) target_tasks = [task_name] _, Ys_probs, Ys_preds = self.predict_with_gold( payload, target_tasks, return_preds=True, **kwargs ) Y_probs = Ys_probs[task_name] Y_preds = Ys_preds[task_name] if return_probs: return Y_preds, Y_probs else: return Y_preds def validate_targets(payload, target_tasks, target_labels): if target_tasks: for task_name in target_tasks: if task_name not in set(payload.labels_to_tasks.values()): msg = ( f"Could not find the specified task_name {task_name} in " f"payload {payload}." ) raise Exception(msg) if target_labels: for label_name in target_labels: if label_name not in payload.labels_to_tasks: msg = ( f"Could not find the specified labelset {label_name} in " f"payload {payload}." ) raise Exception(msg) def probs_to_preds(probs): """Identifies the largest probability in each column on the last axis We add 1 to the argmax to account for the fact that all labels in MeTaL are categorical and the 0 label is reserved for abstaining weak labels. """ # TODO: Consider replacing argmax with a version of the rargmax utility to randomly # break ties instead of accepting the first one, or allowing other tie-breaking # strategies return np.argmax(probs, axis=-1) + 1
torchtext/datasets/conll2000chunking.py
parmeet/text
3,172
92983
from torchtext.data.datasets_utils import ( _RawTextIterableDataset, _wrap_split_argument, _add_docstring_header, _download_extract_validate, _create_dataset_directory, _create_data_from_iob, ) import os import logging URL = { 'train': "https://www.clips.uantwerpen.be/conll2000/chunking/train.txt.gz", 'test': "https://www.clips.uantwerpen.be/conll2000/chunking/test.txt.gz", } MD5 = { 'train': "6969c2903a1f19a83569db643e43dcc8", 'test': "a916e1c2d83eb3004b38fc6fcd628939", } NUM_LINES = { 'train': 8936, 'test': 2012, } _EXTRACTED_FILES = { 'train': 'train.txt', 'test': 'test.txt' } _EXTRACTED_FILES_MD5 = { 'train': "2e2f24e90e20fcb910ab2251b5ed8cd0", 'test': "56944df34be553b72a2a634e539a0951" } DATASET_NAME = "CoNLL2000Chunking" @_add_docstring_header(num_lines=NUM_LINES) @_create_dataset_directory(dataset_name=DATASET_NAME) @_wrap_split_argument(('train', 'test')) def CoNLL2000Chunking(root, split): # Create a dataset specific subfolder to deal with generic download filenames root = os.path.join(root, 'conll2000chunking') path = os.path.join(root, split + ".txt.gz") data_filename = _download_extract_validate(root, URL[split], MD5[split], path, os.path.join(root, _EXTRACTED_FILES[split]), _EXTRACTED_FILES_MD5[split], hash_type="md5") logging.info('Creating {} data'.format(split)) return _RawTextIterableDataset(DATASET_NAME, NUM_LINES[split], _create_data_from_iob(data_filename, " "))
LeetCode/python3/650.py
ZintrulCre/LeetCode_Archiver
279
92990
class Solution: def minSteps(self, n: int) -> int: res, m = 0, 2 while n > 1: while n % m == 0: res += m n //= m m += 1 return res
websauna/system/core/traversal.py
stevepiercy/websauna
286
93073
<filename>websauna/system/core/traversal.py<gh_stars>100-1000 """Traversing core logic.""" # Pyramid from pyramid.interfaces import ILocation from zope.interface import implementer @implementer(ILocation) class Resource: """Traversable resource in a nested tree hierarchy with basic breadcrumbs support. All traverable context classes should inherit from this class. Note that this is not a strict requirement, as often anything implementing :py:class:`pyramid.interfaces.ILocation` and ``get_title()`` will work. For more information see :ref:`Traversal <traversal>`. .. _traversal: """ # TODO: Cannot annotate request as it breaks sphinx-autodoc-typehints, sphinx-autodoc-typehints==1.1.0, when doing make html def __init__(self, request): #: Pointer to the parent object in traverse hierarchy. This is none until make_lineage is called. self.__parent__ = None #: The id of this resource as its appear in URL and traversing path self.__name__ = None self.request = request def get_title(self) -> str: """Return human-readable title of this resource. This is viewed in admin breadcrumbs path, etc. """ title = getattr(self, "title", None) if title: return title raise NotImplementedError("get_title() implementation missing for {}".format(self)) @classmethod def make_lineage(self, parent, child, name, allow_new_parent=False) -> "Resource": """Set traversing pointers between the child and the parent resources. Builds __parent__ and __name__ pointer and sets it on the child resource. * If lineage relationship is not lazy and the referenced children is stored in the parent, the lineage must be set when the child is put into parent container. * If lineage relationship is lazy and child resource is constructed upon lookup in ``__item__``, the lineage is constructed before the child is returned. :param parent: Parent resource who children is become part to :param child: Child resource mutated in place :param name: Id of the child resource as it will appear in the URL traversing path :param allow_new_parent: If the child has alraedy a parent assigned, allow override the parent... or basically move an existing resource. You don't usually want this for in-memory resource and this is for catching bugs. :return: The mutated child resource """ assert child assert parent assert name if not allow_new_parent: # Catch bugs when you try to double lineage a persistnet parent -> child relationship assert not getattr(child, "__parent__", None), "Tried to double init lineage for {} -> {}, previous parent was {}".format(parent, child, child.__parent__) child.__parent__ = parent child.__name__ = name return child
python/londiste/handlers/shard.py
zzahti/skytools
116
93115
<filename>python/londiste/handlers/shard.py """Event filtering by hash, for partitioned databases. Parameters: key=COLUMN: column name to use for hashing hash_key=COLUMN: column name to use for hashing (overrides 'key' parameter) hashfunc=NAME: function to use for hashing (default: partconf.get_hash_raw) hashexpr=EXPR: full expression to use for hashing (deprecated) encoding=ENC: validate and fix incoming data (only utf8 supported atm) ignore_truncate=BOOL: ignore truncate event, default: 0, values: 0,1 On root node: * Hash of key field will be added to ev_extra3. This is implemented by adding additional trigger argument: ev_extra3='hash='||partconf.get_hash_raw(key_column) On branch/leaf node: * On COPY time, the SELECT on provider side gets filtered by hash. * On replay time, the events gets filtered by looking at hash in ev_extra3. Local config: * Local hash value and mask are loaded from partconf.conf table. """ import skytools from londiste.handler import TableHandler __all__ = ['ShardHandler', 'PartHandler'] class ShardHandler (TableHandler): __doc__ = __doc__ handler_name = 'shard' DEFAULT_HASHFUNC = "partconf.get_hash_raw" DEFAULT_HASHEXPR = "%s(%s)" def __init__(self, table_name, args, dest_table): TableHandler.__init__(self, table_name, args, dest_table) self.hash_mask = None # aka max part number (atm) self.shard_nr = None # part number of local node # primary key columns self.hash_key = args.get('hash_key', args.get('key')) self._validate_hash_key() # hash function & full expression hashfunc = args.get('hashfunc', self.DEFAULT_HASHFUNC) self.hashexpr = self.DEFAULT_HASHEXPR % ( skytools.quote_fqident(hashfunc), skytools.quote_ident(self.hash_key or '')) self.hashexpr = args.get('hashexpr', self.hashexpr) def _validate_hash_key(self): if self.hash_key is None: raise Exception('Specify hash key field as hash_key argument') def reset(self): """Forget config info.""" self.hash_mask = None self.shard_nr = None TableHandler.reset(self) def add(self, trigger_arg_list): """Let trigger put hash into extra3""" arg = "ev_extra3='hash='||%s" % self.hashexpr trigger_arg_list.append(arg) TableHandler.add(self, trigger_arg_list) def prepare_batch(self, batch_info, dst_curs): """Called on first event for this table in current batch.""" if self.hash_key is not None: if not self.hash_mask: self.load_shard_info(dst_curs) TableHandler.prepare_batch(self, batch_info, dst_curs) def process_event(self, ev, sql_queue_func, arg): """Filter event by hash in extra3, apply only if for local shard.""" if ev.extra3 and self.hash_key is not None: meta = skytools.db_urldecode(ev.extra3) self.log.debug('shard.process_event: hash=%i, hash_mask=%i, shard_nr=%i', int(meta['hash']), self.hash_mask, self.shard_nr) if (int(meta['hash']) & self.hash_mask) != self.shard_nr: self.log.debug('shard.process_event: not my event') return self._process_event(ev, sql_queue_func, arg) def _process_event(self, ev, sql_queue_func, arg): self.log.debug('shard.process_event: my event, processing') TableHandler.process_event(self, ev, sql_queue_func, arg) def get_copy_condition(self, src_curs, dst_curs): """Prepare the where condition for copy and replay filtering""" if self.hash_key is None: return TableHandler.get_copy_condition(self, src_curs, dst_curs) self.load_shard_info(dst_curs) w = "(%s & %d) = %d" % (self.hashexpr, self.hash_mask, self.shard_nr) self.log.debug('shard: copy_condition=%r', w) return w def load_shard_info(self, curs): """Load part/slot info from database.""" q = "select part_nr, max_part from partconf.conf" curs.execute(q) self.shard_nr, self.hash_mask = curs.fetchone() if self.shard_nr is None or self.hash_mask is None: raise Exception('Error loading shard info') class PartHandler (ShardHandler): __doc__ = "Deprecated compat name for shard handler.\n" + __doc__.split('\n',1)[1] handler_name = 'part' # register handler class __londiste_handlers__ = [ShardHandler, PartHandler]
rbp_eclip/custom_keras_objects.py
Luma-1994/lama
137
93117
<reponame>Luma-1994/lama import concise # all the custom objects are already loaded through importing concise OBJECTS = None # new concise version # OBJECTS = concise.custom_objects
notebooks/plotting.py
syllogismos/wandb_trpo
379
93126
""" Short Plotting Routine to Plot Pandas Dataframes by Column Label 1. Takes list of dateframes to compare multiple trials 2. Takes list of y-variables to combine on 1 plot 3. Legend location and y-axis limits can be customized Written by <NAME> (pat-coady.github.io) """ import matplotlib.pyplot as plt def df_plot(dfs, x, ys, ylim=None, xlim=None, legend_loc='best'): """ Plot y vs. x curves from pandas dataframe(s) Args: dfs: list of pandas dataframes x: str column label for x variable ys: list of str column labels for y variable(s) ylim: tuple to override automatic y-axis limits xlim: tuple to override automatic x-axis limits legend_loc: str to override automatic legend placement: 'upper left', 'lower left', 'lower right' , 'right' , 'center left', 'center right', 'lower center', 'upper center', and 'center' """ if ylim is not None: plt.ylim(ylim) if xlim is not None: plt.xlim(xlim) for df, name in dfs: if '_' in name: name = name.split('_')[1] for y in ys: plt.plot(df[x], df[y], linewidth=1, label=name + ' ' + y.replace('_', '')) plt.xlabel(x.replace('_', '')) plt.legend(loc=legend_loc) plt.show()
gpflowopt/scaling.py
kyu999/GPflowOpt
258
93130
<filename>gpflowopt/scaling.py<gh_stars>100-1000 # Copyright 2017 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from gpflow.param import DataHolder, AutoFlow from gpflow import settings import numpy as np from .transforms import LinearTransform, DataTransform from .domain import UnitCube from .models import ModelWrapper float_type = settings.dtypes.float_type class DataScaler(ModelWrapper): """ Model-wrapping class, primarily intended to assure the data in GPflow models is scaled. One DataScaler wraps one GPflow model, and can scale the input as well as the output data. By default, if any kind of object attribute is not found in the datascaler object, it is searched on the wrapped model. The datascaler supports both input as well as output scaling, although both scalings are set up differently: - For input, the transform is not automatically generated. By default, the input transform is the identity transform. The input transform can be set through the setter property, or by specifying a domain in the constructor. For the latter, the input transform will be initialized as the transform from the specified domain to a unit cube. When X is updated, the transform does not change. - If enabled: for output the data is always scaled to zero mean and unit variance. This means that if the Y property is set, the output transform is first calculated, then the data is scaled. By default, :class:`~.acquisition.Acquisition` objects will always wrap each model received. However, the input and output transforms will be the identity transforms, and output normalization is switched off. It is up to the user (or specialized classes such as the BayesianOptimizer) to correctly configure the datascalers involved. By carrying out the scaling at such a deep level in the framework, it is possible to keep the scaling hidden throughout the rest of GPflowOpt. This means that, during implementation of acquisition functions it is safe to assume the data is not scaled, and is within the configured optimization domain. There is only one exception: the hyperparameters are determined on the scaled data, and are NOT automatically unscaled by this class because the datascaler does not know what model is wrapped and what kernels are used. Should hyperparameters of the model be required, it is the responsibility of the implementation to rescale the hyperparameters. Additionally, applying hyperpriors should anticipate for the scaled data. """ def __init__(self, model, domain=None, normalize_Y=False): """ :param model: model to be wrapped :param domain: (default: None) if supplied, the input transform is configured from the supplied domain to :class:`.UnitCube`. If None, the input transform defaults to the identity transform. :param normalize_Y: (default: False) enable automatic scaling of output values to zero mean and unit variance. """ # model sanity checks, slightly stronger conditions than the wrapper super(DataScaler, self).__init__(model) # Initial configuration of the datascaler n_inputs = model.X.shape[1] n_outputs = model.Y.shape[1] self._input_transform = (domain or UnitCube(n_inputs)) >> UnitCube(n_inputs) self._normalize_Y = normalize_Y self._output_transform = LinearTransform(np.ones(n_outputs), np.zeros(n_outputs)) self.X = model.X.value self.Y = model.Y.value @property def input_transform(self): """ Get the current input transform :return: :class:`.DataTransform` input transform object """ return self._input_transform @input_transform.setter def input_transform(self, t): """ Configure a new input transform. Data in the wrapped model is automatically updated with the new transform. :param t: :class:`.DataTransform` object: the new input transform. """ assert isinstance(t, DataTransform) X = self.X.value # unscales the data self._input_transform.assign(t) self.X = X # scales the back using the new input transform @property def output_transform(self): """ Get the current output transform :return: :class:`.DataTransform` output transform object """ return self._output_transform @output_transform.setter def output_transform(self, t): """ Configure a new output transform. Data in the model is automatically updated with the new transform. :param t: :class:`.DataTransform` object: the new output transform. """ assert isinstance(t, DataTransform) Y = self.Y.value self._output_transform.assign(t) self.Y = Y @property def normalize_output(self): """ :return: boolean, indicating if output is automatically scaled to zero mean and unit variance. """ return self._normalize_Y @normalize_output.setter def normalize_output(self, flag): """ Enable/disable automated output scaling. If switched off, the output transform becomes the identity transform. If enabled, data will be automatically scaled to zero mean and unit variance. When the output normalization is switched on or off, the data in the model is automatically adapted. :param flag: boolean, turn output scaling on or off """ self._normalize_Y = flag if not flag: # Output normalization turned off. Reset transform to identity self.output_transform = LinearTransform(np.ones(self.Y.value.shape[1]), np.zeros(self.Y.value.shape[1])) else: # Output normalization enabled. Trigger scaling. self.Y = self.Y.value # Methods overwriting methods of the wrapped model. @property def X(self): """ Returns the input data of the model, unscaled. :return: :class:`.DataHolder`: unscaled input data """ return DataHolder(self.input_transform.backward(self.wrapped.X.value)) @property def Y(self): """ Returns the output data of the wrapped model, unscaled. :return: :class:`.DataHolder`: unscaled output data """ return DataHolder(self.output_transform.backward(self.wrapped.Y.value)) @X.setter def X(self, x): """ Set the input data. Applies the input transform before setting the data of the wrapped model. """ self.wrapped.X = self.input_transform.forward(x.value if isinstance(x, DataHolder) else x) @Y.setter def Y(self, y): """ Set the output data. In case normalize_Y=True, the appropriate output transform is updated. It is then applied on the data before setting the data of the wrapped model. """ value = y.value if isinstance(y, DataHolder) else y if self.normalize_output: self.output_transform.assign(~LinearTransform(value.std(axis=0), value.mean(axis=0))) self.wrapped.Y = self.output_transform.forward(value) def build_predict(self, Xnew, full_cov=False): """ build_predict builds the TensorFlow graph for prediction. Similar to the method in the wrapped model, however the input points are transformed using the input transform. The returned mean and variance are transformed backward using the output transform. """ f, var = self.wrapped.build_predict(self.input_transform.build_forward(Xnew), full_cov=full_cov) return self.output_transform.build_backward(f), self.output_transform.build_backward_variance(var) @AutoFlow((float_type, [None, None])) def predict_f(self, Xnew): """ Compute the mean and variance of held-out data at the points Xnew """ return self.build_predict(Xnew) @AutoFlow((float_type, [None, None])) def predict_f_full_cov(self, Xnew): """ Compute the mean and variance of held-out data at the points Xnew """ return self.build_predict(Xnew, full_cov=True) @AutoFlow((float_type, [None, None])) def predict_y(self, Xnew): """ Compute the mean and variance of held-out data at the points Xnew """ f, var = self.wrapped.build_predict(self.input_transform.build_forward(Xnew)) f, var = self.likelihood.predict_mean_and_var(f, var) return self.output_transform.build_backward(f), self.output_transform.build_backward_variance(var) @AutoFlow((float_type, [None, None]), (float_type, [None, None])) def predict_density(self, Xnew, Ynew): """ Compute the (log) density of the data Ynew at the points Xnew """ mu, var = self.wrapped.build_predict(self.input_transform.build_forward(Xnew)) Ys = self.output_transform.build_forward(Ynew) return self.likelihood.predict_density(mu, var, Ys)
test/test_clamp.py
SimlaBurcu/QPyTorch
172
93166
import torch import unittest from qtorch.quant import * from qtorch import FixedPoint, BlockFloatingPoint, FloatingPoint DEBUG = False log = lambda m: print(m) if DEBUG else False class TestStochastic(unittest.TestCase): """ invariant: quantized numbers cannot be greater than the maximum representable number or lower than the maximum representable number """ def test_fixed(self): """test fixed point clamping""" for d in ["cpu", "cuda"]: for r in ["stochastic", "nearest"]: wl = 5 fl = 4 t_min = -(2 ** (wl - fl - 1)) t_max = 2 ** (wl - fl - 1) - 2 ** (-fl) a = torch.linspace(-2, 2, steps=100, device=d) clamp_a = fixed_point_quantize(a, wl=wl, fl=fl, clamp=True, rounding=r) self.assertEqual(t_max, clamp_a.max().item()) self.assertEqual(t_min, clamp_a.min().item()) a = torch.linspace(-2, 2, steps=100, device=d) no_clamp_a = fixed_point_quantize(a, wl=wl, fl=fl, clamp=False, rounding=r) self.assertLess(t_max, no_clamp_a.max().item()) self.assertGreater(t_min, no_clamp_a.min().item()) def test_float(self): """test floating point quantization""" formats = [(2,2),(2,3),(3,2)] for exp, man in formats: for d in ["cpu", "cuda"]: for r in ["stochastic", "nearest"]: a_max = 2 ** (2 ** (exp - 1)) * (1 - 2 ** (-man - 1)) a_min = 2 ** (-(2 ** (exp - 1)) + 1) max_exp=int((2**exp)/2) min_exp=-(max_exp-2) mantissa_step=2**(-man) min_mantissa=mantissa_step # When denormalized max_mantissa=2-mantissa_step # When normalized, mantissa goes from 1 to 2-mantissa_step a_min = 2**min_exp*min_mantissa a_max = 2**max_exp*max_mantissa expected_vals=[] log(f"With {exp} exponent bits, our exponent goes from {min_exp} to {max_exp}") log(f"With {man} mantissa bits, our mantissa goes from {min_mantissa} (denormalized) to {max_mantissa}") log(f"With {man} mantissa bits and {exp} exponent bits, we can go from {a_min} to {a_max}") representable_normalized =[] for sign in [1,-1]: for e in range(0,2**exp): for m in range(0,2**man): if e==0: val = sign*(2**(e+min_exp)*m*2**(-man)) log(f"{0 if sign==1 else 1} {e:0{exp}b} {m:0{man}b} = {sign} * 2^{e+min_exp} * {m*2**(-man)} \t= {val} (denormalized)") else: val = sign*(2**(e+min_exp-1)*(1+(m*2**(-man)))) log(f"{0 if sign==1 else 1} {e:0{exp}b} {m:0{man}b} = {sign} * 2^{e+min_exp-1} * {1+(m*2**(-man))} \t= {val}") if val not in expected_vals: expected_vals.append(val) expected_vals.sort() # Block box test to get representable numbers import numpy as np quant_vals=[] for i in np.arange(-30,30,.01): a = torch.Tensor([i]).to(device=d) quant_a = float_quantize(a, exp=exp, man=man, rounding=r) if quant_a[0] not in quant_vals: quant_vals.append(quant_a[0].item()) log("Values representable in QPytorch") log(quant_vals) self.assertEqual(quant_vals, expected_vals) if __name__ == "__main__": unittest.main()
Maya/cicd/python/libMayaExtended/libMayaExtended/mayaSceneApi.py
Mu-L/Exporters
445
93180
<filename>Maya/cicd/python/libMayaExtended/libMayaExtended/mayaSceneApi.py import maya.OpenMaya as OpenMaya import maya.OpenMayaRender as OpenMayaRender
test.py
kentsommer/tensorflow-posenet
302
93209
# Import the converted model's class import numpy as np import random import tensorflow as tf from tensorflow.python.ops import rnn, rnn_cell from posenet import GoogLeNet as PoseNet import cv2 from tqdm import tqdm import math batch_size = 75 max_iterations = 30000 # Set this path to your project directory path = 'path_to_project/' # Set this path to your dataset directory directory = 'path_to_datasets/KingsCollege/' dataset = 'dataset_test.txt' class datasource(object): def __init__(self, images, poses): self.images = images self.poses = poses class vecsource(object): def __init__(self, vecs, poses): self.vecs = vecs self.poses = poses def centeredCrop(img, output_side_length): height, width, depth = img.shape new_height = output_side_length new_width = output_side_length if height > width: new_height = output_side_length * height / width else: new_width = output_side_length * width / height height_offset = (new_height - output_side_length) / 2 width_offset = (new_width - output_side_length) / 2 cropped_img = img[height_offset:height_offset + output_side_length, width_offset:width_offset + output_side_length] return cropped_img def preprocess(images): images_out = [] #final result #Resize and crop and compute mean! images_cropped = [] for i in tqdm(range(len(images))): X = cv2.imread(images[i]) X = cv2.resize(X, (455, 256)) X = centeredCrop(X, 224) images_cropped.append(X) #compute images mean N = 0 mean = np.zeros((1, 3, 224, 224)) for X in tqdm(images_cropped): X = np.transpose(X,(2,0,1)) mean[0][0] += X[:,:,0] mean[0][1] += X[:,:,1] mean[0][2] += X[:,:,2] N += 1 mean[0] /= N #Subtract mean from all images for X in tqdm(images_cropped): X = np.transpose(X,(2,0,1)) X = X - mean X = np.squeeze(X) X = np.transpose(X, (1,2,0)) Y = np.expand_dims(X, axis=0) images_out.append(Y) return images_out def get_data(): poses = [] images = [] with open(directory+dataset) as f: next(f) # skip the 3 header lines next(f) next(f) for line in f: fname, p0,p1,p2,p3,p4,p5,p6 = line.split() p0 = float(p0) p1 = float(p1) p2 = float(p2) p3 = float(p3) p4 = float(p4) p5 = float(p5) p6 = float(p6) poses.append((p0,p1,p2,p3,p4,p5,p6)) images.append(directory+fname) images = preprocess(images) return datasource(images, poses) def gen_data(source): while True: indices = range(len(source.images)) random.shuffle(indices) for i in indices: image = source.images[i] pose_x = source.poses[i][0:3] pose_q = source.poses[i][3:7] yield image, pose_x, pose_q def gen_data_batch(source): data_gen = gen_data(source) while True: image_batch = [] pose_x_batch = [] pose_q_batch = [] for _ in range(batch_size): image, pose_x, pose_q = next(data_gen) image_batch.append(image) pose_x_batch.append(pose_x) pose_q_batch.append(pose_q) yield np.array(image_batch), np.array(pose_x_batch), np.array(pose_q_batch) def main(): image = tf.placeholder(tf.float32, [1, 224, 224, 3]) datasource = get_data() results = np.zeros((len(datasource.images),2)) net = PoseNet({'data': image}) p3_x = net.layers['cls3_fc_pose_xyz'] p3_q = net.layers['cls3_fc_pose_wpqr'] init = tf.initialize_all_variables() outputFile = "PoseNet.ckpt" saver = tf.train.Saver() with tf.Session() as sess: # Load the data sess.run(init) saver.restore(sess, path + 'PoseNet.ckpt') data_gen = gen_data_batch(datasource) for i in range(len(datasource.images)): np_image = datasource.images[i] feed = {image: np_image} pose_q= np.asarray(datasource.poses[i][3:7]) pose_x= np.asarray(datasource.poses[i][0:3]) predicted_x, predicted_q = sess.run([p3_x, p3_q], feed_dict=feed) pose_q = np.squeeze(pose_q) pose_x = np.squeeze(pose_x) predicted_q = np.squeeze(predicted_q) predicted_x = np.squeeze(predicted_x) #Compute Individual Sample Error q1 = pose_q / np.linalg.norm(pose_q) q2 = predicted_q / np.linalg.norm(predicted_q) d = abs(np.sum(np.multiply(q1,q2))) theta = 2 * np.arccos(d) * 180/math.pi error_x = np.linalg.norm(pose_x-predicted_x) results[i,:] = [error_x,theta] print 'Iteration: ', i, ' Error XYZ (m): ', error_x, ' Error Q (degrees): ', theta median_result = np.median(results,axis=0) print 'Median error ', median_result[0], 'm and ', median_result[1], 'degrees.' if __name__ == '__main__': main()
gamestonk_terminal/portfolio/brokers/ally/ally_model.py
Aerex/GamestonkTerminal
1,835
93248
<filename>gamestonk_terminal/portfolio/brokers/ally/ally_model.py<gh_stars>1000+ """Ally Model""" __docformat__ = "numpy" import ally import pandas as pd def get_holdings() -> pd.DataFrame: """Get holdings from Ally account in pandas df Returns ------- pd.DataFrame Dataframe of positions """ a = ally.Ally() return ally_positions_to_df(a.holdings(dataframe=True)) def ally_positions_to_df(df: pd.DataFrame) -> pd.DataFrame: """Clean up ally holdings dataframe Parameters ---------- df : pd.DataFrame Input dataframe of holdings Returns ------- pd.DataFrame Processed holdings """ names = { "costbasis": "CostBasis", "marketvalue": "MarketValue", "sym": "Symbol", "qty": "Quantity", } df = df.loc[:, ["qty", "costbasis", "marketvalue", "sym"]] df[["qty", "costbasis", "marketvalue"]] = df[ ["qty", "costbasis", "marketvalue"] ].astype(float) df = df.rename(columns=names) df["PnL"] = df["MarketValue"] - df["CostBasis"] return df def get_history() -> pd.DataFrame: """Gets transaction history for the account." Returns ------- pd.DataFrame Dataframe of transaction history """ a = ally.Ally() return a.history(dataframe=True) def get_balances() -> pd.DataFrame: """Gets balance details for the account." Returns ------- pd.DataFrame Dataframe of transaction history """ a = ally.Ally() return a.balances(dataframe=True) def get_stock_quote(ticker: str) -> pd.DataFrame: """Gets quote for stock ticker Parameters ---------- ticker : str Ticker to get. Can be in form of 'tick1,tick2...' Returns ------- pd.DataFrame Dataframe of ticker quote """ a = ally.Ally() return a.quote( ticker, fields=["last", "bid", "ask", "opn", "dollar_value", "chg", "vl"], dataframe=True, ) def get_top_movers(list_type: str, exchange: str) -> pd.DataFrame: """ Gets top lists from ally Invest API. Documentation for parameters below: https://www.ally.com/api/invest/documentation/market-toplists-get/ Parameters ---------- list_type : str Which list to get data for exchange : str Which exchange to look at Returns ------- pd.DataFrame DataFrame of top movers """ a = ally.Ally() return a.toplists(list_type, exchange, dataframe=True)
src/homework/tests/cross_check/tests_crosscheck_is_checked.py
denkasyanov/education-backend
151
93282
<gh_stars>100-1000 import pytest pytestmark = [pytest.mark.django_db] @pytest.fixture def answer(answers): return answers[0] @pytest.fixture def crosscheck(mixer, answer, another_user): return mixer.blend('homework.AnswerCrossCheck', answer=answer, checker=another_user) def test_not_by_default(crosscheck): assert crosscheck.is_checked() is False def test_checked_if_there_are_comments_from_checker(crosscheck, mixer, another_user, answer): mixer.blend('homework.Answer', parent=answer, author=another_user) assert crosscheck.is_checked() is True def test_not_checked_if_answers_are_not_children_of_the_checked_answer(crosscheck, mixer, another_user, answer): mixer.blend('homework.Answer', author=another_user) assert crosscheck.is_checked() is False
pyclustering/utils/color.py
JosephChataignon/pyclustering
1,013
93284
<gh_stars>1000+ """! @brief Colors used by pyclustering library for visualization. @authors <NAME> (<EMAIL>) @date 2014-2020 @copyright BSD-3-Clause """ class color: """! @brief Consists titles of colors that are used by pyclustering for visualization. """ @staticmethod def get_color(sequential_index): """! @brief Returns color using round robin to avoid out of range exception. @param[in] sequential_index (uint): Index that should be converted to valid color index. @return (uint) Color from list color.TITLES. """ return color.TITLES[sequential_index % len(color.TITLES)] ## List of color titles that are used by pyclustering for visualization. TITLES = [ 'red', 'blue', 'darkgreen', 'gold', 'violet', 'deepskyblue', 'darkgrey', 'lightsalmon', 'deeppink', 'yellow', 'black', 'mediumspringgreen', 'orange', 'darkviolet', 'darkblue', 'silver', 'lime', 'pink', 'brown', 'bisque', 'dimgray', 'firebrick', 'darksalmon', 'chartreuse', 'skyblue', 'purple', 'fuchsia', 'palegoldenrod', 'coral', 'hotpink', 'gray', 'tan', 'crimson', 'teal', 'olive']
migrations/versions/0983f1227366_add_reported_post_count_column_to_.py
RobbiNespu/forget
157
93286
<filename>migrations/versions/0983f1227366_add_reported_post_count_column_to_.py """add reported post count column to account Revision ID: 0983f1227366 Revises: <PASSWORD> Create Date: 2017-08-03 19:16:55.883575 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '0983f1227366' down_revision = '7<PASSWORD>' branch_labels = None depends_on = None def upgrade(): op.add_column('accounts', sa.Column('reported_post_count', sa.Integer(), nullable=True)) def downgrade(): op.drop_column('accounts', 'reported_post_count')
packages/pegasus-python/test/db/test_trigger.py
ahnitz/pegasus
127
93288
