max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
gluoncv/torch/nn/keypoint_loss.py
RafLit/gluon-cv
5,447
121146
"""Loss layers for keypoints that can be inserted to modules""" import torch import torch.nn as nn __all__ = ['WeightedMSELoss', 'HMFocalLoss'] def _sigmoid(x): y = torch.clamp(x.sigmoid_(), min=1e-4, max=1-1e-4) return y class WeightedMSELoss(nn.Module): """Weighted MSE loss layer""" def __init__(self): super().__init__() def forward(self, pred, gt, mask): assert pred.size() == gt.size() loss = ((pred - gt) **2) * mask loss = loss.mean() return loss class HMFocalLoss(nn.Module): """Heatmap Focal Loss layer""" def __init__(self, alpha, beta): super(HMFocalLoss, self).__init__() self.alpha = alpha self.beta = beta def forward(self, pred, gt): pos_inds = gt.eq(1).float() neg_inds = gt.lt(1).float() pred = _sigmoid(pred) neg_weights = torch.pow(1 - gt, self.beta) pos_loss = torch.log(pred) * torch.pow(1 - pred, self.alpha) * pos_inds neg_loss = torch.log(1 - pred) * torch.pow(pred, self.alpha) * neg_weights * neg_inds num_pos = pos_inds.float().sum() pos_loss = pos_loss.sum() neg_loss = neg_loss.sum() if num_pos == 0: return -neg_loss else: return -(pos_loss + neg_loss) / num_pos
test_tensorflow.py
manailin/tensorflow___examples
156
121167
#!/usr/bin/env python import numpy as np import tensorflow as tf train_X = np.linspace(-1, 1, 100) train_Y = 2 * train_X + np.random.randn(*train_X.shape) * 0.33 + 10 X = tf.placeholder("float") Y = tf.placeholder("float") w = tf.Variable(0.0, name="weight") b = tf.Variable(0.0, name="bias") cost_op = tf.square(Y - tf.mul(X, w) - b) train_op = tf.train.GradientDescentOptimizer(0.01).minimize(cost_op) with tf.Session() as sess: sess.run(tf.initialize_all_variables()) for i in range(10): for (x, y) in zip(train_X, train_Y): sess.run(train_op, feed_dict={X: x, Y: y}) if 1 < sess.run(w) < 3 and 9 < sess.run(b) < 11: print("Success") else: print("Fail")
tests/inspectdb/dependent_model/__init__.py
bryancolligan/django-salesforce
251
121197
from django.apps import AppConfig class AutoModelConf(AppConfig): name = 'tests.inspectdb' label = 'auto_model' class DependentModelConf(AppConfig): name = 'tests.inspectdb.dependent_model' label = 'dependent_model'
src/hivedscheduler/config/hivedscheduler.py
luxius-luminus/pai
1,417
121210
<reponame>luxius-luminus/pai # Copyright (c) Microsoft Corporation # All rights reserved. # # MIT License # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated # documentation files (the "Software"), to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and # to permit persons to whom the Software is furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING # BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import yaml class Hivedscheduler: def __init__(self, cluster_conf, service_conf, default_service_conf): self.cluster_conf = cluster_conf self.service_conf = dict(default_service_conf, **service_conf) def validation_pre(self): if 'webservice-port' not in self.service_conf: return False, 'webservice-port is missing in hivedscheduler service configuration' if 'config' not in self.service_conf: self.service_conf['config'] = '' return True, None def run(self): self.service_conf['structured-config'] = {} if self.service_conf['config'] != '': self.service_conf['structured-config'] = yaml.load(self.service_conf['config'], yaml.SafeLoader) machine_list = self.cluster_conf['machine-list'] master_ip = [host['hostip'] for host in machine_list if host.get('pai-master') == 'true'][0] self.service_conf['webservice'] = 'http://{}:{}'.format(master_ip, self.service_conf['webservice-port']) self.service_conf['config'] = self.service_conf['config'].replace('\n', '\n ') return self.service_conf def validation_post(self, conf): return True, None
cloudbaseinit/tests/plugins/windows/test_sanpolicy.py
andia10240/cloudbase-init
160
121219
<filename>cloudbaseinit/tests/plugins/windows/test_sanpolicy.py<gh_stars>100-1000 # Copyright 2015 Cloudbase Solutions Srl # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import unittest try: import unittest.mock as mock except ImportError: import mock from cloudbaseinit import constant from cloudbaseinit.plugins.windows import sanpolicy from cloudbaseinit.tests import testutils from cloudbaseinit.utils.windows.storage import base as storage_base class SANPolicyPluginTests(unittest.TestCase): def setUp(self): self._san_policy = sanpolicy.SANPolicyPlugin() self._san_policy_map = { constant.SAN_POLICY_ONLINE_STR: storage_base.SAN_POLICY_ONLINE, constant.SAN_POLICY_OFFLINE_STR: storage_base.SAN_POLICY_OFFLINE, constant.SAN_POLICY_OFFLINE_SHARED_STR: storage_base.SAN_POLICY_OFFLINE_SHARED, } def test_get_os_requirements(self): response = self._san_policy.get_os_requirements() self.assertEqual(response, ('win32', (6, 1))) @mock.patch('cloudbaseinit.utils.windows.storage.factory' '.get_storage_manager') def _test_set_policy(self, policy, mock_storage_factory): mock_storage_manager = mock.MagicMock() mock_storage_manager.get_san_policy.return_value = "fake policy" mock_storage_factory.return_value = mock_storage_manager with testutils.ConfPatcher('san_policy', policy): self._san_policy.execute(None, "") mock_storage_manager.set_san_policy.assert_called_once_with( self._san_policy_map[policy]) @mock.patch('cloudbaseinit.utils.windows.storage.factory' '.get_storage_manager') def _test_set_policy_already_set(self, policy, mock_storage_factory): mock_storage_manager = mock.MagicMock() san_policy = self._san_policy_map[policy] mock_storage_manager.get_san_policy.return_value = san_policy mock_storage_factory.return_value = mock_storage_manager with testutils.ConfPatcher('san_policy', policy): self._san_policy.execute(None, "") self.assertEqual(mock_storage_manager.call_count, 0) def test_set_policy_online(self): self._test_set_policy(constant.SAN_POLICY_ONLINE_STR) def test_set_policy_offline(self): self._test_set_policy(constant.SAN_POLICY_OFFLINE_STR) def test_set_policy_offline_shared(self): self._test_set_policy(constant.SAN_POLICY_OFFLINE_SHARED_STR) def test_set_policy_online_already_set(self): self._test_set_policy_already_set(constant.SAN_POLICY_ONLINE_STR) def test_set_policy_offline_already_set(self): self._test_set_policy_already_set(constant.SAN_POLICY_OFFLINE_STR) def test_set_policy_offline_shared_already_set(self): self._test_set_policy_already_set( constant.SAN_POLICY_OFFLINE_SHARED_STR) @mock.patch('cloudbaseinit.utils.windows.storage.factory' '.get_storage_manager') def test_san_policy_not_set(self, mock_storage_factory): self._san_policy.execute(None, "") self.assertEqual(mock_storage_factory.call_count, 0)
salt/_states/consul.py
JulienPalard/psf-salt
103
121224
<gh_stars>100-1000 def external_service(name, datacenter, node, address, port, token=None): ret = {'name': name, 'changes': {}, 'result': False, 'comment': ''} if token is None: token = __pillar__['consul']['acl']['tokens']['default'] # Determine if the cluster is ready if not __salt__["consul.cluster_ready"](): ret["result"] = True ret["comment"] = "Consul cluster is not ready." return ret # Determine if the node we're attempting to register exists if __salt__["consul.node_exists"](node, address, dc=datacenter): # Determine if the service we're attempting to register exists if __salt__["consul.node_service_exists"]( node, name, port, dc=datacenter): ret["result"] = True ret["comment"] = ( "External Service {} already in the desired state.".format( name, ) ) return ret if __opts__['test'] == True: ret['comment'] = 'The state of "{0}" will be changed.'.format(name) ret['changes'] = { 'old': None, 'new': 'External Service {}'.format(name), } ret["result"] = None return ret __salt__["consul.register_external_service"]( node, address, datacenter, name, port, token, ) ret["result"] = True ret["comment"] = "Registered external service: '{}'.".format(name) ret["changes"] = { "old": None, "new": 'External Service {}'.format(name), } return ret
pxr/usdImaging/usdAppUtils/complexityArgs.py
DougRogers-DigitalFish/USD
3,680
121234
<reponame>DougRogers-DigitalFish/USD<filename>pxr/usdImaging/usdAppUtils/complexityArgs.py # # Copyright 2019 Pixar # # Licensed under the Apache License, Version 2.0 (the "Apache License") # with the following modification; you may not use this file except in # compliance with the Apache License and the following modification to it: # Section 6. Trademarks. is deleted and replaced with: # # 6. Trademarks. This License does not grant permission to use the trade # names, trademarks, service marks, or product names of the Licensor # and its affiliates, except as required to comply with Section 4(c) of # the License and to reproduce the content of the NOTICE file. # # You may obtain a copy of the Apache License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the Apache License with the above modification is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the Apache License for the specific # language governing permissions and limitations under the Apache License. # class RefinementComplexities(object): """ An enum-like container of standard complexity settings. """ class _RefinementComplexity(object): """ Class which represents a level of mesh refinement complexity. Each level has a string identifier, a display name, and a float complexity value. """ def __init__(self, compId, name, value): self._id = compId self._name = name self._value = value def __repr__(self): return self.id @property def id(self): return self._id @property def name(self): return self._name @property def value(self): return self._value LOW = _RefinementComplexity("low", "Low", 1.0) MEDIUM = _RefinementComplexity("medium", "Medium", 1.1) HIGH = _RefinementComplexity("high", "High", 1.2) VERY_HIGH = _RefinementComplexity("veryhigh", "Very High", 1.3) _ordered = (LOW, MEDIUM, HIGH, VERY_HIGH) @classmethod def ordered(cls): """ Get a tuple of all complexity levels in order. """ return cls._ordered @classmethod def fromId(cls, compId): """ Get a complexity from its identifier. """ matches = [comp for comp in cls._ordered if comp.id == compId] if len(matches) == 0: raise ValueError("No complexity with id '{}'".format(compId)) return matches[0] @classmethod def fromName(cls, name): """ Get a complexity from its display name. """ matches = [comp for comp in cls._ordered if comp.name == name] if len(matches) == 0: raise ValueError("No complexity with name '{}'".format(name)) return matches[0] @classmethod def next(cls, comp): """ Get the next highest level of complexity. If already at the highest level, return it. """ if comp not in cls._ordered: raise ValueError("Invalid complexity: {}".format(comp)) nextIndex = min( len(cls._ordered) - 1, cls._ordered.index(comp) + 1) return cls._ordered[nextIndex] @classmethod def prev(cls, comp): """ Get the next lowest level of complexity. If already at the lowest level, return it. """ if comp not in cls._ordered: raise ValueError("Invalid complexity: {}".format(comp)) prevIndex = max(0, cls._ordered.index(comp) - 1) return cls._ordered[prevIndex] def AddCmdlineArgs(argsParser, defaultValue=RefinementComplexities.LOW, altHelpText=''): """ Adds complexity-related command line arguments to argsParser. The resulting 'complexity' argument will be one of the standard RefinementComplexities. """ helpText = altHelpText if not helpText: helpText = ('level of refinement to use (default=%(default)s)') argsParser.add_argument('--complexity', '-c', action='store', type=RefinementComplexities.fromId, default=defaultValue, choices=[c for c in RefinementComplexities.ordered()], help=helpText)
neuralmonkey/decoders/decoder.py
ufal/neuralmonkey
446
121259