import datetime import pytest from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker import Pegasus.db.schema as schema from Pegasus.db.ensembles import EMError, Triggers, TriggerType @pytest.fixture(scope="function") def session(): """ Create in-memory sqlite database with tables setup and return a db session object. """ engine = create_engine("sqlite://") # create all tables in the schema schema.Base.metadata.create_all(engine) session = sessionmaker(bind=engine)() # create an ensemble entry session.add( schema.Ensemble( name="test-ensemble", created=datetime.datetime.now(), updated=datetime.datetime.now(), state="ACTIVE", max_running=1, max_planning=1, username="test-user", ) ) session.commit() yield session # close session, db will be released session.close() class TestTriggers: def test_get_trigger(self, session): # insert trigger t = schema.Trigger( _id=1, ensemble_id=1, name="test-trigger", state="STOPPED", workflow=r'{"script":"/wf.py", "args":["arg1"]}', args=r'{"timeout":100, "interval":20}', _type=TriggerType.CRON.value, ) session.add(t) triggers = Triggers(session) expected = { "id": 1, "ensemble_id": 1, "name": "test-trigger", "state": "STOPPED", "workflow": {"script": "/wf.py", "args": ["arg1"]}, "args": {"timeout": 100, "interval": 20}, "type": "CRON", } # get trigger and convert to dict for comparison result = Triggers.get_object(triggers.get_trigger(1, "test-trigger")) assert expected == result def test_get_trigger_not_found(self, session): with pytest.raises(EMError) as e: Triggers(session).get_trigger(1, "test-trigger") assert "No such trigger: test-trigger" in str(e) assert e.value.status_code == 404 def test_list_triggers(self, session): t1 = schema.Trigger( _id=1, ensemble_id=1, name="test-trigger1", state="READY", workflow=r'{"script":"/wf.py", "args":["arg1"]}', args=r'{"timeout":100, "interval":20}', _type=TriggerType.CRON.value, ) session.add(t1) t2 = schema.Trigger( _id=2, ensemble_id=1, name="test-trigger2", state="READY", workflow=r'{"script":"/wf.py", "args":["arg1"]}', args=r'{"timeout":100, "interval":20}', _type=TriggerType.CRON.value, ) session.add(t2) session.commit() triggers = Triggers(session) result = triggers.list_triggers() assert len(result) == 2 def test_list_triggers_by_ensemble(self, session): # add another ensemble to the ensemble table session.add( schema.Ensemble( id=2, name="test-ensemble2", created=datetime.datetime.now(), updated=datetime.datetime.now(), state="ACTIVE", max_running=1, max_planning=1, username="test-user", ) ) session.commit() # add a trigger assigned to test-ensemble2 t = schema.Trigger( _id=1, ensemble_id=2, name="test-trigger1", state="READY", workflow=r'{"script":"/wf.py", "args":["arg1"]}', args=r'{"timeout":100, "interval":20}', _type=TriggerType.CRON.value, ) session.add(t) session.commit() triggers = Triggers(session) result = triggers.list_triggers_by_ensemble( username="test-user", ensemble="test-ensemble2" ) assert len(result) == 1 assert Triggers.get_object(result[0]) == { "id": 1, "ensemble_id": 2, "name": "test-trigger1", "state": "READY", "workflow": {"script": "/wf.py", "args": ["arg1"]}, "args": {"timeout": 100, "interval": 20}, "type": "CRON", } result = triggers.list_triggers_by_ensemble( username="test-user", ensemble="doesntexist" ) assert len(result) == 0 def test_insert_trigger(self, session): print(session.query(schema.Ensemble).all()) triggers = Triggers(session) triggers.insert_trigger( ensemble_id=1, trigger="test-trigger", trigger_type=TriggerType.CRON.value, workflow_script="/wf.py", workflow_args=["arg1"], interval=10, timeout=20, ) expected = { "id": 1, "ensemble_id": 1, "name": "test-trigger", "state": "READY", "workflow": {"script": "/wf.py", "args": ["arg1"]}, "args": {"timeout": 20, "interval": 10}, "type": "CRON", } result = Triggers.get_object( session.query(schema.Trigger) .filter_by(ensemble_id=1, name="test-trigger") .one() ) assert expected == result def test_update_state(self, session): # insert trigger t = schema.Trigger( _id=1, ensemble_id=1, name="test-trigger", state="READY", workflow=r'{"script":"/wf.py", "args":["arg1"]}', args=r'{"timeout":100, "interval":20}', _type=TriggerType.CRON.value, ) session.add(t) triggers = Triggers(session) triggers.update_state(ensemble_id=1, trigger_id=1, new_state="RUNNING") expected_state = "RUNNING" result = session.query(schema.Trigger).filter_by(_id=1).one().state assert expected_state == result def test_delete_trigger(self, session): # insert trigger t = schema.Trigger( _id=1, ensemble_id=1, name="test-trigger", state="READY", workflow=r'{"script":"/wf.py", "args":["arg1"]}', args=r'{"timeout":100, "interval":20}', _type=TriggerType.CRON.value, ) session.add(t) assert len(session.query(schema.Trigger).all()) == 1 triggers = Triggers(session) # delete trigger triggers.delete_trigger(ensemble_id=1, trigger="test-trigger") assert len(session.query(schema.Trigger).all()) == 0 def test_get_object(self, session): t = schema.Trigger( _id=1, ensemble_id=1, name="test-trigger", state="READY", workflow=r'{"script":"/wf.py", "args":["arg1"]}', args=r'{"timeout":100, "interval":20}', _type=TriggerType.CRON.value, ) expected = { "id": 1, "ensemble_id": 1, "name": "test-trigger", "state": "READY", "workflow": {"script": "/wf.py", "args": ["arg1"]}, "args": {"timeout": 100, "interval": 20}, "type": "CRON", } result = Triggers.get_object(t) assert expected == result
cactus/utils/packaging.py
danielchasehooper/Cactus
1,048
93290
<reponame>danielchasehooper/Cactus<filename>cactus/utils/packaging.py<gh_stars>1000+ import posixpath import pkg_resources def pkg_walk(package, top): """ Walk the package resources. Implementation from os.walk. """ names = pkg_resources.resource_listdir(package, top) dirs, nondirs = [], [] for name in names: # Forward slashes with pkg_resources if pkg_resources.resource_isdir(package, posixpath.join(top, name)): dirs.append(name) else: nondirs.append(name) yield top, dirs, nondirs for name in dirs: new_path = posixpath.join(top, name) for out in pkg_walk(package, new_path): yield out
SimG4CMS/Calo/python/GeometryAPD_cff.py
ckamtsikis/cmssw
852
93297
<reponame>ckamtsikis/cmssw import FWCore.ParameterSet.Config as cms # # Geometry master configuration # forStandalone APD # # Ideal geometry, needed for simulation from Geometry.EcalTestBeam.APDXML_cfi import * # Calorimeters from Geometry.CaloEventSetup.CaloTopology_cfi import * from Geometry.CaloEventSetup.CaloGeometry_cff import * from Geometry.CaloEventSetup.EcalTrigTowerConstituents_cfi import * from Geometry.EcalMapping.EcalMapping_cfi import * from Geometry.EcalMapping.EcalMappingRecord_cfi import *
data_collection/gazette/spiders/sp_sao_roque.py
kaiocp/querido-diario
454
93299
<filename>data_collection/gazette/spiders/sp_sao_roque.py from gazette.spiders.base.instar import BaseInstarSpider class SpSaoRoqueSpider(BaseInstarSpider): TERRITORY_ID = "3550605" name = "sp_sao_roque" allowed_domains = ["saoroque.sp.gov.br"] start_urls = ["https://www.saoroque.sp.gov.br/portal/diario-oficial"]
fbrp/src/fbrp/cmd/down.py
ali-senguel/fairo
669
93314
from fbrp import life_cycle from fbrp import registrar import argparse @registrar.register_command("down") class down_cmd: @classmethod def define_argparse(cls, parser: argparse.ArgumentParser): parser.add_argument("proc", action="append", nargs="*") @staticmethod def exec(args: argparse.Namespace): procs = life_cycle.system_state().procs.keys() given_proc_names = args.proc[0] if given_proc_names: procs = set(procs) & set(given_proc_names) for proc_name in procs: life_cycle.set_ask(proc_name, life_cycle.Ask.DOWN)
examples/web.py
msabramo/diesel
224
93338
from diesel.web import DieselFlask, request app = DieselFlask(__name__) @app.route("/") def hello(): name = request.args.get('name', 'world') return "hello, %s!" % name @app.route("/err") def err(): a = b return "never happens.." if __name__ == '__main__': import diesel def t(): while True: diesel.sleep(1) print "also looping.." app.diesel_app.add_loop(diesel.Loop(t)) app.run(debug=True)
gluon/gluoncv2/models/dabnet.py
naviocean/imgclsmob
2,649
93352
<reponame>naviocean/imgclsmob """ DABNet for image segmentation, implemented in Gluon. Original paper: 'DABNet: Depth-wise Asymmetric Bottleneck for Real-time Semantic Segmentation,' https://arxiv.org/abs/1907.11357. """ __all__ = ['DABNet', 'dabnet_cityscapes'] import os from mxnet import cpu from mxnet.gluon import nn, HybridBlock from .common import conv1x1, conv3x3, conv3x3_block, ConvBlock, NormActivation, Concurrent, InterpolationBlock,\ DualPathSequential, PReLU2 class DwaConvBlock(HybridBlock): """ Depthwise asymmetric separable convolution block. Parameters: ---------- channels : int Number of input/output channels. kernel_size : int Convolution window size. strides : int or tuple/list of 2 int Strides of the convolution. padding : int Padding value for convolution layer. dilation : int, default 1 Dilation value for convolution layer. use_bias : bool, default False Whether the layer uses a bias vector. use_bn : bool, default True Whether to use BatchNorm layer. bn_epsilon : float, default 1e-5 Small float added to variance in Batch norm. bn_use_global_stats : bool, default False Whether global moving statistics is used instead of local batch-norm for BatchNorm layers. bn_cudnn_off : bool, default False Whether to disable CUDNN batch normalization operator. activation : function or str or None, default nn.Activation('relu') Activation function or name of activation function. """ def __init__(self, channels, kernel_size, strides, padding, dilation=1, use_bias=False, use_bn=True, bn_epsilon=1e-5, bn_use_global_stats=False, bn_cudnn_off=False, activation=(lambda: nn.Activation("relu")), **kwargs): super(DwaConvBlock, self).__init__(**kwargs) with self.name_scope(): self.conv1 = ConvBlock( in_channels=channels, out_channels=channels, kernel_size=(kernel_size, 1), strides=strides, padding=(padding, 0), dilation=(dilation, 1), groups=channels, use_bias=use_bias, use_bn=use_bn, bn_epsilon=bn_epsilon, bn_use_global_stats=bn_use_global_stats, bn_cudnn_off=bn_cudnn_off, activation=activation) self.conv2 = ConvBlock( in_channels=channels, out_channels=channels, kernel_size=(1, kernel_size), strides=strides, padding=(0, padding), dilation=(1, dilation), groups=channels, use_bias=use_bias, use_bn=use_bn, bn_epsilon=bn_epsilon, bn_use_global_stats=bn_use_global_stats, bn_cudnn_off=bn_cudnn_off, activation=activation) def hybrid_forward(self, F, x): x = self.conv1(x) x = self.conv2(x) return x def dwa_conv3x3_block(channels, strides=1, padding=1, dilation=1, use_bias=False, use_bn=True, bn_epsilon=1e-5, bn_use_global_stats=False, bn_cudnn_off=False, activation=(lambda: nn.Activation("relu")), **kwargs): """ 3x3 version of the depthwise asymmetric separable convolution block. Parameters: ---------- channels : int Number of input/output channels. strides : int, default 1 Strides of the convolution. padding : int, default 1 Padding value for convolution layer. dilation : int, default 1 Dilation value for convolution layer. use_bias : bool, default False Whether the layer uses a bias vector. use_bn : bool, default True Whether to use BatchNorm layer. bn_epsilon : float, default 1e-5 Small float added to variance in Batch norm. bn_use_global_stats : bool, default False Whether global moving statistics is used instead of local batch-norm for BatchNorm layers. bn_cudnn_off : bool, default False Whether to disable CUDNN batch normalization operator. activation : function or str or None, default nn.Activation('relu') Activation function or name of activation function. """ return DwaConvBlock( channels=channels, kernel_size=3, strides=strides, padding=padding, dilation=dilation, use_bias=use_bias, use_bn=use_bn, bn_epsilon=bn_epsilon, bn_use_global_stats=bn_use_global_stats, bn_cudnn_off=bn_cudnn_off, activation=activation, **kwargs) class DABBlock(HybridBlock): """ DABNet specific base block. Parameters: ---------- channels : int Number of input/output channels. dilation : int Dilation value for a dilated branch in the unit. bn_epsilon : float Small float added to variance in Batch norm. bn_use_global_stats : bool, default False Whether global moving statistics is used instead of local batch-norm for BatchNorm layers. bn_cudnn_off : bool, default False Whether to disable CUDNN batch normalization operator. """ def __init__(self, channels, dilation, bn_epsilon, bn_use_global_stats=False, bn_cudnn_off=False, **kwargs): super(DABBlock, self).__init__(**kwargs) mid_channels = channels // 2 with self.name_scope(): self.norm_activ1 = NormActivation( in_channels=channels, bn_epsilon=bn_epsilon, bn_use_global_stats=bn_use_global_stats, bn_cudnn_off=bn_cudnn_off, activation=(lambda: PReLU2(channels))) self.conv1 = conv3x3_block( in_channels=channels, out_channels=mid_channels, bn_epsilon=bn_epsilon, bn_use_global_stats=bn_use_global_stats, bn_cudnn_off=bn_cudnn_off, activation=(lambda: PReLU2(mid_channels))) self.branches = Concurrent(stack=True) self.branches.add(dwa_conv3x3_block( channels=mid_channels, bn_epsilon=bn_epsilon, bn_use_global_stats=bn_use_global_stats, bn_cudnn_off=bn_cudnn_off, activation=(lambda: PReLU2(mid_channels)))) self.branches.add(dwa_conv3x3_block( channels=mid_channels, padding=dilation, dilation=dilation, bn_epsilon=bn_epsilon, bn_use_global_stats=bn_use_global_stats, bn_cudnn_off=bn_cudnn_off, activation=(lambda: PReLU2(mid_channels)))) self.norm_activ2 = NormActivation( in_channels=mid_channels, bn_epsilon=bn_epsilon, bn_use_global_stats=bn_use_global_stats, bn_cudnn_off=bn_cudnn_off, activation=(lambda: PReLU2(mid_channels))) self.conv2 = conv1x1( in_channels=mid_channels, out_channels=channels) def hybrid_forward(self, F, x): identity = x x = self.norm_activ1(x) x = self.conv1(x) x = self.branches(x) x = x.sum(axis=1) x = self.norm_activ2(x) x = self.conv2(x) x = x + identity return x class DownBlock(HybridBlock): """ DABNet specific downsample block for the main branch. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. bn_epsilon : float Small float added to variance in Batch norm. bn_use_global_stats : bool, default False Whether global moving statistics is used instead of local batch-norm for BatchNorm layers. bn_cudnn_off : bool, default False Whether to disable CUDNN batch normalization operator. """ def __init__(self, in_channels, out_channels, bn_epsilon, bn_use_global_stats=False, bn_cudnn_off=False, **kwargs): super(DownBlock, self).__init__(**kwargs) self.expand = (in_channels < out_channels) mid_channels = out_channels - in_channels if self.expand else out_channels with self.name_scope(): self.conv = conv3x3( in_channels=in_channels, out_channels=mid_channels, strides=2) if self.expand: self.pool = nn.MaxPool2D( pool_size=2, strides=2) self.norm_activ = NormActivation( in_channels=out_channels, bn_epsilon=bn_epsilon, bn_use_global_stats=bn_use_global_stats, bn_cudnn_off=bn_cudnn_off, activation=(lambda: PReLU2(out_channels))) def hybrid_forward(self, F, x): y = self.conv(x) if self.expand: z = self.pool(x) y = F.concat(y, z, dim=1) y = self.norm_activ(y) return y class DABUnit(HybridBlock): """ DABNet unit. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. dilations : list of int Dilations for blocks. bn_epsilon : float Small float added to variance in Batch norm. bn_use_global_stats : bool, default False Whether global moving statistics is used instead of local batch-norm for BatchNorm layers. bn_cudnn_off : bool, default False Whether to disable CUDNN batch normalization operator. """ def __init__(self, in_channels, out_channels, dilations, bn_epsilon, bn_use_global_stats=False, bn_cudnn_off=False, **kwargs): super(DABUnit, self).__init__(**kwargs) mid_channels = out_channels // 2 with self.name_scope(): self.down = DownBlock( in_channels=in_channels, out_channels=mid_channels, bn_epsilon=bn_epsilon, bn_use_global_stats=bn_use_global_stats, bn_cudnn_off=bn_cudnn_off) self.blocks = nn.HybridSequential(prefix="") for i, dilation in enumerate(dilations): self.blocks.add(DABBlock( channels=mid_channels, dilation=dilation, bn_epsilon=bn_epsilon, bn_use_global_stats=bn_use_global_stats, bn_cudnn_off=bn_cudnn_off)) def hybrid_forward(self, F, x): x = self.down(x) y = self.blocks(x) x = F.concat(y, x, dim=1) return x class DABStage(HybridBlock): """ DABNet stage. Parameters: ---------- x_channels : int Number of input/output channels for x. y_in_channels : int Number of input channels for y. y_out_channels : int Number of output channels for y. dilations : list of int Dilations for blocks. bn_epsilon : float Small float added to variance in Batch norm. bn_use_global_stats : bool, default False Whether global moving statistics is used instead of local batch-norm for BatchNorm layers. bn_cudnn_off : bool, default False Whether to disable CUDNN batch normalization operator. """ def __init__(self, x_channels, y_in_channels, y_out_channels, dilations, bn_epsilon, bn_use_global_stats=False, bn_cudnn_off=False, **kwargs): super(DABStage, self).__init__(**kwargs) self.use_unit = (len(dilations) > 0) with self.name_scope(): self.x_down = nn.AvgPool2D( pool_size=3, strides=2, padding=1) if self.use_unit: self.unit = DABUnit( in_channels=y_in_channels, out_channels=(y_out_channels - x_channels), dilations=dilations, bn_epsilon=bn_epsilon, bn_use_global_stats=bn_use_global_stats, bn_cudnn_off=bn_cudnn_off) self.norm_activ = NormActivation( in_channels=y_out_channels, bn_epsilon=bn_epsilon, bn_use_global_stats=bn_use_global_stats, bn_cudnn_off=bn_cudnn_off, activation=(lambda: PReLU2(y_out_channels))) def hybrid_forward(self, F, y, x): x = self.x_down(x) if self.use_unit: y = self.unit(y) y = F.concat(y, x, dim=1) y = self.norm_activ(y) return y, x class DABInitBlock(HybridBlock): """ DABNet specific initial block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. bn_epsilon : float Small float added to variance in Batch norm. bn_use_global_stats : bool, default False Whether global moving statistics is used instead of local batch-norm for BatchNorm layers. bn_cudnn_off : bool, default False Whether to disable CUDNN batch normalization operator. """ def __init__(self, in_channels, out_channels, bn_epsilon, bn_use_global_stats=False, bn_cudnn_off=False, **kwargs): super(DABInitBlock, self).__init__(**kwargs) with self.name_scope(): self.conv1 = conv3x3_block( in_channels=in_channels, out_channels=out_channels, strides=2, bn_epsilon=bn_epsilon, bn_use_global_stats=bn_use_global_stats, bn_cudnn_off=bn_cudnn_off, activation=(lambda: PReLU2(out_channels))) self.conv2 = conv3x3_block( in_channels=out_channels, out_channels=out_channels, bn_epsilon=bn_epsilon, bn_use_global_stats=bn_use_global_stats, bn_cudnn_off=bn_cudnn_off, activation=(lambda: PReLU2(out_channels))) self.conv3 = conv3x3_block( in_channels=out_channels, out_channels=out_channels, bn_epsilon=bn_epsilon, bn_use_global_stats=bn_use_global_stats, bn_cudnn_off=bn_cudnn_off, activation=(lambda: PReLU2(out_channels))) def hybrid_forward(self, F, x): x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) return x class DABNet(HybridBlock): """ DABNet model from 'DABNet: Depth-wise Asymmetric Bottleneck for Real-time Semantic Segmentation,' https://arxiv.org/abs/1907.11357. Parameters: ---------- channels : list of int Number of output channels for each unit (for y-branch). init_block_channels : int Number of output channels for the initial unit. dilations : list of list of int Dilations for blocks. bn_epsilon : float, default 1e-5 Small float added to variance in Batch norm. bn_use_global_stats : bool, default False Whether global moving statistics is used instead of local batch-norm for BatchNorm layers. bn_cudnn_off : bool, default False Whether to disable CUDNN batch normalization operator. aux : bool, default False Whether to output an auxiliary result. fixed_size : bool, default False Whether to expect fixed spatial size of input image. in_channels : int, default 3 Number of input channels. in_size : tuple of two ints, default (1024, 2048) Spatial size of the expected input image. classes : int, default 19 Number of segmentation classes. """ def __init__(self, channels, init_block_channels, dilations, bn_epsilon=1e-5, bn_use_global_stats=False, bn_cudnn_off=False, aux=False, fixed_size=False, in_channels=3, in_size=(1024, 2048), classes=19, **kwargs): super(DABNet, self).__init__(**kwargs) assert (aux is not None) assert (fixed_size is not None) assert ((in_size[0] % 8 == 0) and (in_size[1] % 8 == 0)) self.in_size = in_size self.classes = classes self.fixed_size = fixed_size with self.name_scope(): self.features = DualPathSequential( return_two=False, first_ordinals=1, last_ordinals=0) self.features.add(DABInitBlock( in_channels=in_channels, out_channels=init_block_channels, bn_epsilon=bn_epsilon, bn_use_global_stats=bn_use_global_stats, bn_cudnn_off=bn_cudnn_off)) y_in_channels = init_block_channels for i, (y_out_channels, dilations_i) in enumerate(zip(channels, dilations)): self.features.add(DABStage( x_channels=in_channels, y_in_channels=y_in_channels, y_out_channels=y_out_channels, dilations=dilations_i, bn_epsilon=bn_epsilon, bn_use_global_stats=bn_use_global_stats, bn_cudnn_off=bn_cudnn_off)) y_in_channels = y_out_channels self.classifier = conv1x1( in_channels=y_in_channels, out_channels=classes) self.up = InterpolationBlock(scale_factor=8) def hybrid_forward(self, F, x): in_size = self.in_size if self.fixed_size else x.shape[2:] y = self.features(x, x) y = self.classifier(y) y = self.up(y, in_size) return y def get_dabnet(model_name=None, pretrained=False, ctx=cpu(), root=os.path.join("~", ".mxnet", "models"), **kwargs): """ Create DABNet model with specific parameters. Parameters: ---------- model_name : str or None, default None Model name for loading pretrained model. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ init_block_channels = 32 channels = [35, 131, 259] dilations = [[], [2, 2, 2], [4, 4, 8, 8, 16, 16]] bn_epsilon = 1e-3 net = DABNet( channels=channels, init_block_channels=init_block_channels, dilations=dilations, bn_epsilon=bn_epsilon, **kwargs) if pretrained: if (model_name is None) or (not model_name): raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.") from .model_store import get_model_file net.load_parameters( filename=get_model_file( model_name=model_name, local_model_store_dir_path=root), ctx=ctx, ignore_extra=True) return net def dabnet_cityscapes(classes=19, **kwargs): """ DABNet model for Cityscapes from 'DABNet: Depth-wise Asymmetric Bottleneck for Real-time Semantic Segmentation,' https://arxiv.org/abs/1907.11357. Parameters: ---------- classes : int, default 19 Number of segmentation classes. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ return get_dabnet(classes=classes, model_name="dabnet_cityscapes", **kwargs) def _calc_width(net): import numpy as np net_params = net.collect_params() weight_count = 0 for param in net_params.values(): if (param.shape is None) or (not param._differentiable): continue weight_count += np.prod(param.shape) return weight_count def _test(): import mxnet as mx pretrained = False fixed_size = True in_size = (1024, 2048) classes = 19 models = [ dabnet_cityscapes, ] for model in models: net = model(pretrained=pretrained, in_size=in_size, fixed_size=fixed_size) ctx = mx.cpu() if not pretrained: net.initialize(ctx=ctx) # net.hybridize() weight_count = _calc_width(net) print("m={}, {}".format(model.__name__, weight_count)) assert (model != dabnet_cityscapes or weight_count == 756643) batch = 4 x = mx.nd.random.normal(shape=(batch, 3, in_size[0], in_size[1]), ctx=ctx) y = net(x) assert (y.shape == (batch, classes, in_size[0], in_size[1])) if __name__ == "__main__": _test()
support/misc.py
rknop/amuse
131
93395
import sys import re import os import fnmatch from os import walk as py_walk def walk(top, callback, args): for root, dirs, files in py_walk(top): callback(args, root, files) def find_data_files(srcdir, destdir, *wildcards, **kw): """ get a list of all files under the srcdir matching wildcards, returned in a format to be used for install_data """ def walk_helper(arg, dirname, files): if '.svn' in dirname: return names = [] lst, wildcards, dirnameconverter, destdir = arg for wc in wildcards: wc_name = os.path.normpath(os.path.join(dirname, wc)) for f in files: filename = os.path.normpath(os.path.join(dirname, f)) if fnmatch.fnmatch(filename, wc_name) and not os.path.isdir(filename): names.append(filename) if names: destdirname = dirnameconverter.sub(destdir, dirname) lst.append((destdirname, names)) file_list = [] recursive = kw.get('recursive', True) converter = re.compile('^({0})'.format(srcdir)) if recursive: walk(srcdir, walk_helper, (file_list, wildcards, converter, destdir)) else: walk_helper((file_list, wildcards, converter, destdir), srcdir, [os.path.basename(f) for f in glob.glob(os.path.join(srcdir, '*'))]) return file_list
classification_training/imagenet/resnet_vovnet_darknet_train_example/test_config.py
LANCEREN/simpleAICV-pytorch-ImageNet-COCO-training
154
93398
<gh_stars>100-1000 import os import sys BASE_DIR = os.path.dirname( os.path.dirname(os.path.dirname(os.path.dirname( os.path.abspath(__file__))))) sys.path.append(BASE_DIR) from tools.path import ILSVRC2012_path from simpleAICV.classification import backbones from simpleAICV.classification import losses import torchvision.transforms as transforms import torchvision.datasets as datasets class config: val_dataset_path = os.path.join(ILSVRC2012_path, 'val') network = 'resnet18' pretrained = True num_classes = 1000 input_image_size = 224 scale = 256 / 224 model = backbones.__dict__[network](**{ 'pretrained': pretrained, 'num_classes': num_classes, }) criterion = losses.__dict__['CELoss']() val_dataset = datasets.ImageFolder( val_dataset_path, transforms.Compose([ transforms.Resize(int(input_image_size * scale)), transforms.CenterCrop(input_image_size), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])) distributed = True seed = 0 batch_size = 256 num_workers = 16 trained_model_path = ''
tensorflow_federated/python/core/impl/executors/data_conversions_test.py
zhihansh/federated-oss
1,918
93400
<filename>tensorflow_federated/python/core/impl/executors/data_conversions_test.py # Copyright 2021, The TensorFlow Federated Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from absl.testing import absltest from tensorflow_federated.python.core.impl.executors import data_conversions from tensorflow_federated.python.core.impl.types import placements class DataConversionsTest(absltest.TestCase): def test_converts_placement_keyed_to_string_keyed(self): num_clients = 10 placement_keyed_mapping = { placements.SERVER: 1, placements.CLIENTS: num_clients } expected_string_keyed_mapping = { placements.SERVER.uri: 1, placements.CLIENTS.uri: num_clients } string_keyed_mapping = data_conversions.convert_cardinalities_dict_to_string_keyed( placement_keyed_mapping) self.assertEqual(string_keyed_mapping, expected_string_keyed_mapping) def test_raises_string_keyed_mapping(self): string_keyed_mapping = {placements.SERVER.uri: 1, placements.CLIENTS.uri: 5} with self.assertRaises(TypeError): data_conversions.convert_cardinalities_dict_to_string_keyed( string_keyed_mapping) def test_raises_non_integer_values(self): placement_keyed_non_integer_valued_mapping = { placements.SERVER: 1., placements.CLIENTS: 10. } with self.assertRaises(TypeError): data_conversions.convert_cardinalities_dict_to_string_keyed( placement_keyed_non_integer_valued_mapping) if __name__ == '__main__': absltest.main()
corehq/apps/groups/dbaccessors.py
dimagilg/commcare-hq
471
93402
<gh_stars>100-1000 from collections import namedtuple from django.conf import settings from corehq.apps.domain.dbaccessors import ( get_doc_ids_in_domain_by_class, get_docs_in_domain_by_class, ) def group_by_domain(domain): from corehq.apps.groups.models import Group return get_docs_in_domain_by_class(domain, Group) def _group_by_name(domain, name, **kwargs): from corehq.apps.groups.models import Group return list(Group.view( 'groups/by_name', key=[domain, name], **kwargs )) def group_by_name(domain, name, include_docs=True): return _group_by_name( domain, name, include_docs=include_docs, ) def stale_group_by_name(domain, name, include_docs=True): return _group_by_name( domain, name, include_docs=include_docs, stale=settings.COUCH_STALE_QUERY, ) def refresh_group_views(): from corehq.apps.groups.models import Group for view_name in [ 'groups/by_name', ]: Group.view( view_name, include_docs=False, limit=1, ).fetch() def get_group_ids_by_domain(domain): from corehq.apps.groups.models import Group return get_doc_ids_in_domain_by_class(domain, Group) GroupIdName = namedtuple('GroupIdName', 'id name') def get_group_id_name_map_by_user(user_id, limit=None): from corehq.apps.groups.models import Group view_results = Group.view( 'groups/by_user', key=user_id, include_docs=False, limit=limit ) return [GroupIdName(r['id'], r['value'][1]) for r in view_results]
tests/changes/api/test_jenkins_master_blacklist.py
vault-the/changes
443
93424
<gh_stars>100-1000 from changes.testutils import APITestCase class JenkinsMasterBlacklist(APITestCase): def test_add_remove_blacklist(self): path = '/api/0/jenkins_master_blacklist/' # Add to blacklist data = dict(master_url='https://jenkins-master-a') resp = self.client.post(path, data=data) assert resp.status_code == 200 data = dict(master_url='https://jenkins-master-b') resp = self.client.post(path, data=data) assert resp.status_code == 200 resp = self.client.get(path) resp.status_code == 200 result = self.unserialize(resp) assert 'https://jenkins-master-a' in result['blacklist'] assert 'https://jenkins-master-b' in result['blacklist'] # Delete from blacklist data = dict(master_url='https://jenkins-master-a', remove=1) resp = self.client.post(path, data=data) resp.status_code == 200 assert ['https://jenkins-master-b'] == self.unserialize(resp)['blacklist'] def test_re_add(self): path = '/api/0/jenkins_master_blacklist/' data = dict(master_url='https://jenkins-master-a') resp = self.client.post(path, data=data) assert resp.status_code == 200 data = dict(master_url='https://jenkins-master-a') resp = self.client.post(path, data=data) assert resp.status_code == 200 result = self.unserialize(resp) assert 'warning' in result def test_remove_missing(self): path = '/api/0/jenkins_master_blacklist/' data = dict(master_url='https://jenkins-master-a', remove=1) resp = self.client.post(path, data=data) assert resp.status_code == 200 result = self.unserialize(resp) assert 'warning' in result
tools/Ubertooth/host/python/specan_ui/setup.py
Charmve/BLE-Security-Att-Def
149
93441
<filename>tools/Ubertooth/host/python/specan_ui/setup.py #!/usr/bin/env python """ Specan setup Install script for the Ubertooth spectrum analyzer tool Usage: python setup.py install This file is part of project Ubertooth Copyright 2012 <NAME> """ from distutils.core import setup setup( name = "specan", description = "A tool for reading spectrum analyzer data from an Ubertooth device", author = "<NAME>, <NAME>, <NAME>", url = "https://github.com/greatscottgadgets/ubertooth/", license = "GPL", version = '', packages = ['specan'], scripts = ['ubertooth-specan-ui'], classifiers=[ 'Development Status :: 5 - Beta', 'Intended Audience :: Developers', 'License :: OSI Approved :: GNU General Public License (GPL)', 'Programming Language :: Python', 'Operating System :: OS Independent', ], )
train.py
xingranzh/CocosNet-v2
251
93445
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import os import sys import torch from torchvision.utils import save_image from options.train_options import TrainOptions import data from util.iter_counter import IterationCounter from util.util import print_current_errors from util.util import mkdir from trainers.pix2pix_trainer import Pix2PixTrainer if __name__ == '__main__': # parse options opt = TrainOptions().parse() # print options to help debugging print(' '.join(sys.argv)) dataloader = data.create_dataloader(opt) len_dataloader = len(dataloader) # create tool for counting iterations iter_counter = IterationCounter(opt, len(dataloader)) # create trainer for our model trainer = Pix2PixTrainer(opt, resume_epoch=iter_counter.first_epoch) save_root = os.path.join('checkpoints', opt.name, 'train') mkdir(save_root) for epoch in iter_counter.training_epochs(): opt.epoch = epoch iter_counter.record_epoch_start(epoch) for i, data_i in enumerate(dataloader, start=iter_counter.epoch_iter): iter_counter.record_one_iteration() # Training # train generator if i % opt.D_steps_per_G == 0: trainer.run_generator_one_step(data_i) # train discriminator trainer.run_discriminator_one_step(data_i) if iter_counter.needs_printing(): losses = trainer.get_latest_losses() try: print_current_errors(opt, epoch, iter_counter.epoch_iter, iter_counter.epoch_iter_num, losses, iter_counter.time_per_iter) except OSError as err: print(err) if iter_counter.needs_displaying(): imgs_num = data_i['label'].shape[0] if opt.dataset_mode == 'deepfashionHD': label = data_i['label'][:,:3,:,:] show_size = opt.display_winsize imgs = torch.cat((label.cpu(), data_i['ref'].cpu(), \ trainer.get_latest_generated().data.cpu(), \ data_i['image'].cpu()), 0) try: save_name = '%08d_%08d.png' % (epoch, iter_counter.total_steps_so_far) save_name = os.path.join(save_root, save_name) save_image(imgs, save_name, nrow=imgs_num, padding=0, normalize=True) except OSError as err: print(err) if iter_counter.needs_saving(): print('saving the latest model (epoch %d, total_steps %d)' % (epoch, iter_counter.total_steps_so_far)) try: trainer.save('latest') iter_counter.record_current_iter() except OSError as err: import pdb; pdb.set_trace() print(err) trainer.update_learning_rate(epoch) iter_counter.record_epoch_end() if epoch % opt.save_epoch_freq == 0 or epoch == iter_counter.total_epochs: print('saving the model at the end of epoch %d, iters %d' % (epoch, iter_counter.total_steps_so_far)) try: trainer.save('latest') trainer.save(epoch) except OSError as err: print(err) print('Training was successfully finished.')