<filename>neuralmonkey/decoders/decoder.py<gh_stars>100-1000 from typing import Any, List, Tuple, cast, NamedTuple import tensorflow as tf from typeguard import check_argument_types from neuralmonkey.decoders.autoregressive import ( AutoregressiveDecoder, DecoderFeedables, DecoderHistories, LoopState) from neuralmonkey.attention.base_attention import BaseAttention from neuralmonkey.vocabulary import Vocabulary from neuralmonkey.model.sequence import EmbeddedSequence from neuralmonkey.model.stateful import Stateful from neuralmonkey.model.parameterized import InitializerSpecs from neuralmonkey.model.model_part import ModelPart from neuralmonkey.logging import log from neuralmonkey.nn.ortho_gru_cell import OrthoGRUCell, NematusGRUCell from neuralmonkey.nn.utils import dropout from neuralmonkey.tf_utils import append_tensor from neuralmonkey.decoders.encoder_projection import ( linear_encoder_projection, concat_encoder_projection, empty_initial_state, EncoderProjection) from neuralmonkey.decoders.output_projection import ( OutputProjectionSpec, OutputProjection, nonlinear_output) from neuralmonkey.decorators import tensor RNN_CELL_TYPES = { "NematusGRU": NematusGRUCell, "GRU": OrthoGRUCell, "LSTM": tf.contrib.rnn.LSTMCell } class RNNFeedables(NamedTuple( "RNNFeedables", [ ("prev_rnn_state", tf.Tensor), ("prev_rnn_output", tf.Tensor), ("prev_contexts", List[tf.Tensor])])): """Additional feedables used only by the RNN-based decoder. Attributes: prev_rnn_state: The recurrent state from the previous step. A tensor of shape ``(batch, rnn_size)`` prev_rnn_output: The output of the recurrent network from the previous step. A tensor of shape ``(batch, output_size)`` prev_contexts: A list of context vectors returned from attention mechanisms. Tensors of shape ``(batch, encoder_state_size)`` for each attended encoder. """ class RNNHistories(NamedTuple( "RNNHistories", [ ("rnn_outputs", tf.Tensor), ("attention_histories", List[Tuple])])): """The loop state histories specific for RNN-based decoders. Attributes: rnn_outputs: History of outputs produced by RNN cell itself (before applying output projections). attention_histories: A list of ``AttentionLoopState`` objects (or similar) populated by values from the attention mechanisms used in the decoder. """ # pylint: disable=too-many-instance-attributes class Decoder(AutoregressiveDecoder): """A class managing parts of the computation graph used during decoding.""" # pylint: disable=too-many-locals # pylint: disable=too-many-arguments,too-many-branches,too-many-statements def __init__(self, encoders: List[Stateful], vocabulary: Vocabulary, data_id: str, name: str, max_output_len: int, dropout_keep_prob: float = 1.0, embedding_size: int = None, embeddings_source: EmbeddedSequence = None, tie_embeddings: bool = False, label_smoothing: float = None, rnn_size: int = None, output_projection: OutputProjectionSpec = None, encoder_projection: EncoderProjection = None, attentions: List[BaseAttention] = None, attention_on_input: bool = False, rnn_cell: str = "GRU", conditional_gru: bool = False, supress_unk: bool = False, reuse: ModelPart = None, save_checkpoint: str = None, load_checkpoint: str = None, initializers: InitializerSpecs = None) -> None: """Create a refactored version of monster decoder. Arguments: encoders: Input encoders of the decoder. vocabulary: Target vocabulary. data_id: Target data series. name: Name of the decoder. Should be unique accross all Neural Monkey objects. max_output_len: Maximum length of an output sequence. dropout_keep_prob: Probability of keeping a value during dropout. embedding_size: Size of embedding vectors for target words. embeddings_source: Embedded sequence to take embeddings from. tie_embeddings: Use decoder.embedding_matrix also in place of the output decoding matrix. rnn_size: Size of the decoder hidden state, if None set according to encoders. output_projection: How to generate distribution over vocabulary from decoder_outputs. encoder_projection: How to construct initial state from encoders. attention: The attention object to use. Optional. rnn_cell: RNN Cell used by the decoder (GRU or LSTM). conditional_gru: Flag whether to use the Conditional GRU architecture. attention_on_input: Flag whether attention from previous decoding step should be combined with the input in the next step. supress_unk: If true, decoder will not produce symbols for unknown tokens. reuse: Reuse the model variables from the given model part. """ check_argument_types() AutoregressiveDecoder.__init__( self, name=name, vocabulary=vocabulary, data_id=data_id, max_output_len=max_output_len, dropout_keep_prob=dropout_keep_prob, embedding_size=embedding_size, embeddings_source=embeddings_source, tie_embeddings=tie_embeddings, label_smoothing=label_smoothing, supress_unk=supress_unk, reuse=reuse, save_checkpoint=save_checkpoint, load_checkpoint=load_checkpoint, initializers=initializers) self.encoders = encoders self._output_projection_spec = output_projection self._conditional_gru = conditional_gru self._attention_on_input = attention_on_input self._rnn_cell_str = rnn_cell self._rnn_size = rnn_size self._encoder_projection = encoder_projection self.attentions = [] # type: List[BaseAttention] if attentions is not None: self.attentions = attentions if not rnn_size and not encoder_projection and not encoders: raise ValueError( "No RNN size, no encoders and no encoder_projection specified") if self._rnn_cell_str not in RNN_CELL_TYPES: raise ValueError("RNN cell must be a either 'GRU', 'LSTM', or " "'NematusGRU'. Not {}".format(self._rnn_cell_str)) if self._attention_on_input: self.input_projection = self.input_plus_attention else: self.input_projection = ( lambda *args: LoopState(*args).feedables.embedded_input) with self.use_scope(): with tf.variable_scope("attention_decoder") as self.step_scope: pass self._variable_scope.set_initializer( tf.random_normal_initializer(stddev=0.001)) # pylint: enable=too-many-arguments,too-many-branches,too-many-statements @property def encoder_projection(self) -> EncoderProjection: if self._encoder_projection is not None: return self._encoder_projection if not self.encoders: log("No direct encoder input. Using empty initial state") return empty_initial_state if self._rnn_size is None: log("No rnn_size or encoder_projection: Using concatenation of " "encoded states") return concat_encoder_projection log("Using linear projection of encoders as the initial state") return linear_encoder_projection(self.dropout_keep_prob) @property def rnn_size(self) -> int: if self._rnn_size is not None: return self._rnn_size if self._encoder_projection is None: assert self.encoders return sum(e.output.get_shape()[1].value for e in self.encoders) raise ValueError("Cannot infer RNN size.") @tensor def output_projection_spec(self) -> Tuple[OutputProjection, int]: if self._output_projection_spec is None: log("No output projection specified - using tanh projection") return (nonlinear_output(self.rnn_size, tf.tanh)[0], self.rnn_size) if isinstance(self._output_projection_spec, tuple): return self._output_projection_spec return cast(OutputProjection, self._output_projection_spec), self.rnn_size # pylint: disable=unsubscriptable-object @property def output_projection(self) -> OutputProjection: return self.output_projection_spec[0] @property def output_dimension(self) -> int: return self.output_projection_spec[1] # pylint: enable=unsubscriptable-object @tensor def initial_state(self) -> tf.Tensor: """Compute initial decoder state. The part of the computation graph that computes the initial state of the decoder. """ with tf.variable_scope("initial_state"): # pylint: disable=not-callable initial_state = dropout( self.encoder_projection(self.train_mode, self.rnn_size, self.encoders), self.dropout_keep_prob, self.train_mode) # pylint: enable=not-callable init_state_shape = initial_state.get_shape() # Broadcast the initial state to the whole batch if needed if len(init_state_shape) == 1: assert init_state_shape[0].value == self.rnn_size tiles = tf.tile(initial_state, tf.expand_dims(self.batch_size, 0)) initial_state = tf.reshape(tiles, [-1, self.rnn_size]) return initial_state def _get_rnn_cell(self) -> tf.contrib.rnn.RNNCell: return RNN_CELL_TYPES[self._rnn_cell_str](self.rnn_size) def _get_conditional_gru_cell(self) -> tf.contrib.rnn.GRUCell: if self._rnn_cell_str == "NematusGRU": return NematusGRUCell( self.rnn_size, use_state_bias=True, use_input_bias=False) return RNN_CELL_TYPES[self._rnn_cell_str](self.rnn_size) def input_plus_attention(self, *args) -> tf.Tensor: """Merge input and previous attentions. Input and previous attentions are merged into a single vector of the size fo embedding. """ loop_state = LoopState(*args) feedables = loop_state.feedables emb_with_ctx = tf.concat( [feedables.embedded_input] + feedables.prev_contexts, 1) return dropout( tf.layers.dense(emb_with_ctx, self.embedding_size), self.dropout_keep_prob, self.train_mode) def next_state(self, loop_state: LoopState) -> Tuple[tf.Tensor, Any, Any]: rnn_feedables = loop_state.feedables.other rnn_histories = loop_state.histories.other with tf.variable_scope(self.step_scope): rnn_input = self.input_projection(*loop_state) cell = self._get_rnn_cell() if self._rnn_cell_str in ["GRU", "NematusGRU"]: cell_output, next_state = cell( rnn_input, rnn_feedables.prev_rnn_output) attns = [ a.attention( cell_output, rnn_feedables.prev_rnn_output, rnn_input, att_loop_state) for a, att_loop_state in zip( self.attentions, rnn_histories.attention_histories)] if self.attentions: contexts, att_loop_states = zip(*attns) else: contexts, att_loop_states = [], [] if self._conditional_gru: cell_cond = self._get_conditional_gru_cell() cond_input = tf.concat(contexts, -1) cell_output, next_state = cell_cond( cond_input, next_state, scope="cond_gru_2_cell") elif self._rnn_cell_str == "LSTM": prev_state = tf.contrib.rnn.LSTMStateTuple( rnn_feedables.prev_rnn_state, rnn_feedables.prev_rnn_output) cell_output, state = cell(rnn_input, prev_state) next_state = state.c attns = [ a.attention( cell_output, rnn_feedables.prev_rnn_output, rnn_input, att_loop_state) for a, att_loop_state in zip( self.attentions, rnn_histories.attention_histories)] if self.attentions: contexts, att_loop_states = zip(*attns) else: contexts, att_loop_states = [], [] else: raise ValueError("Unknown RNN cell.") # TODO: attention functions should apply dropout on output # themselves before returning the tensors contexts = [dropout(ctx, self.dropout_keep_prob, self.train_mode) for ctx in list(contexts)] cell_output = dropout( cell_output, self.dropout_keep_prob, self.train_mode) with tf.name_scope("rnn_output_projection"): if self.embedding_size != self.output_dimension: raise ValueError( "The dimension ({}) of the output projection must be " "same as the dimension of the input embedding " "({})".format(self.output_dimension, self.embedding_size)) # pylint: disable=not-callable output = self.output_projection( cell_output, loop_state.feedables.embedded_input, list(contexts), self.train_mode) # pylint: enable=not-callable new_feedables = RNNFeedables( prev_rnn_state=next_state, prev_rnn_output=cell_output, prev_contexts=list(contexts)) new_histories = RNNHistories( rnn_outputs=append_tensor(rnn_histories.rnn_outputs, cell_output), attention_histories=list(att_loop_states)) return (output, new_feedables, new_histories) def get_initial_feedables(self) -> DecoderFeedables: feedables = AutoregressiveDecoder.get_initial_feedables(self) rnn_feedables = RNNFeedables( prev_contexts=[tf.zeros([self.batch_size, a.context_vector_size]) for a in self.attentions], prev_rnn_state=self.initial_state, prev_rnn_output=self.initial_state) return feedables._replace(other=rnn_feedables) def get_initial_histories(self) -> DecoderHistories: histories = AutoregressiveDecoder.get_initial_histories(self) rnn_histories = RNNHistories( rnn_outputs=tf.zeros( shape=[0, self.batch_size, self.rnn_size], dtype=tf.float32, name="hist_rnn_output_states"), attention_histories=[a.initial_loop_state() for a in self.attentions if a is not None]) return histories._replace(other=rnn_histories) def finalize_loop(self, final_loop_state: LoopState, train_mode: bool) -> None: for att_state, attn_obj in zip( final_loop_state.histories.other.attention_histories, self.attentions): att_history_key = "{}_{}".format( self.name, "train" if train_mode else "run") attn_obj.finalize_loop(att_history_key, att_state) if not train_mode: attn_obj.visualize_attention(att_history_key)
src/api/proxy/proxy.py
a49v033/fp-server
173
121265
#!/usr/bin/env python # -*- coding: utf-8 -*- """ API for proxy """ from core import exceptions from core.web import WebHandler from service.proxy.proxy import proxy_srv from service.proxy.serializers import ProxySerializer from utils import log as logger from utils.routes import route from utils.tools import subdict def return_developing(): raise exceptions.NotFound(msg=exceptions.ERR_MSG_IS_DEVELOPING) @route(r'/api/proxy/$') class GetProxyHandler(WebHandler): """ proxy api """ async def get(self, *args, **kwargs): """ get proxies """ count = int(self.get_param('count', 1)) scheme = self.get_param('scheme') if scheme: scheme = scheme.lower() anonymity = self.get_param('anonymity') spec = dict(count=count, scheme=scheme, anonymity=anonymity) _items = await proxy_srv.query(spec) items = [] for i in _items: s = ProxySerializer(i) items.append(s.to_representation()) data = { "count": len(items), "detail": items, } # sort_by_speed = self.get_param('sort_by_speed', 0) self.do_success(data) async def post(self, *args, **kwargs): """ create new proxies """ item = self.get_body() indispensibles = ('scheme', 'ip', 'port') print(type(item), item) for k in indispensibles: if k not in item: raise exceptions.ValidationError('%s cannot be empty.' % k) _f = subdict(item, ['ip', 'port', 'scheme']) existed = await proxy_srv.keys_by_dict(_f) if existed: self.do_success({'success': 0, 'key': existed}, msg='key already existed') return try: _key = await proxy_srv.new_proxy(item) self.do_success({'success': 1, 'key': _key}, msg='created successfully') return except Exception as e: logger.exception('Failed: %s Detail: %s' % (item, e)) self.do_failed(code=400, msg=str(e)) async def delete(self, *args, **kwargs): """ delete proxies """ self.do_success({'ok': 1}, 'todo') @route(r'/api/proxy/report/$') class ReportProxyHandler(WebHandler): async def post(self, *args, **kwargs): self.do_success({'ok': 1}, 'developing..')