changes/api/project_build_index.py
vault-the/changes
443
93446
<filename>changes/api/project_build_index.py from __future__ import absolute_import, division, unicode_literals from flask_restful.reqparse import RequestParser from sqlalchemy import or_ from sqlalchemy.orm import contains_eager, joinedload from changes.api.auth import get_current_user from changes.api.base import APIView from changes.constants import Cause, Result from changes.models.author import Author from changes.models.build import Build from changes.models.project import Project from changes.models.source import Source from changes.utils.phabricator_utils import (might_be_diffusion_iden, get_hash_from_diffusion_iden) def validate_author(author_id): current_user = get_current_user() if author_id == 'me' and not current_user: raise ValueError('You are not signed in.') return Author.find(author_id, current_user) class ProjectBuildIndexAPIView(APIView): get_parser = RequestParser() get_parser.add_argument('include_patches', type=lambda x: bool(int(x)), location='args', default=True) get_parser.add_argument('author', type=validate_author, location='args', dest='authors') get_parser.add_argument('query', type=unicode, location='args') get_parser.add_argument('source', type=unicode, location='args') get_parser.add_argument('result', type=unicode, location='args', choices=('failed', 'passed', 'aborted', 'unknown', '')) get_parser.add_argument('patches_only', type=lambda x: bool(int(x)), location='args', default=False) get_parser.add_argument('cause', type=unicode, location='args', choices=('unknown', 'manual', 'push', 'retry', 'snapshot', '')) get_parser.add_argument('tag', type=unicode, action='append', location='args') def get(self, project_id): project = Project.get(project_id) if not project: return '', 404 args = self.get_parser.parse_args() filters = [] if args.authors: filters.append(Build.author_id.in_([a.id for a in args.authors])) elif args.authors is not None: return [] if args.source: filters.append(Build.target.startswith(args.source)) # is this from the search bar if args.query: clauses = [] # search by revision title clauses.append(Build.label.contains(args.query)) # search by prefix clauses.append(Build.target.startswith(args.query)) # allows users to paste a full commit hash and still # find the relevant build(s). Should be fine for mercurial/git, # and svn will never have long enough strings if len(args.query) > 12: clauses.append(Build.target.startswith(args.query[0:12])) # if they searched for something that looks like a phabricator # identifier, try to find it if might_be_diffusion_iden(args.query): possible_hash = get_hash_from_diffusion_iden(args.query) if possible_hash: # the query should always be at least as long or longer than # our commit identifiers clauses.append( Build.target.startswith(possible_hash[0:12])) filters.append(or_(*clauses)) if args.result: filters.append(Build.result == Result[args.result]) if args.cause: filters.append(Build.cause == Cause[args.cause]) if args.tag: tags = filter(bool, args.tag) # Avoid empty tags, which historically are meant to mean "no tag" restriction. if tags: filters.append(or_(*[Build.tags.any(t) for t in tags])) if args.patches_only: filters.append(Source.patch_id != None) # NOQA elif not args.include_patches: filters.append(Source.patch_id == None) # NOQA queryset = Build.query.options( joinedload('project', innerjoin=True), joinedload('author'), contains_eager('source').joinedload('revision'), ).join( Source, Source.id == Build.source_id, ).filter( Build.project_id == project.id, Source.repository_id == project.repository_id, *filters ).order_by(Build.date_created.desc()) return self.paginate(queryset)
tests/functional/modules/pyi_testmod_relimp/relimp1.py
hawkhai/pyinstaller
9,267
93448
#----------------------------------------------------------------------------- # Copyright (c) 2005-2021, PyInstaller Development Team. # # Distributed under the terms of the GNU General Public License (version 2 # or later) with exception for distributing the bootloader. # # The full license is in the file COPYING.txt, distributed with this software. # # SPDX-License-Identifier: (GPL-2.0-or-later WITH Bootloader-exception) #----------------------------------------------------------------------------- name = 'pyi_testmod_relimp.relimp1' from . import relimp2 as upper # noqa: E402 from .pyi_testmod_relimp import relimp2 as lower # noqa: E402 assert upper.name == 'pyi_testmod_relimp.relimp2' assert lower.name == 'pyi_testmod_relimp.pyi_testmod_relimp.relimp2' if upper.__name__ == lower.__name__: raise SystemExit("Imported the same module") if upper.__file__ == lower.__file__: raise SystemExit("Imported the same file")
examples/pipeline_sensitivity.py
rozlana-g/FEDOT
358
93456
from os import makedirs from os.path import exists, join from fedot.core.composer.gp_composer.gp_composer import GPComposerBuilder, GPComposerRequirements from fedot.core.data.data import InputData from fedot.core.data.data_split import train_test_data_setup from fedot.core.optimisers.gp_comp.gp_optimiser import GPGraphOptimiserParameters from fedot.core.optimisers.gp_comp.operators.inheritance import GeneticSchemeTypesEnum from fedot.core.pipelines.node import PrimaryNode, SecondaryNode from fedot.core.pipelines.pipeline import Pipeline from fedot.core.repository.operation_types_repository import get_operations_for_task from fedot.core.repository.quality_metrics_repository import ClassificationMetricsEnum, MetricsRepository, \ RegressionMetricsEnum from fedot.core.repository.tasks import Task, TaskTypesEnum from fedot.core.utils import default_fedot_data_dir, fedot_project_root from fedot.sensitivity.node_sa_approaches import NodeDeletionAnalyze, NodeReplaceOperationAnalyze from fedot.sensitivity.nodes_sensitivity import NodesAnalysis def get_three_depth_manual_class_pipeline(): logit_node_primary = PrimaryNode('logit') xgb_node_primary = PrimaryNode('xgboost') xgb_node_primary_second = PrimaryNode('xgboost') qda_node_third = SecondaryNode('qda', nodes_from=[xgb_node_primary_second]) knn_node_third = SecondaryNode('knn', nodes_from=[logit_node_primary, xgb_node_primary]) knn_root = SecondaryNode('knn', nodes_from=[qda_node_third, knn_node_third]) pipeline = Pipeline(knn_root) return pipeline def get_three_depth_manual_regr_pipeline(): xgb_primary = PrimaryNode('xgbreg') knn_primary = PrimaryNode('knnreg') dtreg_secondary = SecondaryNode('dtreg', nodes_from=[xgb_primary]) rfr_secondary = SecondaryNode('rfr', nodes_from=[knn_primary]) knnreg_root = SecondaryNode('knnreg', nodes_from=[dtreg_secondary, rfr_secondary]) pipeline = Pipeline(knnreg_root) return pipeline def get_composed_pipeline(dataset_to_compose, task, metric_function): # the search of the models provided by the framework that can be used as nodes in a pipeline for the selected task available_model_types = get_operations_for_task(task=task, mode='model') # the choice and initialisation of the GP search composer_requirements = GPComposerRequirements( primary=available_model_types, secondary=available_model_types, max_arity=3, max_depth=3, pop_size=20, num_of_generations=20, crossover_prob=0.8, mutation_prob=0.8) # GP optimiser parameters choice scheme_type = GeneticSchemeTypesEnum.steady_state optimiser_parameters = GPGraphOptimiserParameters(genetic_scheme_type=scheme_type) # Create builder for composer and set composer params builder = GPComposerBuilder(task=task).with_requirements(composer_requirements).with_metrics( metric_function).with_optimiser_parameters(optimiser_parameters) # Create GP-based composer composer = builder.build() # the optimal pipeline generation by composition - the most time-consuming task pipeline_evo_composed = composer.compose_pipeline(data=dataset_to_compose, is_visualise=True) return pipeline_evo_composed def get_scoring_data(): file_path_train = 'cases/data/scoring/scoring_train.csv' full_path_train = join(str(fedot_project_root()), file_path_train) # a dataset for a final validation of the composed model file_path_test = 'cases/data/scoring/scoring_test.csv' full_path_test = join(str(fedot_project_root()), file_path_test) task = Task(TaskTypesEnum.classification) train = InputData.from_csv(full_path_train, task=task) test = InputData.from_csv(full_path_test, task=task) return train, test def get_kc2_data(): file_path = 'cases/data/kc2/kc2.csv' full_path = join(str(fedot_project_root()), file_path) task = Task(TaskTypesEnum.classification) data = InputData.from_csv(full_path, task=task) train, test = train_test_data_setup(data) return train, test def get_cholesterol_data(): file_path = 'cases/data/cholesterol/cholesterol.csv' full_path = join(str(fedot_project_root()), file_path) task = Task(TaskTypesEnum.regression) data = InputData.from_csv(full_path, task=task) train, test = train_test_data_setup(data) return train, test def pipeline_by_task(task, metric, data, is_composed): if is_composed: pipeline = get_composed_pipeline(data, task, metric_function=metric) else: if task.task_type.name == 'classification': pipeline = get_three_depth_manual_class_pipeline() else: pipeline = get_three_depth_manual_regr_pipeline() return pipeline def run_analysis_case(train_data: InputData, test_data: InputData, case_name: str, task, metric, is_composed=False, result_path=None): pipeline = pipeline_by_task(task=task, metric=metric, data=train_data, is_composed=is_composed) pipeline.fit(train_data) if not result_path: result_path = join(default_fedot_data_dir(), 'sensitivity', f'{case_name}') if not exists(result_path): makedirs(result_path) pipeline.show(path=result_path) pipeline_analysis_result = NodesAnalysis(pipeline=pipeline, train_data=train_data, test_data=test_data, path_to_save=result_path, approaches=[NodeDeletionAnalyze, NodeReplaceOperationAnalyze]).analyze() print(f'pipeline analysis result {pipeline_analysis_result}') def run_class_scoring_case(is_composed: bool, path_to_save=None): train_data, test_data = get_scoring_data() task = Task(TaskTypesEnum.classification) # the choice of the metric for the pipeline quality assessment during composition metric_function = MetricsRepository().metric_by_id(ClassificationMetricsEnum.ROCAUC_penalty) if is_composed: case = 'scoring_composed' run_analysis_case(train_data, test_data, case, task, metric=metric_function, is_composed=True, result_path=path_to_save) else: case = 'scoring' run_analysis_case(train_data, test_data, case, task, metric=metric_function, is_composed=False, result_path=path_to_save) def run_class_kc2_case(is_composed: bool = False, path_to_save=None): train_data, test_data = get_kc2_data() task = Task(TaskTypesEnum.classification) # the choice of the metric for the pipeline quality assessment during composition metric_function = MetricsRepository().metric_by_id(ClassificationMetricsEnum.ROCAUC_penalty) if is_composed: case = 'kc2_composed' run_analysis_case(train_data, test_data, case, task, metric=metric_function, is_composed=True, result_path=path_to_save) else: case = 'kc2' run_analysis_case(train_data, test_data, case, task, metric=metric_function, is_composed=False, result_path=path_to_save) def run_regr_case(is_composed: bool = False, path_to_save=None): train_data, test_data = get_cholesterol_data() task = Task(TaskTypesEnum.regression) # the choice of the metric for the pipeline quality assessment during composition metric_function = MetricsRepository().metric_by_id(RegressionMetricsEnum.RMSE) if is_composed: case = 'cholesterol_composed' run_analysis_case(train_data, test_data, case, task, metric=metric_function, is_composed=True, result_path=path_to_save) else: case = 'cholesterol' run_analysis_case(train_data, test_data, case, task, metric=metric_function, is_composed=False, result_path=path_to_save) if __name__ == '__main__': # scoring case manual run_class_scoring_case(is_composed=False) # kc2 case manual run_class_kc2_case(is_composed=False) # cholesterol regr case run_regr_case(is_composed=False)
src/debugpy/_vendored/pydevd/tests_python/resources/_debugger_case15.py
r3m0t/debugpy
695
93471
class Car(object): """A car class""" def __init__(self, model, make, color): self.model = model self.make = make self.color = color self.price = None def get_price(self): return self.price def set_price(self, value): self.price = value availableCars = [] def main(): global availableCars #Create a new car obj carObj = Car("<NAME>", "2011", "Black") carObj.set_price(950000) # Set price # Add this to available cars availableCars.append(carObj) print('TEST SUCEEDED') if __name__ == '__main__': main()
modules/dbnd/test_dbnd/scenarios/pipelines/double_fault.py
ipattarapong/dbnd
224
93497
<gh_stars>100-1000 import logging import sys from dbnd import PipelineTask, PythonTask, output, parameter logger = logging.getLogger(__name__) class T1(PythonTask): p1 = parameter.value("somep") o_1 = output[str] def run(self): self.o_1 = self.p1 class T2(PythonTask): p1 = parameter.value("somep") o_1 = output[str] def run(self): raise Exception() # self.o_1 = self.p1 class TPipe(PipelineTask): o_1 = output[str] o_2 = output[str] def band(self): self.o_1 = T1().o_1 self.o_2 = T2(p1=self.o_1) if __name__ == "__main__": TPipe(override={T1.task_version: "now"}).dbnd_run()
mmtbx/ions/geometry.py
dperl-sol/cctbx_project
155
93498
# -*- coding: utf-8; py-indent-offset: 2 -*- """ This module provides tools for examining a set of vectors and find the geometry that best fits from a set of built in shapes. """ from __future__ import absolute_import, division, print_function from scitbx.matrix import col from collections import OrderedDict try: from collections.abc import Iterable except ImportError: from collections import Iterable from math import sqrt from six.moves import zip def _bond_angles(vectors): """ Creates a list of angles (In degrees) between all two-element combinations in vectors. Parameters ---------- vectors : scitbx.matrix.col Returns ------- list of float """ return [(v1, v2, v1.angle(v2, deg=True)) for index, v1 in enumerate(vectors) for v2 in vectors[index + 1:]] def _is_tetrahedron(vectors, dev_cutoff=20): """ Tetrahedrons have four vertices, with angles between all pairs of vertices uniformly about 104.5 degrees. Parameters ---------- vectors : list scitbx.matrix.col dev_cutoff : float, optional Returns ------- bool """ if len(vectors) > 4 or len(vectors) < 3: return angles = _bond_angles(vectors) deviation = sqrt(sum(abs(i[2] - 104.5) ** 2 for i in angles) / len(vectors)) if deviation <= dev_cutoff: return deviation, 4 - len(vectors) def _is_trigonal_plane(vectors, dev_cutoff=20): """ Triangular planar geometry has three vertices (By definition all on the same equatorial plane). The expected angles are 120 degrees between neighboring vertices. Parameters ---------- vectors : list scitbx.matrix.col dev_cutoff : float, optional Returns ------- bool """ if len(vectors) != 3: return angles = _bond_angles(vectors) a_120s = [] for angle in angles: a_120s.append(angle[2] - 120) deviation = sqrt(sum(i ** 2 for i in a_120s) / len(angles)) if deviation <= dev_cutoff: return deviation, 3 - len(vectors) def _is_square_plane(vectors, dev_cutoff=20): """ Square planar geometry has four vertices, all on the same equatorial plane. The expected angles are 90 degrees between neighboring vertices and 180 degrees between vertices across from one another. Parameters ---------- vectors : list scitbx.matrix.col dev_cutoff : float, optional Returns ------- bool """ if len(vectors) != 4: return angles = _bond_angles(vectors) # Expect 2x 180 degrees and 4x 90 degrees a_90s = [] a_180s = [] for angle in angles: if abs(angle[2] - 90) < abs(angle[2] - 180): a_90s.append(angle[2] - 90) else: a_180s.append(angle[2] - 180) # With up to one atom missing, we must have 2 to 4 90 degree angles and 1 to 2 # 180 degree angles if len(a_90s) < 2 or len(a_90s) > 4 or len(a_180s) < 1 or len(a_180s) > 2: return deviation = sqrt(sum(i ** 2 for i in a_90s + a_180s) / len(angles)) if deviation <= dev_cutoff: return deviation, 4 - len(vectors) def _is_square_pyramid(vectors, dev_cutoff=20): """ Square bipyramids have five vertices, four on the same equatorial plane with one above. The expected angles are all either 90 degrees or 180 degrees. Parameters ---------- vectors : list scitbx.matrix.col dev_cutoff : float, optional Returns ------- bool """ if len(vectors) != 5: return angles = _bond_angles(vectors) a_90s, a_180s = [], [] for angle in angles: if abs(angle[2] - 90) < abs(angle[2] - 180): a_90s.append(angle[2] - 90) else: a_180s.append(angle[2] - 180) if len(a_90s) != 8 or len(a_180s) != 2: return deviation = sqrt(sum(i ** 2 for i in a_90s + a_180s) / len(angles)) if deviation <= dev_cutoff: return deviation, 5 - len(vectors) def _is_octahedron(vectors, dev_cutoff=20): """ Octahedrons have six vertices (Their name comes from their eight faces). The expected angles are all either 90 degrees (Next to each other), or 180 degrees (Across from each other). Another name for this shape is square bipyramidal. Parameters ---------- vectors : list scitbx.matrix.col dev_cutoff : float, optional Returns ------- bool """ if len(vectors) != 6: return angles = _bond_angles(vectors) a_90s, a_180s = [], [] for angle in angles: if abs(angle[-1] - 90) < abs(angle[-1] - 180): a_90s.append(angle[-1] - 90) else: a_180s.append(angle[-1] - 180) if len(a_180s) > 3 or len(a_180s) < 2 or len(a_90s) < 8 or len(a_90s) > 12: return deviation = sqrt(sum(i ** 2 for i in a_90s + a_180s) / len(angles)) if deviation <= dev_cutoff: return deviation, 6 - len(vectors) def _is_trigonal_pyramid(vectors, dev_cutoff=15): """ Trigional pyramids have four vertices. Three vertices form a plane with angles of 120 degrees between each pair. The last vertex resides axial to the plane, at 90 degrees from all of the equatorial vertices. Parameters ---------- vectors : list scitbx.matrix.col dev_cutoff : float, optional Returns ------- bool """ if len(vectors) != 4: return angles = _bond_angles(vectors) a_90s, a_120s = [], [] for angle in angles: if abs(angle[2] - 90) < abs(angle[2] - 120): a_90s.append(angle[2] - 90) else: a_120s.append(angle[2] - 120) if len(a_90s) < 2 or len(a_90s) > 4 or len(a_120s) < 2 or len(a_120s) > 4: return deviation = sqrt(sum(i ** 2 for i in a_90s + a_120s) / len(angles)) if deviation <= dev_cutoff: return deviation, 4 - len(vectors) def _is_trigonal_bipyramid(vectors, dev_cutoff=15): """ Trigonal bipyramids have five vertices. Three vertices form a plane in the middle and the angles between all three are 120 degrees. The two other vertices reside axial to the plane, at 90 degrees from all the equatorial vertices. Parameters ---------- vectors : list scitbx.matrix.col dev_cutoff : float, optional Returns ------- bool """ if len(vectors) > 5 or len(vectors) < 4: return angles = _bond_angles(vectors) # Grab the two axial vectors ax1, ax2, axial_angle = max(angles, key=lambda x: abs(x[-1])) if axial_angle < 150: # Missing one of the two axial vectors, just quit return base_to_axials = [] equatorial_angles = [] for v1, v2, angle in angles: # Python has no boolean xor! # Grab the angles between the two endpoints of the bipyramid and the base if (v1 in [ax1, ax2]) != (v2 in [ax1, ax2]): base_to_axials += angle, elif (v1 not in [ax1, ax2]) and (v2 not in [ax1, ax2]): equatorial_angles += angle, deviants = [axial_angle - 180] deviants += [i - 90 for i in base_to_axials] deviants += [i - 120 for i in equatorial_angles] deviation = sqrt(sum(i ** 2 for i in deviants) / len(deviants)) if deviation <= dev_cutoff: return deviation, 5 - len(vectors) def _is_pentagonal_bipyramid(vectors, dev_cutoff=15): """ Pentagonal bipyramids have seven vertices. Five vertices form a plane in the middle and the angles between all five are 72 degrees. The two other vertices reside axial to the plane, at 90 degrees from all the equatorial vertices. Parameters ---------- vectors : list scitbx.matrix.col dev_cutoff : float, optional Returns ------- bool """ if len(vectors) > 7 or len(vectors) < 6: return angles = _bond_angles(vectors) # Determine which two vectors define the axial angles axials = [] for v1 in vectors: v_angles = [] for v2 in vectors: if v2 != v1: v_angles.append(v1.angle(v2, deg=True)) a_180s = len([i for i in v_angles if abs(i - 180) < 20]) a_90s = len([i for i in v_angles if abs(i - 90) < 20]) if a_180s > 0 and a_90s > 4: axials.append(v1) if len(axials) != 2: # Couldn't determine axial angles return ax1, ax2 = axials axial_angle = ax1.angle(ax2, deg=True) base_to_axials = [] equatorial_angles = [] for v1, v2, angle in angles: # Python has no boolean xor! # Grab the angles between the two endpoints of the bipyramid and the base if (v1 in [ax1, ax2]) != (v2 in [ax1, ax2]): base_to_axials += angle, elif (v1 not in [ax1, ax2]) and (v2 not in [ax1, ax2]): equatorial_angles += angle, deviants = [axial_angle - 180] deviants += [i - 90 for i in base_to_axials] deviants += [min(abs(i - 72), abs(i - 144)) for i in equatorial_angles] deviation = sqrt(sum(i ** 2 for i in deviants) / len(deviants)) if deviation <= dev_cutoff: return deviation, 7 - len(vectors) def _is_trigonal_prism(vectors, dev_cutoff=15): """ Triangular prisms are defined by 3 vertices in a triangular pattern on two aligned planes. Unfortunately, the angles are dependent on the length and width of the prism. Need more examples to come up with a better way of detecting this shape. For now, this code is experimental. Parameters ---------- vectors : list scitbx.matrix.col dev_cutoff : float, optional Returns ------- bool """ if len(vectors) != 6: return angles = _bond_angles(vectors) a_85s, a_135s = [], [] for angle in angles: if abs(angle[-1] - 85) < abs(angle[-1] - 135): a_85s.append(angle[-1] - 85) else: a_135s.append(angle[-1] - 135) if len(a_85s) != 9 and len(a_135s) != 6: return deviation = sqrt(sum(i ** 2 for i in a_85s + a_135s) / len(angles)) if deviation < dev_cutoff: return deviation, 6 - len(vectors) SUPPORTED_GEOMETRIES_OLD = OrderedDict([ ("tetrahedral", _is_tetrahedron), ("trigonal_planar", _is_trigonal_plane), ("square_planar", _is_square_plane), ("square_pyramidal", _is_square_pyramid), ("octahedral", _is_octahedron), ("trigonal_pyramidal", _is_trigonal_pyramid), ("trigonal_bipyramidal", _is_trigonal_bipyramid), ("pentagonal_bipyramidal", _is_pentagonal_bipyramid), ("trigonal_prism", _is_trigonal_prism), ]) def _concatenate(*args): """ Reduces a list of a mixture of elements and lists down to a single list. Parameters ---------- args : tuple of (object or list of object) Returns ------- list """ lst = [] for arg in args: if isinstance(arg, list): for elem in arg: lst.append(elem) else: lst.append(arg) return lst def _tetrahedron(): """ Returns ------- list of scitbx.matrix.col """ return [ col([1, 1, 1]), col([-1, -1, 1]), col([-1, 1, -1]), col([1, -1, -1]), ] def _octahedron(): """ Returns ------- list of scitbx.matrix.col """ return _bipyramid(_square_plane()) def _trigonal_plane(): """ Returns ------- list of scitbx.matrix.col """ return [ col([0, 1, 0]), col([-sqrt(3) / 2, -1 / 2, 0]), col([sqrt(3) / 2, -1 / 2, 0]), ] def _square_plane(): """ Returns ------- list of scitbx.matrix.col """ return [ col([0, 1, 0]), col([0, -1, 0]), col([1, 0, 0]), col([-1, 0, 0]), ] def _pyramid(base): """ Returns ------- list of scitbx.matrix.col """ return _concatenate(base, col([0, 0, 1])) def _bipyramid(base): """ Returns ------- list of scitbx.matrix.col """ return _concatenate(base, col([0, 0, 1]), col([0, 0, -1])) def _square_pyramid(): """ Returns ------- list of scitbx.matrix.col """ return _pyramid(_square_plane()) def _square_bipyramid(): """ Returns ------- list of scitbx.matrix.col """ return _bipyramid(_square_plane()) def _trigonal_pyramid(): """ Returns ------- list of scitbx.matrix.col """ return _pyramid(_trigonal_plane()) def _trigonal_bipyramid(): """ Returns ------- list of scitbx.matrix.col """ return _bipyramid(_trigonal_plane()) def _trigonal_prism(): """ Returns ------- list of scitbx.matrix.col """ return _concatenate( [i + col([0, 0, 1]) for i in _trigonal_plane()], [i + col([0, 0, -1]) for i in _trigonal_plane()], ) def _pentagon(): """ Create a list of vectors in the shape of a planar pentagon. Returns ------- list of scitbx.matrix.col See Also -------- http://mathworld.wolfram.com/Pentagon.html """ c_1 = (sqrt(5) - 1) / 4 c_2 = (sqrt(5) + 1) / 4 s_1 = sqrt(10 + 2 * sqrt(5)) / 4 s_2 = sqrt(10 - 2 * sqrt(5)) / 4 return [ col([1, 0, 0]), col([c_1, s_1, 0]), col([-c_2, s_2, 0]), col([-c_2, -s_2, 0]), col([c_1, -s_1, 0]), ] def _pentagonal_pyramid(): """ Returns ------- list of scitbx.matrix.col """ return _pyramid(_pentagon()) def _pentagonal_bipyramid(): """ Creates a square bipyramid shape. Returns ------- list of scitbx.matrix.col """ return _bipyramid(_pentagon()) def _square_pyramid_bidentate_miss_1(): """ Creates a square pyramid shape with one vertex replaced with a bidentate coordination group. One vertex is missing in this shape. Returns ------- list of scitbx.matrix.col """ return _concatenate( _square_plane(), col([sqrt(2) / 2, sqrt(2) / 2, -1]), col([-sqrt(2) / 2, -sqrt(2) / 2, -1]), ) def _square_pyramid_bidentate_miss_2(): """ Creates a square pyramid shape with one vertex replaced with a bidentate coordination group. One vertex is missing in this shape. Returns ------- list of scitbx.matrix.col """ return [ col([0, 1, 0]), col([0, -1, 0]), col([-1, 0, 0]), col([0, 0, 1]), col([sqrt(2) / 2, sqrt(2) / 2, -1]), col([-sqrt(2) / 2, -sqrt(2) / 2, -1]), ] def _square_pyramid_bidentate_miss_3(): """ Creates a square pyramid shape with one vertex replaced with a bidentate coordination group. One vertex is missing in this shape. Returns ------- list of scitbx.matrix.col """ return [ col([0, 1, 0]), col([0, -1, 0]), col([-1, 0, 0]), col([1, 0, 0]), col([sqrt(2) / 2, sqrt(2) / 2, -1]), col([-sqrt(2) / 2, -sqrt(2) / 2, -1]), ] def _square_pyramid_bidentate(): """ Creates a square pyramid shape with one vertex replaced with a bidentate coordination group. Returns ------- list of scitbx.matrix.col """ return _concatenate( _square_pyramid(), col([sqrt(2) / 2, sqrt(2) / 2, -1]), col([-sqrt(2) / 2, -sqrt(2) / 2, -1]) ) def _pentagonal_pyramid_bidentate(): """ Creates a pentagonal pyramid shape with one vertex replaced with a bidentate coordination group. Returns ------- list of scitbx.matrix.col """ return _concatenate( _pentagonal_pyramid(), col([sqrt(2) / 2, sqrt(2) / 2, -1]), col([-sqrt(2) / 2, -sqrt(2) / 2, -1]), ) def _pentagonal_bibidentate_miss_1(): """ A planar pentagon with bidentate atoms coordinating directly above and below. One vertex from the plane is missing in this shape. Returns ------- list of scitbx.matrix.col """ return _concatenate( col([sqrt(2) / 2, sqrt(2) / 2, 1]), col([-sqrt(2) / 2, -sqrt(2) / 2, 1]), col([sqrt(2) / 2, sqrt(2) / 2, -1]), col([-sqrt(2) / 2, -sqrt(2) / 2, -1]), *_pentagon()[:-1] ) def _pentagonal_bibidentate_miss_2(): """ A planar pentagon with bidentate atoms coordinating directly above and below. One vertex from the plane is missing in this shape. Returns ------- list of scitbx.matrix.col """ return _concatenate( col([sqrt(2) / 2, sqrt(2) / 2, 1]), col([-sqrt(2) / 2, -sqrt(2) / 2, 1]), col([sqrt(2) / 2, sqrt(2) / 2, -1]), col([-sqrt(2) / 2, -sqrt(2) / 2, -1]), *_pentagon()[1:] ) def _pentagonal_bibidentate_miss_3(): """ A planar pentagon with bidentate atoms coordinating directly above and below. One vertex from the plane is missing in this shape. Returns ------- list of scitbx.matrix.col """ pentagon = _pentagon() return _concatenate( col([sqrt(2) / 2, sqrt(2) / 2, 1]), col([-sqrt(2) / 2, -sqrt(2) / 2, 1]), col([sqrt(2) / 2, sqrt(2) / 2, -1]), col([-sqrt(2) / 2, -sqrt(2) / 2, -1]), pentagon[0], pentagon[1], pentagon[3], pentagon[4], ) def _pentagonal_bibidentate_miss_4(): """ A planar pentagon with bidentate atoms coordinating directly above and below. One vertex from a bidentate coordinator is missing in this shape. Returns ------- list of scitbx.matrix.col """ return _concatenate( _pentagon(), col([sqrt(2) / 2, sqrt(2) / 2, 1]), col([-sqrt(2) / 2, -sqrt(2) / 2, 1]), col([-sqrt(2) / 2, -sqrt(2) / 2, -1]), ) def _pentagonal_bibidentate_miss_5(): """ A planar pentagon with bidentate atoms coordinating directly above and below. One vertex from a bidentate coordinator is missing in this shape. Returns ------- list of scitbx.matrix.col """ return _concatenate( _pentagon(), col([sqrt(2) / 2, sqrt(2) / 2, 1]), col([-sqrt(2) / 2, -sqrt(2) / 2, 1]), col([sqrt(2) / 2, sqrt(2) / 2, -1]), ) def _pentagonal_bibidentate(): """ A planar pentagon with bidentate atoms coordinating directly above and below. Returns ------- list of scitbx.matrix.col """ return _concatenate( _pentagon(), col([sqrt(2) / 2, sqrt(2) / 2, 1]), col([-sqrt(2) / 2, -sqrt(2) / 2, 1]), col([sqrt(2) / 2, sqrt(2) / 2, -1]), col([-sqrt(2) / 2, -sqrt(2) / 2, -1]), ) def _see_saw(): """ An octahedron missing two adjacent points. Returns ------- list of scitbx.matrix.col """ return [ col([1, 0, 0]), col([-1, 0, 0]), col([0, 1, 0]), col([0, 0, 1]), ] def _three_legs(): """ Better name? Imagine 3 orthogonal vectors pointed in the x, y, and z directions. Returns ------- list of scitbx.matrix.col """ return [ col([1, 0, 0]), col([0, 1, 0]), col([0, 0, 1]), ] SUPPORTED_GEOMETRIES = OrderedDict([ (3, [ ("three_legs", _three_legs, 15), ("trigonal_plane", _trigonal_plane, 15), ]), (4, [ ("tetrahedron", _tetrahedron, 15), ("square_plane", _square_plane, 20), ("trigonal_pyramid", _trigonal_pyramid, 15), ("see_saw", _see_saw, 15), ]), (5, [ ("square_pyramid", _square_pyramid, 15), ("trigonal_bipyramid", _trigonal_bipyramid, 15), ("pentagon", _pentagon, 15) ]), (6, [ ("octahedron", _octahedron, 15), ("trigonal_prism", _trigonal_prism, 15), ("pentagonal_pyramid", _pentagonal_pyramid, 15), ("square_pyramid_bidentate_miss", [_square_pyramid_bidentate_miss_1, _square_pyramid_bidentate_miss_2, _square_pyramid_bidentate_miss_3], 15), ]), (7, [ ("pentagonal_bipyramid", _pentagonal_bipyramid, 15), ("square_pyramid_bidentate", _square_pyramid_bidentate, 15), ]), (8, [ ("pentagonal_pyramid_bidentate", _pentagonal_pyramid_bidentate, 15), ("pentagonal_bibidentate_miss", [_pentagonal_bibidentate_miss_1, _pentagonal_bibidentate_miss_2, _pentagonal_bibidentate_miss_3], 15), ]), (9, [ ("pentagonal_bibidentate", _pentagonal_bibidentate, 15), ]), ]) SUPPORTED_GEOMETRY_NAMES = \ [lst_i[0] for vals in SUPPORTED_GEOMETRIES.values() for lst_i in vals] def _angles_deviation(vectors_a, vectors_b): """ Calculates the root mean square of the angle deviation (in degrees) between two lists of vectors. Parameters ---------- vectors_a : list of scitbx.matrix.col vectors_b : list of scitbx.matrix.col Returns ------- float """ assert len(vectors_a) == len(vectors_b) angles_a = [vec.angle(vec_o, deg=True) for index, vec in enumerate(vectors_a) for vec_o in vectors_a[index + 1:]] angles_b = [vec.angle(vec_o, deg=True) for index, vec in enumerate(vectors_b) for vec_o in vectors_b[index + 1:]] angles_a.sort() angles_b.sort() angle_deviation = sqrt(sum((i - j) ** 2 for i, j in zip(angles_a, angles_b)) / len(angles_a)) return angle_deviation def find_coordination_geometry(nearby_atoms, minimizer_method=False, cutoff=2.9): """ Searches through a list of geometries to find those that fit nearby_atom. Geometries are recognized by generating a list of all combinations of angles between the vectors and comparing them against the angles among the vectors of the ideal geometry. Parameters ---------- nearby_atoms: list of mmtbx.ions.environment.atom_contact A list of atom contacts, indicating the vertices of the shape to be recognized. minimizer_method: bool, optional Optional parameter to use the new, more efficient version of geometry recognition. The old method will be depreciated in later versions of cctbx. cutoff: float, optional A cutoff distance, past which vectors are not included in geometry calculations. Returns ------- list of tuples of str, float A list of found geometries. Each tuple contains the name of the geometry in string form followed by the deviation from ideal angles. See Also -------- mmtbx.ions.geometry.SUPPORTED_GEOMETRY_NAMES, mmtbx.ions.geometry.SUPPORTED_GEOMETRIES_OLD """ # Filter out overlapping atoms, we just want an idea of the coordinating # geometry, even if it is two different atoms are occupying the same spot. non_overlapping = [] for index, contact in enumerate(nearby_atoms): if all(contact.distance_from(other) > 0.5 for other in nearby_atoms[index + 1:]): non_overlapping.append(contact) # Filter out contacts > cutoff away filtered = [] for contact in non_overlapping: if contact.distance() < cutoff: filtered.append(contact.vector) geometries = [] if minimizer_method: n_vectors = len(filtered) if n_vectors not in SUPPORTED_GEOMETRIES: return geometries for name, func, rmsa_cutoff in SUPPORTED_GEOMETRIES[n_vectors]: if isinstance(func, Iterable): rmsa = min(_angles_deviation(filtered, i()) for i in func) else: rmsa = _angles_deviation(filtered, func()) if rmsa < rmsa_cutoff: geometries.append((name, rmsa)) if geometries: geometries.sort(key=lambda x: x[-1]) geometries = [geometries[0]] else: for name, func in SUPPORTED_GEOMETRIES_OLD.items(): val = func(filtered) if val: deviation = val[0] geometries.append((name, deviation)) return geometries
mcsniperpy/util/ping_tester.py
veil-ctf/MCsniperPY
1,320
93527
# type: ignore # ^ that's necessary to prevent a false linting error of some kind import asyncio import urllib.parse from time import perf_counter import typer from mcsniperpy.util.logs_manager import Color as color from mcsniperpy.util.logs_manager import Logger as log async def check(url: str, iterations: int): async def ping(): try: uri = urllib.parse.urlparse(url) reader, writer = await asyncio.open_connection(uri.hostname, 443, ssl=False) writer.write( f"GET {uri.path or '/'} HTTP/1.1\r\nHost:{uri.hostname}\r\n\r\n".encode() ) start = perf_counter() await writer.drain() _ = await reader.read(100) end = perf_counter() return round((end - start) * 1000) # pylint: disable=invalid-name, broad-except except Exception as e: log.error("Failed to connect to URL. error code: " + str(e)) pings = [] with typer.progressbar( range(iterations), fill_char="█", empty_char=" ", color=10, show_eta=False, bar_template="%(label)s %(bar)s %(info)s", ) as progress: for _ in progress: pings.append(await ping()) await asyncio.sleep(0.01) print() log.info(f"Host {color.l_cyan}» {color.blue}{urllib.parse.urlparse(url).hostname}") log.info(f"Ping {color.l_cyan}» {color.blue}{sum(pings) / 5}ms") async def ping_test(iterations): print() await check("https://api.minecraftservices.com/minecraft", iterations)
create-template-script/createtemplatefile.py
TechnicalConsultant123/material-design-icons-adt-template
352
93535
import os from os.path import join from collections import OrderedDict templateFile = open('../MaterialDesignIcons/template.xml', 'w') file1 = open('part1.txt', 'r') for line in file1: templateFile.write(line), file1.close() icons_path = "../MaterialDesignIcons/root/material-design-icons" walk = os.listdir(icons_path) onlydirs = [f for f in walk if os.path.isdir(join(icons_path, f))] # This line may be optional - if get error "ValueError: list.remove(x): x not in list" then comment it out # onlydirs.remove(".git") onlydirs.remove("sprites") for category in onlydirs: print category walkdir = os.listdir(icons_path + '/' + category + "/svg/design") walkdirremovedsvgbit = [] for dir2 in walkdir: walkdirremovedsvgbit.append(dir2[:-9]) walkdirset = list(OrderedDict.fromkeys(walkdirremovedsvgbit)) for image_name in walkdirset: templateFile.write( ' <option id="' + category + "/" + image_name + '">' + category + "/" + image_name + '</option>\n') file2 = open('part2.txt', 'r') for line in file2: templateFile.write(line), file2.close() for color in ["black", "grey600", "white"]: for category in onlydirs: print category walkdir = os.listdir(icons_path + '/' + category + "/svg/design") walkdirremovedsvgbit = [] for dir2 in walkdir: walkdirremovedsvgbit.append(dir2[:-9]) walkdirset = list(OrderedDict.fromkeys(walkdirremovedsvgbit)) for image_name in walkdirset: templateFile.write( ' <thumb color="' + color + '" asset="' + category + "/" + image_name + '">root/material-design-icons/' + category + '/drawable-xxxhdpi/' + image_name + '_' + color + '_48dp.png</thumb>\n') file3 = open('part3.txt', 'r') for line in file3: templateFile.write(line), file3.close() templateFile.close()
testing/example.py
gndctrl2mjrtm/dkeras
195
93559
# Ideas """ server = dkeras.DataServer() model1.link(model3) model1.postprocess = lambda z: np.float16(z) server = model1 + model2 + model3 server.add(camera1, dest=('m1', 'm2')) server.add_address('192.168.1.42') """
tests/isolated/green_ssl_py36_properties.py
li-caspar/eventlet_0.30.2
5,079
93570
<gh_stars>1000+ __test__ = False if __name__ == '__main__': import eventlet eventlet.monkey_patch() try: eventlet.wrap_ssl( eventlet.listen(('localhost', 0)), certfile='does-not-exist', keyfile='does-not-exist', server_side=True) except IOError as ex: assert ex.errno == 2 print('pass')
problog/version.py
HEmile/problog
189
93587
<gh_stars>100-1000 version = '2.2.2'
exp/comm/comm_model_utils.py
PeterouZh/CIPS-3D
308
93588
<reponame>PeterouZh/CIPS-3D import logging import random import numpy as np import math import torch import torch.nn as nn class PosEmbedding(nn.Module): def __init__(self, max_logscale, N_freqs, logscale=True, multi_pi=False,): """ Defines a function that embeds x to (x, sin(2^k x), cos(2^k x), ...) """ super().__init__() self.N_freqs = N_freqs self.funcs = [torch.sin, torch.cos] if logscale: self.freqs = 2 ** torch.linspace(0, max_logscale, N_freqs) else: self.freqs = torch.linspace(1, 2 ** max_logscale, N_freqs) if multi_pi: self.freqs = self.freqs * math.pi pass def get_out_dim(self): outdim = 3 + 3 * 2 * self.N_freqs return outdim def forward(self, x): """ Inputs: x: (B, 3) Outputs: out: (B, 6*N_freqs+3) """ out = [x] for freq in self.freqs: for func in self.funcs: out += [func(freq * x)] return torch.cat(out, -1) class EMA(object): def __init__(self, source, target, decay=0.9999, start_itr=0): """ # Simple wrapper that applies EMA to a model. Could be better done in 1.0 using # the parameters() and buffers() module functions, but for now this works # with state_dicts using .copy_ :param source: model :param target: ema model :param decay: :param start_itr: """ self.source = source self.target = target self.decay = decay # Optional parameter indicating what iteration to start the decay at self.start_itr = start_itr logger = logging.getLogger('tl') # Initialize target's params to be source's self.source_dict = self.source.state_dict() self.target_dict = self.target.state_dict() logger.info(f'Initializing EMA [{decay}] parameters to be source parameters...') self.update_target_dict(source_state_dict=self.source_dict) pass def update_target_dict(self, source_state_dict): """ Reset the ema model weights. :param source_state_dict: :return: """ with torch.no_grad(): for key in source_state_dict: self.target_dict[key].data.copy_(source_state_dict[key].data) # target_dict[key].data = source_dict[key].data # Doesn't work! pass def update(self, itr=None, source_dict=None): """ # If an iteration counter is provided and itr is less than the start itr, # peg the ema weights to the underlying weights. :param itr: :return: """ if itr is not None and itr < self.start_itr: # decay = 0.0 return else: decay = self.decay with torch.no_grad(): if source_dict is None: source_dict = self.source_dict for key in source_dict: self.target_dict[key].data.copy_( self.target_dict[key].data * decay + source_dict[key].data * (1 - decay)) pass
lldb/test/API/python_api/frame/inlines/TestInlinedFrame.py
mkinsner/llvm
2,338
93603
""" Testlldb Python SBFrame APIs IsInlined() and GetFunctionName(). """ from __future__ import print_function import lldb from lldbsuite.test.decorators import * from lldbsuite.test.lldbtest import * from lldbsuite.test import lldbutil class InlinedFrameAPITestCase(TestBase): mydir = TestBase.compute_mydir(__file__) def setUp(self): # Call super's setUp(). TestBase.setUp(self) # Find the line number to of function 'c'. self.source = 'inlines.c' self.first_stop = line_number( self.source, '// This should correspond to the first break stop.') self.second_stop = line_number( self.source, '// This should correspond to the second break stop.') def test_stop_at_outer_inline(self): """Exercise SBFrame.IsInlined() and SBFrame.GetFunctionName().""" self.build() exe = self.getBuildArtifact("a.out") # Create a target by the debugger. target = self.dbg.CreateTarget(exe) self.assertTrue(target, VALID_TARGET) # Now create a breakpoint on main.c by the name of 'inner_inline'. breakpoint = target.BreakpointCreateByName('inner_inline', 'a.out') self.trace("breakpoint:", breakpoint) self.assertTrue(breakpoint and breakpoint.GetNumLocations() > 1, VALID_BREAKPOINT) # Now launch the process, and do not stop at the entry point. process = target.LaunchSimple( None, None, self.get_process_working_directory()) process = target.GetProcess() self.assertEqual(process.GetState(), lldb.eStateStopped, PROCESS_STOPPED) import lldbsuite.test.lldbutil as lldbutil stack_traces1 = lldbutil.print_stacktraces(process, string_buffer=True) if self.TraceOn(): print( "Full stack traces when first stopped on the breakpoint 'inner_inline':") print(stack_traces1) # The first breakpoint should correspond to an inlined call frame. # If it's an inlined call frame, expect to find, in the stack trace, # that there is a frame which corresponds to the following call site: # # outer_inline (argc); # thread = lldbutil.get_stopped_thread( process, lldb.eStopReasonBreakpoint) self.assertIsNotNone(thread) frame0 = thread.GetFrameAtIndex(0) if frame0.IsInlined(): filename = frame0.GetLineEntry().GetFileSpec().GetFilename() self.assertEqual(filename, self.source) self.expect( stack_traces1, "First stop at %s:%d" % (self.source, self.first_stop), exe=False, substrs=[ '%s:%d' % (self.source, self.first_stop)]) # Expect to break again for the second time. process.Continue() self.assertEqual(process.GetState(), lldb.eStateStopped, PROCESS_STOPPED) stack_traces2 = lldbutil.print_stacktraces( process, string_buffer=True) if self.TraceOn(): print( "Full stack traces when stopped on the breakpoint 'inner_inline' for the second time:") print(stack_traces2) self.expect( stack_traces2, "Second stop at %s:%d" % (self.source, self.second_stop), exe=False, substrs=[ '%s:%d' % (self.source, self.second_stop)])
trackstats/trackers.py
keranno/django-trackstats
369
93640
from datetime import date, timedelta, datetime, time from django.contrib.contenttypes.models import ContentType from django.conf import settings from django.db import models from django.db import connections from django.utils import timezone from .models import Period, StatisticByDate, StatisticByDateAndObject class ObjectsByDateTracker(object): date_field = 'date' aggr_op = None metric = None period = None statistic_model = StatisticByDate def __init__(self, **kwargs): for prop, val in kwargs.items(): setattr(self, prop, val) def get_most_recent_kwargs(self): most_recent_kwargs = { 'metric': self.metric, 'period': self.period} return most_recent_kwargs def get_start_date(self, qs): most_recent_kwargs = self.get_most_recent_kwargs() last_stat = self.statistic_model.objects.most_recent( **most_recent_kwargs) if last_stat: start_date = last_stat.date else: first_instance = qs.order_by(self.date_field).first() if first_instance is None: # No data return start_date = getattr(first_instance, self.date_field) if start_date and isinstance(start_date, datetime): if timezone.is_aware(start_date): start_date = timezone.make_naive(start_date).date() else: start_date = start_date.date() return start_date def track_lifetime_upto(self, qs, upto_date): filter_kwargs = { self.date_field + '__date__lte': upto_date } n = qs.filter(**filter_kwargs).count() self.statistic_model.objects.record( metric=self.metric, value=n, period=self.period, date=upto_date) def get_track_values(self): return [] def get_record_kwargs(self, val): return {} def track(self, qs): to_date = date.today() start_date = self.get_start_date(qs) if not start_date: return if self.period == Period.LIFETIME: # Intentionally recompute last stat, as we may have computed # that the last time when the day was not over yet. upto_date = start_date while upto_date <= to_date: self.track_lifetime_upto(qs, upto_date) upto_date += timedelta(days=1) elif self.period == Period.DAY: values_fields = ['ts_date'] + self.get_track_values() connection = connections[qs.db] tzname = ( timezone.get_current_timezone_name() if settings.USE_TZ else None) is_datetime = isinstance(qs.model._meta.get_field( self.date_field), models.DateTimeField) if is_datetime: date_sql = connection.ops.datetime_cast_date_sql( self.date_field, tzname) # before django 2.0 it returns a tuple if isinstance(date_sql, tuple): vals = qs.extra( select={"ts_date": date_sql[0]}, select_params=date_sql[1]) else: vals = qs.extra(select={"ts_date": date_sql}) start_dt = datetime.combine( start_date, time()) - timedelta(days=1) if tzname: start_dt = timezone.make_aware( start_dt, timezone.get_current_timezone()) else: vals = qs.extra(select={"ts_date": self.date_field}) start_dt = start_date vals = vals.filter( **{self.date_field + '__gte': start_dt}).values( *values_fields).order_by().annotate(ts_n=self.aggr_op) # TODO: Bulk create for val in vals: self.statistic_model.objects.record( metric=self.metric, value=val['ts_n'], date=val['ts_date'], period=self.period, **self.get_record_kwargs(val)) else: raise NotImplementedError class ObjectsByDateAndObjectTracker(ObjectsByDateTracker): object = None object_model = None object_field = None statistic_model = StatisticByDateAndObject def __init__(self, **kwargs): super(ObjectsByDateAndObjectTracker, self).__init__(**kwargs) assert self.object is None or self.object_field is None assert self.object or self.object_field def get_most_recent_kwargs(self): kwargs = super( ObjectsByDateAndObjectTracker, self).get_most_recent_kwargs() if self.object_model: kwargs['object_type'] = ContentType.objects.get_for_model( self.object_model) else: kwargs['object'] = self.object return kwargs def track_lifetime_upto(self, qs, upto_date): filter_kwargs = { self.date_field + '__date__lte': upto_date } if self.object_model: vals = qs.filter(**filter_kwargs).values( self.object_field).annotate(ts_n=self.aggr_op) for val in vals: object = self.object_model( pk=val[self.object_field]) # TODO: Bulk create StatisticByDateAndObject.objects.record( metric=self.metric, value=val['ts_n'], date=upto_date, object=object, period=self.period) else: n = qs.filter(**filter_kwargs).count() StatisticByDateAndObject.objects.record( metric=self.metric, value=n, object=self.object, period=self.period, date=upto_date) def get_track_values(self): ret = super(ObjectsByDateAndObjectTracker, self).get_track_values() if self.object_model: ret.append(self.object_field) return ret def get_record_kwargs(self, val): if self.object_model: object = self.object_model(pk=val[self.object_field]) else: object = self.object return {'object': object} class CountObjectsByDateTracker(ObjectsByDateTracker): aggr_op = models.Count('pk', distinct=True) class CountObjectsByDateAndObjectTracker(ObjectsByDateAndObjectTracker): aggr_op = models.Count('pk', distinct=True)
harness/determined/deploy/aws/gen_vcpu_mapping.py
gh-determined-ai/determined
1,729
93654
<gh_stars>1000+ import argparse import json from pathlib import Path from typing import Dict, Iterable, List, Tuple import boto3 import yaml def _fetch_vcpu_mapping() -> Iterable[Tuple[str, Dict]]: # Price List api is only available in us-east-1 and ap-southeast-1. client = boto3.client("pricing", region_name="us-east-1") for page in client.get_paginator("get_products").paginate(ServiceCode="AmazonEC2"): for sku_str in page["PriceList"]: sku_data = json.loads(sku_str) try: attributes = sku_data["product"]["attributes"] data = { "instanceType": attributes["instanceType"], "vcpu": int(attributes["vcpu"]), } if "gpu" in attributes: data["gpu"] = int(attributes["gpu"]) yield (attributes["instanceType"], data) except KeyError: pass def fetch_vcpu_mapping() -> List[Dict]: return [v for (_, v) in sorted(dict(_fetch_vcpu_mapping()).items())] def main(args: argparse.Namespace) -> None: data = fetch_vcpu_mapping() with args.output_fn.open("w") as fout: yaml.safe_dump(data, fout) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("output_fn", type=Path, help="output filename") args = parser.parse_args() main(args)
semseg/models/heads/__init__.py
Genevievekim/semantic-segmentation-1
196
93662
<filename>semseg/models/heads/__init__.py from .upernet import UPerHead from .segformer import SegFormerHead from .sfnet import SFHead from .fpn import FPNHead from .fapn import FaPNHead from .fcn import FCNHead from .condnet import CondHead __all__ = ['UPerHead', 'SegFormerHead', 'SFHead', 'FPNHead', 'FaPNHead', 'FCNHead', 'CondHead']
code/exercises/ex_8_8/update_distribution_example.py
ElliotMunro200/reinforcement_learning_an_introduction
234
93673
<reponame>ElliotMunro200/reinforcement_learning_an_introduction #!/usr/bin/env python """ -------------------------------- project: code created: 12/07/2018 10:34 --------------------------------- """ import itertools from concurrent.futures import ProcessPoolExecutor import numpy as np from generic import policies class Model: def __init__(self, n_states, n_actions_per_state, branching_factor, random_state=None): self.n_states = n_states self.n_actions_per_state = n_actions_per_state self.branching_factor = branching_factor self.random_state = random_state or np.random.RandomState(seed=0) self.states = np.arange(n_states) self.actions = np.arange(n_actions_per_state) self.start_state = 0 self.terminal_state = n_states - 1 self.p_terminate = 0.1 self.non_terminal_states = np.array([s for s in self.states if s != self.terminal_state]) self.current_state = self.start_state self._successor_table = dict() for a in self.actions: self._successor_table[self.terminal_state, a] = [] self._expected_reward_table = self.random_state.normal( loc=0., scale=1., size=(n_states - 1, n_actions_per_state) ) def reset(self): self.current_state = self.start_state return def step(self, action): if self.random_state.binomial(1, self.p_terminate) == 1: return self.terminal_state, self.expected_reward(self.current_state, action), True else: new_state = self.random_state.choice(self.successors(self.current_state, action)) result = new_state, self.expected_reward(self.current_state, action), new_state == self.terminal_state self.current_state = new_state return result def successors(self, state, action): if state == self.terminal_state: return [] if (state, action) not in self._successor_table: self._successor_table[state, action] = self.random_state.choice( self.states, size=self.branching_factor ) return self._successor_table[state, action] def expected_reward(self, state, action): return self._expected_reward_table[state, action] def initial_action_values(self, v): avs = { s: {a: v for a in self.actions} for s in self.states } avs[self.terminal_state] = {a: 0. for a in self.actions} return avs class UniformUpdateAgent: def __init__(self, model, gamma): self.model = model self.gamma = gamma def starting_state_value_estimates(self, n_updates, tolerance, policy_eval_iter): av = self.model.initial_action_values(0.) starting_state_values = [0.] i = 0 while i < n_updates: for state, action in itertools.product(self.model.non_terminal_states, self.model.actions): av[state][action] = expected_update( model=self.model, action_values=av, state=state, action=action, gamma=self.gamma ) if i % policy_eval_iter == 0 and i != 0: vals = policy_evaluation( policy=policies.GreedyPolicy(av, cache=True), model=self.model, tolerance=tolerance, gamma=self.gamma ) starting_state_values.append(vals[self.model.start_state]) i += 1 if i == n_updates: break return np.array(starting_state_values) class OnPolicyUpdateAgent: def __init__(self, model, gamma): self.model = model self.gamma = gamma def starting_state_value_estimates(self, n_updates, tolerance, policy_eval_iter): starting_state_values = [0.] policy = policies.EpsilonGreedyPolicy( action_values=self.model.initial_action_values(0.), epsilon=0.1, random_state=np.random.RandomState(seed=0) ) self.model.reset() i = 0 while i < n_updates: state = self.model.current_state action = policy(state) _, _, done = self.model.step(action) policy.action_values[state][action] = expected_update( model=self.model, action_values=policy.action_values, state=state, action=action, gamma=self.gamma ) if i % policy_eval_iter == 0 and i != 0: vals = policy_evaluation( policy=policies.GreedyPolicy(policy.action_values, cache=True), model=self.model, tolerance=tolerance, gamma=self.gamma ) starting_state_values.append(vals[self.model.start_state]) if done: self.model.reset() i += 1 return np.array(starting_state_values) def run_task(agent_class, n_states, branching_factor, n_actions_per_state, gamma, n_iters, n_updates_per_task, tolerance, policy_eval_iter): agents = [ agent_class( model=Model( n_states=n_states, branching_factor=branching_factor, n_actions_per_state=n_actions_per_state, random_state=np.random.RandomState(seed=seed), ), gamma=gamma ) for seed in range(n_iters) ] futures = list() with ProcessPoolExecutor() as executor: for agent in agents: futures.append( executor.submit( agent.starting_state_value_estimates, n_updates_per_task, tolerance, policy_eval_iter ) ) return np.column_stack([future.result() for future in futures]) def expected_update(model, action_values, state, action, gamma): p = (1 - model.p_terminate) / model.branching_factor return ( model.expected_reward(state, action) + gamma * p * sum(max(action_values[s].values()) for s in model.successors(state, action)) ) def policy_evaluation(policy, model, tolerance, gamma, max_updates=10 ** 5): """for deterministic policies only""" values = np.array( [max(policy.action_values[s].values()) if s != model.terminal_state else 0. for s in model.states] ) delta = 0. i = 0 while True: old_values = values for s in model.non_terminal_states: a = policy(s) values[s] = ( model.expected_reward(s, a) + gamma * ((1 - model.p_terminate) / model.branching_factor) * sum(values[ns] for ns in model.successors(s, a)) ) i += 1 if i == max_updates: return values delta = max(delta, np.max(np.abs(values - old_values))) if delta < tolerance: return values if __name__ == "__main__": import pickle import time import os import matplotlib; matplotlib.use("TkAgg") import matplotlib.pyplot as plt import plotting import constants as c from exercises import utils as ex_utils start = time.time() n_states = 1000 n_updates_per_task = 20 * n_states policy_eval_iter = n_updates_per_task / 40 n_iters = 200 branching_factor = 1 uniform_update_output = run_task( agent_class=UniformUpdateAgent, n_states=n_states, n_actions_per_state=2, branching_factor=branching_factor, n_iters=n_iters, n_updates_per_task=n_updates_per_task, tolerance=0.01, gamma=0.9, policy_eval_iter=policy_eval_iter ) on_policy_update_output = run_task( agent_class=OnPolicyUpdateAgent, n_states=n_states, n_actions_per_state=2, branching_factor=branching_factor, n_iters=n_iters, n_updates_per_task=n_updates_per_task, tolerance=0.01, gamma=0.9, policy_eval_iter=policy_eval_iter ) ex_utils.to_pickle( uniform_update_output, os.path.join( c.Paths.output, 'ex_8_8', f'uniform_output_{n_states}_{branching_factor}.pkl' ) ) ex_utils.to_pickle( on_policy_update_output, os.path.join( c.Paths.output, 'ex_8_8', f'on_policy_output_{n_states}_{branching_factor}.pkl' ) ) def plot_output(ax, output, color, label): x = np.arange(output.shape[0]) * policy_eval_iter ax.plot(x, output, alpha=0.05, color=color, lw=1, label=None) ax.plot(x, np.mean(output, axis=1), color=color, lw=2, label=label) ax.plot(x, np.mean(output, axis=1), color='k', lw=5, label=None, zorder=-1) return with plt.rc_context(plotting.rc()): fig, ax = plt.subplots(1) plot_output(ax, uniform_update_output, color='C3', label="Uniform") plot_output(ax, on_policy_update_output, color='C2', label="On-Policy") ax.grid(alpha=0.1) ax.set_title( f"Comparison of update distributions for tasks with {n_states} states and $b=${branching_factor}", ) ax.set_ylabel("Value of initial state") ax.set_xlabel("Number of updates") ax.legend() plotting.savefig( fig=fig, path=os.path.join( c.Paths.output, 'ex_8_8', f'update_distribution_comparison_{n_states}_{branching_factor}.png' ) ) print('ready') print('took', time.time() - start, 'seconds') plt.show()
saleor/account/migrations/0009_auto_20170206_0407.py
elwoodxblues/saleor
15,337
93679
<reponame>elwoodxblues/saleor<gh_stars>1000+ # -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-02-06 10:07 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [("account", "0008_auto_20161115_1011")] replaces = [("userprofile", "0009_auto_20170206_0407")] operations = [ migrations.AlterModelOptions( name="address", options={"verbose_name": "address", "verbose_name_plural": "addresses"}, ), migrations.AlterModelOptions( name="user", options={"verbose_name": "user", "verbose_name_plural": "users"}, ), migrations.AlterField( model_name="user", name="addresses", field=models.ManyToManyField( blank=True, to="account.Address", verbose_name="addresses" ), ), migrations.AlterField( model_name="user", name="email", field=models.EmailField(max_length=254, unique=True, verbose_name="email"), ), ]
venv/lib/python3.8/site-packages/restructuredtext_lint/__init__.py
trkohler/biopython
142
93680
# Load in our dependencies from __future__ import absolute_import from restructuredtext_lint.lint import lint, lint_file # Export lint functions lint = lint lint_file = lint_file
client/channellog.py
heartsoso/Discline
535
93715
# Wrapper class to make dealing with logs easier class ChannelLog(): __channel = "" __logs = [] unread = False mentioned_in = False # the index of where to start printing the messages __index = 0 def __init__(self, channel, logs): self.__channel = channel self.__logs = list(logs) def get_server(self): return self.__channel.server def get_channel(self): return self.__channel def get_logs(self): return self.__logs def get_name(self): return self.__channel.name def get_server_name(self): return self.__channel.server.name def append(self, message): self.__logs.append(message) def index(self, message): return self.__logs.index(message) def insert(self, i, message): self.__logs.insert(i, message) def len(self): return len(self.__logs) def get_index(self): return self.__index def set_index(self, int): self.__index = int def inc_index(self, int): self.__index += int def dec_index(self, int): self.__index -= int
scripts/remove_input_references.py
rlamoureux/Python-
263
93723
<gh_stars>100-1000 # This script removes the input reference numbers from html pages. # They play a useful role in scientific notebooks, but they are really # just visual clutter in this project. # Could be an nbconvert setting, but it's an easy enough scripting job. import os import sys print("\nStripping input reference numbers from code cells...") # Find all files to work with. path_to_notebooks = '/srv/projects/intro_programming/intro_programming/notebooks/' filenames = [] for filename in os.listdir(path_to_notebooks): if '.html' in filename and filename != 'index.html': filenames.append(filename) # one file for testing: #filenames = ['hello_world.html'] for filename in filenames: f = open(path_to_notebooks + filename, 'r') lines = f.readlines() f.close() f = open(path_to_notebooks + filename, 'wb') for line in lines: # Unwanted lines have opening and closing div on same line, # with input reference number between them. if ('<div class="prompt input_prompt">' in line and '</div>' in line): # Don't write this line. continue else: # Regular line, write it. f.write(line.encode('utf-8')) f.close() print(" Stripped input reference numbers.\n")
tests/geo_test.py
sethvargo/vaex
337
93748
from common import * def test_virtual_columns_spherical(): df = vaex.from_scalars(alpha=0, delta=0, distance=1) df.add_virtual_columns_spherical_to_cartesian("alpha", "delta", "distance", "x", "y", "z", radians=False) x, y, z = df['x'].values[0], df['y'].values[0], df['z'].values[0] np.testing.assert_array_almost_equal(x, 1) np.testing.assert_array_almost_equal(y, 0) np.testing.assert_array_almost_equal(z, 0) for radians in [True, False]: def dfs(alpha, delta, distance, radians=radians): ds_1 = vaex.from_scalars(alpha=alpha, delta=delta, distance=distance, alpha_e=0.1, delta_e=0.2, distance_e=0.3) ds_1.add_virtual_columns_spherical_to_cartesian("alpha", "delta", "distance", propagate_uncertainties=True, radians=radians) N = 1000000 # distance alpha = np.random.normal(0, 0.1, N) + alpha delta = np.random.normal(0, 0.2, N) + delta distance = np.random.normal(0, 0.3, N) + distance ds_many = vaex.from_arrays(alpha=alpha, delta=delta, distance=distance) ds_many.add_virtual_columns_spherical_to_cartesian("alpha", "delta", "distance", radians=radians) return ds_1, ds_many ds_1, ds_many = dfs(0, 0, 1.) x_e = ds_1.evaluate("x_uncertainty")[0] y_e = ds_1.evaluate("y_uncertainty")[0] z_e = ds_1.evaluate("z_uncertainty")[0] np.testing.assert_array_almost_equal(x_e, ds_many.std("x").item(), decimal=2) np.testing.assert_array_almost_equal(y_e, ds_many.std("y").item(), decimal=2) np.testing.assert_array_almost_equal(z_e, ds_many.std("z").item(), decimal=2) np.testing.assert_array_almost_equal(x_e, 0.3) # TODO: from cartesian tot spherical errors df.add_virtual_columns_cartesian_to_spherical("x", "y", "z", "theta", "phi", "r", radians=False) theta, phi, r = df("theta", "phi", "r").row(0) np.testing.assert_array_almost_equal(theta, 0) np.testing.assert_array_almost_equal(phi, 0) np.testing.assert_array_almost_equal(r, 1) df.add_virtual_columns_celestial("alpha", "delta", "l", "b", _matrix='eq2gal') # TODO: properly test, with and without radians df.evaluate("l") df.evaluate("b") ds = vaex.from_scalars(x=1, y=0, z=0) ds.add_virtual_columns_cartesian_to_spherical() assert ds.evaluate('b')[0] == 0 def test_inside_polygon_single(df_factory): df = df_factory(x=[1, 2, 3], y=[2, 3, 4]) px = np.array([1.5, 2.5, 2.5, 1.5]) py = np.array([2.5, 2.5, 3.5, 3.5]) df['inside'] = df.geo.inside_polygon(df.x, df.y, px, py) assert df.inside.values.tolist() == [False, True, False] def test_inside_polygons(df_factory): df = df_factory(x=[1, 2, 3], y=[2, 3, 4]) px = np.array([1.5, 2.5, 2.5, 1.5]) py = np.array([2.5, 2.5, 3.5, 3.5]) df['inside'] = df.geo.inside_polygons(df.x, df.y, [px, px + 1], [py, py + 1], any=True) assert df.inside.values.tolist() == [False, True, True] def test_which_polygon_single(df_factory): df = df_factory(x=[1, 2, 3], y=[2, 3, 4]) px = np.array([1.5, 2.5, 2.5, 1.5]) py = np.array([2.5, 2.5, 3.5, 3.5]) df['polygon_index'] = df.geo.inside_which_polygon(df.x, df.y, [px, px + 1], [py, py + 1]) assert df.polygon_index.values.tolist() == [None, 0, 1] def test_which_polygons(df_factory): df = df_factory(x=[1, 2, 3], y=[2, 3, 4]) # polygon1a = np.array( [(1.5, 2.5, 2.5, 1.5), (2.5, 2.5, 3.5, 3.5)] ) # polygon1b = (polygon1a.T + [1, 1]).T px = np.array([1.5, 2.5, 2.5, 1.5]) py = np.array([2.5, 2.5, 3.5, 3.5]) polygon1a = [px, py] # matches #1 polygon1b = [px + 1, py + 1] # matches #2 polygon_nothing = [px + 10, py + 10] # matches nothing pxw = np.array([1.5, 3.5, 3.5, 1.5]) pyw = np.array([2.5, 2.5, 4.5, 4.5]) polygon1c = [pxw, pyw] # matches #1 and 2 pxs = [[polygon1a, polygon1b], [polygon1b, polygon1c], [polygon1c]] df['polygon_index'] = df.geo.inside_which_polygons(df.x, df.y, pxs, any=True) assert df.polygon_index.values.tolist() == [None, 0, 0] df['polygon_index'] = df.geo.inside_which_polygons(df.x, df.y, pxs, any=False) assert df.polygon_index.values.tolist() == [None, 2, 1] pxs = [[polygon_nothing, polygon1a, polygon_nothing]] df['polygon_index'] = df.geo.inside_which_polygons(df.x, df.y, pxs, any=True) assert df.polygon_index.values.tolist() == [None, 0, None] pxs = [[polygon1a, polygon_nothing, polygon1a]] df['polygon_index'] = df.geo.inside_which_polygons(df.x, df.y, pxs, any=False) assert df.polygon_index.values.tolist() == [None, None, None]
caffe/ultra_face_caffe_inference.py
Yucao42/Ultra-Light-Fast-Generic-Face-Detector-1MB
6,602
93765