tools/merge.py
mrjrty/rpaframework
518
121276
#!/usr/bin/env python3 import argparse import json import os from pathlib import Path FILENAME = "latest.json" def main(): parser = argparse.ArgumentParser() parser.add_argument("source", help="Path to directory of JSONs") parser.add_argument("destination", help="Path to destination JSON") args = parser.parse_args() dirname = Path(args.source) output = {} for filename in sorted(os.listdir(dirname)): if filename == FILENAME: continue with open(dirname / filename, "r") as infile: lib = json.load(infile) assert lib["name"] not in output, "Duplicate library" output[lib["name"]] = lib with open(args.destination, "w") as outfile: json.dump(output, outfile, indent=4) if __name__ == "__main__": main()
nodes/0.9.x/python/String.ReplaceRegularExpression.py
jdehotin/Clockworkfordynamo
147
121288
<gh_stars>100-1000 import clr import re regexstring = IN[0] regexlist = IN[1] replacement = IN[2] elementlist = list() thisexp = re.compile(regexstring) for item in regexlist: try: elementlist.append(thisexp.sub(replacement,item)) except: elementlist.append(list()) OUT = elementlist
mt_infer.py
rcmckee/BPT
123
121297
from torchtext import data from torch.utils.data import DataLoader from graph import MTInferBatcher, get_mt_dataset, MTDataset, DocumentMTDataset from modules import make_translate_infer_model from utils import tensor_to_sequence, average_model import torch as th import argparse import yaml max_length = 1024 def run(dev_id, config): _dataset = config['dataset'] if _dataset == 'iwslt': TEXT = [data.Field(batch_first=True) for _ in range(2)] dataset = get_mt_dataset('iwslt') _, _, test = dataset.splits(exts=('.tc.zh', '.tc.en'), fields=TEXT, root='./data') test = DocumentMTDataset(test, context_length=config['context_len']) vocab_zh, vocab_en = dataset.load_vocab(root='./data') print('vocab size: ', len(vocab_zh), len(vocab_en)) vocab_sizes = [len(vocab_zh), len(vocab_en)] TEXT[0].vocab = vocab_zh TEXT[1].vocab = vocab_en batcher = MTInferBatcher(TEXT, config['doc_max_len'], test.BOS_TOKEN, graph_type=config['graph_type'], **config.get('graph_attrs', {})) test_loader = DataLoader(dataset=test, batch_size=config['test_batch_size'], collate_fn=batcher, shuffle=False) elif _dataset == 'wmt': TEXT = data.Field(batch_first=True) dataset = get_mt_dataset('wmt14') _, _, test = dataset.splits(exts=['.en', '.de'], fields=[TEXT, TEXT], root='./data') test = MTDataset(test) vocab = dataset.load_vocab(root='./data')[0] print('vocab size: ', len(vocab)) vocab_sizes = [len(vocab)] TEXT.vocab = vocab batcher = MTInferBatcher(TEXT, config['doc_max_len'], test.BOS_TOKEN, graph_type=config['graph_type'], **config.get('graph_attrs', {})) test_loader = DataLoader(dataset=test, batch_size=config['test_batch_size'], collate_fn=batcher, shuffle=False) elif _dataset == 'multi': TEXT = [data.Field(batch_first=True) for _ in range(2)] dataset = get_mt_dataset('multi30k') _, _, test = dataset.splits(exts=['.en.atok', '.de.atok'], fields=TEXT, root='./data') test = MTDataset(test) vocab_en, vocab_de = dataset.load_vocab(root='./data') print('vocab size: ', len(vocab_en), len(vocab_de)) vocab_sizes = [len(vocab_en), len(vocab_de)] TEXT[0].vocab = vocab_en TEXT[1].vocab = vocab_de batcher = MTInferBatcher(TEXT, config['doc_max_len'], test.BOS_TOKEN, graph_type=config['graph_type'], **config.get('graph_attrs', {})) test_loader = DataLoader(dataset=test, batch_size=config['test_batch_size'], collate_fn=batcher, shuffle=False) dim_model = config['dim_model'] dim_ff = config['dim_ff'] num_heads = config['num_heads'] n_layers = config['n_layers'] m_layers = config['m_layers'] dropouti = config['dropouti'] dropouth = config['dropouth'] dropouta = config['dropouta'] dropoutc = config['dropoutc'] rel_pos = config['rel_pos'] model = make_translate_infer_model(vocab_sizes, dim_model, dim_ff, num_heads, n_layers, m_layers, dropouti=dropouti, dropouth=dropouth, dropouta=dropouta, dropoutc=dropoutc, rel_pos=rel_pos) device = th.device(dev_id) model.load_state_dict( average_model(['{}-{}.pkl'.format(epoch, config['save_name']) for epoch in range(config['n_epochs'] - 5, config['n_epochs'])])) model = model.to(device) model.eval() if _dataset == 'iwslt': vocab_trg = vocab_en elif _dataset == 'wmt': vocab_trg = vocab elif _dataset == 'multi': vocab_trg = vocab_de for batch in test_loader: with th.no_grad(): batch.g_enc.edata['etype'] = batch.g_enc.edata['etype'].to(device) batch.g_enc.ndata['pos'] = batch.g_enc.ndata['pos'].to(device) batch.g_enc.ndata['x'] = batch.g_enc.ndata['x'].to(device) for j in range(batcher.k): batch.g_dec[j].edata['etype'] = batch.g_dec[j].edata['etype'].to(device) batch.g_dec[j].ndata['pos'] = batch.g_dec[j].ndata['pos'].to(device) batch.g_dec[j].ndata['x'] = batch.g_dec[j].ndata['x'].to(device) output = model(batch, vocab_trg.stoi[MTDataset.EOS_TOKEN], sent_max_len=config['sent_max_len']) for sequence in tensor_to_sequence(vocab_trg.itos, output, batch.n_sent_ctx): print(sequence) if __name__ == '__main__': argparser = argparse.ArgumentParser("machine translation inference") argparser.add_argument('--config', type=str) argparser.add_argument('--gpu', type=int, default=0) args = argparser.parse_args() with open(args.config, 'r') as f: config = yaml.load(f) run(args.gpu, config)
Chapter09/dataservice/tests/test_views.py
surinkim/Python-Microservices-Development
208
121338
import os import unittest import jwt from dataservice.app import app from flask_webtest import TestApp as _TestApp _HERE = os.path.dirname(__file__) with open(os.path.join(_HERE, 'privkey.pem')) as f: _KEY = f.read() def create_token(data): return jwt.encode(data, _KEY, algorithm='RS512') _TOKEN = {'iss': 'runnerly', 'aud': 'runnerly.io'} class TestViews(unittest.TestCase): def setUp(self): self.app = _TestApp(app) self.token = create_token(_TOKEN).decode('ascii') self.headers = {'Authorization': 'Bearer ' + self.token} def test_one(self): resp = self.app.get('/', headers=self.headers) self.assertEqual(resp.status_code, 200)
examples_allennlp/utils/retrieval/retrievers/retriever.py
techthiyanes/luke
467
121357
<reponame>techthiyanes/luke from typing import Tuple import torch from allennlp.common import Registrable class Retriever(Registrable): def _post_process_scores(self, scores: torch.Tensor): raise NotImplementedError def __call__(self, scores: torch.Tensor) -> Tuple[torch.LongTensor, torch.LongTensor]: """ Parameters ---------- scores: torch.Tensor (num_queries, num_targets) """ scores = self._post_process_scores(scores) max_scores, indices = torch.max(scores, dim=1) return max_scores, indices
cluster.py
Seabreg/prowler
103
121418
<filename>cluster.py def compute(hostname): import os valid = "online" breached = False credentials = None fingerprint = None services = None os_match = None if (os.system("ping -c 1 -w 1 " + hostname)) == 0: print("Host", hostname, "is online, starting nmap") from libnmap.process import NmapProcess from libnmap.parser import NmapParser from libnmap.objects.os import NmapOSClass nmproc = NmapProcess(targets=hostname, options="-O") rc=nmproc.run() parsed = NmapParser.parse(nmproc.stdout) host = parsed.hosts[0] #print("{0} {1}".format(host.address, " ".join(host.hostnames))) os_match = [] if host.os_fingerprinted: fingerprint = host.os.osmatches print("OS Fingerprint:") for osm in host.os.osmatches: print("Found Match:{0} ({1}%)".format(osm.name, osm.accuracy)) for osc in osm.osclasses: os_match.append(str(osc.description)) print("\tOS Class: {0}".format(osc.description)) else: fingerprint = None services = [] for serv in host.services: services.append(str(serv.port) + "/" + str(serv.service)) print("Open ports:", services) if serv.port == 22: print("------starting credentials test------") import paramiko, time client = paramiko.client.SSHClient() client.load_system_host_keys() client.set_missing_host_key_policy(paramiko.WarningPolicy) uid_list, pwd_list=[], [] f = open('/home/pi/prowler/wordlists/wordlist_1.txt','r') for row in f: split = row.split(" ") uid_list.append(split[0]) pwd_list.append(split[1]) for i, uid in enumerate(uid_list): pwd = pwd_list[i] try: if breached == False: #time.sleep(0.1) # for when SSH connection keeps dropping try: client.connect(hostname,username=uid,password=<PASSWORD>) stdin, stdout, stderr = client.exec_command('ls -l') print("[!] Successfully connected to host", hostname) status = "Poor SSH Credentials" breached = True credentials = [<PASSWORD>, pwd] client.close() except paramiko.AuthenticationException: client.close() #print("Failed to pwn. Trying again...") except Exception as e: print("Failed to pwn, error:", e) except Exception as e: print("Failed to pwn, error:", e) else: valid = "offline" return hostname, os_match, services, breached, valid if __name__ == '__main__': import dispy, time, pika import logging import dispy.httpd print("[i][dispy] Initialising Cluster") #workers = ['192.168.0.133','192.168.0.110' workers = ['192.168.0.170','192.168.0.111', '192.168.0.153','192.168.0.195'] cluster = dispy.JobCluster(compute, nodes=workers, ip_addr='192.168.0.142') http_server = dispy.httpd.DispyHTTPServer(cluster) jobs, test_range = [], [] for i in range(0, 1): for j in range(0, 255): test_range.append("192.168." + str(i) + "." + str(j)) print("[i] Testing " + str(len(test_range)) + " hostnames") connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.queue_declare(queue='scan_results') time.sleep(4) # make sure cluster is connected cluster.print_status() start = time.time() for i, address in enumerate(test_range): # schedule execution of 'compute' on a node (running 'dispynode.py') with a parameter job = cluster.submit(address) job.id = i # optionally associate an ID to job (if needed later) jobs.append(job) # cluster.wait() # waits for all scheduled jobs to finish for job in jobs: try: result = job() hostname, fingerprint, services, breached, valid = result # waits for job to finish and returns results #result_security = str(hostname) + " is " + str(valid) + ". Breached: " str(breached) + " with credentials " + str(credentials) #print(job.ip_addr,":",result_security) #print(os_matches) if valid == "online": message = [hostname, fingerprint, services, breached] print(message) try: channel.basic_publish(exchange='scan_results_exchange', routing_key='scan_results', body=str(message)) print("Message published") except Exception as e: print("[!] Message failed to publish:", str(e)) try: print("Refreshing connection") try: connection.close() except Exception as e: print(e) pass connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.queue_declare(queue='scan_results') except Exception as e: print("Error restarting connection", str(e)) channel.basic_publish(exchange='scan_results_exchange', routing_key='scan_results', body=str(message)) print("Message published successfully (second time)") # print('OS Description : {0}'.format(osclass['osfamily']) for osclass in nmap.Portscanner[job.ip_addr]['osclass']) # other fields of 'job' that may be useful: # print(job.stdout, job.stderr, job.exception, job.ip_addr, job.start_time, job.end_time) else: print(hostname, "is offline") except Exception as e: print("[!]",str(job),"failed with error:",str(e)) print("[+] Debug:", job.stdout, job.stderr, job.exception) connection.close() end = time.time() print("\n","[i] Total time taken =", str(end - start)) cluster.print_status() http_server.shutdown() cluster.close()
python/paddle_fl/mpc/data_utils/data_utils.py
barrierye/PaddleFL
379
121466
<filename>python/paddle_fl/mpc/data_utils/data_utils.py # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This module provide data utilities for PrivC protocol, including data encryption, decryption, share save and loading. """ import abc import six import os import numpy as np import six import paddle import paddle.fluid as fluid import mpc_data_utils as mdu from ..layers import __all__ as all_ops from .op_extra_desc import add_extra_desc # operators that should be skipped when encrypt and decrypt op_to_skip = ['feed', 'fetch', 'scale', 'mpc_init'] # operators that are supported currently for model encryption and decryption supported_mpc_ops = all_ops + ['fill_constant', 'sgd'] + op_to_skip # variables that used as plain variables and need no encryption plain_vars = ['learning_rate_0'] MPC_MODEL_NAME = "__model__.mpc" MODEL_NAME = "__model__" MODEL_SHARE_DIR = "model_share" MPC_OP_PREFIX = "mpc_" @six.add_metaclass(abc.ABCMeta) class DataUtils(object): """ abstract class for data utils. """ def __init__(self): self.SHARE_NUM = None self.PRE_SHAPE = None self.MPC_ONE_SHARE = None def encrypt(self, number): """ Encrypts the plaintext number into secret shares Args: number: float, the number to share Returns: shares of input number """ pass def decrypt(self, shares): """ Reveal plaintext value from raw secret shares Args: shares: shares to reveal from (list) Return: the plaintext number (float) """ pass def make_shares(self, num_array): """ Create raw shares for an array. Args: num_array: the input data array Returns: shares of the num_array in type of ndarray """ old_size = num_array.size flat_num_array = num_array.reshape(old_size,) new_shape = (self.SHARE_NUM, ) + num_array.shape result = np.empty((old_size, self.SHARE_NUM), dtype=np.int64) for idx in six.moves.range(0, old_size): result[idx] = self.encrypt(flat_num_array[idx]) result = result.transpose(1, 0) result = result.reshape(new_shape) return result def get_shares(self, shares, index): """ Build mpc shares from raw shares according to index Args: shares: the input raw share array index: index of the mpc share Returns: mpc shares array corresponding to index """ pass def save_shares(self, share_reader, part_name): """ Combine raw shares to mpc shares, and persists to files. Each mpc share will be put into the corresponding file, e.g., ${part_name}.part[0/1/2]. Args: share_reader: iteratable function object returning a single array of raw shares in shape of [2/3, ...] each time part_name: file name Returns: files with names of ${part_name}.part[0/1/2] """ pass def load_shares(self, part_name, id, shape, append_share_dim=True): """ Load mpc shares from file with name ${part_name}.part{id} in shape of ${shape}. Args: part_name and id: use to build the file name of ${part_name}.part{id} shape: the shape of output array Returns: iteratable function object returing a share array with give shape each time """ if append_share_dim == True: shape = self.PRE_SHAPE + shape ext = ".part{}".format(id) share_size = np.prod(shape) * 8 # size of int64 in bytes def reader(): """ internal reader """ with open(part_name + ext, 'rb') as part_file: share = part_file.read(share_size) while share: yield np.frombuffer(share, dtype=np.int64).reshape(shape) share = part_file.read(share_size) return reader def reconstruct(self, shares, type=np.float): """ Reconstruct plaintext from mpc shares Args: shares: all the mpc share arrays, where the share slices are stored rowwise type: expected type of final result Returns: plaintext array reconstructed from the mpc shares, with shape of (dims) """ pass def batch(self, reader, batch_size, drop_last=False): """ A batch reader return a batch data meeting the shared data's shape. E.g., a batch arrays with shape (3, 4) of batch_size will be transform to (batch_size, 3, 4). Args: see paddle.batch method Returns: the batched reader """ pass def transpile(self, program=None): """ Transpile Paddle program into MPC program. Args: program: The plain Paddle model program, default to default_main_program. Returns: The MPC program. """ if program is None: program = fluid.default_main_program() place = fluid.CPUPlace() if program.num_blocks > 1: raise NotImplementedError( "The number of blocks in current main program" "is {}, which is not supported in this version." .format(program.num_blocks())) global_block = program.global_block() g_scope = fluid.global_scope() mpc_vars_names = _transpile_type_and_shape(block=global_block) # encrypt tensor values for each variable in mpc_var_names for mpc_var_name in mpc_vars_names: if g_scope.find_var(mpc_var_name) is not None: param = g_scope.find_var(mpc_var_name) param_tensor = np.array(param.get_tensor()) mpc_var = global_block.var(mpc_var_name) if mpc_var_name not in plain_vars: param.get_tensor()._set_dims(mpc_var.shape) # process initialized params that should be 0 set_tensor_value = np.array([param_tensor, param_tensor]).astype(np.int64) param.get_tensor().set(set_tensor_value, place) #else: # param.get_tensor().set(np.array(param.get_tensor()).astype('float64'), place) # trigger sync to replace old ops. op_num = global_block.desc.op_size() _ = global_block.desc.append_op() global_block.desc._remove_op(op_num, op_num + 1) return program def _transpile_type_and_shape(self, block): """ Transpile dtype and shape of plain variables into MPC dtype and shape. And transpile op type into MPC type. Args: block: The block in Paddle program. Returns: A set of variable names to encrypt. """ mpc_vars_names = set() # store variable name in mpc_vars_names, and encrypt dtype and shape for var_name in block.vars: var = block.var(var_name) if var.name != "feed" and var.name != "fetch": mpc_vars_names.add(var.name) if var_name in plain_vars: # var.desc.set_dtype(fluid.framework.convert_np_dtype_to_dtype_(np.float64)) continue encrypted_var_shape = self.PRE_SHAPE + var.shape var.desc.set_dtype(fluid.framework.convert_np_dtype_to_dtype_(np.int64)) var.desc.set_shape(encrypted_var_shape) # encrypt op type, or other attrs if needed for op in block.ops: if _is_supported_op(op.type): if op.type == 'fill_constant': op._set_attr(name='shape', val=MPC_ONE_SHARE.shape) # set default MPC value for fill_constant OP op._set_attr(name='value', val=MPC_ONE_SHARE) op._set_attr(name='dtype', val=3) elif op.type in self.op_to_skip: pass else: add_extra_desc(op, block) op.desc.set_type(MPC_OP_PREFIX + op.type) else: raise NotImplementedError('Operator {} is unsupported.' .format(op.type)) return mpc_vars_names def encrypt_model(self, program, mpc_model_dir=None, model_filename=None): """ Encrypt model, and save encrypted model (i.e., MPC model shares) into files for MPC training, updating, or inference. Args: program: The loaded program of paddle model. mpc_model_dir: The directory that save MPC model shares. model_filename: The name of MPC model file, default is __model__.mpc. """ place = fluid.CPUPlace() exe = fluid.Executor(place) # TODO(xukun): support more blocks. Tips: may just adding "for loop" for all blocks. if program.num_blocks > 1: raise NotImplementedError( "The number of blocks in current main program" "is {}, which is not supported in this version." .format(program.num_blocks())) global_block = program.global_block() g_scope = fluid.global_scope() mpc_vars_names = _transpile_type_and_shape(global_block) # encrypt tensor values for each variable in mpc_var_names for mpc_var_name in mpc_vars_names: if g_scope.find_var(mpc_var_name) is not None: param = g_scope.find_var(mpc_var_name) param_tensor = np.array(param.get_tensor()) param_tensor_shares = self.make_shares(param_tensor) mpc_var = global_block.var(mpc_var_name) for idx in six.moves.range(self.SHARE_NUM): if mpc_var_name not in plain_vars: param.get_tensor()._set_dims(mpc_var.shape) set_tensor_value = self.get_shares(param_tensor_shares, idx) param.get_tensor().set(set_tensor_value, place) #else: # param.get_tensor().set(np.array(param.get_tensor()).astype('float64'), place) param_share_dir = os.path.join( mpc_model_dir, MODEL_SHARE_DIR + "_" + str(idx)) fluid.io.save_vars( executor=exe, dirname=param_share_dir, vars=[mpc_var], filename=mpc_var_name) # trigger sync to replace old ops. op_num = global_block.desc.op_size() _ = global_block.desc.append_op() global_block.desc._remove_op(op_num, op_num + 1) # save mpc model file model_basename = os.path.basename( model_filename) if model_filename is not None else MPC_MODEL_NAME for idx in six.moves.range(self.SHARE_NUM): model_share_dir = os.path.join(mpc_model_dir, MODEL_SHARE_DIR + "_" + str(idx)) if not os.path.exists(model_share_dir): os.makedirs(model_share_dir) model_name = os.path.join(model_share_dir, model_basename) with open(model_name, "wb") as f: f.write(program.desc.serialize_to_string()) def decrypt_model(self, mpc_model_dir, plain_model_path, mpc_model_filename=None, plain_model_filename=None): """ Reveal a paddle model. Load encrypted model (i.e., MPC model shares) from files and decrypt it into paddle model. Args: mpc_model_dir: The directory of all model shares. plain_model_path: The directory to save revealed paddle model. mpc_model_filename: The name of encrypted model file. plain_model_filename: The name of decrypted model file. """ share_dirs = [] for sub_dir in os.listdir(mpc_model_dir): if not sub_dir.startswith("."): share_dirs.append(os.path.join(mpc_model_dir, sub_dir)) place = fluid.CPUPlace() exe = fluid.Executor(place=place) mpc_model_basename = os.path.basename( mpc_model_filename) if mpc_model_filename is not None else MPC_MODEL_NAME [main_prog, _, _] = fluid.io.load_inference_model( dirname=share_dirs[0], executor=exe, model_filename=mpc_model_basename) if main_prog.num_blocks > 1: raise NotImplementedError( "The number of blocks in current main program" "is {}, which is not supported in this version" .format(main_prog.num_blocks())) global_block = main_prog.global_block() g_scope = fluid.global_scope() # a set storing unique variables to decrypt vars_set = set() # store variable name in vars_set, and decrypt dtype and shape for mpc_var_name in global_block.vars: mpc_var = global_block.var(mpc_var_name) if mpc_var.name != "feed" and mpc_var.name != "fetch": vars_set.add(mpc_var.name) if mpc_var_name in plain_vars: # var.desc.set_dtype(fluid.framework.convert_np_dtype_to_dtype_(np.float64)) continue else: plain_var_shape = mpc_var.shape mpc_var.desc.set_shape(plain_var_shape) mpc_var.desc.set_dtype(fluid.framework.convert_np_dtype_to_dtype_(np.float32)) # remove init op first_mpc_op = global_block.ops[0] if first_mpc_op.type == 'mpc_init': global_block._remove_op(0) # decrypt op type, or other attrs