# coding=utf-8 import argparse import os import time from math import ceil import caffe import cv2 import numpy as np parser = argparse.ArgumentParser() parser.add_argument('--caffe_prototxt_path', default="model/RFB-320/RFB-320.prototxt", type=str, help='caffe_prototxt_path') parser.add_argument('--caffe_model_path', default="model/RFB-320/RFB-320.caffemodel", type=str, help='caffe_model_path') parser.add_argument('--input_size', default="320,240", type=str, help='define network input size,format: width,height') parser.add_argument('--threshold', default=0.7, type=float, help='score threshold') parser.add_argument('--imgs_path', default="../MNN/imgs", type=str, help='imgs dir') parser.add_argument('--results_path', default="results", type=str, help='results dir') parser.add_argument('--mode', default="cpu", type=str, help='cpu or gpu') args = parser.parse_args() if args.mode == "cpu": caffe.set_mode_cpu() elif args.mode == "gpu": caffe.set_mode_gpu() image_mean = np.array([127, 127, 127]) image_std = 128.0 iou_threshold = 0.3 center_variance = 0.1 size_variance = 0.2 min_boxes = [[10.0, 16.0, 24.0], [32.0, 48.0], [64.0, 96.0], [128.0, 192.0, 256.0]] strides = [8.0, 16.0, 32.0, 64.0] def define_img_size(image_size): shrinkage_list = [] feature_map_w_h_list = [] for size in image_size: feature_map = [int(ceil(size / stride)) for stride in strides] feature_map_w_h_list.append(feature_map) for i in range(0, len(image_size)): shrinkage_list.append(strides) priors = generate_priors(feature_map_w_h_list, shrinkage_list, image_size, min_boxes) return priors def generate_priors(feature_map_list, shrinkage_list, image_size, min_boxes): priors = [] for index in range(0, len(feature_map_list[0])): scale_w = image_size[0] / shrinkage_list[0][index] scale_h = image_size[1] / shrinkage_list[1][index] for j in range(0, feature_map_list[1][index]): for i in range(0, feature_map_list[0][index]): x_center = (i + 0.5) / scale_w y_center = (j + 0.5) / scale_h for min_box in min_boxes[index]: w = min_box / image_size[0] h = min_box / image_size[1] priors.append([ x_center, y_center, w, h ]) print("priors nums:{}".format(len(priors))) return np.clip(priors, 0.0, 1.0) def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200): scores = box_scores[:, -1] boxes = box_scores[:, :-1] picked = [] indexes = np.argsort(scores) indexes = indexes[-candidate_size:] while len(indexes) > 0: current = indexes[-1] picked.append(current) if 0 < top_k == len(picked) or len(indexes) == 1: break current_box = boxes[current, :] indexes = indexes[:-1] rest_boxes = boxes[indexes, :] iou = iou_of( rest_boxes, np.expand_dims(current_box, axis=0), ) indexes = indexes[iou <= iou_threshold] return box_scores[picked, :] def area_of(left_top, right_bottom): hw = np.clip(right_bottom - left_top, 0.0, None) return hw[..., 0] * hw[..., 1] def iou_of(boxes0, boxes1, eps=1e-5): overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2]) overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:]) overlap_area = area_of(overlap_left_top, overlap_right_bottom) area0 = area_of(boxes0[..., :2], boxes0[..., 2:]) area1 = area_of(boxes1[..., :2], boxes1[..., 2:]) return overlap_area / (area0 + area1 - overlap_area + eps) def predict(width, height, confidences, boxes, prob_threshold, iou_threshold=0.3, top_k=-1): boxes = boxes[0] confidences = confidences[0] picked_box_probs = [] picked_labels = [] for class_index in range(1, confidences.shape[1]): probs = confidences[:, class_index] mask = probs > prob_threshold probs = probs[mask] if probs.shape[0] == 0: continue subset_boxes = boxes[mask, :] box_probs = np.concatenate([subset_boxes, probs.reshape(-1, 1)], axis=1) box_probs = hard_nms(box_probs, iou_threshold=iou_threshold, top_k=top_k, ) picked_box_probs.append(box_probs) picked_labels.extend([class_index] * box_probs.shape[0]) if not picked_box_probs: return np.array([]), np.array([]), np.array([]) picked_box_probs = np.concatenate(picked_box_probs) picked_box_probs[:, 0] *= width picked_box_probs[:, 1] *= height picked_box_probs[:, 2] *= width picked_box_probs[:, 3] *= height return picked_box_probs[:, :4].astype(np.int32), np.array(picked_labels), picked_box_probs[:, 4] def convert_locations_to_boxes(locations, priors, center_variance, size_variance): if len(priors.shape) + 1 == len(locations.shape): priors = np.expand_dims(priors, 0) return np.concatenate([ locations[..., :2] * center_variance * priors[..., 2:] + priors[..., :2], np.exp(locations[..., 2:] * size_variance) * priors[..., 2:] ], axis=len(locations.shape) - 1) def center_form_to_corner_form(locations): return np.concatenate([locations[..., :2] - locations[..., 2:] / 2, locations[..., :2] + locations[..., 2:] / 2], len(locations.shape) - 1) def inference(): net = caffe.Net(args.caffe_prototxt_path, args.caffe_model_path, caffe.TEST) input_size = [int(v.strip()) for v in args.input_size.split(",")] witdh = input_size[0] height = input_size[1] priors = define_img_size(input_size) net.blobs['input'].reshape(1, 3, height, witdh) result_path = args.results_path imgs_path = args.imgs_path if not os.path.exists(result_path): os.makedirs(result_path) listdir = os.listdir(imgs_path) for file_path in listdir: img_path = os.path.join(imgs_path, file_path) img_ori = cv2.imread(img_path) tmp_batch = np.zeros([1, 3, height, witdh], dtype=np.float32) rect = cv2.resize(img_ori, (witdh, height)) rect = cv2.cvtColor(rect, cv2.COLOR_BGR2RGB) image = (rect - image_mean) / image_std tmp_batch[0, :, :, :] = image.transpose(2, 0, 1) net.blobs['input'].data[...] = tmp_batch time_time = time.time() scores = net.forward()['scores'][0] boxes = net.forward()['boxes'][0] print("inference time: {} s".format(round(time.time() - time_time, 4))) boxes = np.expand_dims(np.reshape(boxes, (-1, 4)), axis=0) scores = np.expand_dims(np.reshape(scores, (-1, 2)), axis=0) boxes = convert_locations_to_boxes(boxes, priors, center_variance, size_variance) boxes = center_form_to_corner_form(boxes) boxes, labels, probs = predict(img_ori.shape[1], img_ori.shape[0], scores, boxes, args.threshold) for i in range(boxes.shape[0]): box = boxes[i, :] cv2.rectangle(img_ori, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2) cv2.imwrite(os.path.join(result_path, file_path), img_ori) print("result_pic is written to {}".format(os.path.join(result_path, file_path))) cv2.imshow("ultraFace_caffe_py", img_ori) cv2.waitKey(-1) cv2.destroyAllWindows() if __name__ == '__main__': inference()
awsume/awsumepy/lib/logger.py
ignatenkobrain/awsume
654
93780
<filename>awsume/awsumepy/lib/logger.py import sys import logging import re class LogFormatter(logging.Formatter): @staticmethod def _filter(s): no_access_key_id = re.sub(r'(?<![A-Z0-9])[A-Z0-9]{20}(?![A-Z0-9])', 'SECRET', s) no_secret_access_key = re.sub(r'(?<![A-Za-z0-9/+=])[A-Za-z0-9/+=]{40}(?![A-Za-z0-9/+=])', 'SECRET', no_access_key_id) return no_secret_access_key def format(self, record): original = logging.Formatter.format(self, record) return self._filter(original) logger = logging.getLogger('awsume') # type: logging.Logger LOG_HANDLER = logging.StreamHandler() LOG_HANDLER.setFormatter(LogFormatter('[%(asctime)s] %(filename)s:%(funcName)s : [%(levelname)s] %(message)s')) logger.addHandler(LOG_HANDLER)
common/request.py
ujlbu4/vas3k.club
496
93798
from django.http import JsonResponse, Http404 from django.shortcuts import redirect def parse_ip_address(request): ipaddress = request.META.get("HTTP_X_REAL_IP") \ or request.META.get("HTTP_X_FORWARDED_FOR") \ or request.environ.get("REMOTE_ADDR") or "" if "," in ipaddress: # multiple ips in the header ipaddress = ipaddress.split(",", 1)[0] return ipaddress def parse_useragent(request): return (request.META.get("HTTP_USER_AGENT") or "")[:512] def is_ajax(request): return bool(request.GET.get("is_ajax")) def ajax_request(view): def wrapper(request, *args, **kwargs): status_code = 200 try: results = view(request, *args, **kwargs) except Http404: status_code = 404 results = {"error": "Not Found"} if is_ajax(request): return JsonResponse(data=results, status=status_code) else: return redirect(request.META.get("HTTP_REFERER") or "/") return wrapper
sportsbetting/bookmakers/netbet.py
pretrehr/Sports-betting
169
93807
""" NetBet odds scraper """ import datetime import http.client import re import urllib import urllib.error import urllib.request import fake_useragent from bs4 import BeautifulSoup import sportsbetting as sb from sportsbetting.auxiliary_functions import truncate_datetime def parse_netbet(url): """ Retourne les cotes disponibles sur netbet """ sport = None if url in ["football", "tennis", "basketball", "hockey-glace", "rugby", "handball"]: sport = url url = "https://www.netbet.fr/top-paris" headers = {"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_4)" "AppleWebKit/537.36 (KHTML, like Gecko)" "Chrome/83.0.4103.97" "Safari/537.36"} for _ in range(3): try: request = urllib.request.Request(url, None, headers) response = urllib.request.urlopen(request, timeout=5) soup = BeautifulSoup(response, features="lxml") break except http.client.IncompleteRead: headers = {"User-Agent": fake_useragent.UserAgent().random} print("User agent change") except urllib.error.HTTPError: headers = {"User-Agent": fake_useragent.UserAgent().random} print("User agent change (403)") except urllib.error.URLError: headers = {"User-Agent": fake_useragent.UserAgent().random} print("User agent change (Timeout)") else: raise sb.UnavailableSiteException if soup.find(attrs={"class": "none"}): raise sb.UnavailableCompetitionException if response.geturl() == "https://www.netbet.fr/": raise sb.UnavailableCompetitionException match_odds_hash = {} today = datetime.datetime.today() today = datetime.datetime(today.year, today.month, today.day) date = "" year = " " + str(today.year) match = "" competition = "" date_time = None valid_match = True for line in soup.find_all(): if "class" in line.attrs and "nb-link-event" in line["class"] and "href" in line.attrs: if sport: valid_match = sport+"/" in line["href"] link = line["href"] competition = " - ".join(map(lambda x : x.replace("-", " ").title(), link.split("/")[2:4])) elif "class" in line.attrs and "nb-event_datestart" in line["class"]: date = list(line.stripped_strings)[0] + year if "Auj." in date: date = datetime.datetime.today().strftime("%d/%m %Y") elif "class" in line.attrs and "nb-event_timestart" in line["class"]: hour = line.text if " min" in hour: date_time = datetime.datetime.today()+datetime.timedelta(minutes=int(hour.strip(" min"))) date_time = truncate_datetime(date_time) continue try: date_time = datetime.datetime.strptime( date + " " + hour, "%d/%m %Y %H:%M") if date_time < today: date_time = date_time.replace(year=date_time.year + 1) except ValueError: date_time = "undefined" elif "class" in line.attrs and "nb-event_actors" in line["class"]: match = " - ".join(list(map(lambda x: x.replace(" - ", "-"), line.stripped_strings))) reg_exp = r'\[[0-7]\/[0-7]\s?([0-7]\/[0-7]\s?)*\]|\[[0-7]\-[0-7]\s?([0-7]\-[0-7]\s?)*\]' if list(re.finditer(reg_exp, match)): # match tennis live match = match.split("[")[0].strip() elif "class" in line.attrs and "nb-event_odds_wrapper" in line["class"]: try: odds = list(map(lambda x: float(x.replace(",", ".")), list(line.stripped_strings)[1::2])) if valid_match and match and match not in match_odds_hash and date_time: match_odds_hash[match] = {} match_odds_hash[match]['odds'] = {"netbet": odds} match_odds_hash[match]['date'] = date_time match_odds_hash[match]['id'] = {"netbet": link} match_odds_hash[match]['competition'] = competition except ValueError: # match live (cotes non disponibles) pass return match_odds_hash
scripts/storage/secondary/cloud-install-sys-tmplt.py
ycyun/ablestack-cloud
1,131
93826
<filename>scripts/storage/secondary/cloud-install-sys-tmplt.py<gh_stars>1000+ #!/usr/bin/python # -*- coding: utf-8 -*- # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import argparse import sys import urllib import uuid import subprocess import os import shutil import gzip import zipfile import bz2 class InstallSysTemplate(object): parser = None mountpoint = None args = None hypervisor = None systemvmtemplatepath = None systemvmtemplateurl = None managementsecretkey = None forcecleanup = None databasehostname = None databaseusername = None databaseuserpassword = None templatesuffix = None template = None fileextension = None templateName = None destDir = None fileSize = None dictionary = None def __init__(self): self.dictionary = dict(xenserver=('XenServer', 'vhd'), kvm=('KVM', 'qcow2'), vmware=('VMware', 'ova'), lxc=('LXC', 'qcow2'), hyperv=('Hyperv', 'vhd')) def parseOptions(self): self.parser = argparse.ArgumentParser(prog="System Template Installer") self.parser.add_argument("-m", "--mount-point", action="store", dest="mountpoint", help="Secondary Storage Mount Point where to install the temlate.", required="true") self.parser.add_argument("-H", "--hypervisor", action="store", dest="hypervisor", help="The Hypervisor name for which template need to be installed", required="true", choices=['kvm','xenserver','vmware','lxc','hyperv']) group = self.parser.add_mutually_exclusive_group(required=True) group.add_argument("-f", "--system-vm-template", action="store", dest="systemvmtemplatepath", help="The local system vm template file path") group.add_argument("-u", "--system-vm-template-url", action="store", dest="systemvmtemplateurl", help="Url to download system vm template") self.parser.add_argument("-s", "--management-secret-key", action="store", dest="managementsecretkey", help="mgmt server secret key, if you specified any when running cloudstack-setup-database, default is password", default="password") self.parser.add_argument("-F", "--force-clean-up", action="store_true", dest="forcecleanup", help="clean up system templates of specified hypervisor", default="false") self.parser.add_argument("-d", "--database-host-name", action="store", dest="databasehostname", help="Database server hostname or ip, e.g localhost", default="localhost", required="true") self.parser.add_argument("-r", "--database-user-name", action="store", dest="databaseusername", help="Database user name, e.g root", default="root", required="true") self.parser.add_argument("-p", "--database-user-password", nargs='?', action="store", dest="databaseuserpassword", help="Database password. Followed by nothing if the password is empty", default="", required="true") self.parser.add_argument("-e", "--template-suffix", action="store", dest="templatesuffix", help="Template suffix, e.g vhd, ova, qcow2",default="vhd") self.parser.add_argument("-t", "--file-extension", action="store", dest="fileextension", help="The template file extension", default="", required="true", choices=['bz2','gz','zip']) self.args = self.parser.parse_args() def populateOptions(self): self.mountpoint = self.args.mountpoint self.hypervisor = self.args.hypervisor self.fileextension = self.args.fileextension if self.args.systemvmtemplatepath: self.systemvmtemplatepath = self.args.systemvmtemplatepath if self.args.systemvmtemplateurl: self.systemvmtemplateurl = self.args.systemvmtemplateurl if self.args.managementsecretkey: self.managementsecretkey = self.args.managementsecretkey if self.args.forcecleanup: self.forcecleanup = self.args.forcecleanup if self.args.databasehostname: self.databasehostname = self.args.databasehostname if self.args.databaseusername: self.databaseusername = self.args.databaseusername if self.args.databaseuserpassword: self.databaseuserpassword = self.args.databaseuserpassword else: self.databaseuserpassword = "" if self.args.templatesuffix: self.templatesuffix = self.args.templatesuffix print 'Password for DB: %s'%self.databaseuserpassword def errorAndExit(self, msg): err = '''\n\nWe apologize for below error: *************************************************************** %s *************************************************************** Please run: cloud-install-sys-tmplt -h for full help ''' % msg sys.stderr.write(err) sys.stderr.flush() sys.exit(1) def runCmd(self, cmds): process = subprocess.Popen(' '.join(cmds), shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = process.communicate() print(stdout) if process.returncode != 0: raise Exception(stderr) return stdout def runMysql(self, query): try: print 'Running Query: %s' % query mysqlCmds = ['mysql', '--user=%s'%self.databaseusername, '--host=%s'%self.databasehostname, '--password=%s'%self.databaseuserpassword, '--skip-column-names', '-U', 'cloud', '-e "%s"'%query] templateId = self.runCmd(mysqlCmds) print 'TemplateId is : %s' % templateId except Exception, e: err = '''Encountering an error when executing mysql script\n%s''' % str(e) self.errorAndExit(err) return templateId def fetchTemplateDetails(self): mysqlQuery = "select max(id) from cloud.vm_template where type = 'SYSTEM' and hypervisor_type = '%s' and removed is null" ht = None hypervisorInfo = self.dictionary[self.hypervisor] ht = hypervisorInfo[0] self.templatesuffix = hypervisorInfo[1] self.template = int(self.runMysql(mysqlQuery%ht)) def downloadTemplate(self): self.systemvmtemplatepath = self.templateName + "." + self.fileextension print 'Downloading template from %s To %s' % (self.systemvmtemplateurl, self.systemvmtemplatepath) try: templateFileDownloadUrl = urllib.urlretrieve(self.systemvmtemplateurl, self.systemvmtemplatepath, reporthook=self.report) except Exception: self.errorAndExit("Failed to download template file from %s" % self.systemvmtemplateurl) def report(tmp, blocknr, blocksize, size): current = blocknr*blocksize sys.stdout.write("\rDownloading completed: {0:.2f}%".format(100.0*current/size)) def installTemplate(self): destDir = self.mountpoint + os.sep + "template" + os.sep + "tmpl" + os.sep + "1" + os.sep + str(self.template) self.destDir = destDir print 'The desination Directory is : %s' % destDir try: if self.forcecleanup: if os.path.exists(destDir): shutil.rmtree(destDir) if not os.path.exists(destDir): os.makedirs(destDir) except Exception, e: self.errorAndExit('Failed to create directories on the mounted path.. %s' % str (e)) print 'Installing Template to : %s' % destDir tmpFile = self.templateName + "." + "tmp" self.uncompressFile(tmpFile) print 'Moving the decompressed file to destination directory %s... which could take a long time, please wait' % destDir shutil.move(tmpFile, destDir + os.sep + self.templateName) def uncompressFile(self, fileName): print 'Uncompressing the file %s... which could take a long time, please wait' % self.systemvmtemplatepath if self.fileextension == 'gz': compressedFile = gzip.GzipFile(self.systemvmtemplatepath, 'rb') decompressedData = compressedFile.read() compressedFile.close() decompressedFile = file(fileName, 'wb') decompressedFile.write(decompressedData) decompressedFile.close() elif self.fileextension == 'bz2': compressedFile = bz2.BZ2File(self.systemvmtemplatepath) decompressedData = compressedFile.read() compressedFile.close() decompressedFile = file(fileName, 'wb') decompressedFile.write(decompressedData) decompressedFile.close() print '' elif self.fileextension == 'zip': zippedFile = zipfile.ZipFile(self.systemvmtemplatepath, 'r') zippedFiles = zippedFile.namelist() compressedFile = zippedFiles[0] decompressedData = zippedFile.read(compressedFile) decompressedFile = file(fileName, 'wb') decompressedFile.write(decompressedData) decompressedFile.close() zippedFile.close() print '' else: self.errorAndExit('Not supported file type %s to decompress' % self.fileextension) self.fileSize = os.path.getsize(fileName) def writeProperties(self): propertiesFile = file(self.destDir + os.sep + 'template.properties', 'wb') propertiesFile.write('filename=%s\n'%self.templateName) propertiesFile.write('description=SystemVM Template\n') propertiesFile.write('checksum=\n') propertiesFile.write('hvm=false\n') propertiesFile.write('size=%s\n'%str(self.fileSize)) propertiesFile.write('%s=true\n'%self.templatesuffix) propertiesFile.write('id=%s\n'%str(self.template)) propertiesFile.write('public=true\n') propertiesFile.write('%s.filename=%s\n'%(self.templatesuffix, self.templateName)) propertiesFile.write('uniquename=routing-%s\n'%str(self.template)) propertiesFile.write('%s.virtualsize=%s\n'%(self.templatesuffix, str(self.fileSize))) propertiesFile.write('virtualsize=%s\n'%str(self.fileSize)) propertiesFile.write('%s.size=%s'%(self.templatesuffix, str(self.fileSize))) propertiesFile.close() def run(self): try: self.parseOptions() self.populateOptions() self.fetchTemplateDetails() randomUUID = uuid.uuid1() self.templateName = str(randomUUID) + "." + self.templatesuffix if self.args.systemvmtemplateurl: self.downloadTemplate() self.installTemplate() self.writeProperties() finally: print '' print '' print "CloudStack has successfully installed system template" print '' if __name__ == "__main__": o = InstallSysTemplate() o.run()
examples/pkg1/test_mod2.py
altendky/pytest-monitor
136
93835
<gh_stars>100-1000 import time def test_sleep_400ms(): time.sleep(0.4)
glumpy/gloo/framebuffer.py
Frekby/glumpy
1,074
93858
# ----------------------------------------------------------------------------- # Copyright (c) 2009-2016 <NAME>. All rights reserved. # Distributed under the (new) BSD License. # ----------------------------------------------------------------------------- """ A framebuffer is a collection of buffers that can be used as the destination for rendering. OpenGL has two kinds of framebuffers: the default framebuffer, which is provided by the OpenGL Context; and user-created framebuffers called framebuffer objects (FBOs). The buffers for default framebuffers are part of the context and usually represent a window or display device. The buffers for FBOs reference images from either textures or render buffers; they are never directly visible. Read more on framebuffers on `OpenGL Wiki <https://www.opengl.org/wiki/Framebuffer>`_ **Example usage** .. code:: python ... texture = np.zeros((512,512,4),np.float32).view(gloo.TextureFloat2D) framebuffer = gloo.FrameBuffer(color=[texture]) ... @window.event def on_draw(dt): framebuffer.activate() window.clear() quad.draw(gl.GL_TRIANGLE_STRIP) framebuffer.deactivate() """ import numpy as np from glumpy import gl from glumpy.log import log from glumpy.gloo.globject import GLObject from glumpy.gloo.texture import Texture2D class RenderBuffer(GLObject): """ Base class for render buffer object. :param GLEnum format: Buffer format :param int width: Buffer width (pixels) :param int height: Buffer height (pixel) """ def __init__(self, width, height, format): GLObject.__init__(self) self._width = width self._height = height self._target = gl.GL_RENDERBUFFER self._format = format self._need_resize = True @property def width(self): """ Buffer width (read-only). """ return self._width @property def height(self): """ Buffer height (read-only). """ return self._height def resize(self, width, height): """ Resize the buffer (deferred operation). :param int width: New buffer width (pixels) :param int height: New buffer height (pixels) """ if width != self._width or height != self._height: self._need_resize = True self._width = width self._height = height def _create(self): """ Create buffer on GPU """ log.debug("GPU: Create render buffer") self._handle = gl.glGenRenderbuffers(1) def _delete(self): """ Delete buffer from GPU """ log.debug("GPU: Deleting render buffer") gl.glDeleteRenderbuffer(self._handle) def _activate(self): """ Activate buffer on GPU """ log.debug("GPU: Activate render buffer") gl.glBindRenderbuffer(gl.GL_RENDERBUFFER, self._handle) if self._need_resize: self._resize() self._need_resize = False def _deactivate(self): """ Deactivate buffer on GPU """ log.debug("GPU: Deactivate render buffer") gl.glBindRenderbuffer(gl.GL_RENDERBUFFER, 0) def _resize(self): """ Buffer resize on GPU """ # WARNING: width/height should be checked against maximum size # maxsize = gl.glGetParameter(gl.GL_MAX_RENDERBUFFER_SIZE) log.debug("GPU: Resize render buffer") gl.glRenderbufferStorage(self._target, self._format, self._width, self._height) class ColorBuffer(RenderBuffer): """ Color buffer object. :param int width: Buffer width (pixels) :param int height: Buffer height (pixel) :param GLEnum format: Buffer format (default is gl.GL_RGBA) """ def __init__(self, width, height, format=gl.GL_RGBA): # if format not in (gl.GL_RGB565, gl.GL_RGBA4, gl.GL_RGB5_A1): # raise ValueError("Format not allowed for color buffer") RenderBuffer.__init__(self, width, height, format) class DepthBuffer(RenderBuffer): """ Depth buffer object. :param int width: Buffer width (pixels) :param int height: Buffer height (pixel) :param GLEnum format: Buffer format (default is gl.GL_DEPTH_COMPONENT) """ def __init__(self, width, height, format=gl.GL_DEPTH_COMPONENT): #if format not in (gl.GL_DEPTH_COMPONENT16,): # raise ValueError("Format not allowed for depth buffer") RenderBuffer.__init__(self, width, height, format) class StencilBuffer(RenderBuffer): """ Stencil buffer object :param int width: Buffer width (pixels) :param int height: Buffer height (pixel) :param GLEnum format: Buffer format (default is gl.GL_STENCIL_INDEX8) """ def __init__(self, width, height, format=gl.GL_STENCIL_INDEX8): # if format not in (gl.GL_STENCIL_INDEX,): # raise ValueError("Format not allowed for color buffer") RenderBuffer.__init__(self, width, height, format) class FrameBuffer(GLObject): """ Framebuffer object. :param ColorBuffer color: One or several color buffers or None :param DepthBuffer depth: A depth buffer or None :param StencilBuffer stencil: A stencil buffer or None """ def __init__(self, color=None, depth=None, stencil=None): """ """ GLObject.__init__(self) self._width = None self._height = None self._color = None self._depth = None self._stencil = None self._need_attach = True self._pending_attachments = [] if color is not None: self.color = color if depth is not None: self.depth = depth if stencil is not None: self.stencil = stencil @property def color(self): """ Color buffer attachment(s) (read/write) """ return self._color @color.setter def color(self, buffers): """ Color buffer attachment(s) (read/write) """ if not isinstance(buffers,list): buffers = [buffers] self._color = [] for i,buffer in enumerate(buffers): if self.width is not None and self.width != buffer.width: raise ValueError("Buffer width does not match") elif self.height is not None and self.height != buffer.height: raise ValueError("Buffer height does not match") self._width = buffer.width self._height = buffer.height target = gl.GL_COLOR_ATTACHMENT0+i self._color.append(buffer) if isinstance(buffer, (ColorBuffer, Texture2D)) or buffer is None: self._pending_attachments.append((target, buffer)) else: raise ValueError( "Buffer must be a ColorBuffer, Texture2D or None") self._need_attach = True @property def depth(self): """ Depth buffer attachment (read/write) """ return self._depth @depth.setter def depth(self, buffer): """ Depth buffer attachment (read/write) """ if self.width is not None and self.width != buffer.width: raise ValueError("Buffer width does not match") elif self.height is not None and self.height != buffer.height: raise ValueError("Buffer height does not match") self._width = buffer.width self._height = buffer.height target = gl.GL_DEPTH_ATTACHMENT self._depth = buffer if isinstance(buffer, (DepthBuffer, Texture2D)) or buffer is None: self._pending_attachments.append((target, buffer)) else: raise ValueError( "Buffer must be a DepthBuffer, Texture2D or None") self._need_attach = True @property def stencil(self): """ Stencil buffer attachment (read/write) """ return self._stencil @stencil.setter def stencil(self, buffer): """ Stencil buffer attachment (read/write) """ if self.width is not None and self.width != buffer.width: raise ValueError("Buffer width does not match") elif self.height is not None and self.height != buffer.height: raise ValueError("Buffer height does not match") self._width = buffer.width self._height = buffer.height target = gl.GL_STENCIL_ATTACHMENT self._stencil = buffer if isinstance(buffer, StencilBuffer) or buffer is None: self._pending_attachments.append((target, buffer)) else: raise ValueError( "Buffer must be a StencilBuffer, Texture2D or None") self._need_attach = True @property def width(self): """ Buffer width (read only, pixels) """ return self._width @property def height(self): """ Buffer height (read only, pixels) """ return self._height def resize(self, width, height): """ Resize the buffer (deferred operation). This method will also resize any attached buffers. :param int width: New buffer width (pixels) :param int height: New buffer height (pixels) """ self._width = width self._height = height for i, buffer in enumerate(self.color): if isinstance(buffer, ColorBuffer): buffer.resize(width, height) elif isinstance(buffer, Texture2D): newbuffer = np.resize(buffer, (height,width,buffer.shape[2])) newbuffer = newbuffer.view(buffer.__class__) self.color[i] = newbuffer buffer.delete() target = gl.GL_COLOR_ATTACHMENT0+i self._pending_attachments.append((target, self.color[i])) self._need_attach = True if isinstance(self.depth, DepthBuffer): self.depth.resize(width, height) elif isinstance(self.depth, Texture2D): depth = np.resize(self.depth, (height,width, self.depth.shape[2])) depth = depth.view(self.depth.__class__) self.depth.delete() self.depth = depth target = gl.GL_DEPTH_ATTACHMENT self._pending_attachments.append((target, self.depth)) self._need_attach = True if isinstance(self.stencil, StencilBuffer): self.stencil.resize(width, height) elif isinstance(self.stencil, Texture2D): stencil = np.resize(self.stencil, (height,width, self.stencil.shape[2])) stencil = stencil.view(self.stencil.__class__) self.stencil.delete() self.stencil = stencil target = gl.GL_STENCIL_ATTACHMENT self._pending_attachments.append((target, self.stencil)) self._need_attach = True def _create(self): """ Create framebuffer on GPU """ log.debug("GPU: Create framebuffer") self._handle = gl.glGenFramebuffers(1) def _delete(self): """ Delete buffer from GPU """ log.debug("GPU: Delete framebuffer") gl.glDeleteFramebuffers(1, np.array([self._handle])) def _activate(self): """ Activate framebuffer on GPU """ log.debug("GPU: Activate render framebuffer") gl.glBindFramebuffer(gl.GL_FRAMEBUFFER, self._handle) if self._need_attach: self._attach() self._need_attach = False attachments = [gl.GL_COLOR_ATTACHMENT0+i for i in range(len(self.color))] gl.glDrawBuffers(np.array(attachments,dtype=np.uint32)) def _deactivate(self): """ Deactivate framebuffer on GPU """ log.debug("GPU: Deactivate render framebuffer") gl.glBindFramebuffer(gl.GL_FRAMEBUFFER, 0) # gl.glDrawBuffers([gl.GL_COLOR_ATTACHMENT0]) def _attach(self): """ Attach render buffers to framebuffer """ log.debug("GPU: Attach render buffers") while self._pending_attachments: attachment, buffer = self._pending_attachments.pop(0) if buffer is None: gl.glFramebufferRenderbuffer(gl.GL_FRAMEBUFFER, attachment, gl.GL_RENDERBUFFER, 0) elif isinstance(buffer, RenderBuffer): buffer.activate() gl.glFramebufferRenderbuffer(gl.GL_FRAMEBUFFER, attachment, gl.GL_RENDERBUFFER, buffer.handle) buffer.deactivate() elif isinstance(buffer, Texture2D): buffer.activate() # INFO: 0 is for mipmap level 0 (default) of the texture gl.glFramebufferTexture2D(gl.GL_FRAMEBUFFER, attachment, buffer.target, buffer.handle, 0) buffer.deactivate() else: raise ValueError("Invalid attachment") res = gl.glCheckFramebufferStatus(gl.GL_FRAMEBUFFER) if res == gl.GL_FRAMEBUFFER_COMPLETE: pass elif res == 0: raise RuntimeError('Target not equal to GL_FRAMEBUFFER') elif res == gl.GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT: raise RuntimeError( 'FrameBuffer attachments are incomplete.') elif res == gl.GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT: raise RuntimeError( 'No valid attachments in the FrameBuffer.') elif res == gl.GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS: raise RuntimeError( 'attachments do not have the same width and height.') elif res == gl.GL_FRAMEBUFFER_INCOMPLETE_FORMATS: raise RuntimeError('Internal format of attachment ' 'is not renderable.') elif res == gl.GL_FRAMEBUFFER_UNSUPPORTED: raise RuntimeError('Combination of internal formats used ' 'by attachments is not supported.')
math/josepheus_problem/python/josephus.py
CarbonDDR/al-go-rithms
1,253
93862
from __future__ import print_function def josephus(list_of_players, step): #skipdeadguy step -= 1 index = step while len(list_of_players) > 1: print("Player Died : " , list_of_players.pop(index)) index = (index + step) % len(list_of_players) print('Player Survived : ', list_of_players[0]) def main(): print("[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15], 5") josephus([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15], 5) if __name__ == "__main__": main()
tools/android/tracing/systrace-extract-startup.py
zealoussnow/chromium
14,668
93884
#!/usr/bin/env python # Copyright 2018 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # This script parses result of build/android/adb_profile_chrome_startup and # prints various information. from __future__ import print_function import argparse import collections import glob import itertools import json import os import re def HumanSortingKey(string): # From https://goo.gl/65xrva def _ToInt(string): return int(string) if string.isdigit() else string return [_ToInt(c) for c in re.split('(\d+)', string)] class LogIndenter(object): _indentation = 0 def __init__(self, message=None, *arguments): self._indented = False if message is not None: log(message, *arguments) def __enter__(self): self.indent() return self def __exit__(self, type, value, traceback): self.unindent() def indent(self): if not self._indented: LogIndenter._indentation += 1 self._indented = True def unindent(self): if self._indented: LogIndenter._indentation -= 1 self._indented = False @classmethod def indentation(self): return LogIndenter._indentation def log(message, *arguments): if not message: print() return if arguments: message = message.format(*arguments) if LogIndenter.indentation() > 0: message = ' ' * LogIndenter.indentation() + message print(message) def ParseTraceDatas(trace_file_path): start_tag = re.compile( '^\s*<script class="trace-data" type="application/text">$') end_tag = re.compile('^(?P<line>.*?)\s*</script>$') trace_datas = [] current_trace_lines = None with open(trace_file_path) as trace_file: for line in trace_file: line = line.rstrip() if current_trace_lines is None: if start_tag.match(line): current_trace_lines = [] else: match = end_tag.match(line) if match: current_trace_lines.append(match.group('line')) trace_datas.append('\n'.join(current_trace_lines)) current_trace_lines = None else: current_trace_lines.append(line) return trace_datas class Event(object): PHASE_BEGIN = 'B' PHASE_END = 'E' PHASE_COMPLETE = 'X' PHASE_ASYNC_BEGIN = 'S' PHASE_ASYNC_END = 'F' def __init__(self, node): self._node = node @property def pid(self): return int(self._node['pid']) @property def tid(self): return int(self._node['tid']) @property def name(self): return self._node.get('name') @property def phase(self): return self._node['ph'] @property def category(self): return self._node['cat'] @property def timestamp_us(self): return long(self._node['ts']) @property def duration_us(self): return long(self._node['dur']) @property def args(self): return self._node['args'] class EventInterval(object): def __init__(self, from_event=None, to_event=None): self.from_event = from_event self.to_event = to_event def SetFromEventOnce(self, from_event): if self.from_event is None: self.from_event = from_event def SetToEventOnce(self, to_event): if self.to_event is None: self.to_event = to_event def FormatAsMilliseconds(self): if not self.from_event: time_string = "[missing the start of of the interval]" elif not self.to_event: time_string = "[missing the end of the interval]" else: interval_us = self.to_event.timestamp_us - self.from_event.timestamp_us time_string = str(interval_us / 1000.0) return time_string def UpTo(self, other_iterval): return EventInterval(self.from_event, other_iterval.to_event) class Process(object): BROWSER_NAME = 'Browser' def __init__(self, pid): self.pid = pid self.name = None self.events_by_name = collections.defaultdict(list) self.time_ns_by_histogram = {} self.malloc_counter_by_name = {} # TODO: move these into Trace self.startup_interval = EventInterval() self.first_ui_interval = EventInterval() class Trace(object): def __init__(self, file_path): self.file_path = file_path self.process_by_pid = {} self.startup_event = None self.navigation_start_event = None # TODO: convert these to properties over events self.navigation_to_contentul_paint_interval = EventInterval() self.navigation_to_meaningful_paint_interval = EventInterval() self.navigation_to_commit_interval = None @property def startup_to_navigation_interval(self): return EventInterval(self.startup_event, self.navigation_start_event) def Finalize(self): self.startup_event = self.FindFirstEvent(*Trace.STARTUP_EVENT_NAMES) self.navigation_start_event = self.FindFirstEvent( Trace.NAVIGATION_START_EVENT_NAME) def _FindNavigationToCommitInterval(): events = self.FindAllEvents(Trace.NAVIGATION_COMMIT_EVENT_NAME) interval = EventInterval() for event in events: if event.phase == Event.PHASE_ASYNC_BEGIN: interval.SetFromEventOnce(event) elif event.phase == Event.PHASE_ASYNC_END: interval.SetToEventOnce(event) return interval self.navigation_to_commit_interval = _FindNavigationToCommitInterval() def FindAllEvents(self, *names): events = [] for process in self.process_by_pid.itervalues(): for name in names: process_events = process.events_by_name.get(name) if process_events: events.extend(process_events) events.sort(key=lambda e: e.timestamp_us) return events def FindFirstEvent(self, *names): events = self.FindAllEvents(*names) return events[0] if events else None NAVIGATION_START_EVENT_NAME = 'NavigationTiming navigationStart' NAVIGATION_COMMIT_EVENT_NAME = 'Navigation StartToCommit' STARTUP_EVENT_NAMES = [ 'Startup.BrowserMainEntryPoint', 'ChromeApplication.onCreate', 'ContentShellApplication.onCreate' ] def ParseTrace(file_path): trace_datas = ParseTraceDatas(file_path) if not trace_datas: raise Exception("The file doesn't have any trace-data elements.") trace_json = None for trace_data in trace_datas: try: trace_json = json.loads(trace_data) except ValueError: continue if not trace_json: raise Exception("Couldn't parse trace-data json.") trace = Trace(file_path) for event_node in trace_json['traceEvents']: event = Event(event_node) pid = event.pid process = trace.process_by_pid.get(event.pid) if not process: process = Process(pid) trace.process_by_pid[pid] = process name = event.name if not name: continue process.events_by_name[name].append(event) phase = event.phase category = event.category if name == 'process_name': process.name = event.args['name'] if (category == 'disabled-by-default-uma-addtime' and name not in process.time_ns_by_histogram): process.time_ns_by_histogram[name] = int(event.args['value_ns']) if name in Trace.STARTUP_EVENT_NAMES: process.startup_interval.SetFromEventOnce(event) elif name == 'BenchmarkInstrumentation::ImplThreadRenderingStats': process.startup_interval.SetToEventOnce(event) if name == Trace.NAVIGATION_START_EVENT_NAME: trace.navigation_to_contentul_paint_interval.SetFromEventOnce(event) trace.navigation_to_meaningful_paint_interval.SetFromEventOnce(event) elif name == 'firstContentfulPaint': trace.navigation_to_contentul_paint_interval.SetToEventOnce(event) elif name == 'firstMeaningfulPaint': trace.navigation_to_meaningful_paint_interval.SetToEventOnce(event) if (name == 'AsyncInitializationActivity.onCreate()' and phase == Event.PHASE_END): process.first_ui_interval.SetFromEventOnce(event) elif name == 'ChromeBrowserInitializer.startChromeBrowserProcessesAsync': process.first_ui_interval.SetToEventOnce(event) if category == 'malloc' and name == 'malloc_counter': counter_name, counter_value = next(event.args.iteritems()) process.malloc_counter_by_name[counter_name] = long(counter_value) trace.Finalize() return trace EventSummary = collections.namedtuple('EventSummary', [ 'trace', 'event', 'startup_to_event_ms', 'navigation_to_event_ms', 'duration_ms' ]) def SummarizeEvents(event_name_regex, trace, process): summaries = [] def _AddSummary(event, start_us, duration_us): startup_to_event_ms = ( None if trace.startup_event is None else (start_us - trace.startup_event.timestamp_us) / 1000.0) navigation_to_event_ms = ( None if trace.navigation_start_event is None else (start_us - trace.navigation_start_event.timestamp_us) / 1000.0) summaries.append(EventSummary( trace, event, startup_to_event_ms, navigation_to_event_ms, duration_us / 1000.0)) for name, events in process.events_by_name.iteritems(): if event_name_regex.search(name): sorted_events = sorted(events, key=lambda e: (e.tid, e.timestamp_us)) begin_event = None for event in sorted_events: if event.phase == Event.PHASE_COMPLETE: _AddSummary(event, event.timestamp_us, event.duration_us) elif (event.phase == Event.PHASE_BEGIN or event.phase == Event.PHASE_ASYNC_BEGIN): begin_event = event elif (event.phase == Event.PHASE_END or event.phase == Event.PHASE_ASYNC_END): if begin_event is not None: duration_us = event.timestamp_us - begin_event.timestamp_us _AddSummary(event, begin_event.timestamp_us, duration_us) begin_event = None return summaries def PrintReport(file_paths, options): # TODO: don't accumulate traces, build report on the fly traces = [] for file_path in file_paths: log('Parsing {}...', file_path) try: traces.append(ParseTrace(file_path)) except Exception as e: log('Oops: {}', e.message) log('Parsed {} trace(s).', len(traces)) event_name_regex = None event_summaries_by_name = collections.defaultdict(list) if options.print_events: event_name_regex = re.compile(options.print_events) def _TraceSortingKey(trace): return HumanSortingKey(os.path.basename(trace.file_path)) traces.sort(key=lambda t: _TraceSortingKey(t)) if options.csv: separator = ',' gap = '' else: separator = '\t' # Make it less likely for terminals to eat tabs when wrapping a line. gap = ' ' table = [[ 'File', 'Startup (ms)', 'StartupToNavigation (ms)', 'NavigationToCommit (ms)', 'NavigationToContentfulPaint (ms)', 'StartupToContentfulPaint (ms)', 'NavigationToMeaningfulPaint (ms)', 'StartupToMeaningfulPaint (ms)' ]] for trace in traces: browser_process = None for process in trace.process_by_pid.itervalues(): if process.name == Process.BROWSER_NAME: browser_process = process break if browser_process is None: continue table.append([ os.path.basename(trace.file_path), browser_process.startup_interval.FormatAsMilliseconds(), trace.startup_to_navigation_interval.FormatAsMilliseconds(), trace.navigation_to_commit_interval.FormatAsMilliseconds(), trace.navigation_to_contentul_paint_interval.FormatAsMilliseconds(), browser_process.startup_interval.UpTo(trace.navigation_to_contentul_paint_interval).\ FormatAsMilliseconds(), trace.navigation_to_meaningful_paint_interval.FormatAsMilliseconds(), browser_process.startup_interval.UpTo(trace.navigation_to_meaningful_paint_interval).\ FormatAsMilliseconds() ]) if event_name_regex: event_summaries = SummarizeEvents( event_name_regex, trace, browser_process) for summary in event_summaries: event_summaries_by_name[summary.event.name].append(summary) for name, event_summaries in event_summaries_by_name.iteritems(): table.append([]) summaries_by_trace = collections.defaultdict(list) for summary in event_summaries: summaries_by_trace[summary.trace].append(summary) width = max(len(s) for s in summaries_by_trace.itervalues()) summary_headers = [ 'StartupToEvent (ms)', 'NavigationToEvent (ms)', 'Duration (ms)' ] table.append( [name] + ([gap] * len(summary_headers)) + list(itertools.chain.from_iterable( ['#{}'.format(i)] + [gap] * (len(summary_headers) - 1) for i in range(1, width)))) table.append( ['File'] + summary_headers * width) trace_summaries = sorted(summaries_by_trace.iteritems(), key=lambda t_s: _TraceSortingKey(t_s[0])) for trace, summaries in trace_summaries: row = [os.path.basename(trace.file_path)] for summary in summaries: row += [ (gap if summary.startup_to_event_ms is None else summary.startup_to_event_ms), (gap if summary.navigation_to_event_ms is None else summary.navigation_to_event_ms), summary.duration_ms ] table.append(row) print() print('\n'.join(separator.join(str(v) for v in row) for row in table)) def PrintTrace(trace_file_path, options): trace = ParseTrace(trace_file_path) def _PrintInterval(name, interval): log('{} (ms): {}', name, interval.FormatAsMilliseconds()) def _PrintHistogramTime(process, name): time_ns = process.time_ns_by_histogram.get(name) time_ms = None if time_ns is None else time_ns / 1e6 if time_ms is not None or options.print_none_histograms: log('{} (ms): {}', name, time_ms) histogram_names = [ 'Startup.FirstCommitNavigationTime3.ZoomedIn', 'MobileStartup.ToolbarFirstDrawTime.ChromeTabbedActivity', 'ChromeGeneratedCustomTab.IntentToFirstCommitNavigationTime2.ZoomedIn', 'CustomTabs.IntentToFirstCommitNavigationTime2.ZoomedIn', 'PageLoad.PaintTiming.NavigationToFirstPaint', 'PageLoad.PaintTiming.NavigationToFirstContentfulPaint', 'PageLoad.Experimental.PaintTiming.NavigationToFirstMeaningfulPaint', 'SessionRestore.ForegroundTabFirstPaint3', ] processes = sorted(trace.process_by_pid.itervalues(), key=lambda p: p.name) events_regex = None if options.print_events: events_regex = re.compile(options.print_events) for process in processes: log('{} timings:', process.name) indenter = LogIndenter() indenter.indent() if process.name == Process.BROWSER_NAME: _PrintInterval('Startup', process.startup_interval) _PrintInterval('StartupToNavigation', trace.startup_to_navigation_interval) _PrintInterval('NavigationToCommit', trace.navigation_to_commit_interval) _PrintInterval('NavigationToContentfulPaint', trace.navigation_to_contentul_paint_interval) _PrintInterval('StartupToContentfulPaint', process.startup_interval.UpTo( trace.navigation_to_contentul_paint_interval)) _PrintInterval('NavigationToMeaningfulPaint', trace.navigation_to_meaningful_paint_interval) _PrintInterval('StartupToMeaningfulPaint', process.startup_interval.UpTo( trace.navigation_to_meaningful_paint_interval)) if options.experimental: _PrintInterval('First UI interval', process.first_ui_interval) if process.malloc_counter_by_name: def _PrintMallocCounter(title, value_name, factor): value = process.malloc_counter_by_name.get(value_name) if value is not None: value /= factor log('{}: {}', title, value) log('Malloc counters:') with LogIndenter(): _PrintMallocCounter('Total time (ms)', 'malloc_time_ns', 1000000) _PrintMallocCounter('Total allocated (KiB)', 'allocated_bytes', 1024) _PrintMallocCounter('Allocations', 'allocation_count', 1) _PrintMallocCounter('Frees', 'free_count', 1) for histogram_name in histogram_names: _PrintHistogramTime(process, histogram_name) if events_regex: event_summaries = SummarizeEvents(events_regex, trace, process) if event_summaries: with LogIndenter('Events matching "{}":', events_regex.pattern): for event_summary in event_summaries: with LogIndenter('{}:', event_summary.event.name): if event_summary.startup_to_event_ms is not None: log('StartupToEvent (ms): {}', event_summary.startup_to_event_ms) if event_summary.navigation_to_event_ms is not None: log('NavigationToEvent (ms): {}', event_summary.navigation_to_event_ms) log('Duration (ms): {}', event_summary.duration_ms) indenter.unindent() log('') def main(): parser = argparse.ArgumentParser() parser.add_argument('file_or_glob') parser.add_argument('--print-none-histograms', help='Print histograms with None values.', default=False, action='store_true') # TODO: introduce a variant that takes a list of event names, as escaping # event names can be tedious. # TODO: match regex against '<index>|<event name>' to allow selecting # events by index (complicated for begin/end pairs). parser.add_argument('--print-events', help='Print events matching the specified regex.') parser.add_argument('--experimental', default=False, action='store_true', help='Enable experimental stuff.') parser.add_argument('--report', default=False, action='store_true', help='Present information as a tab-separated table.') parser.add_argument('--csv', default=False, action='store_true', help=('Separate report values by commas (not tabs).')) options = parser.parse_args() globbed = False if os.path.isfile(options.file_or_glob): trace_file_paths = [options.file_or_glob] else: globbed = True file_pattern = options.file_or_glob trace_file_paths = glob.glob(file_pattern) if not trace_file_paths: file_pattern += '*html' trace_file_paths = glob.glob(file_pattern) if not trace_file_paths: log("'{}' didn't match anything.", file_pattern) return log("'{}' matched {} file(s).", file_pattern, len(trace_file_paths)) log('') if options.report: PrintReport(trace_file_paths, options) else: for file_path in trace_file_paths: if globbed: log('_' * len(file_path)) log(file_path) log('') PrintTrace(file_path, options) if __name__ == '__main__': main()
mmtbx/geometry/tests/tst_topology.py
dperl-sol/cctbx_project
155
93888
from __future__ import absolute_import, division, print_function from mmtbx.geometry import topology import unittest class TestAtom(unittest.TestCase): def test_1(self): foo = object() bar = object() a = topology.Atom( foo = foo, bar = bar ) self.assertEqual( a.foo, foo ) self.assertEqual( a.bar, bar ) class TestMolecule(unittest.TestCase): def test_0(self): m = topology.Molecule() self.assertEqual( m.size(), 0 ) self.assertEqual( m.atoms, [] ) self.assertEqual( m.atom_for, {} ) self.assertEqual( m.descriptor_for, {} ) self.assertEqual( list( m.graph.vertices() ), [] ) self.assertEqual( list( m.graph.edges() ), [] ) def test_1(self): m = topology.Molecule() a = topology.Atom() m.add( atom = a, xyz = ( 0, 0, 0 ) ) self.assertEqual( m.size(), 1 ) self.assertEqual( m.atoms, [ a ] ) self.assertEqual( len( m.atom_for ), 1 ) self.assertTrue( a in m.atom_for.values() ) self.assertEqual( len( m.descriptor_for ), 1 ) self.assertTrue( a in m.descriptor_for ) self.assertEqual( len( list( m.graph.vertices() ) ), 1 ) self.assertEqual( list( m.graph.edges() ), [] ) def test_2(self): m = topology.Molecule() a1 = topology.Atom() a2 = topology.Atom() m.add( atom = a1, xyz = ( 0, 0, 0 ) ) m.add( atom = a2, xyz = ( 1, 1, 1 ) ) self.assertEqual( m.size(), 2 ) self.assertEqual( set( m.atoms ), set( [ a1, a2 ] ) ) self.assertEqual( len( m.atom_for ), 2 ) self.assertTrue( a1 in m.atom_for.values() ) self.assertTrue( a2 in m.atom_for.values() ) self.assertEqual( len( m.descriptor_for ), 2 ) self.assertTrue( a1 in m.descriptor_for ) self.assertTrue( a2 in m.descriptor_for ) self.assertEqual( len( list( m.graph.vertices() ) ), 2 ) self.assertEqual( len( list( m.graph.edges() ) ), 1 ) edge = next(m.graph.edges()) self.assertAlmostEqual( m.graph.edge_weight( edge = edge ), 1.73205, 5 ) class TestCompound(unittest.TestCase): def test_0(self): m = topology.Compound.create() self.assertEqual( m.atoms, [] ) self.assertEqual( m.atom_for, {} ) self.assertEqual( m.descriptor_for, {} ) self.assertEqual( list( m.graph.vertices() ), [] ) self.assertEqual( list( m.graph.edges() ), [] ) def test_1(self): m = topology.Compound.create() a = topology.Atom() m.add_atom( atom = a ) self.assertEqual( m.atoms, [ a ] ) self.assertEqual( len( m.atom_for ), 1 ) self.assertTrue( a in m.atom_for.values() ) self.assertEqual( len( m.descriptor_for ), 1 ) self.assertTrue( a in m.descriptor_for ) self.assertEqual( len( list( m.graph.vertices() ) ), 1 ) self.assertEqual( list( m.graph.edges() ), [] ) self.assertEqual( m.distances_from( atom = a ), { a: 0 } ) self.assertEqual( m.connected_segments(), [ [ a ] ] ) def test_2(self): m = topology.Compound.create() a1 = topology.Atom() a2 = topology.Atom() m.add_atom( atom = a1 ) m.add_atom( atom = a2 ) self.assertEqual( set( m.atoms ), set( [ a1, a2 ] ) ) self.assertEqual( len( m.atom_for ), 2 ) self.assertTrue( a1 in m.atom_for.values() ) self.assertTrue( a2 in m.atom_for.values() ) self.assertEqual( len( m.descriptor_for ), 2 ) self.assertTrue( a1 in m.descriptor_for ) self.assertTrue( a2 in m.descriptor_for ) self.assertEqual( len( list( m.graph.vertices() ) ), 2 ) self.assertEqual( len( list( m.graph.edges() ) ), 0 ) self.assertEqual( m.distances_from( atom = a1 ), { a1: 0, a2: None } ) self.assertEqual( m.distances_from( atom = a2 ), { a2: 0, a1: None } ) self.assertEqual( set( frozenset( s ) for s in m.connected_segments() ), set( [ frozenset( [ a1 ] ), frozenset( [ a2 ] ) ] ), ) m.add_bond( left = a1, right = a2 ) self.assertEqual( len( list( m.graph.vertices() ) ), 2 ) self.assertEqual( len( list( m.graph.edges() ) ), 1 ) self.assertEqual( m.distances_from( atom = a1 ), { a1: 0, a2: 1 } ) self.assertEqual( m.distances_from( atom = a2 ), { a2: 0, a1: 1 } ) self.assertEqual( set( frozenset( s ) for s in m.connected_segments() ), set( [ frozenset( [ a1, a2 ] ) ] ), ) ss1 = m.subset( atoms = [ a1 ] ) self.assertEqual( len( ss1.atom_for ), 1 ) self.assertTrue( a1 in ss1.atom_for.values() ) self.assertEqual( len( ss1.descriptor_for ), 1 ) self.assertTrue( a1 in ss1.descriptor_for ) self.assertEqual( len( list( ss1.graph.vertices() ) ), 1 ) self.assertEqual( len( list( ss1.graph.edges() ) ), 0 ) ss2 = m.subset( atoms = [ a2 ] ) self.assertEqual( len( ss2.atom_for ), 1 ) self.assertTrue( a2 in ss2.atom_for.values() ) self.assertEqual( len( ss2.descriptor_for ), 1 ) self.assertTrue( a2 in ss2.descriptor_for ) self.assertEqual( len( list( ss2.graph.vertices() ) ), 1 ) self.assertEqual( len( list( ss2.graph.edges() ) ), 0 ) def test_3(self): atoms = [ topology.Atom( name = "N", element = "N", xyz = ( 11.498, 10.510, 10.231 ) ), topology.Atom( name = "CA", element = "C", xyz = ( 12.730, 11.073, 10.769 ) ), topology.Atom( name = "C", element = "C", xyz = ( 13.674, 9.966, 11.221 ) ), topology.Atom( name = "O", element = "O", xyz = ( 13.739, 8.902, 10.605 ) ), topology.Atom( name = "CB", element = "C", xyz = ( 12.421, 12.004, 11.944 ) ), topology.Atom( name = "CG", element = "C", xyz = ( 11.478, 13.179, 11.661 ) ), topology.Atom( name = "CD1", element = "C", xyz = ( 11.043, 13.834, 12.963 ) ), topology.Atom( name = "CD2", element = "C", xyz = ( 12.126, 14.201, 10.736 ) ), ] compound = topology.Compound.from_structure( atoms = atoms, tolerance = 0.1 ) self.assertEqual( set( frozenset( [ l.name, r.name ] ) for ( l, r ) in compound.bonds ), set( [ frozenset( [ "N", "CA" ] ), frozenset( [ "CA", "C" ] ), frozenset( [ "C", "O" ] ), frozenset( [ "CA", "CB" ] ), frozenset( [ "CB", "CG" ] ), frozenset( [ "CG", "CD1" ] ), frozenset( [ "CG", "CD2" ] ), ] ) ) class TestMcGregorMatch(unittest.TestCase): def test_asn_leu(self): l_ca = topology.Atom( label = "CA" ) l_cb = topology.Atom( label = "C" ) l_cg = topology.Atom( label = "C" ) l_cd1 = topology.Atom( label = "C" ) l_cd2 = topology.Atom( label = "C" ) leu = topology.Molecule() leu.add( atom = l_ca, xyz = ( -1.0085, -0.590773, 0.814318 ) ) leu.add( atom = l_cb, xyz = ( 0.0275, -0.557773, -0.314682 ) ) leu.add( atom = l_cg, xyz = ( 1.2335, 0.374227, -0.138682 ) ) leu.add( atom = l_cd1, xyz = ( 2.3065, 0.046227, -1.16768 ) ) leu.add( atom = l_cd2, xyz = ( 0.8395, 1.84323, -0.230682 ) ) a_ca = topology.Atom( label = "CA" ) a_cb = topology.Atom( label = "C" ) a_cg = topology.Atom( label = "C" ) a_od1 = topology.Atom( label = "C" ) a_nd2 = topology.Atom( label = "C" ) asn = topology.Molecule() asn.add( atom = a_ca, xyz = ( -1.03327, -0.544348, 0.860946 ) ) asn.add( atom = a_cb, xyz = ( 0.10486, -0.548357, -0.164901 ) ) asn.add( atom = a_cg, xyz = ( 0.990984, 0.682823, -0.070521 ) ) asn.add( atom = a_od1, xyz = ( 1.39496, 1.24684, -1.08724 ) ) asn.add( atom = a_nd2, xyz = ( 1.29745, 1.10599, 1.15228 ) ) res = topology.McGregorMatch( molecule1 = leu, molecule2 = asn, is_valid = lambda match: any( m.label == "CA" for m in match ), vertex_equality = lambda l, r: l.label == r.label, edge_equality = lambda l, r: abs( l - r ) < 0.1 ) self.assertEqual( res.length(), 3 ) mapping = res.remapped() self.assertTrue( ( l_ca, a_ca ) in mapping ) self.assertTrue( ( l_cb, a_cb ) in mapping ) self.assertTrue( ( l_cg, a_cg ) in mapping ) self.assertTrue( ( l_cd1, a_od1 ) not in mapping ) class TestRascalMatch(unittest.TestCase): def test_asn_leu(self): l_ca = topology.Atom( label = "CA" ) l_cb = topology.Atom( label = "C" ) l_cg = topology.Atom( label = "C" ) l_cd1 = topology.Atom( label = "C" ) l_cd2 = topology.Atom( label = "C" ) leu = topology.Molecule() leu.add( atom = l_ca, xyz = ( -1.0085, -0.590773, 0.814318 ) ) leu.add( atom = l_cb, xyz = ( 0.0275, -0.557773, -0.314682 ) ) leu.add( atom = l_cg, xyz = ( 1.2335, 0.374227, -0.138682 ) ) leu.add( atom = l_cd1, xyz = ( 2.3065, 0.046227, -1.16768 ) ) leu.add( atom = l_cd2, xyz = ( 0.8395, 1.84323, -0.230682 ) ) a_ca = topology.Atom( label = "CA" ) a_cb = topology.Atom( label = "C" ) a_cg = topology.Atom( label = "C" ) a_od1 = topology.Atom( label = "C" ) a_nd2 = topology.Atom( label = "C" ) asn = topology.Molecule() asn.add( atom = a_ca, xyz = ( -1.03327, -0.544348, 0.860946 ) ) asn.add( atom = a_cb, xyz = ( 0.10486, -0.548357, -0.164901 ) ) asn.add( atom = a_cg, xyz = ( 0.990984, 0.682823, -0.070521 ) ) asn.add( atom = a_od1, xyz = ( 1.39496, 1.24684, -1.08724 ) ) asn.add( atom = a_nd2, xyz = ( 1.29745, 1.10599, 1.15228 ) ) m = topology.RascalMatch( molecule1 = leu, molecule2 = asn, vertex_equality = lambda l, r: l.label == r.label, edge_equality = lambda l, r: abs( l - r ) <= 0.1, ) self.assertEqual( m.count(), 1 ) self.assertEqual( m.length(), 3 ) mapping = m.remapped()[0] self.assertEqual( len( mapping ), 3 ) self.assertTrue( ( l_ca, a_ca ) in mapping ) self.assertTrue( ( l_cb, a_cb ) in mapping ) self.assertTrue( ( l_cg, a_cg ) in mapping ) self.assertTrue( ( l_cd1, a_od1 ) not in mapping ) class TestGreedyMatch(unittest.TestCase): def test_asn_leu(self): l_ca = topology.Atom( label = "CA" ) l_cb = topology.Atom( label = "C" ) l_cg = topology.Atom( label = "C" ) l_cd1 = topology.Atom( label = "C" ) l_cd2 = topology.Atom( label = "C" ) leu = topology.Molecule() leu.add( atom = l_ca, xyz = ( -1.0085, -0.590773, 0.814318 ) ) leu.add( atom = l_cb, xyz = ( 0.0275, -0.557773, -0.314682 ) ) leu.add( atom = l_cg, xyz = ( 1.2335, 0.374227, -0.138682 ) ) leu.add( atom = l_cd1, xyz = ( 2.3065, 0.046227, -1.16768 ) ) leu.add( atom = l_cd2, xyz = ( 0.8395, 1.84323, -0.230682 ) ) a_ca = topology.Atom( label = "CA" ) a_cb = topology.Atom( label = "C" ) a_cg = topology.Atom( label = "C" ) a_od1 = topology.Atom( label = "C" ) a_nd2 = topology.Atom( label = "C" ) asn = topology.Molecule() asn.add( atom = a_ca, xyz = ( -1.03327, -0.544348, 0.860946 ) ) asn.add( atom = a_cb, xyz = ( 0.10486, -0.548357, -0.164901 ) ) asn.add( atom = a_cg, xyz = ( 0.990984, 0.682823, -0.070521 ) ) asn.add( atom = a_od1, xyz = ( 1.39496, 1.24684, -1.08724 ) ) asn.add( atom = a_nd2, xyz = ( 1.29745, 1.10599, 1.15228 ) ) m = topology.GreedyMatch( molecule1 = leu, molecule2 = asn, vertex_equality = lambda l, r: l.label == r.label, edge_equality = lambda l, r: abs( l - r ) <= 0.1, ) self.assertEqual( m.count(), 1 ) self.assertEqual( m.length(), 3 ) mapping = m.remapped()[0] self.assertEqual( len( mapping ), 3 ) self.assertTrue( ( l_ca, a_ca ) in mapping ) self.assertTrue( ( l_cb, a_cb ) in mapping ) self.assertTrue( ( l_cg, a_cg ) in mapping ) self.assertTrue( ( l_cd1, a_od1 ) not in mapping ) suite_atom = unittest.TestLoader().loadTestsFromTestCase( TestAtom ) suite_molecule = unittest.TestLoader().loadTestsFromTestCase( TestMolecule ) suite_compound = unittest.TestLoader().loadTestsFromTestCase( TestCompound ) suite_mcgregor_match = unittest.TestLoader().loadTestsFromTestCase( TestMcGregorMatch ) suite_rascal_match= unittest.TestLoader().loadTestsFromTestCase( TestRascalMatch ) suite_greedy_match= unittest.TestLoader().loadTestsFromTestCase( TestGreedyMatch ) alltests = unittest.TestSuite( [ suite_atom, suite_molecule, suite_compound, suite_mcgregor_match, suite_rascal_match, suite_greedy_match, ] ) def load_tests(loader, tests, pattern): return alltests if __name__ == "__main__": unittest.TextTestRunner( verbosity = 2 ).run( alltests )
tests/schema/get_spec_for_prop_test.py
nickgaya/bravado-core
122
93890
<reponame>nickgaya/bravado-core<filename>tests/schema/get_spec_for_prop_test.py # -*- coding: utf-8 -*- import pytest from bravado_core.exception import SwaggerMappingError from bravado_core.schema import get_spec_for_prop from bravado_core.spec import Spec @pytest.fixture def address_spec(): return { 'type': 'object', 'properties': { 'number': { 'type': 'number', }, 'street_name': { 'type': 'string', }, 'street_type': { 'type': 'string', 'enum': [ 'Street', 'Avenue', 'Boulevard', ], }, }, } @pytest.fixture def business_address_spec(): return { 'allOf': [ { '$ref': '#/definitions/Address', }, { 'type': 'object', 'properties': { 'company': { 'type': 'string', }, }, }, ], } @pytest.fixture def address(): return { 'number': 1600, 'street_name': 'Pennsylvania', 'street_type': 'Avenue', } @pytest.fixture def business_address(): return { 'company': 'White House', 'number': 1600, 'street_name': 'Pennsylvania', 'street_type': 'Avenue', } def test_declared_property(minimal_swagger_spec, address_spec, address): expected_spec = address_spec['properties']['street_name'] result = get_spec_for_prop( minimal_swagger_spec, address_spec, address, 'street_name', ) assert expected_spec == result def test_properties_and_additionalProperties_not_present(minimal_swagger_spec, address): object_spec = {'type': 'object'} result = get_spec_for_prop( minimal_swagger_spec, object_spec, address, 'street_name', ) assert result is None def test_properties_not_present_and_additionalProperties_True(minimal_swagger_spec, address): object_spec = { 'type': 'object', 'additionalProperties': True, } result = get_spec_for_prop( minimal_swagger_spec, object_spec, address, 'street_name', ) assert result is None def test_properties_not_present_and_additionalProperties_False(minimal_swagger_spec, address): object_spec = { 'type': 'object', 'additionalProperties': False, } result = get_spec_for_prop( minimal_swagger_spec, object_spec, address, 'street_name', ) assert result is None def test_additionalProperties_with_spec(minimal_swagger_spec, address_spec, address): address_spec['additionalProperties'] = {'type': 'string'} expected_spec = {'type': 'string'} # 'city' is not a declared property so it gets classified under # additionalProperties result = get_spec_for_prop( minimal_swagger_spec, address_spec, address, 'city', ) assert expected_spec == result def test_additionalProperties_not_dict_like(minimal_swagger_spec, address_spec, address): address_spec['additionalProperties'] = 'i am not a dict' with pytest.raises(SwaggerMappingError) as excinfo: get_spec_for_prop(minimal_swagger_spec, address_spec, address, 'city') assert "Don't know what to do" in str(excinfo.value) @pytest.mark.filterwarnings("ignore:.*with siblings that will be overwritten") def test_get_spec_for_prop_with_x_nullable_and_reference(minimal_swagger_dict): # TODO: remove is_nullable support once https://github.com/Yelp/bravado-core/issues/335 is addressed minimal_swagger_dict['definitions'] = { 'referenced': { 'type': 'string', }, 'model': { 'type': 'object', 'properties': { 'property': { 'x-nullable': True, '$ref': '#/definitions/referenced', }, }, }, } swagger_spec = Spec.from_dict(minimal_swagger_dict) assert {'x-nullable': True, 'type': 'string'} == get_spec_for_prop( swagger_spec, minimal_swagger_dict['definitions']['model'], None, 'property', ) def test_composition(minimal_swagger_dict, address_spec, address, business_address_spec, business_address): minimal_swagger_dict['definitions']['Address'] = address_spec minimal_swagger_dict['definitions']['BusinessAddress'] = business_address_spec swagger_spec = Spec.from_dict(minimal_swagger_dict) expected_spec_1 = address_spec['properties']['street_name'] result_1 = get_spec_for_prop( swagger_spec, address_spec, address, 'street_name', ) assert expected_spec_1 == result_1 expected_spec_2 = business_address_spec['allOf'][1]['properties']['company'] result_2 = get_spec_for_prop( swagger_spec, business_address_spec, business_address, 'company', ) assert expected_spec_2 == result_2 def test_object_is_ref(minimal_swagger_dict, address_spec, address): minimal_swagger_dict['definitions']['Address'] = address_spec address_ref_spec = {'$ref': '#/definitions/Address'} swagger_spec = Spec.from_dict(minimal_swagger_dict) result = get_spec_for_prop( swagger_spec, address_ref_spec, address, 'street_type', ) assert address_spec['properties']['street_type'] == result def test_property_is_ref(minimal_swagger_dict, address): street_type_spec = { 'type': 'string', 'enum': ['Street', 'Avenue', 'Boulevard'], } address_spec = { 'type': 'object', 'properties': { 'street_type': { '$ref': '#/definitions/StreetType', }, }, } minimal_swagger_dict['definitions']['StreetType'] = street_type_spec swagger_spec = Spec.from_dict(minimal_swagger_dict) result = get_spec_for_prop( swagger_spec, address_spec, address, 'street_type', ) assert street_type_spec == result