if needed for mpc_op in global_block.ops: # rename ops if str(mpc_op.type).startswith(MPC_OP_PREFIX): new_type = str(mpc_op.type)[len(MPC_OP_PREFIX):] mpc_op.desc.set_type(new_type) elif mpc_op.type == 'fill_constant': mpc_op._set_attr(name='shape', val=(1)) mpc_op._set_attr(name='value', val=1.0) mpc_op._set_attr(name='dtype', val=5) # decrypt tensor values for each variable in vars_set for var_name in vars_set: var = global_block.var(var_name) if g_scope.find_var(var_name) is not None: param = g_scope.find_var(var_name) if var_name in plain_vars: pass else: # reconstruct plaintext param_tensor_shares = self._get_param_all_shares( var_name, share_dirs, mpc_model_basename) param_tensor = reconstruct( param_tensor_shares, type=np.float32) param.get_tensor()._set_dims(var.shape) param.get_tensor().set(param_tensor, place) fluid.io.save_vars( executor=exe, dirname=plain_model_path, vars=[var], filename=var_name) # trigger sync to replace old ops op_num = global_block.desc.op_size() _ = global_block.desc.append_op() global_block.desc._remove_op(op_num, op_num + 1) # save plaintext model file. model_basename = os.path.basename( plain_model_filename) if plain_model_filename is not None else MODEL_NAME if not os.path.exists(plain_model_path): os.makedirs(plain_model_path) model_name = os.path.join(plain_model_path, model_basename) with open(model_name, "wb") as f: f.write(main_prog.desc.serialize_to_string()) def _get_param_all_shares(self, param_name, share_dirs, model_file): """ Get all shares of one parameter from directories. Args: param_name: The name of parameter. share_dirs: The directories which storing model shares. model_file: The name of model file. Returns: ndarray. The loaded shares. """ exe = fluid.Executor(place=fluid.CPUPlace()) param_shares = [] for share_dir in share_dirs: _ = fluid.io.load_inference_model( dirname=share_dir, executor=exe, model_filename=model_file) g_scope = fluid.global_scope() param = g_scope.find_var(param_name) param_tensor = np.array(param.get_tensor()) param_shares.append(param_tensor) return np.array(param_shares, dtype=np.int64) def _is_supported_op(self, op_name): """ Check if op is supported for encryption and decryption. Args: op_name: The name of op. Returns: True if supported. """ if op_name not in supported_mpc_ops: if str(op_name).endswith('_grad'): self._is_supported_op(str(op_name)[:-5]) else: return False return True def load_mpc_model(self, exe, mpc_model_dir, mpc_model_filename, inference=False): """ Load MPC model from files. The loaded program of the model would be inserted init OP and then switched to default_main_program for further MPC procedure. Args: exe: The executor used for loading. mpc_model_dir: The directory of MPC model. mpc_model_filename: The filename of MPC model. inference: Whether the model to load is used for inference. If true, the model to load should be an inference model, and feed_name, fetch_targets would be returned with the loaded program after inserting init OP. Otherwise, after inserting init OP, the loaded program would be switched to default_main_program and returned. Default value is False. Returns: default_main_program if inference is False. Otherwise, default_main_program, feed_name, and fetch_targets would be returned. """ mpc_program, feed_names, fetch_targets = fluid.io.load_inference_model(executor=exe, dirname=mpc_model_dir, model_filename=mpc_model_filename) # find init OP global_block = fluid.default_main_program().global_block() init_op_idx = self._find_init_op_idx(global_block) if init_op_idx < 0: raise RuntimeError('No mpc_init op in global block, ' 'maybe you should use paddle_fl.mpc.init() first.') init_op = global_block.ops[init_op_idx] # find the last feed OP for inserting init OP last_feed_op_idx = self._find_last_feed_op_idx(mpc_program.global_block()) # insert init OP as the first OP of MPC program if no feed OP, # otherwise, insert it after the last feed OP. insert_idx = 0 if last_feed_op_idx < 0 else last_feed_op_idx + 1 loaded_mpc_program = self._insert_init_op(main_prog=mpc_program, init_op=init_op, index=insert_idx) if inference: return loaded_mpc_program, feed_names, fetch_targets else: # switch loaded_mpc_program to default_main_program fluid.framework.switch_main_program(loaded_mpc_program) return fluid.default_main_program() def _find_init_op_idx(self, block): """ Find the index of mpc_init op. Args: block: The block of program. Returns: The index of mpc_init op. """ for idx, op in enumerate(block.ops): if op.type == 'mpc_init': return idx return -1 def _find_last_feed_op_idx(self, block): """ Find the index of the last feed OP. Args: block: The block of program. Returns: The index of the last feed OP. """ feed_idx = -1 for idx, op in enumerate(block.ops): if op.type == 'feed': feed_idx = idx return feed_idx def save_trainable_model(self, exe, model_dir, model_filename=None, program=None): """ Save trainable model, which includes saving program and persistable parameters into files. The saved model can be loaded by fluid.io.load_inference_model for further training or updating. Args: exe: The executor used for saving. model_dir: The directory of model to save. model_filename: The filename of model to save. program: The program to save, default to default_main_program. TODO: can move this to paddle_mpc/python/paddle_fl/mpc/io.py """ if not os.path.exists(model_dir): os.makedirs(model_dir) model_basename = os.path.basename( model_filename) if model_filename is not None else MPC_MODEL_NAME # save program model_name = os.path.join(model_dir, model_basename) if program is None: program = fluid.default_main_program() with open(model_name, "wb") as f: f.write(program.desc.serialize_to_string()) # save parameters fluid.io.save_persistables(executor=exe, dirname=model_dir, main_program=program) def _insert_init_op(self, main_prog, init_op, index): """ Insert init OP into main_prog according to the index. Args: main_prog: The program to insert init OP. init_op: The init OP for MPC running. index: The place that the init_op to insert. Returns: The program after inserting init OP. """ main_prog.global_block()._sync_with_cpp() op_desc = main_prog.global_block().desc._insert_op(index) mpc_init_op = fluid.framework.Operator(block=main_prog.global_block(), desc=op_desc, type=init_op.type, attrs=init_op.all_attrs()) main_prog.global_block().ops.insert(index, mpc_init_op) return main_prog class Aby3DataUtils(DataUtils): """ Aby3DataUtils """ def __init__(self): """ init """ self.SHARE_NUM = 3 self.PRE_SHAPE = (2, ) self.MPC_ONE_SHARE = mdu.aby3_one_share def encrypt(self, number): """ Encrypts the plaintext number into three secret shares Args: number: float, the number to share Returns: three shares of input number """ try: return mdu.aby3_share(number) except Exception as e: raise RuntimeError(e.message) def decrypt(self, shares): """ Reveal plaintext value from raw secret shares Args: shares: shares to reveal from (list) Return: the plaintext number (float) """ try: return mdu.aby3_reveal(shares) except Exception as e: raise RuntimeError(e.message) def get_shares(self, shares, index): """ Build ABY3 shares from raw shares according to index Args: shares: the input raw share array, expected to have shape of [3, ...] index: index of the ABY3 share, should be 0, 1, or 2 Returns: ABY3 shares array corresponding to index, e.g.: [shares[index % 3], shares[(index + 1) %3]] Examples: input_shares: [3, 2, 4], where 3 is the dim of raw shares index: 0 output: [input_shares[0], input_shares[1]], shape = (2, 2, 4) """ if index < 0 or index >= self.SHARE_NUM: raise ValueError("Index should fall in (0..2) but now: {}".format( index)) if shares.size % self.SHARE_NUM != 0 or shares.shape[0] != self.SHARE_NUM: raise ValueError("Shares to split has incorrect shape: {}".format( shares.shape)) first = index % self.SHARE_NUM second = (index + 1) % self.SHARE_NUM return np.array([shares[first], shares[second]], dtype=np.int64) def save_shares(self, share_reader, part_name): """ Combine raw shares to ABY3 shares, and persists to files. Each ABY3 share will be put into the corresponding file, e.g., ${part_name}.part[0..2]. For example, [share0, share1] -> ${part_name}.part0 [share1, share2] -> ${part_name}.part1 [share2, share0] -> ${part_name}.part2 Args: share_reader: iteratable function object returning a single array of raw shares in shape of [3, ...] each time part_name: file name Returns: files with names of ${part_name}.part[0..2] """ exts = [".part0", ".part1", ".part2"] with open(part_name + exts[0], 'wb') as file0, \ open(part_name + exts[1], 'wb') as file1, \ open(part_name + exts[2], 'wb') as file2: files = [file0, file1, file2] for shares in share_reader(): for idx in six.moves.range(0, 3): # 3 parts share = self.get_shares(shares, idx) files[idx].write(share.tostring()) def reconstruct(self, aby3_shares, type=np.float): """ Reconstruct plaintext from ABY3 shares Args: aby3_shares: all the three ABY3 share arrays, each is of shape (2, dims), where the share slices are stored rowwise type: expected type of final result Returns: plaintext array reconstructed from the three ABY3 shares, with shape of (dims) Example: aby3_shares: three ABY3 shares of shape [2, 2] shares[0]: [[a0, b0], [a1, b1]] shares[1]: [[a1, b1], [a2, b2]] shares[2]: [[a2, b2], [a0, b0]] output: [a, b], where a = decrypt(a0, a1, a2), b = decrypt(b0, b1, b2) """ if len(aby3_shares) != self.SHARE_NUM: # should collect shares from 3 parts raise ValueError("Number of aby3 shares should be 3 but was: {}". format(len(aby3_shares))) raw_shares = aby3_shares[:, 0] data_shape = raw_shares.shape[1:] # get rid of the first dim of [3, xxx] data_size = np.prod(data_shape) row_first_raw_shares = raw_shares.reshape(self.SHARE_NUM, data_size).transpose(1, 0) result = np.empty((data_size, ), dtype=type) for idx in six.moves.range(0, data_size): result[idx] = self.decrypt(row_first_raw_shares[idx].tolist()) return result.reshape(data_shape) def batch(self, reader, batch_size, drop_last=False): """ A batch reader return a batch data meeting the shared data's shape. E.g., a batch arrays with shape (2, 3, 4) of batch_size will be transform to (2, batch_size, 3, 4), where the first dim 2 is the number of secret shares in ABY3. Args: see paddle.batch method Returns: the batched reader """ paddle_batch_reader = paddle.batch(reader, batch_size, drop_last) def reshaped_batch_reader(): """ internal reader """ r = paddle_batch_reader() for instance in r: perm = np.arange(0, len(np.array(instance).shape), 1) # permute the first two axes perm[0], perm[1] = perm[1], perm[0] yield np.transpose(instance, perm) return reshaped_batch_reader class PrivcDataUtils(DataUtils): """ PrivcDataUtils """ def __init__(self): """ init """ self.SHARE_NUM = 2 self.PRE_SHAPE = () self.MPC_ONE_SHARE = mdu.privc_one_share def encrypt(self, number): """ Encrypts the plaintext number into two secret shares Args: number: float, the number to share Returns: two shares of input number """ try: return mdu.privc_share(number) except Exception as e: raise RuntimeError(e.message) def decrypt(self, shares): """ Reveal plaintext value from raw secret shares Args: shares: shares to reveal from (list) Return: the plaintext number (float) """ try: return mdu.privc_reveal(shares) except Exception as e: raise RuntimeError(e.message) def get_shares(self, shares, index): """ Build share from raw shares according to index Args: shares: the input raw share array, expected to have shape of [SHARE_NUM, ...] index: index of the privc share, should be 0 or 1 Returns: share corresponding to index, e.g.: shares[index] """ if index < 0 or index >= self.SHARE_NUM: raise ValueError("Index should fall in {0, {}} but now: {}".format( self.SHARE_NUM, index)) if shares.size % self.SHARE_NUM != 0 or shares.shape[0] != self.SHARE_NUM: raise ValueError("Shares to split has incorrect shape: {}".format( shares.shape)) return np.array(shares[index], dtype=np.int64) def save_shares(self, share_reader, part_name): """ Combine raw shares to privc shares, and persists to files. Each privc share will be put into the corresponding file, e.g., ${part_name}.part[0..1]. For example, share0 -> ${part_name}.part0 share1 -> ${part_name}.part1 Args: share_reader: iteratable function object returning a single array of raw shares in shape of [2, ...] each time part_name: file name Returns: files with names of ${part_name}.part[0..1] """ exts = [".part0", ".part1"] with open(part_name + exts[0], 'wb') as file0, \ open(part_name + exts[1], 'wb') as file1: files = [file0, file1] for shares in share_reader(): for idx in six.moves.range(0, 2): share = self.get_shares(shares, idx) files[idx].write(share.tostring()) def reconstruct(self, privc_shares, type=np.float): """ Reconstruct plaintext from privc shares Args: privc_shares: all the two privc share arrays, where the share slices are stored rowwise type: expected type of final result Returns: plaintext array reconstructed from the two privc shares, with shape of (dims) Example: privc_shares: two privc shares of shape [2] shares[0]: [a0, b0] shares[1]: [a1, b1] output: [a, b], where a = decrypt(a0, a1), b = decrypt(b0, b1) """ if len(privc_shares) != self.SHARE_NUM: # should collect shares from 2 parts raise ValueError("Number of privc shares should be 2 but was: {}". format(len(privc_shares))) raw_shares = privc_shares data_shape = raw_shares.shape[1:] # get rid of the first dim of [2, xxx] data_size = np.prod(data_shape) row_first_raw_shares = raw_shares.reshape(self.SHARE_NUM, data_size).transpose(1, 0) result = np.empty((data_size, ), dtype=type) for idx in six.moves.range(0, data_size): result[idx] = self.decrypt(row_first_raw_shares[idx].tolist()) return result.reshape(data_shape) def batch(self, reader, batch_size, drop_last=False): """ A batch reader return a batch data meeting the shared data's shape. E.g., a batch arrays with shape (3, 4) of batch_size will be transform to (batch_size, 3, 4). Args: see paddle.batch method Returns: the batched reader """ paddle_batch_reader = paddle.batch(reader, batch_size, drop_last) def reshaped_batch_reader(): """ internal reader """ r = paddle_batch_reader() for instance in r: yield np.array(instance) return reshaped_batch_reader data_utils_list = { 'aby3': Aby3DataUtils(), 'privc': PrivcDataUtils()} def get_datautils(protocol_name): return data_utils_list[protocol_name]
tasks.py
gohar94/nums
111
121471
"""Command-line tools to facilitate the development of NumS.""" from invoke import task from nums.core.version import __version__ @task def tag(c): """Tag the current version of NumS and push the tag upstream.""" result = c.run("git tag", hide=True) versions = result.stdout.splitlines() current_version = "v" + __version__ if current_version in versions: if not accepts(f"{current_version} is already tagged. Force update?"): return c.run(f"git tag {current_version} -f") c.run("git push --tags -f") else: if not accepts(f"Tag {current_version} and push upstream?"): return c.run(f"git tag {current_version}") c.run("git push --tags") def accepts(message: str) -> bool: """Ask the user to respond 'y' or 'n' to the specified prompt. If the user supplies an invalid response (i.e., neither 'y' or 'n'), then the user is re-asked the question. Args: message: The question to ask the user. Returns: True if the user responds 'y' and false if the user responds 'n'. """ response = None while response not in {"y", "n"}: print(f"{message} (y/n)", end=" ") response = input() assert response in {"y", "n"} return response == "y"
qf_lib/backtesting/events/time_event/single_time_event/schedule_order_execution_event.py
webclinic017/qf-lib
198
121482
# Copyright 2016-present CERN – European Organization for Nuclear Research # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from collections import defaultdict from datetime import datetime from typing import Dict, List from qf_lib.backtesting.events.time_event.single_time_event.single_time_event import SingleTimeEvent from qf_lib.backtesting.execution_handler.simulated_executor import SimulatedExecutor from qf_lib.backtesting.order.order import Order class ScheduleOrderExecutionEvent(SingleTimeEvent): _datetimes_to_data = defaultdict(lambda: defaultdict(list)) # type: Dict[datetime, Dict[SimulatedExecutor, List[Order]]] @classmethod def schedule_new_event(cls, date_time: datetime, executor_to_orders_dict: Dict[SimulatedExecutor, List[Order]]): """ Schedules new event by adding the (date_time, data) pair to the _datetimes_to_data dictionary. It assumes data has the structure of a dictionary, which maps orders executor instance to orders, which need to be executed. Multiple events can be scheduled for the same time - the orders and order executors will be appended to existing data. """ for order_executor in executor_to_orders_dict.keys(): cls._datetimes_to_data[date_time][order_executor].extend(executor_to_orders_dict[order_executor]) def notify(self, listener) -> None: """ Notifies the listener. """ listener.on_orders_accept(self) @classmethod def get_executors_to_orders_dict(cls, time: datetime) -> Dict[SimulatedExecutor, List[Order]]: """ For an initialized object representing a certain single time event, returns the data associated with this event in the form of a dictionary, with SimulatedExecutor as keys and list of Orders as values. """ return cls._datetimes_to_data[time]
mirage/libs/common/sdr/demodulators.py
tlechien/mirage
123
121491
<reponame>tlechien/mirage<filename>mirage/libs/common/sdr/demodulators.py from mirage.libs.common.sdr.sources import SDRSource from mirage.libs.common.sdr.decoders import SDRDecoder from mirage.libs import utils,io import queue,threading,math ''' This component implements multiple Software Defined Radio demodulators allowing to demodulate an IQ stream to recover packet's data. ''' class SDRDemodulator: ''' This class implements a Sofware Defined Radio demodulator: every specific demodulator has to inherit from this class and implement the ``run`` method. When the demodulator is started, it processes the IQ stream received from the ``SDRSource``, performs the operations needed to demodulate the stream and adds the demodulated packets to the output queue using ``generateOutput`` method. ''' def __init__(self): self.source = None self.count = 0 self.decoders = [] self.running = False self.output = queue.Queue() def setSource(self,source): ''' This method associates a ``SDRSource`` to the demodulator. :param source: source to associate :type source: ``SDRSource`` ''' if isinstance(source,SDRSource): self.source = source def addDecoder(self,decoder): ''' This method associates a ``SDRDecoder`` to the demodulator. :param decoder: decoder to associate :type decoder: ``SDRDecoder`` ''' if isinstance(decoder, SDRDecoder): self.decoders.append(decoder) def getDecoders(self): return self.decoders def removeDecoders(self): ''' This method removes every associated decoders. ''' self.decoders = [] def generateOutput(self,demodulatedData,iqSamples): ''' This method allows to generate an output, by providing the demodulated data and the corresponding IQ. The output will be processed sequentially by every associated decoders, then it is added to the output queue. :param demodulatedData: demodulated data :type demodulatedData: bytes :param iqSamples: IQ samples linked to the demodulated data :type iqSamples: list of complex ''' for d in self.decoders: demodulatedData,iqSamples = d.decode(demodulatedData, iqSamples) if demodulatedData is not None and iqSamples is not None: self.output.put((demodulatedData,iqSamples)) def getOutput(self): ''' This method returns the next demodulated and decoded element from the output queue. :return: tuple of demodulated data and the correspond IQ samples :rtype: (bytes, list of complex) ''' if not self.output.empty(): return self.output.get() else: return None def start(self): ''' This method starts the demodulator. :Example: >>> demodulator.start() ''' self.thread = threading.Thread(target=self.run,daemon=True) self.running = True self.thread.start() def __del__(self): self.stop() def stop(self): ''' This method stops the demodulator. :Example: >>> demodulator.start() ''' self.running = False def run(self): pass class FSK2Demodulator(SDRDemodulator): ''' This demodulator allows to demodulate a 2-Frequency Shift Keying (2-FSK) stream. ''' def __init__(self,samplesPerSymbol=1,samplesBefore=60 , samplesAfter=60,size=8*40,preamble = "01101011011111011001000101110001"): super().__init__() self.samplesPerSymbol = samplesPerSymbol self.samplesBefore = samplesBefore self.samplesAfter = samplesAfter self.size = size self.preamble = preamble self.numberOfBuffers = samplesPerSymbol self.demodBuffer = ["" for i in range(samplesPerSymbol)] def run(self): i = 0 step = 0 if self.source.running: while i >= len(self.source.iqStream) and self.running: utils.wait(seconds=0.001) while self.running: if i < len(self.source.iqStream): i0 = self.source.iqStream[i-1].real q0 = self.source.iqStream[i-1].imag i1 = self.source.iqStream[i].real q1 = self.source.iqStream[i].imag self.demodBuffer[step] += "1" if math.atan2(i0*q1 - q0*i1,i0*i1+q0*q1) > 0 else "0" if len(self.demodBuffer[step]) >= len(self.preamble): if self.preamble != self.demodBuffer[step][:len(self.preamble)]: self.demodBuffer[step] = self.demodBuffer[step][1:] else: if len(self.demodBuffer[step]) == self.size: demodulatedBlock = self.demodBuffer[step] iqBlock = self.source.iqStream[(i-1)-((self.size-1)*self.numberOfBuffers)-self.samplesBefore:i+self.samplesAfter] self.generateOutput(demodulatedBlock,iqBlock) self.source.iqStream = self.source.iqStream[i+1:] i = 1 self.count += 1 for j in range(self.numberOfBuffers): self.demodBuffer[j] = "" step = (step + 1) % self.numberOfBuffers i += 1 else: self.running = False class FasterFSK2Demodulator(SDRDemodulator): ''' This **experimental** demodulator allows to demodulate a 2-Frequency Shift Keying stream. It is an experimental demodulator based on a amplitude filter, which tries to estimate the noise level to demodulate the stream only if the amplitude is above the noise thresold. The main objective of this implementation is to increase the demodulator's speed, however it may miss some packets if the noise thresold is wrong. ''' def __init__(self,samplesPerSymbol=1,samplesBefore=60 , samplesAfter=60,size=8*40,preamble = "01101011011111011001000101110001"): super().