Lib/objc/CryptoTokenKit.py
snazari/Pyto
701
93909
<reponame>snazari/Pyto<gh_stars>100-1000 """ Classes from the 'CryptoTokenKit' framework. """ try: from rubicon.objc import ObjCClass except ValueError: def ObjCClass(name): return None def _Class(name): try: return ObjCClass(name) except NameError: return None TKTokenWatcher = _Class("TKTokenWatcher") TKTokenWatcherTokenInfo = _Class("TKTokenWatcherTokenInfo") TKTokenWatcherProxy = _Class("TKTokenWatcherProxy") TKTokenKeyAlgorithm = _Class("TKTokenKeyAlgorithm") TKTokenKeyExchangeParameters = _Class("TKTokenKeyExchangeParameters") TKApplicationProxy = _Class("TKApplicationProxy") TKTokenConnection = _Class("TKTokenConnection") TKTokenSessionConnection = _Class("TKTokenSessionConnection") TKTokenAccessUserPromptInfo = _Class("TKTokenAccessUserPromptInfo") TKSharedResource = _Class("TKSharedResource") TKSharedResourceSlot = _Class("TKSharedResourceSlot") TKTokenAccessRegistry = _Class("TKTokenAccessRegistry") TKSmartCardATR = _Class("TKSmartCardATR") TKSmartCardATRInterfaceGroup = _Class("TKSmartCardATRInterfaceGroup") TKTokenAccessUserPromptNoop = _Class("TKTokenAccessUserPromptNoop") TKTokenAccessUserPromptRemoteAlert = _Class("TKTokenAccessUserPromptRemoteAlert") TKTokenKeychainContents = _Class("TKTokenKeychainContents") TKTokenKeychainItem = _Class("TKTokenKeychainItem") TKTokenKeychainKey = _Class("TKTokenKeychainKey") TKTokenKeychainCertificate = _Class("TKTokenKeychainCertificate") TKTokenAccessRequest = _Class("TKTokenAccessRequest") TKClientTokenAdvertisedItem = _Class("TKClientTokenAdvertisedItem") TKClientTokenSession = _Class("TKClientTokenSession") TKClientTokenObject = _Class("TKClientTokenObject") TKClientToken = _Class("TKClientToken") TKTokenSession = _Class("TKTokenSession") TKSmartCardTokenSession = _Class("TKSmartCardTokenSession") TKTokenAuthOperation = _Class("TKTokenAuthOperation") TKTokenPasswordAuthOperation = _Class("TKTokenPasswordAuthOperation") TKTokenSmartCardPINAuthOperation = _Class("TKTokenSmartCardPINAuthOperation") TKSmartCardSessionEngine = _Class("TKSmartCardSessionEngine") TKSmartCardSlotEngine = _Class("TKSmartCardSlotEngine") _TKSmartCardSlotReservation = _Class("_TKSmartCardSlotReservation") TKPowerMonitor = _Class("TKPowerMonitor") TKSmartCardSessionRequest = _Class("TKSmartCardSessionRequest") TKTokenDriverConfiguration = _Class("TKTokenDriverConfiguration") TKTokenConfiguration = _Class("TKTokenConfiguration") TKTokenConfigurationTransaction = _Class("TKTokenConfigurationTransaction") TKTokenConfigurationConnection = _Class("TKTokenConfigurationConnection") TKTokenID = _Class("TKTokenID") TKSmartCardUserInteraction = _Class("TKSmartCardUserInteraction") TKSmartCardUserInteractionForStringEntry = _Class( "TKSmartCardUserInteractionForStringEntry" ) TKSmartCardUserInteractionForConfirmation = _Class( "TKSmartCardUserInteractionForConfirmation" ) TKSmartCardUserInteractionForPINOperation = _Class( "TKSmartCardUserInteractionForPINOperation" ) TKSmartCardUserInteractionForSecurePINChange = _Class( "TKSmartCardUserInteractionForSecurePINChange" ) TKSmartCardUserInteractionForSecurePINVerification = _Class( "TKSmartCardUserInteractionForSecurePINVerification" ) TKSmartCardSlotScreen = _Class("TKSmartCardSlotScreen") TKSmartCardPINFormat = _Class("TKSmartCardPINFormat") TKSmartCard = _Class("TKSmartCard") TKSmartCardWithError = _Class("TKSmartCardWithError") TKSmartCardSlot = _Class("TKSmartCardSlot") TKSmartCardSlotProxy = _Class("TKSmartCardSlotProxy") TKSmartCardSlotManager = _Class("TKSmartCardSlotManager") TKTokenAccessDBBackedByUserDefaults = _Class("TKTokenAccessDBBackedByUserDefaults") TKTLVRecord = _Class("TKTLVRecord") TKCompactTLVRecord = _Class("TKCompactTLVRecord") TKSimpleTLVRecord = _Class("TKSimpleTLVRecord") TKBERTLVRecord = _Class("TKBERTLVRecord") TKDataSource = _Class("TKDataSource") TKTokenDriverRequest = _Class("TKTokenDriverRequest") TKTokenService_Subsystem = _Class("TKTokenService_Subsystem") TKTokenDriver = _Class("TKTokenDriver") TKSmartCardTokenDriver = _Class("TKSmartCardTokenDriver") TKToken = _Class("TKToken") TKSmartCardToken = _Class("TKSmartCardToken") TKTokenBaseContext = _Class("TKTokenBaseContext") TKTokenDriverContext = _Class("TKTokenDriverContext")
dist/cygwin-prebuilts/make-cygwin-prebuilts.py
gnaggnoyil/wslbridge
376
93931
<reponame>gnaggnoyil/wslbridge #!python3 import os import sys sys.path.insert(1, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import util import re import shutil import subprocess import dllversion from os.path import abspath from subprocess import check_call from util import glob_paths, rmpath, mkdirs, buildTimeStamp, projectDir, getGppVer sys.platform == 'win32' or sys.exit('error: script only runs on Windows (no Cygwin/MSYS)') shutil.which('7z') or sys.exit('error: 7z missing') shutil.which('curl') or sys.exit('error: curl missing') buildDir = os.path.join(projectDir, 'out\\build-cygwin') artifactDir = os.path.join(projectDir, 'out\\artifact') rmpath(buildDir) mkdirs(buildDir) mkdirs(artifactDir) os.chdir(buildDir) for setup, cygwin in (('setup-x86_64', 'cygwin64'), ('setup-x86', 'cygwin32')): check_call(['curl', '-fL', '-O', 'https://cygwin.com/{}.exe'.format(setup)]) check_call([ abspath('{}.exe'.format(setup)), '-l', abspath('{}-packages'.format(cygwin)), '-P', 'gcc-g++,make', '-s', 'http://mirrors.kernel.org/sourceware/cygwin', '-R', abspath(cygwin), '--no-admin', '--no-desktop', '--no-shortcuts', '--no-startmenu', '--quiet-mode', ]) check_call(['{}/bin/ash.exe'.format(cygwin), '/bin/rebaseall', '-v']) cygVer = dllversion.fileVersion('{}/bin/cygwin1.dll'.format(cygwin)) gppVer = getGppVer('{}/bin/g++.exe'.format(cygwin)) filename = '{}\\{}-{}-dll{}-gcc{}.7z'.format(artifactDir, cygwin, buildTimeStamp, cygVer, gppVer) rmpath(filename) open(cygwin + '/tmp/.keep', 'wb').close() check_call(['7z', 'a', '-mx=9', filename] + glob_paths([ cygwin + '/dev', cygwin + '/etc/setup', cygwin + '/tmp/.keep', cygwin + '/bin', cygwin + '/lib', cygwin + '/usr/include', cygwin + '/usr/*-pc-cygwin', ]))
servefiles/sendurls.py
Jerry-Shaw/FBI
1,684
93953
<gh_stars>1000+ #!/usr/bin/env python # coding: utf-8 -*- import socket import struct import sys import time try: from urlparse import urlparse except ImportError: from urllib.parse import urlparse if len(sys.argv) < 3: print('Usage: ' + sys.argv[0] + ' <target ip> <url>...') sys.exit(1) target_ip = sys.argv[1] file_list_payload = '' for url in sys.argv[2:]: parsed = urlparse(url); if not parsed.scheme in ('http', 'https') or parsed.netloc == '': print(url + ': Invalid URL') sys.exit(1) file_list_payload += url + '\n' file_list_payloadBytes = file_list_payload.encode('ascii') print('URLs:') print(file_list_payload) try: print('Sending URL(s) to '+ target_ip + ' on port 5000...') sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((target_ip, 5000)) sock.sendall(struct.pack('!L', len(file_list_payloadBytes)) + file_list_payloadBytes) while len(sock.recv(1)) < 1: time.sleep(0.05) sock.close() except Exception as e: print('An error occurred: ' + str(e)) sys.exit(1)
examples/libtest/DatetimeModuleTest.py
takipsizad/pyjs
739
93976
# Testing datetime module import sys import UnitTest import datetime class DatetimeModuleTest(UnitTest.UnitTest): def testDate(self): d = datetime.date(2010, 4, 9) self.assertEqual(d.year, 2010) self.assertEqual(d.month, 4) self.assertEqual(d.day, 9) self.assertEqual(d.weekday(), 4) def testTime(self): t = datetime.time(9, 45, 11, 95000) self.assertEqual(t.hour, 9) self.assertEqual(t.minute, 45) self.assertEqual(t.second, 11) self.assertEqual(t.microsecond, 95000) def testTimestamp(self): d = datetime.date.fromtimestamp(1270804609) self.assertEqual(str(d), '2010-04-09') dt = str(datetime.datetime.fromtimestamp(1270804609.95)) # CET: 2010-04-09 11:16:49.950000 self.assertEqual( (dt[:11], dt[16:]), ("2010-04-09 ", ":49.950000"), ) def testCtime(self): d = datetime.date(2010, 4, 9) self.assertEqual(d.ctime(), "Fri Apr 9 00:00:00 2010") dt = datetime.datetime(2010, 4, 9, 10, 57, 32) self.assertEqual(dt.ctime(), "Fri Apr 9 10:57:32 2010") def testIsoCalendar(self): d = datetime.date(2010, 4, 9) self.assertEqual(d.isocalendar(), (2010, 14, 5)) d1 = datetime.date(2007, 12, 31) self.assertEqual(d1.isocalendar(), (2008, 1, 1)) def testIsoFormat(self): d = datetime.date(2010, 4, 9) self.assertEqual(d.isoformat(), '2010-04-09') dt = datetime.datetime(2010, 4, 9, 10, 57, 32) self.assertEqual(dt.isoformat(), '2010-04-09T10:57:32') dt2 = datetime.datetime(2010, 4, 9, 10, 57, 32, 95000) self.assertEqual(dt2.isoformat(), '2010-04-09T10:57:32.095000') def testOrdinal(self): d = datetime.date.fromordinal(1) self.assertEqual(str(d), '0001-01-01') d1 = datetime.date.fromordinal(733871) self.assertEqual(str(d1), '2010-04-09') self.assertEqual(d1.toordinal(), 733871) def testReplace(self): d = datetime.date(2010, 4, 9).replace(month=6, day=13) self.assertEqual(str(d), '2010-06-13') t = datetime.time(23, 59, 59).replace(minute=45, microsecond=95000) self.assertEqual(str(t), '23:45:59.095000') dt = datetime.datetime(2010, 4, 9, 10, 57, 32).replace(month=6, day=13, hour=12, minute=0, second=0) self.assertEqual(str(dt), '2010-06-13 12:00:00') def testTimetuple(self): tm = datetime.date(2010, 4, 9).timetuple() self.assertEqual(tm.tm_year, 2010) self.assertEqual(tm.tm_mon, 4) self.assertEqual(tm.tm_mday, 9) self.assertEqual(tm.tm_hour, 0) self.assertEqual(tm.tm_min, 0) self.assertEqual(tm.tm_sec, 0) self.assertEqual(tm.tm_wday, 4) self.assertEqual(tm.tm_yday, 99) def testStrftime(self): d = datetime.date(2010, 4, 9) self.assertEqual(d.strftime("%d/%m/%y"), "09/04/10") def testStrptime(self): d = datetime.datetime.strptime("010100 1234", "%d%m%y %H%M") self.assertEqual(str(d), '2000-01-01 12:34:00') def testComparision(self): d1 = datetime.date(2010, 6, 8) d2 = datetime.date(2010, 6, 8) d3 = datetime.date(2010, 4, 9) self.assertTrue(d1 == d2, "d1 and d2 differ") self.assertTrue(d1 > d3, "d1 is not later than d3") self.assertTrue(d3 < d1, "d3 is not earlier than d1") def testOperations(self): d1 = datetime.date(2010, 4, 9) d2 = datetime.date(2010, 6, 13) diff = d2 - d1 self.assertEqual(diff.days, 65) self.assertEqual(str(d1 + diff), "2010-06-13") self.assertEqual(str(d1 - diff), "2010-02-03") if __name__ == '__main__': from RunTests import RunTests t = RunTests() t.add(DatetimeModuleTest) t.start_test()
pandas_vs_datatable/code/mutate.py
korur/Blog
108
93985
import os import re import json import time import numpy as np import pandas as pd from plotnine import * # Config PATH = os.getcwd() path_n = re.split(pattern=r"/|\\", string=PATH)[1:] if os.name == "posix": path_n = "/" + os.path.join(*path_n) else: drive = PATH[0:3] path_n = drive + os.path.join(*path_n) RUNS = 100 def infer_column_cats(dir: "Path to working directoty.") -> tuple: """Helper function to identify dataset sizes based on file names.""" files = os.listdir(os.path.join(dir, "data")) cats = set([re.match(pattern=".*_(.*).csv$", string=file).group(1) for file in files]) cols = set([re.match(pattern=".*_(.*)_.*.csv$", string=file).group(1) for file in files]) return cats, cols def time_function(func: "Function call to be evaluted as str.") -> float: """Helper function to time data access.""" start = time.time() exec(func) return time.time() - start def create_stats(measures: "List of function timings.", col: "Current Column.", row: "Current Row", scenario: "Current Scenario.") -> dict: """Helper function to create result dataset.""" return {"scenario": scenario, "no_column": col, "data_length": row, "min": np.min(measures), "max": np.max(measures), "avg": np.mean(measures), "q50": np.median(measures)} scenarios = json.load(open(os.path.join(path_n, "output", "mutate.JSON"))) nrows, ncols = infer_column_cats(path_n) timings, results = [], [] for col in ncols: print(f"-Column: {col}--") for row in nrows: print(f"--Row: {row}") data = pd.read_csv(os.path.join(path_n, "data", f"sim_data_{col}_{row}.csv")) for i, scenario in enumerate(scenarios[col]["mutate"]): print(f"---Scenario {i+1}: {scenario}---") sel = re.search(pattern=r'([A-Z]{3})', string=scenario).group(1) print(sel) if sel == "INT": func = f"temp['result'] = temp['{scenario}'] + 1" elif sel == "DBL": func = f"temp['result'] = temp['{scenario}'] * 2" elif sel == "STR": func = f"temp['result'] = temp['{scenario}'] + 'a'" elif sel == "LGL": func = f"temp['result'] = ~temp['{scenario}']" for j in range(RUNS): temp = data timings.append(time_function(func=func)) temp = None results.append(create_stats(measures=timings, col=col, row=row, scenario=sel)) print(results[-1]) timings = [] results_df = pd.DataFrame(results) results_df[["data_length", "no_column"]] = results_df[["data_length", "no_column"]].apply(pd.to_numeric, axis=1, downcast="integer") results_df.sort_values(["data_length", "no_column"]) results_df[["min", "max", "q50", "avg"]] = round(results_df[["min", "max", "q50", "avg"]] * 1000, 2) # results_df["sel_col"] = results_df["scenario"].apply(lambda x: re.search(pattern="([13])", string=x).group(1)) # results_df["pos_col"] = results_df["scenario"].apply(lambda x: re.search(pattern="[13](.*)$", string=x).group(1)) results_df.to_csv(os.path.join(path_n, "output", "mutate_results_pandas.csv"), index=False)
test/test_durable.py
timgates42/paxos
420
93993
<gh_stars>100-1000 import sys import os import os.path import hashlib import struct import tempfile import shutil import pickle #from twisted.trial import unittest import unittest this_dir = os.path.dirname(os.path.abspath(__file__)) sys.path.append( os.path.dirname(this_dir) ) from paxos import durable class DObj(object): def __init__(self): self.state = 'initial' class DurableReadTester (unittest.TestCase): def setUp(self): tmpfs_dir = '/dev/shm' if os.path.exists('/dev/shm') else None self.tdir = tempfile.mkdtemp(dir=tmpfs_dir) self.fds = list() def tearDown(self): shutil.rmtree(self.tdir) for fd in self.fds: os.close(fd) def newfd(self, data=None): bin_flag = 0 if not hasattr(os, 'O_BINARY') else os.O_BINARY fd = os.open( os.path.join(self.tdir, str(len(self.fds))), os.O_CREAT | os.O_RDWR | bin_flag) self.fds.append( fd ) if data is not None: os.write(fd, data) return fd def test_read_zero_length(self): self.assertRaises(durable.FileTruncated, durable.read, self.newfd()) def test_read_header_too_small(self): self.assertRaises(durable.FileTruncated, durable.read, self.newfd('\0'*31)) def test_read_no_pickle_data(self): data = '\0'*24 + struct.pack('>Q', 5) self.assertRaises(durable.FileTruncated, durable.read, self.newfd(data)) def test_read_bad_hash_mismatch(self): data = '\0'*24 + struct.pack('>Q', 5) + 'x'*5 self.assertRaises(durable.HashMismatch, durable.read, self.newfd(data)) def test_read_ok(self): pdata = 'x'*5 p = pickle.dumps(pdata, pickle.HIGHEST_PROTOCOL) data = '\0'*8 + struct.pack('>Q', len(p)) + p data = hashlib.md5(data).digest() + data self.assertEqual( durable.read(self.newfd(data) ), (0, pdata) ) class DurableObjectHandlerTester (unittest.TestCase): def setUp(self): tmpfs_dir = '/dev/shm' if os.path.exists('/dev/shm') else None self.o = DObj() self.tdir = tempfile.mkdtemp(dir=tmpfs_dir) self.doh = durable.DurableObjectHandler(self.tdir, 'id1') self.dohs = [self.doh,] def tearDown(self): for doh in self.dohs: doh.close() shutil.rmtree(self.tdir) def newdoh(self, obj_id=None): if obj_id is None: obj_id = 'id' + str(len(self.dohs)) doh = durable.DurableObjectHandler(self.tdir, obj_id) self.dohs.append(doh) return doh def test_bad_directory(self): self.assertRaises(Exception, durable.DurableObjectHandler, '/@#$!$^FOOBARBAZ', 'blah') def test_no_save(self): self.doh.close() d = self.newdoh('id1') self.assertEquals(d.recovered, None) self.assertEquals(d.serial, 1) def test_one_save(self): self.doh.save(self.o) self.doh.close() d = self.newdoh('id1') self.assertTrue( os.stat(self.doh.fn_a).st_size > 0 ) self.assertTrue( os.stat(self.doh.fn_b).st_size == 0 ) self.assertTrue( isinstance(d.recovered, DObj) ) self.assertEquals(d.recovered.state, 'initial') def test_two_save(self): self.doh.save(self.o) self.o.state = 'second' self.doh.save(self.o) self.doh.close() d = self.newdoh('id1') self.assertTrue( os.stat(self.doh.fn_a).st_size > 0 ) self.assertTrue( os.stat(self.doh.fn_b).st_size > 0 ) self.assertTrue( isinstance(d.recovered, DObj) ) self.assertEquals(d.recovered.state, 'second') def test_three_save(self): self.doh.save(self.o) self.o.state = 'second' self.doh.save(self.o) self.o.state = 'third' self.doh.save(self.o) self.doh.close() d = self.newdoh('id1') self.assertTrue( isinstance(d.recovered, DObj) ) self.assertEquals(d.recovered.state, 'third') def test_new_object_corrupted(self): self.test_two_save() with open(self.doh.fn_b, 'wb') as f: f.write('\0') f.flush() d = self.newdoh('id1') self.assertTrue( isinstance(d.recovered, DObj) ) self.assertEquals(d.recovered.state, 'initial') def test_old_object_corrupted(self): self.test_two_save() with open(self.doh.fn_a, 'wb') as f: f.write('\0') f.flush() d = self.newdoh('id1') self.assertTrue( isinstance(d.recovered, DObj) ) self.assertEquals(d.recovered.state, 'second') def test_unrecoverable_corruption(self): self.test_two_save() with open(self.doh.fn_a, 'wb') as f: f.write('\0') f.flush() with open(self.doh.fn_b, 'wb') as f: f.write('\0') f.flush() def diehorribly(): self.newdoh('id1') self.assertRaises(durable.UnrecoverableFailure, diehorribly)
Algo and DSA/LeetCode-Solutions-master/Python/time-based-key-value-store.py
Sourav692/FAANG-Interview-Preparation
3,269
93999
<filename>Algo and DSA/LeetCode-Solutions-master/Python/time-based-key-value-store.py<gh_stars>1000+ # Time: set: O(1) # get: O(logn) # Space: O(n) import collections import bisect class TimeMap(object): def __init__(self): """ Initialize your data structure here. """ self.lookup = collections.defaultdict(list) def set(self, key, value, timestamp): """ :type key: str :type value: str :type timestamp: int :rtype: None """ self.lookup[key].append((timestamp, value)) def get(self, key, timestamp): """ :type key: str :type timestamp: int :rtype: str """ A = self.lookup.get(key, None) if A is None: return "" i = bisect.bisect_right(A, (timestamp+1, 0)) return A[i-1][1] if i else "" # Your TimeMap object will be instantiated and called as such: # obj = TimeMap() # obj.set(key,value,timestamp) # param_2 = obj.get(key,timestamp)
model_compiler/src/model_compiler/compilers/keras_model_file_to_tflite_model.py
yuanliya/Adlik
548
94050
# Copyright 2019 ZTE corporation. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 import tensorflow as tf from . import repository from ..models.sources.keras_model_file import KerasModelFile from ..models.targets.tflite_model import TfLiteModel from .. import tflite_util from .. import keras_util @repository.REPOSITORY.register(source_type=KerasModelFile, target_type=TfLiteModel, config_type=tflite_util.Config) def compile_source(source: KerasModelFile, config: tflite_util.Config) -> TfLiteModel: if source.script_path: custom_objects = keras_util.get_custom_objects(source.script_path) else: custom_objects = None model = tf.keras.models.load_model(filepath=source.model_path, custom_objects=custom_objects, compile=False) converter = tf.lite.TFLiteConverter.from_keras_model(model) tflite_model = tflite_util.get_tflite_model(converter, config) return TfLiteModel(tflite_model, config.input_formats)
HelperTools/CAV_to_constraint_arr.py
kataya/arcade-expressions
119
94077
import arcpy import pandas as pd import os fc = r"C:\\temp\\GasPipelineEnterpriseDataManagement\\Databases\\UPDM_UtilityNetwork.gdb\\UtilityNetwork\\PipelineLine" field_group_name = 'Limit Material By Asset Type' def view_cav(table, subtype_field): index = ['fieldGroupName', 'subtype', 'isRetired', 'id'] data = {} for cav in arcpy.da.ListContingentValues(table): contingent_value = {k: getattr(cav, k, None) for k in index} for field in cav.values: contingent_value[field.name] = dict(CODED_VALUE=field.code, RANGE=field.range, ANY='|ANY|', NULL='<NULL>')[field.type] data.setdefault(cav.fieldGroupName, []).append(contingent_value) return [pd.DataFrame(values).set_index(index).rename_axis(index={'subtype': subtype_field}).fillna('<NULL>') for values in data.values()] desc = arcpy.Describe(fc) for df in view_cav(fc, desc.subtypeFieldName): if field_group_name in df.index: subtypes = set() valid_combos = [] df = df.reset_index().drop(['fieldGroupName', 'id'], axis=1) df = df[df['isRetired'] == False].drop(['isRetired'], axis=1) for row in df.itertuples(index=False): valid_combos.append("::".join(map(str, row)).replace('<NULL>', '')) subtypes.add(str(row[0])) subtypes = sorted(subtypes) field_list = [f'$feature.{fld}' for fld in df.columns] func = f''' // Assigned To: {os.path.basename(fc)} // Type: Constraint // Name: {field_group_name} // Description: Limit values combinations using the fields {', '.join(list(df.columns))} // Subtypes: All // Error: 5601 // Error Message: Incompatible types for {', '.join(list(df.columns))} // Trigger: Insert, Update // ************* User Variables ************* // This section has the functions and variables that need to be adjusted based on your implementation var valid_asset_groups = [{', '.join(subtypes)}]; if (indexof(valid_asset_groups, $feature.{desc.subtypeFieldName}) == -1) {{ return true; }} var feature_fields = [{', '.join(field_list)}]; var valid_values = {valid_combos}; // ************* End User Variables Section ************* function splice(arr, start, end) {{ var new_arr = []; var k = 0; for (var i = start; i < end; i++) {{ new_arr[k++] = arr[i]; }} return new_arr; }} function join_array(a, b) {{ var new_arr = []; var k = 0; for (var i in a) {{ new_arr[k++] = a[i]; }} for (var i in b) {{ new_arr[k++] = b[i]; }} return new_arr; }} var feature_values = [Concatenate(feature_fields, '::')]; var any_sent = '|ANY|'; var fld_count = Count(feature_fields); for (var i = 0; i < fld_count; i++) {{ var start_arr = splice(feature_fields, 0, i) start_arr[Count(start_arr)] = any_sent; var end_arr = splice(feature_fields, i + 1, fld_count) feature_values[i + 1] = Concatenate(join_array(start_arr, end_arr), '::') }} var match_found = false; for (var i = 0; i < Count(feature_values); i++){{ if (IndexOf(valid_values, feature_values[i]) > -1) {{ match_found = true; break; }} }} if (match_found == false) {{ return {{"errorMessage": "The selected attributes for {', '.join(list(df.columns))} are not valid."}} }} return true; ''' print(func) break
mayan/apps/authentication/urls.py
eshbeata/open-paperless
2,743
94091
<filename>mayan/apps/authentication/urls.py<gh_stars>1000+ from __future__ import unicode_literals from django.conf import settings from django.conf.urls import url from django.contrib.auth.views import logout from .views import ( login_view, password_change_done, password_change_view, password_reset_complete_view, password_reset_confirm_view, password_reset_done_view, password_reset_view ) urlpatterns = [ url(r'^login/$', login_view, name='login_view'), url( r'^password/change/done/$', password_change_done, name='password_change_done' ), url( r'^password/change/$', password_change_view, name='password_change_view' ), url( r'^logout/$', logout, {'next_page': settings.LOGIN_REDIRECT_URL}, name='logout_view' ), url( r'^password/reset/$', password_reset_view, name='password_reset_view' ), url( r'^password/reset/confirm/(?P<uidb64>[0-9A-Za-z_\-]+)/(?P<token>[0-9A-Za-z]{1,13}-[0-9A-Za-z]{1,20})/$', password_reset_confirm_view, name='password_reset_confirm_view' ), url( r'^password/reset/complete/$', password_reset_complete_view, name='password_reset_complete_view' ), url( r'^password/reset/done/$', password_reset_done_view, name='password_reset_done_view' ), ]
lte/gateway/python/integ_tests/s1aptests/test_ipv4v6_secondary_pdn_spgw_initiated_ded_bearer.py
Aitend/magma
849
94094
""" Copyright (c) 2016-present, Facebook, Inc. All rights reserved. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. An additional grant of patent rights can be found in the PATENTS file in the same directory. """ import ipaddress import time import unittest import s1ap_types import s1ap_wrapper from integ_tests.s1aptests.s1ap_utils import SpgwUtil class TestIPv4v6SecondaryPdnSpgwInitiatedDedBearer(unittest.TestCase): """Test ipv4v6 secondary pdn with spgw initiated dedicated bearer""" def setUp(self): """Initialize""" self._s1ap_wrapper = s1ap_wrapper.TestWrapper() self._spgw_util = SpgwUtil() def tearDown(self): """Cleanup""" self._s1ap_wrapper.cleanup() def test_ipv4v6_secondary_pdn_spgw_initiated_ded_bearer(self): """Attach a single UE + add a secondary pdn with IPv4v6 + trigger dedicated bearer from spgw + detach """ num_ue = 1 self._s1ap_wrapper.configUEDevice(num_ue) req = self._s1ap_wrapper.ue_req ue_id = req.ue_id # APN of the secondary PDNs ims_apn = { "apn_name": "ims", # APN-name "qci": 5, # qci "priority": 15, # priority "pre_cap": 0, # preemption-capability "pre_vul": 0, # preemption-vulnerability "mbr_ul": 200000000, # MBR UL "mbr_dl": 100000000, # MBR DL "pdn_type": 2, # PDN Type 0-IPv4,1-IPv6,2-IPv4v6 } apn_list = [ims_apn] self._s1ap_wrapper.configAPN( "IMSI" + "".join([str(i) for i in req.imsi]), apn_list, ) print( "*********************** Running End to End attach for UE id ", ue_id, ) print("***** Sleeping for 5 seconds") time.sleep(5) # Attach attach = self._s1ap_wrapper.s1_util.attach( ue_id, s1ap_types.tfwCmd.UE_END_TO_END_ATTACH_REQUEST, s1ap_types.tfwCmd.UE_ATTACH_ACCEPT_IND, s1ap_types.ueAttachAccept_t, ) addr = attach.esmInfo.pAddr.addrInfo default_ip = ipaddress.ip_address(bytes(addr[:4])) # Wait on EMM Information from MME self._s1ap_wrapper._s1_util.receive_emm_info() print("***** Sleeping for 5 seconds") time.sleep(5) apn = "ims" # PDN Type 2 = IPv6, 3 = IPv4v6 pdn_type = 3 # Send PDN Connectivity Request self._s1ap_wrapper.sendPdnConnectivityReq( ue_id, apn, pdn_type=pdn_type, ) # Receive PDN CONN RSP/Activate default EPS bearer context request response = self._s1ap_wrapper.s1_util.get_response() self.assertEqual( response.msg_type, s1ap_types.tfwCmd.UE_PDN_CONN_RSP_IND.value, ) act_def_bearer_req = response.cast(s1ap_types.uePdnConRsp_t) pdn_type = act_def_bearer_req.m.pdnInfo.pAddr.pdnType addr = act_def_bearer_req.m.pdnInfo.pAddr.addrInfo sec_ip_ipv4 = None if pdn_type == 1: sec_ip_ipv4 = ipaddress.ip_address(bytes(addr[:4])) elif pdn_type == 3: sec_ip_ipv4 = ipaddress.ip_address(bytes(addr[8:12])) print( "********************** Sending Activate default EPS bearer " "context accept for APN-%s, UE id-%d" % (apn, ue_id), ) print( "********************** Added default bearer for apn-%s," " bearer id-%d, pdn type-%d" % (apn, act_def_bearer_req.m.pdnInfo.epsBearerId, pdn_type), ) # Receive Router Advertisement message response = self._s1ap_wrapper.s1_util.get_response() self.assertEqual( response.msg_type, s1ap_types.tfwCmd.UE_ROUTER_ADV_IND.value, ) router_adv = response.cast(s1ap_types.ueRouterAdv_t) print( "******************* Received Router Advertisement for APN-%s" " ,bearer id-%d" % (apn, router_adv.bearerId), ) ipv6_addr = "".join([chr(i) for i in router_adv.ipv6Addr]).rstrip( "\x00", ) print("******* UE IPv6 address: ", ipv6_addr) sec_ip_ipv6 = ipaddress.ip_address(ipv6_addr) print("***** Sleeping for 5 seconds") time.sleep(5) # Add dedicated bearer print("********************** Adding dedicated bearer to ims PDN") # Create default ipv4v6 flow list flow_list = self._spgw_util.create_default_ipv4v6_flows() self._spgw_util.create_bearer( "IMSI" + "".join([str(i) for i in req.imsi]), act_def_bearer_req.m.pdnInfo.epsBearerId, flow_list, ) response = self._s1ap_wrapper.s1_util.get_response() self.assertEqual( response.msg_type, s1ap_types.tfwCmd.UE_ACT_DED_BER_REQ.value, ) act_ded_ber_ctxt_req = response.cast(s1ap_types.UeActDedBearCtxtReq_t) self._s1ap_wrapper.sendActDedicatedBearerAccept( req.ue_id, act_ded_ber_ctxt_req.bearerId, ) print( "************* Added dedicated bearer", act_ded_ber_ctxt_req.bearerId, ) print("***** Sleeping for 10 seconds") time.sleep(10) # ipv4 default pdn + ipv4v6(ims) pdn + dedicated bearer for ims pdn num_ul_flows = 3 # For ipv4v6 pdn, pass default_ip, sec_ip_ipv4 and sec_ip_ipv6 if pdn_type == 3: dl_flow_rules = { default_ip: [], sec_ip_ipv4: [flow_list], sec_ip_ipv6: [flow_list], } # For ipv6 pdn, pass default_ip, sec_ip_ipv6 if pdn_type == 2: dl_flow_rules = { default_ip: [], sec_ip_ipv6: [flow_list], } # Verify if flow rules are created self._s1ap_wrapper.s1_util.verify_flow_rules( num_ul_flows, dl_flow_rules, ) print( "********************** Deleting dedicated bearer for IMSI", "".join([str(i) for i in req.imsi]), ) self._spgw_util.delete_bearer( "IMSI" + "".join([str(i) for i in req.imsi]), act_def_bearer_req.m.pdnInfo.epsBearerId, act_ded_ber_ctxt_req.bearerId, ) response = self._s1ap_wrapper.s1_util.get_response() self.assertEqual( response.msg_type, s1ap_types.tfwCmd.UE_DEACTIVATE_BER_REQ.value, ) print("******************* Received deactivate eps bearer context") deactv_bearer_req = response.cast(s1ap_types.UeDeActvBearCtxtReq_t) self._s1ap_wrapper.sendDeactDedicatedBearerAccept( req.ue_id, deactv_bearer_req.bearerId, ) print("***** Sleeping for 5 seconds") time.sleep(5) # ipv4 default pdn + ipv4v6(ims) pdn num_ul_flows = 2 # For ipv4v6 pdn, pass default_ip, sec_ip_ipv4 and sec_ip_ipv6 if pdn_type == 3: dl_flow_rules = { default_ip: [], sec_ip_ipv4: [], sec_ip_ipv6: [], } # For ipv6 pdn, pass default_ip, sec_ip_ipv6 if pdn_type == 2: dl_flow_rules = { default_ip: [], sec_ip_ipv6: [], } # Verify if flow rules are created self._s1ap_wrapper.s1_util.verify_flow_rules( num_ul_flows, dl_flow_rules, ) print( "******************* Running UE detach (switch-off) for ", "UE id ", ue_id, ) # Now detach the UE self._s1ap_wrapper.s1_util.detach( ue_id, s1ap_types.ueDetachType_t.UE_SWITCHOFF_DETACH.value, False, ) if __name__ == "__main__": unittest.main()
model/prd_evaluation.py
hengfei-wang/SCNeRF
272
94095
from reprojection import runSuperGlueSinglePair,image_pair_candidates, runSIFTSinglePair from ray_dist_loss import preprocess_match, proj_ray_dist_loss_single import torch import numpy as np import os from random import random import numpy as np import torch import torchvision.transforms as TF import matplotlib.pyplot as plt tol=1e-4 match_num = 4 run_unit_test = lambda args, kwargs, test_name: None if not args.debug else \ test_name(**kwargs) def unit_test_matches(**kwargs): msg = "Failed to pass the unit test named matches" print("Starting Unit Test : matches") dirname = "_unit_test_matches_result" # Check whether argument is currently provided. assert "args" in kwargs.keys(), msg assert "result" in kwargs.keys(), msg assert "img_i" in kwargs.keys(), msg assert "img_j" in kwargs.keys(), msg assert "img_i_idx" in kwargs.keys(), msg assert "img_j_idx" in kwargs.keys(), msg args= kwargs["args"] result = kwargs["result"] img_i, img_j = kwargs["img_i"], kwargs["img_j"] img_i_idx, img_j_idx = kwargs["img_i_idx"], kwargs["img_j_idx"] kps1, kps2 = result W = img_i.shape[1] # Draw matches and save them assert hasattr(args, "datadir"), msg scene_name = args.datadir.split("/")[-1] scene_path = os.path.join(dirname, scene_name) os.makedirs(scene_path, exist_ok=True) img_name = "{}_{}.png".format(img_i_idx, img_j_idx) img_path = os.path.join(scene_path, img_name) img_cat = torch.cat([img_i, img_j], dim=1) img_cat_pil = TF.ToPILImage()(img_cat.permute(2, 0, 1)) plt.imshow(img_cat_pil) i_visualize = np.random.choice(range(len(kps1)), match_num) for i in i_visualize: kp1, kp2 = kps1[i].cpu().numpy(), kps2[i].cpu().numpy() color = (random(), random(), random()) plt.plot([kp1[0], kp2[0]+W], [kp1[1], kp2[1]], c=color, lw=2) plt.savefig(img_path) plt.close() def projected_ray_distance_evaluation( images, index_list, args, ray_fun, ray_fun_gt, H, W, mode, matcher, gt_intrinsic, gt_extrinsic, method, device, intrinsic=None, extrinsic=None, camera_model=None, i_map=None, ): prd_list = [] match_fun = runSuperGlueSinglePair if args.matcher == "superglue" else \ runSIFTSinglePair extrinsic_gt_numpy = gt_extrinsic[index_list].cpu().numpy() with torch.no_grad(): feasible_image_pairs = image_pair_candidates( extrinsic_gt_numpy, args, index_list ) for img_i in feasible_image_pairs.keys(): for img_j in feasible_image_pairs[img_i]: if img_i >= img_j: continue result = match_fun( matcher, images[img_i], images[img_j], 0, args ) kps0_list, kps1_list = preprocess_match(result) if kps0_list is None and kps1_list is None: continue result = kps0_list, kps1_list kwargs_unit_test = { "args": args, "result": result, "img_i": images[img_i], "img_j": images[img_j], "img_i_idx": img_i, "img_j_idx": img_j } run_unit_test( args, kwargs_unit_test, unit_test_matches ) if mode != "train": # Acquiring correct matches using the ground truth camera info # In the training mode, we don't use the ground truth information. rays_i_gt = ray_fun_gt( H=H, W=W,focal=gt_intrinsic[0][0], extrinsic=gt_extrinsic[img_i], kps_list=kps0_list ) rays_j_gt = ray_fun_gt( H=H, W=W,focal=gt_intrinsic[0][0], extrinsic=gt_extrinsic[img_j], kps_list=kps1_list ) filter_idx = filter_matches_with_gt( kps0_list=kps0_list, kps1_list=kps1_list, H=H, W=W, gt_intrinsic=gt_intrinsic, gt_extrinsic=gt_extrinsic[[img_i, img_j]], rays0=rays_i_gt, rays1=rays_j_gt, args=args, device=device, method=method ) kps0_list = kps0_list[filter_idx] kps1_list = kps1_list[filter_idx] if camera_model is None: # Evaluate with gt_extrinsic for val,test # Evaluate with noisy_extrinsic for train extrinsic_evaluate = gt_extrinsic if mode != "train" else \ extrinsic rays_i = ray_fun( H=H, W=W, focal=intrinsic[0][0], extrinsic=extrinsic_evaluate[img_i], kps_list=kps0_list ) rays_j = ray_fun( H=H, W=W, focal=intrinsic[0][0], extrinsic=extrinsic_evaluate[img_j], kps_list=kps1_list ) projected_ray_dist, _ = proj_ray_dist_loss_single( kps0_list=kps0_list, kps1_list=kps1_list, img_idx0=img_i, img_idx1=img_j, rays0=rays_i, rays1=rays_j, mode=mode, device=device, H=H, W=W, args=args, intrinsic=gt_intrinsic, extrinsic=extrinsic_evaluate ) else: # In the train mode, we use the extrinsic_evaluate = gt_extrinsic if mode != "train" else \ None extrinsic_evaluate_i = gt_extrinsic[img_i] if mode != "train" \ else None extrinsic_evaluate_j = gt_extrinsic[img_j] if mode != "train" \ else None camera_idx_i = np.where(i_map == img_i)[0][0] \ if mode == "train" else None camera_idx_j = np.where(i_map == img_j)[0][0] \ if mode == "train" else None rays_i = ray_fun( H=H, W=W, camera_model=camera_model, extrinsic=extrinsic_evaluate_i, kps_list=kps0_list, idx_in_camera_param=camera_idx_i ) rays_j = ray_fun( H=H, W=W, camera_model=camera_model, extrinsic=extrinsic_evaluate_j, kps_list=kps1_list, idx_in_camera_param=camera_idx_j ) projected_ray_dist, _ = proj_ray_dist_loss_single( kps0_list=kps0_list, kps1_list=kps1_list, img_idx0=img_i, img_idx1=img_j, rays0=rays_i, rays1=rays_j, mode=mode, device=device, H=H, W=W, args=args, i_map=i_map, camera_model=camera_model, extrinsic=extrinsic_evaluate ) if not torch.isnan(projected_ray_dist): prd_list.append(projected_ray_dist.item()) prd_list = torch.tensor(prd_list) return prd_list.mean() # Since SuperGlue sometimes fail to acquire reliable matches, # we filter matches using the ground truth information only when # evaluating PRD on val/test. def filter_matches_with_gt( kps0_list, kps1_list, W, H, gt_intrinsic, gt_extrinsic, rays0, rays1, args, method, device, eps=1e-6 ): assert method in ["NeRF", "NeRF++"] assert kps0_list.dim() == 2 and kps1_list.dim() == 2 gt_intrinsic=gt_intrinsic.clone().detach() # NeRF is using an opposite coordinate. if method == "NeRF": gt_intrinsic[0][0] = -gt_intrinsic[0][0] rays0_o, rays0_d = rays0 rays1_o, rays1_d = rays1 rays0_o, rays0_d = rays0_o.unsqueeze(0), rays0_d.unsqueeze(0) rays1_o, rays1_d = rays1_o.unsqueeze(0), rays1_d.unsqueeze(0) gt_extrinsic_inv = torch.inverse(gt_extrinsic.cpu()) gt_extrinsic_inv = gt_extrinsic_inv.to(device) rays0_d = rays0_d / (rays0_d.norm(p=2, dim=-1)[:, :, None] + eps) rays1_d = rays1_d / (rays1_d.norm(p=2, dim=-1)[:, :, None] + eps) rays0_o_world = torch.cat( [ rays0_o, torch.ones((rays0_o.shape[:2]), device=device)[:, :, None] ], dim=-1 )[:, :, :3] rays1_o_world = torch.cat( [ rays1_o, torch.ones((rays1_o.shape[:2]), device=device)[:, :, None] ], dim=-1 )[:, :, :3] rays0_d_world = rays0_d[:, :, :3] rays1_d_world = rays1_d[:, :, :3] r0_r1 = torch.einsum("ijk, ijk -> ij", rays0_d_world, rays1_d_world) t0 = ( torch.einsum( "ijk, ijk -> ij", rays0_d_world, rays0_o_world - rays1_o_world ) - r0_r1 * torch.einsum( "ijk, ijk -> ij", rays1_d_world, rays0_o_world - rays1_o_world ) ) / (r0_r1 ** 2 - 1 + eps) t1 = ( torch.einsum( "ijk, ijk -> ij", rays1_d_world, rays1_o_world - rays0_o_world ) - r0_r1 * torch.einsum( "ijk, ijk -> ij", rays0_d_world, rays1_o_world - rays0_o_world ) ) / (r0_r1 ** 2 - 1 + eps) p0 = t0[:, :, None] * rays0_d_world + rays0_o_world p1 = t1[:, :, None] * rays1_d_world + rays1_o_world p0_4d = torch.cat( [p0, torch.ones((p0.shape[:2]), device=device)[:, :, None]], dim=-1 ) p1_4d = torch.cat( [p1, torch.ones((p1.shape[:2]), device=device)[:, :, None]], dim=-1 ) p0_proj_to_im1 = torch.einsum( "ijk, ipk -> ijp", p0_4d, gt_extrinsic_inv[1:] ) p1_proj_to_im0 = torch.einsum( "ijk, ipk -> ijp", p1_4d, gt_extrinsic_inv[:-1] ) p0_norm_im1 = torch.einsum("ijk, pk -> ijp", p0_proj_to_im1, gt_intrinsic) p1_norm_im0 = torch.einsum("ijk, pk -> ijp", p1_proj_to_im0, gt_intrinsic) p0_norm_im1_2d = p0_norm_im1[:, :, :2] / (p0_norm_im1[:, :, 2, None] + eps) p1_norm_im0_2d = p1_norm_im0[:, :, :2] / (p1_norm_im0[:, :, 2, None] + eps) # Chirality check: remove rays behind cameras # First, flatten the correspondences # Find indices of valid rays valid_t0 = (t0 > 0).flatten() valid_t1 = (t1 > 0).flatten() valid = torch.logical_and(valid_t0, valid_t1) # Second, select losses that are valid # When using NeRF++ loss0_list = ((p1_norm_im0_2d - kps0_list) ** 2).sum(-1).flatten() loss1_list = ((p0_norm_im1_2d - kps1_list) ** 2).sum(-1).flatten() # Remove cloned tensor after the computation del gt_intrinsic return torch.logical_and( torch.logical_and(loss0_list < 1.0, loss1_list < 1.0), valid )
robomimic/scripts/get_dataset_info.py
akolobov/robomimic
107
94097
<filename>robomimic/scripts/get_dataset_info.py<gh_stars>100-1000 """ Helper script to report dataset information. By default, will print trajectory length statistics, the maximum and minimum action element in the dataset, filter keys present, environment metadata, and the structure of the first demonstration. If --verbose is passed, it will report the exact demo keys under each filter key, and the structure of all demonstrations (not just the first one). Args: dataset (str): path to hdf5 dataset filter_key (str): if provided, report statistics on the subset of trajectories in the file that correspond to this filter key verbose (bool): if flag is provided, print more details, like the structure of all demonstrations (not just the first one) Example usage: # run script on example hdf5 packaged with repository python get_dataset_info.py --dataset ../../tests/assets/test.hdf5 # run script only on validation data python get_dataset_info.py --dataset ../../tests/assets/test.hdf5 --filter_key valid """ import h5py import json import argparse import numpy as np if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--dataset", type=str, help="path to hdf5 dataset", ) parser.add_argument( "--filter_key", type=str, default=None, help="(optional) if provided, report statistics on the subset of trajectories \ in the file that correspond to this filter key", ) parser.add_argument( "--verbose", action='store_true', help="verbose output", ) args = parser.parse_args() # extract demonstration list from file filter_key = args.filter_key all_filter_keys = None f = h5py.File(args.dataset, "r") if filter_key is not None: # use the demonstrations from the filter key instead print("NOTE: using filter key {}".format(filter_key)) demos = sorted([elem.decode("utf-8") for elem in np.array(f["mask/{}".format(filter_key)])]) else: # use all demonstrations demos = sorted(list(f["data"].keys())) # extract filter key information if "mask" in f: all_filter_keys = {} for fk in f["mask"]: fk_demos = sorted([elem.decode("utf-8") for elem in np.array(f["mask/{}".format(fk)])]) all_filter_keys[fk] = fk_demos # put demonstration list in increasing episode order inds = np.argsort([int(elem[5:]) for elem in demos]) demos = [demos[i] for i in inds] # extract length of each trajectory in the file traj_lengths = [] action_min = np.inf action_max = -np.inf for ep in demos: traj_lengths.append(f["data/{}/actions".format(ep)].shape[0]) action_min = min(action_min, np.min(f["data/{}/actions".format(ep)][()])) action_max = max(action_max, np.max(f["data/{}/actions".format(ep)][()])) traj_lengths = np.array(traj_lengths) # report statistics on the data print("") print("total transitions: {}".format(np.sum(traj_lengths))) print("total trajectories: {}".format(traj_lengths.shape[0])) print("traj length mean: {}".format(np.mean(traj_lengths))) print("traj length std: {}".format(np.std(traj_lengths))) print("traj length min: {}".format(np.min(traj_lengths))) print("traj length max: {}".format(np.max(traj_lengths))) print("action min: {}".format(action_min)) print("action max: {}".format(action_max)) print("") print("==== Filter Keys ====") if all_filter_keys is not None: for fk in all_filter_keys: print("filter key {} with {} demos".format(fk, len(all_filter_keys[fk]))) else: print("no filter keys") print("") if args.verbose: if all_filter_keys is not None: print("==== Filter Key Contents ====") for fk in all_filter_keys: print("filter_key {} with {} demos: {}".format(fk, len(all_filter_keys[fk]), all_filter_keys[fk])) print("") env_meta = json.loads(f["data"].attrs["env_args"]) print("==== Env Meta ====") print(json.dumps(env_meta, indent=4)) print("") print("==== Dataset Structure ====") for ep in demos: print("episode {} with {} transitions".format(ep, f["data/{}".format(ep)].attrs["num_samples"])) for k in f["data/{}".format(ep)]: if k in ["obs", "next_obs"]: print(" key: {}".format(k)) for obs_k in f["data/{}/{}".format(ep, k)]: shape = f["data/{}/{}/{}".format(ep, k, obs_k)].shape print(" observation key {} with shape {}".format(obs_k, shape)) elif isinstance(f["data/{}/{}".format(ep, k)], h5py.Dataset): key_shape = f["data/{}/{}".format(ep, k)].shape print(" key: {} with shape {}".format(k, key_shape)) if not args.verbose: break f.close() # maybe display error message print("") if (action_min < -1.) or (action_max > 1.): raise Exception("Dataset should have actions in [-1., 1.] but got bounds [{}, {}]".format(action_min, action_max))
CPAC/nuisance/__init__.py
gkiar/C-PAC
125
94102
from .utils import ( find_offending_time_points, temporal_variance_mask, generate_summarize_tissue_mask, NuisanceRegressor ) from .nuisance import ( create_regressor_workflow, create_nuisance_regression_workflow, filtering_bold_and_regressors ) from .bandpass import ( bandpass_voxels ) from .utils.compcor import ( cosine_filter ) __all__ = [ 'create_regressor_workflow', 'create_nuisance_regression_workflow', 'filtering_bold_and_regressors', 'find_offending_time_points', 'temporal_variance_mask', 'generate_summarize_tissue_mask', 'bandpass_voxels', 'cosine_filter' ]
sqlalchemy_utils/types/encrypted/padding.py
susnux/sqlalchemy-utils
879
94113
import six class InvalidPaddingError(Exception): pass class Padding(object): """Base class for padding and unpadding.""" def __init__(self, block_size): self.block_size = block_size def pad(self, value): raise NotImplementedError('Subclasses must implement this!') def unpad(self, value): raise NotImplementedError('Subclasses must implement this!') class PKCS5Padding(Padding): """Provide PKCS5 padding and unpadding.""" def pad(self, value): if not isinstance(value, six.binary_type): value = value.encode() padding_length = (self.block_size - len(value) % self.block_size) padding_sequence = padding_length * six.b(chr(padding_length)) value_with_padding = value + padding_sequence return value_with_padding def unpad(self, value): # Perform some input validations. # In case of error, we throw a generic InvalidPaddingError() if not value or len(value) < self.block_size: # PKCS5 padded output will always be at least 1 block size raise InvalidPaddingError() if len(value) % self.block_size != 0: # PKCS5 padded output will be a multiple of the block size raise InvalidPaddingError() if isinstance(value, six.binary_type): padding_length = value[-1] if isinstance(value, six.string_types): padding_length = ord(value[-1]) if padding_length == 0 or padding_length > self.block_size: raise InvalidPaddingError() def convert_byte_or_char_to_number(x): return ord(x) if isinstance(x, six.string_types) else x if any([padding_length != convert_byte_or_char_to_number(x) for x in value[-padding_length:]]): raise InvalidPaddingError() value_without_padding = value[0:-padding_length] return value_without_padding class OneAndZeroesPadding(Padding): """Provide the one and zeroes padding and unpadding. This mechanism pads with 0x80 followed by zero bytes. For unpadding it strips off all trailing zero bytes and the 0x80 byte. """ BYTE_80 = 0x80 BYTE_00 = 0x00 def pad(self, value): if not isinstance(value, six.binary_type): value = value.encode() padding_length = (self.block_size - len(value) % self.block_size) one_part_bytes = six.b(chr(self.BYTE_80)) zeroes_part_bytes = (padding_length - 1) * six.b(chr(self.BYTE_00)) padding_sequence = one_part_bytes + zeroes_part_bytes value_with_padding = value + padding_sequence return value_with_padding def unpad(self, value): value_without_padding = value.rstrip(six.b(chr(self.BYTE_00))) value_without_padding = value_without_padding.rstrip( six.b(chr(self.BYTE_80))) return value_without_padding class ZeroesPadding(Padding): """Provide zeroes padding and unpadding. This mechanism pads with 0x00 except the last byte equals to the padding length. For unpadding it reads the last byte and strips off that many bytes. """ BYTE_00 = 0x00 def pad(self, value): if not isinstance(value, six.binary_type): value = value.encode() padding_length = (self.block_size - len(value) % self.block_size) zeroes_part_bytes = (padding_length - 1) * six.b(chr(self.BYTE_00)) last_part_bytes = six.b(chr(padding_length)) padding_sequence = zeroes_part_bytes + last_part_bytes value_with_padding = value + padding_sequence return value_with_padding def unpad(self, value): if isinstance(value, six.binary_type): padding_length = value[-1] if isinstance(value, six.string_types): padding_length = ord(value[-1]) value_without_padding = value[0:-padding_length] return value_without_padding class NaivePadding(Padding): """Naive padding and unpadding using '*'. The class is provided only for backwards compatibility. """ CHARACTER = six.b('*') def pad(self, value): num_of_bytes = (self.block_size - len(value) % self.block_size) value_with_padding = value + num_of_bytes * self.CHARACTER return value_with_padding def unpad(self, value): value_without_padding = value.rstrip(self.CHARACTER) return value_without_padding PADDING_MECHANISM = { 'pkcs5': PKCS5Padding, 'oneandzeroes': OneAndZeroesPadding, 'zeroes': ZeroesPadding, 'naive': NaivePadding }
PWGJE/EMCALJetTasks/Tracks/analysis/util/PtReachCalculation.py
maroozm/AliPhysics
114
94118
#************************************************************************** #* Copyright(c) 1998-2014, ALICE Experiment at CERN, All rights reserved. * #* * #* Author: The ALICE Off-line Project. * #* Contributors are mentioned in the code where appropriate. * #* * #* Permission to use, copy, modify and distribute this software and its * #* documentation strictly for non-commercial purposes is hereby granted * #* without fee, provided that the above copyright notice appears in all * #* copies and that both the copyright notice and this permission notice * #* appear in the supporting documentation. The authors make no claims * #* about the suitability of this software for any purpose. It is * #* provided "as is" without express or implied warranty. * #************************************************************************** from PWGJE.EMCALJetTasks.Tracks.analysis.base.SpectrumFitter import MinBiasFitter, TriggeredSpectrumFitter from scipy.optimize import fsolve class PtReachCalculator(object): """ classdocs """ def __init__(self, name, data, isMinBias, limit): ''' Constructor ''' self.__fitter = None if isMinBias: self.__fitter = MinBiasFitter(name, data) else: self.__fitter = TriggeredSpectrumFitter(name, data) self.__limit = limit def GetPtReach(self, numberOfEvents): """ Get the Pt reach for a given number of events """ model = lambda p : numberOfEvents * self.__fitter.GetParameterisedValueAt(p) - self.__limit initialGuess = 10. result = fsolve(model, initialGuess) return result def GetPtReachForIntegral(self, numberOfEvents): """ Get the Pt reach for a given number of events using integrated yield above """ model = lambda p : numberOfEvents * self.__fitter.GetNormalisedIntegralAbove(p) - self.__limit initialGuess = 10. result = fsolve(model, initialGuess) return result
lib/gcn/sparse/torch_vertex.py
ChenFengYe/relightable-nr
105
94146
<reponame>ChenFengYe/relightable-nr import torch from torch import nn import torch_geometric as tg from .torch_nn import MLP from .torch_edge import DilatedKnnGraph class MRConv(nn.Module): """ Max-Relative Graph Convolution (Paper: https://arxiv.org/abs/1904.03751) """ def __init__(self, in_channels, out_channels, act_type='relu', norm_type=None, bias=True, aggr='max'): super(MRConv, self).__init__() self.nn = MLP([in_channels*2, out_channels], act_type, norm_type, bias) self.aggr = aggr def forward(self, x, edge_index): """""" x_j = tg.utils.scatter_(self.aggr, torch.index_select(x, 0, edge_index[0]) - torch.index_select(x, 0, edge_index[1]), edge_index[1]) return self.nn(torch.cat([x, x_j], dim=1)) class EdgConv(tg.nn.EdgeConv): """ Edge convolution layer (with activation, batch normalization) """ def __init__(self, in_channels, out_channels, act_type='relu', norm_type=None, bias=True, aggr='max'): super(EdgConv, self).__init__(MLP([in_channels*2, out_channels], act_type, norm_type, bias), aggr) def forward(self, x, edge_index): return super(EdgConv, self).forward(x, edge_index) class GraphConv(nn.Module): """ Static graph convolution layer """ def __init__(self, in_channels, out_channels, conv_type='edge', act_type='relu', norm_type=None, bias=True): super(GraphConv, self).__init__() if conv_type == 'edge': self.gconv = EdgConv(in_channels, out_channels, act_type, norm_type, bias) elif conv_type == 'mr': self.gconv = MRConv(in_channels, out_channels, act_type, norm_type, bias) def forward(self, x, edge_index): return self.gconv(x, edge_index) class DynConv(GraphConv): """ Dynamic graph convolution layer """ def __init__(self, in_channels, out_channels, kernel_size=9, dilation=1, conv_type='edge', act_type='relu', norm_type=None, bias=True, stochastic=False, epsilon=1.0, knn_type='matrix'): super(DynConv, self).__init__(in_channels, out_channels, conv_type, act_type, norm_type, bias) self.k = kernel_size self.d = dilation self.dilated_knn_graph = DilatedKnnGraph(kernel_size, dilation, stochastic, epsilon, knn_type) def forward(self, x, batch=None): edge_index = self.dilated_knn_graph(x, batch) return super(DynConv, self).forward(x, edge_index) class ResDynBlock(nn.Module): """ Residual Dynamic graph convolution block :input: (x0, x1, x2, ... , xi), batch :output:(x0, x1, x2, ... , xi ,xi+1) , batch """ def __init__(self, channels, kernel_size=9, dilation=1, conv_type='edge', act_type='relu', norm_type=None, bias=True, stochastic=False, epsilon=1.0, knn_type='matrix'): super(ResDynBlock, self).__init__() self.body = DynConv(channels, channels, kernel_size, dilation, conv_type, act_type, norm_type, bias, stochastic, epsilon, knn_type) # input: (x0, x1, x2, ..., xi); (xi-1, xi), output is (xi, xi+1) def forward(self, x, batch): return self.body(x, batch) + x, batch class DenseDynBlock(nn.Module): """ Dense Dynamic graph convolution block """ def __init__(self, channels, kernel_size=9, dilation=1, conv_type='edge', act_type='relu', norm_type=None, bias=True, stochastic=False, epsilon=1.0, knn_type='matrix'): super(DenseDynBlock, self).__init__() self.body = DynConv(channels*2, channels, kernel_size, dilation, conv_type, act_type, norm_type, bias, stochastic, epsilon, knn_type) def forward(self, x, batch): dense = self.body(batch) return torch.cat((x, dense), 1), batch
ipymd/formats/python.py
nathanfdunn/ipymd
521
94174
<reponame>nathanfdunn/ipymd # -*- coding: utf-8 -*- """Python reader and writer.""" #------------------------------------------------------------------------------ # Imports #------------------------------------------------------------------------------ import re import ast from collections import OrderedDict from ..lib.base_lexer import BaseGrammar, BaseLexer from ..lib.markdown import MarkdownFilter from ..lib.python import _is_python from ..ext.six import StringIO from ..utils.utils import _ensure_string, _preprocess #------------------------------------------------------------------------------ # Python reader and writer #------------------------------------------------------------------------------ class PythonSplitGrammar(BaseGrammar): """Grammar used to split Python code into chunks while not cutting long Python strings.""" _triple_quotes = "'''" _triple_doublequotes = '"""' _triple = _triple_quotes + '|' + _triple_doublequotes # '''text''' or """text""". text_var = re.compile(r"^({0})((?!{0}).|\n)*?\1".format(_triple)) # Two new lines followed by non-space newline = re.compile(r'^[\n]{2,}(?=[^ ])') linebreak = re.compile(r'^\n+') other = re.compile(r'^(?!{0}).'.format(_triple)) class PythonSplitLexer(BaseLexer): """Lexer for splitting Python code into chunks.""" grammar_class = PythonSplitGrammar default_rules = ['text_var', 'newline', 'linebreak', 'other'] def __init__(self): super(PythonSplitLexer, self).__init__() self._chunks = [''] @property def current(self): if not self._chunks: return None else: return self._chunks[-1] @property def chunks(self): return [chunk for chunk in self._chunks if chunk] @current.setter def current(self, value): self._chunks[-1] = value def new_chunk(self): self._chunks.append('') def append(self, text): self.current += text def parse_newline(self, m): self.new_chunk() def parse_linebreak(self, m): self.append(m.group(0)) def parse_text_var(self, m): self.append(m.group(0)) def parse_other(self, m): self.append(m.group(0)) def _split_python(python): """Split Python source into chunks. Chunks are separated by at least two return lines. The break must not be followed by a space. Also, long Python strings spanning several lines are not splitted. """ python = _preprocess(python) if not python: return [] lexer = PythonSplitLexer() lexer.read(python) return lexer.chunks def _is_chunk_markdown(source): """Return whether a chunk contains Markdown contents.""" lines = source.splitlines() if all(line.startswith('# ') for line in lines): # The chunk is a Markdown *unless* it is commented Python code. source = '\n'.join(line[2:] for line in lines if not line[2:].startswith('#')) # skip headers if not source: return True # Try to parse the chunk: if it fails, it is Markdown, otherwise, # it is Python. return not _is_python(source) return False def _remove_hash(source): """Remove the leading '#' of every line in the source.""" return '\n'.join(line[2:].rstrip() for line in source.splitlines()) def _add_hash(source): """Add a leading hash '#' at the beginning of every line in the source.""" source = '\n'.join('# ' + line.rstrip() for line in source.splitlines()) return source class PythonReader(object): """Python reader.""" def read(self, python): chunks = _split_python(python) for chunk in chunks: if _is_chunk_markdown(chunk): yield self._markdown_cell(_remove_hash(chunk)) else: yield self._code_cell(chunk) def _code_cell(self, source): return {'cell_type': 'code', 'input': source, 'output': None} def _markdown_cell(self, source): return {'cell_type': 'markdown', 'source': source} class PythonWriter(object): """Python writer.""" def __init__(self, keep_markdown=None): self._output = StringIO() self._markdown_filter = MarkdownFilter(keep_markdown) def _new_paragraph(self): self._output.write('\n\n') def append_comments(self, source): source = source.rstrip() # Filter Markdown contents. source = self._markdown_filter(source) # Skip empty cells. if not source: return comments = _add_hash(source) self._output.write(comments) self._new_paragraph() def append_code(self, input): self._output.write(input) self._new_paragraph() def write(self, cell): if cell['cell_type'] == 'markdown': self.append_comments(cell['source']) elif cell['cell_type'] == 'code': self.append_code(cell['input']) @property def contents(self): return self._output.getvalue().rstrip() + '\n' # end of file \n def close(self): self._output.close() def __del__(self): self.close() PYTHON_FORMAT = dict( reader=PythonReader, writer=PythonWriter, file_extension='.py', file_type='text', )
plyer/platforms/linux/battery.py
EdwardCoventry/plyer
1,184
94185
''' Module of Linux API for plyer.battery. ''' from math import floor from os import environ from os.path import exists, join from subprocess import Popen, PIPE from plyer.facades import Battery from plyer.utils import whereis_exe class LinuxBattery(Battery): ''' Implementation of Linux battery API via accessing the sysclass power_supply path from the kernel. ''' def _get_state(self): status = {"isCharging": None, "percentage": None} kernel_bat_path = join('/sys', 'class', 'power_supply', 'BAT0') uevent = join(kernel_bat_path, 'uevent') with open(uevent) as fle: lines = [ line.decode('utf-8').strip() for line in fle.readlines() ] output = { line.split('=')[0]: line.split('=')[1] for line in lines } is_charging = output['POWER_SUPPLY_STATUS'] == 'Charging' total = float(output['POWER_SUPPLY_CHARGE_FULL']) now = float(output['POWER_SUPPLY_CHARGE_NOW']) capacity = floor(now / total * 100) status['percentage'] = capacity status['isCharging'] = is_charging return status class UPowerBattery(Battery): ''' Implementation of UPower battery API. ''' def _get_state(self): # if no LANG specified, return empty string old_lang = environ.get('LANG', '') environ['LANG'] = 'C' status = {"isCharging": None, "percentage": None} # We are supporting only one battery now # this will fail if there is no object with such path, # however it's safer than 'upower -d' which provides # multiple unrelated 'state' and 'percentage' keywords dev = "/org/freedesktop/UPower/devices/battery_BAT0" upower_process = Popen( ["upower", "--show-info", dev], stdout=PIPE ) output = upower_process.communicate()[0].decode() environ['LANG'] = old_lang if not output: return status state = percentage = None for line in output.splitlines(): if 'state' in line: state = line.rpartition(':')[-1].strip() if 'percentage' in line: percentage = line.rpartition(':')[-1].strip()[:-1] # switching decimal comma to dot # (different LC_NUMERIC locale) percentage = float( percentage.replace(',', '.') ) if state: status['isCharging'] = state == "charging" status['percentage'] = percentage return status def instance(): ''' Instance for facade proxy. ''' import sys if whereis_exe('upower'): return UPowerBattery() sys.stderr.write("upower not found.") if exists(join('/sys', 'class', 'power_supply', 'BAT0')): return LinuxBattery() return Battery()
tapas/utils/constants.py
Martin36/tapas
816
94196
<reponame>Martin36/tapas # coding=utf-8 # Copyright 2019 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Constants used by Dopa tables project.""" import enum EMPTY_TEXT = 'EMPTY' NUMBER_TYPE = 'number' DATE_TYPE = 'date' class Relation(enum.Enum): HEADER_TO_CELL = 1 # Connects header to cell. CELL_TO_HEADER = 2 # Connects cell to header. QUERY_TO_HEADER = 3 # Connects query to headers. QUERY_TO_CELL = 4 # Connects query to cells. ROW_TO_CELL = 5 # Connects row to cells. CELL_TO_ROW = 6 # Connects cells to row. EQ = 7 # Annotation value is same as cell value LT = 8 # Annotation value is less than cell value GT = 9 # Annotation value is greater than cell value