__init__() self.samplesPerSymbol = samplesPerSymbol self.samplesBefore = samplesBefore self.samplesAfter = samplesAfter self.size = size self.noiseThresold = None self.preamble = preamble self.numberOfBuffers = samplesPerSymbol self.noiseLevel = 0 self.noiseState = [] self.demodBuffer = ["" for i in range(samplesPerSymbol)] def stop(self): self.running = False self.noiseLevel = 0 self.noiseThresold = None def run(self): i = 0 step = 0 demodulating = False demodulatingCount = 0 if self.source.running: while i >= len(self.source.iqStream) and self.running: utils.wait(seconds=0.00001) while self.running: if i < len(self.source.iqStream): if not demodulating: increment = (self.size*self.numberOfBuffers) // 2 if self.noiseThresold is None: values = [] for j in range(increment,self.source.blockLength // 2,increment): values += [self.source.iqStream[j].imag*self.source.iqStream[j].imag+self.source.iqStream[j].real*self.source.iqStream[j].real] self.noiseThresold = sum(values)/len(values) #io.info("<Experimental Demodulator> Noise thresold: "+str(self.noiseThresold)) else: amplitude = self.source.iqStream[i].real*self.source.iqStream[i].real+self.source.iqStream[i].imag*self.source.iqStream[i].imag if len(self.noiseState) == 10: if self.noiseState.count(False) > self.noiseState.count(True): self.noiseLevel += 0.25 self.noiseState = [] if amplitude > self.noiseThresold*self.noiseLevel: if i - increment > 1: demodulatingCount = self.size * self.numberOfBuffers * 2 demodulating = True i -= increment self.source.iqStream = self.source.iqStream[i-self.samplesBefore:] # test !!! i = self.samplesBefore else: i += increment else: i += increment else: i0 = self.source.iqStream[i-1].real q0 = self.source.iqStream[i-1].imag i1 = self.source.iqStream[i].real q1 = self.source.iqStream[i].imag self.demodBuffer[step] += "1" if math.atan2(i0*q1 - q0*i1,i0*i1+q0*q1) > 0 else "0"# (i0*q1 - i1*q0) if len(self.demodBuffer[step]) >= len(self.preamble): if self.preamble != self.demodBuffer[step][:len(self.preamble)]: self.demodBuffer[step] = self.demodBuffer[step][1:] else: if len(self.demodBuffer[step]) == self.size: demodulatedBlock = self.demodBuffer[step] iqBlock = self.source.iqStream[(i-1)-((self.size-1)*self.numberOfBuffers)-self.samplesBefore:i+self.samplesAfter] self.generateOutput(demodulatedBlock,iqBlock) self.source.iqStream = self.source.iqStream[i+1:] i = 1 self.count += 1 self.noiseState.append(True) for j in range(self.numberOfBuffers): self.demodBuffer[j] = "" demodulating = False step = (step + 1) % self.numberOfBuffers i += 1 demodulatingCount -= 1 if demodulatingCount <= 0: self.noiseState.append(False) for j in range(self.numberOfBuffers): self.demodBuffer[j] = "" demodulating = False self.running = False else: self.running = False
util/model_saver.py
segcv/CascadePSP
606
121520
<reponame>segcv/CascadePSP import os import torch class ModelSaver: def __init__(self, id): if id is None: self.no_log = True print('Saving has been disbaled.') else: self.no_log = False self.save_path = os.path.join('.', 'weights', '%s' % id ) def save_model(self, model, step): if self.no_log: print('Saving has been disabled.') return os.makedirs(self.save_path, exist_ok=True) model_path = os.path.join(self.save_path, 'model_%s' % step) torch.save(model.state_dict(), model_path) print('Model saved to %s.' % model_path)
tests/unit/test_threads.py
dia38/pylink
217
121558
<gh_stars>100-1000 # Copyright 2017 Square, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pylink.threads as threads import unittest class TestThreads(unittest.TestCase): """Unit test for the `threads` submodule.""" def setUp(self): """Called before each test. Performs setup. Args: self (TestThreads): the `TestThreads` instance Returns: `None` """ pass def tearDown(self): """Called after each test. Performs teardown. Args: self (TestThreads): the `TestThreads` instance Returns: `None` """ pass def test_thread(self): """Tests that a thread can be created and joined for a return value. Args: self (TestThreads): the `TestThreads` instance Returns: `None` """ def thread_func(): return 4 def thread_func_with_args(x, y): return (x + y) thread = threads.ThreadReturn(target=thread_func) thread.start() self.assertEqual(4, thread.join()) thread = threads.ThreadReturn(target=thread_func_with_args, args=(2, 3)) thread.start() self.assertEqual(5, thread.join()) if __name__ == '__main__': unittest.main()
ui/operator_ui/oauth.py
Prototik/postgres-operator
2,061
121564
<reponame>Prototik/postgres-operator import os from flask_oauthlib.client import OAuthRemoteApp CREDENTIALS_DIR = os.getenv('CREDENTIALS_DIR', '') class OAuthRemoteAppWithRefresh(OAuthRemoteApp): '''Same as flask_oauthlib.client.OAuthRemoteApp, but always loads client credentials from file.''' def __init__(self, oauth, name, **kwargs): # constructor expects some values, so make it happy.. kwargs['consumer_key'] = 'not-needed-here' kwargs['consumer_secret'] = 'not-needed-here' OAuthRemoteApp.__init__(self, oauth, name, **kwargs) def refresh_credentials(self): with open(os.path.join(CREDENTIALS_DIR, 'authcode-client-id')) as fd: self._consumer_key = fd.read().strip() with open(os.path.join(CREDENTIALS_DIR, 'authcode-client-secret')) as fd: self._consumer_secret = fd.read().strip() @property def consumer_key(self): self.refresh_credentials() return self._consumer_key @property def consumer_secrect(self): self.refresh_credentials() return self._consumer_secret
robot-server/robot_server/service/protocol/environment.py
knownmed/opentrons
235
121565
import os import sys from robot_server.service.protocol import contents from contextlib import contextmanager @contextmanager def protocol_environment(protocol: contents.Contents): """ Context manager used for setting up an environment to run a UploadProtocol. """ old_cwd = os.getcwd() # Change working directory to temp dir os.chdir(protocol.directory.name) # Add temp dir to path after caching path old_path = sys.path.copy() sys.path.append(protocol.directory.name) try: yield contents finally: os.chdir(old_cwd) sys.path = old_path
fna_det/tools/hooks/optimizer.py
BaiYuYuan/FNA
173
121570
import torch from mmcv.runner import OptimizerHook from mmdet.core.utils.dist_utils import allreduce_grads from collections import OrderedDict import torch.distributed as dist from torch._utils import (_flatten_dense_tensors, _unflatten_dense_tensors, _take_tensors) class ArchOptimizerHook(OptimizerHook): def after_train_iter(self, runner): runner.arch_optimizer.zero_grad() if runner.sub_obj_cfg.if_sub_obj: loss_sub_obj = torch.log(runner.outputs['sub_obj']) / \ torch.log(torch.tensor(runner.sub_obj_cfg.log_base)) runner.outputs['loss'] += loss_sub_obj * runner.sub_obj_cfg.sub_loss_factor runner.outputs['loss'].backward() if self.grad_clip is not None: self.clip_grads(runner.model.parameters()) runner.arch_optimizer.step() self.rescale_arch_params(runner.super_backbone) def rescale_arch_params(self, model): """ rescale the architecture parameters that is to add the rescale_value (bias) to the updated architecture parameters to maintain the magnitude of the softmax outputs of non-updated params """ def comp_rescale_value(old_weights, new_weights, index, block_id, branch_id): old_exp_sum = old_weights.exp().sum() new_drop_arch_params = [new_weights[block_id][branch_id][h_idx ] for h_idx in index] new_exp_sum = torch.stack(new_drop_arch_params).exp().sum() rescale_value = torch.log(old_exp_sum / new_exp_sum) return rescale_value if hasattr(model, 'module'): model = model.module alpha_head_index = model.alpha_head_index alpha_head_weights_drop = model.alpha_head_weights_drop alpha_stack_index = model.alpha_stack_index alpha_stack_weights_drop = model.alpha_stack_weights_drop # rescale the arch params for head layers for i, (alpha_head_weights_drop_block, alpha_head_index_block) in enumerate( zip(alpha_head_weights_drop, alpha_head_index)): for j, (alpha_head_weights_drop_branch, alpha_head_index_branch) in enumerate( zip(alpha_head_weights_drop_block, alpha_head_index_block)): rescale_value = comp_rescale_value(alpha_head_weights_drop_branch, model.alpha_head_weights, alpha_head_index_branch, i, j) for idx in alpha_head_index_branch: model.alpha_head_weights[i].data[j][idx] += rescale_value # rescale the arch params for stack layers for i, (alpha_stack_weights_drop_block, alpha_stack_index_block) in enumerate( zip(alpha_stack_weights_drop, alpha_stack_index)): for j, (alpha_stack_weights_drop_branch, alpha_stack_index_branch) in enumerate( zip(alpha_stack_weights_drop_block, alpha_stack_index_block)): rescale_value = comp_rescale_value(alpha_stack_weights_drop_branch, model.alpha_stack_weights, alpha_stack_index_branch, i, j) for idx in alpha_stack_index_branch: model.alpha_stack_weights[i].data[j][idx] += rescale_value class ArchDistOptimizerHook(ArchOptimizerHook): def __init__(self, grad_clip=None, coalesce=True, bucket_size_mb=-1): self.grad_clip = grad_clip self.coalesce = coalesce self.bucket_size_mb = bucket_size_mb def after_train_iter(self, runner): runner.arch_optimizer.zero_grad() if runner.sub_obj_cfg.if_sub_obj: loss_sub_obj = torch.log(runner.outputs['sub_obj']) / \ torch.log(torch.tensor(runner.sub_obj_cfg.log_base)) runner.outputs['loss'] += loss_sub_obj * runner.sub_obj_cfg.sub_loss_factor runner.outputs['loss'].backward() allreduce_grads(runner.model, self.coalesce, self.bucket_size_mb) if self.grad_clip is not None: self.clip_grads(runner.model.parameters()) runner.arch_optimizer.step() # self.rescale_arch_params(runner.super_backbone)
InnerEye/ML/configs/segmentation/HeadAndNeckPaper.py
JacopoTeneggi/InnerEye-DeepLearning
402
121590
<reponame>JacopoTeneggi/InnerEye-DeepLearning # ------------------------------------------------------------------------------------------ # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. # ------------------------------------------------------------------------------------------ import logging import random from typing import Any, Optional from InnerEye.ML.config import SliceExclusionRule, SummedProbabilityRule, equally_weighted_classes from InnerEye.ML.configs.segmentation.HeadAndNeckBase import HeadAndNeckBase from InnerEye.ML.utils.model_metadata_util import generate_random_colours_list # List of structures to segment. The order is important, because different values of num_structures # in the constructor will select different prefixes of the list. STRUCTURE_LIST = ["external", "parotid_l", "parotid_r", "smg_l", "smg_r", "spinal_cord", "brainstem", "globe_l", "globe_r", "mandible", "spc_muscle", "mpc_muscle", "cochlea_l", "cochlea_r", "lens_l", "lens_r", "optic_chiasm", "optic_nerve_l", "optic_nerve_r", "pituitary_gland", "lacrimal_gland_l", "lacrimal_gland_r"] RANDOM_COLOUR_GENERATOR = random.Random(0) COLOURS = generate_random_colours_list(RANDOM_COLOUR_GENERATOR, len(STRUCTURE_LIST)) class HeadAndNeckPaper(HeadAndNeckBase): """ Head and Neck model, as used in the paper. """ def __init__(self, num_structures: Optional[int] = None, **kwargs: Any) -> None: """ Creates a new instance of the class. :param num_structures: number of structures from STRUCTURE_LIST to predict (default: all structures) :param kwargs: Additional arguments that will be passed through to the SegmentationModelBase constructor. """ # Number of structures to predict; if positive but less than the length of STRUCTURE_LIST, the relevant prefix # of STRUCTURE_LIST will be predicted. if (num_structures is not None) and \ (num_structures <= 0 or num_structures > len(STRUCTURE_LIST)): raise ValueError(f"num structures must be between 0 and {len(STRUCTURE_LIST)}") if num_structures is None: logging.info(f'Setting num_structures to: {len(STRUCTURE_LIST)}') num_structures = len(STRUCTURE_LIST) ground_truth_ids = STRUCTURE_LIST[:num_structures] if "ground_truth_ids_display_names" in kwargs: ground_truth_ids_display_names = kwargs.pop("ground_truth_ids_display_names") else: logging.info('Using default ground_truth_ids_display_names') ground_truth_ids_display_names = [f"zz_{x}" for x in ground_truth_ids] if "colours" in kwargs: colours = kwargs.pop("colours") else: logging.info('Using default colours') colours = COLOURS[:num_structures] if "fill_holes" in kwargs: fill_holes = kwargs.pop("fill_holes") else: logging.info('Using default fill_holes') fill_holes = [True] * num_structures # The amount of GPU memory required increases with both the number of structures and the # number of feature channels. The following is a sensible default to avoid out-of-memory, # but you can override is by passing in another (singleton list) value for feature_channels # from a subclass. if "num_feature_channels" in kwargs: num_feature_channels = kwargs.pop("num_feature_channels") else: logging.info('Using default num_feature_channels') num_feature_channels = 32 if num_structures <= 20 else 26 bg_weight = 0.02 if len(ground_truth_ids) > 1 else 0.25 if "class_weights" in kwargs: class_weights = kwargs.pop("class_weights") else: logging.info('Using default class_weights') class_weights = equally_weighted_classes(ground_truth_ids, background_weight=bg_weight) # In case of vertical overlap between brainstem and spinal_cord, we separate them # by converting brainstem voxels to cord, as the latter is clinically more sensitive. # We do the same to separate SPC and MPC; in this case, the direction of change is unimportant, # so we choose SPC-to-MPC arbitrarily. if "slice_exclusion_rules" in kwargs: slice_exclusion_rules = kwargs.pop("slice_exclusion_rules") else: logging.info('Using default slice_exclusion_rules') slice_exclusion_rules = [] if "brainstem" in ground_truth_ids and "spinal_cord" in ground_truth_ids: slice_exclusion_rules.append(SliceExclusionRule("brainstem", "spinal_cord", False)) if "spc_muscle" in ground_truth_ids and "mpc_muscle" in ground_truth_ids: slice_exclusion_rules.append(SliceExclusionRule("spc_muscle", "mpc_muscle", False)) if "optic_chiasm" in ground_truth_ids and "pituitary_gland" in ground_truth_ids: slice_exclusion_rules.append(SliceExclusionRule("optic_chiasm", "pituitary_gland", True)) if "summed_probability_rules" in kwargs: summed_probability_rules = kwargs.pop("summed_probability_rules") else: logging.info('Using default summed_probability_rules') summed_probability_rules = [] if "brainstem" in ground_truth_ids and "spinal_cord" in ground_truth_ids and \ "external" in ground_truth_ids: summed_probability_rules.append(SummedProbabilityRule("spinal_cord", "brainstem", "external")) if "spc_muscle" in ground_truth_ids and "mpc_muscle" in ground_truth_ids and \ "external" in ground_truth_ids: summed_probability_rules.append(SummedProbabilityRule("mpc_muscle", "spc_muscle", "external")) if "optic_chiasm" in ground_truth_ids and "pituitary_gland" in ground_truth_ids and \ "external" in ground_truth_ids: summed_probability_rules.append(SummedProbabilityRule("optic_chiasm", "pituitary_gland", "external")) super().__init__( ground_truth_ids=ground_truth_ids, ground_truth_ids_display_names=ground_truth_ids_display_names, colours=colours, fill_holes=fill_holes, class_weights=class_weights, slice_exclusion_rules=slice_exclusion_rules, summed_probability_rules=summed_probability_rules, num_feature_channels=num_feature_channels, **kwargs)
src/schnetpack/md/utils/__init__.py
giadefa/schnetpack
450
121598
<reponame>giadefa/schnetpack<filename>src/schnetpack/md/utils/__init__.py """ This module contains various utility functions and classes used in combination with :obj:`schnetpack.md`. This includes e.g. unit conversion, loading of molecular dynamics data and the computation of spectra. """ from .basic_utils import * from .md_units import * from .hdf5_data import * from .normal_mode_transformation import * from .spectra import * from .thermostat_utils import *
examples/hacker_news_app.py
dalraf/gpt-2-cloud-run
298
121642
from starlette.applications import Starlette from starlette.responses import UJSONResponse import gpt_2_simple as gpt2 import uvicorn import os app = Starlette(debug=False) sess = gpt2.start_tf_sess(threads=1) gpt2.load_gpt2(sess) @app.route('/', methods=['GET', 'POST']) async def homepage(request): if request.method == 'GET': params = request.query_params elif request.method == 'POST': params = await request.json() text = gpt2.generate(sess, length=100, temperature=float(params.get('temperature', 0.7)), top_k=int(params.get('top_k', 0)), prefix='<|startoftext|>' + params.get('prefix', ''), truncate='<|endoftext|>', include_prefix=str(params.get( 'include_prefix', True)).lower() == 'true', return_as_list=True )[0] # strip <|startoftext|> text = text[len('<|startoftext|>'):] return UJSONResponse({'text': text}) if __name__ == '__main__': uvicorn.run(app, host='0.0.0.0', port=int(os.environ.get('PORT', 8080)))
nni/retiarii/debug_configs.py
dutxubo/nni
9,680
121670
<reponame>dutxubo/nni # we will support tensorflow in future release framework = 'pytorch'
module/gui/geoLGobal.py
Appnet1337/OSINT-SAN
313
121705
import os dirpath = os.getcwd() print("Current working directory is : %s" % dirpath) APP_NAME = 'OSINT SAN Геолокация' #------<IMAGES PATH>------------------------------------------------------------- IMG_FD = 'img' ICO_PATH = os.path.join(dirpath, IMG_FD, "geoIcon.ico") BGIMG_PATH = os.path.join(dirpath, IMG_FD, "background.jpg") DC_POS_PATH = os.path.join(dirpath, "awsRecord.txt") #-------<GLOBAL PARAMTERS>----------------------------------------------------- iCtrlPanel = None # panel to do the control iMapPanel = None # panel to display the google map. iGeoMgr = None # program control manager. iDCPosMgr = None # data ceter position manager.
tests/terraform/checks/resource/azure/test_FunctionAppsEnableAuthentication.py
kylelaker/checkov
4,013
121708
import unittest import hcl2 from checkov.terraform.checks.resource.azure.FunctionAppsEnableAuthentication import check from checkov.common.models.enums import CheckResult class TestFunctionAppsEnableAuthentication(unittest.TestCase): def test_failure_missing_authentication_block(self): hcl_res = hcl2.loads(""" resource "azurerm_function_app" "example" { name = "test-azure-functions" location = "azurerm_resource_group.example.location" resource_group_name = "azurerm_resource_group.example.name" app_service_plan_id = "azurerm_app_service_plan.example.id" storage_account_name = "azurerm_storage_account.example.name" storage_account_access_key = "azurerm_storage_account.example.primary_access_key" } """) resource_conf = hcl_res['resource'][0]['azurerm_function_app']['example'] scan_result = check.scan_resource_conf(conf=resource_conf) self.assertEqual(CheckResult.FAILED, scan_result) def test_success(self): hcl_res = hcl2.loads(""" resource "azurerm_function_app" "example" { name = "test-azure-functions" location = "azurerm_resource_group.example.location" resource_group_name = "azurerm_resource_group.example.name" app_service_plan_id = "azurerm_app_service_plan.example.id" storage_account_name = "azurerm_storage_account.example.name" storage_account_access_key = "azurerm_storage_account.example.primary_access_key" auth_settings { enabled = true } } """) resource_conf = hcl_res['resource'][0]['azurerm_function_app']['example'] scan_result = check.scan_resource_conf(conf=resource_conf) self.assertEqual(CheckResult.PASSED, scan_result) def test_failed(self): hcl_res = hcl2.loads(""" resource "azurerm_function_app" "example" { name = "test-azure-functions" location = "azurerm_resource_group.example.location" resource_group_name = "azurerm_resource_group.example.name" app_service_plan_id = "azurerm_app_service_plan.example.id" storage_account_name = "azurerm_storage_account.example.name" storage_account_access_key = "azurerm_storage_account.example.primary_access_key" auth_settings { enabled = false } } """) resource_conf = hcl_res['resource'][0]['azurerm_function_app']['example'] scan_result = check.scan_resource_conf(conf=resource_conf) self.assertEqual(CheckResult.FAILED, scan_result) if __name__ == '__main__': unittest.main()
dirigible/fts/tests/test_2546_ListSheetsOnDashboard.py
EnoX1/dirigible-spreadsheet
168
121800
<reponame>EnoX1/dirigible-spreadsheet<gh_stars>100-1000 # Copyright (c) 2010 Resolver Systems Ltd. # All Rights Reserved # from functionaltest import FunctionalTest, SERVER_IP, snapshot_on_error import key_codes class Test_2546_ListSheetsOnDashboard(FunctionalTest): def rename_current_sheet(self, name): self.selenium.click('id=id_sheet_name') self.wait_for( lambda: self.is_element_present('id=edit-id_sheet_name'), lambda: 'edit sheetname textbox to appear') self.selenium.type('id=edit-id_sheet_name', name) self.human_key_press(key_codes.ENTER) self.wait_for_element_presence('id=saving-id_sheet_name', False) def assert_sheet_is_listed(self, sheet_id, sheet_name=None): if sheet_name is None: sheet_name = 'Sheet %s' % (sheet_id,) expected_url = '/user/%s/sheet/%s/' % (self.get_my_username(), sheet_id) link_text = self.get_text( 'css=a[href="%s"]' % (expected_url,)) # "xpath=//a[contains(@href, '%s')]" % (expected_url,)) self.assertEquals(link_text, sheet_name) @snapshot_on_error def test_list_exists(self): # * Harold logs in to Dirigible. self.login() # * He notes that he is being told that he has no sheets. self.assertTrue( self.is_element_present('id=id_no_sheets_message'), "Could not find 'no sheets' message" ) # * He decides that he wants one, so he clicks on a button to create it. sheet1_id = self.create_new_sheet() # * He clicks 'my account' and goes back to dashboard page # * His new sheet is listed there, with a link to it self.click_link('id_account_link') self.assert_sheet_is_listed(sheet1_id) # He notes that the "no sheets" message is absent. self.assertFalse( self.is_element_present('id=id_no_sheets_message'), "Found 'no sheets' message when it wasn't expected" ) # * He clicks new sheet again sheet2_id = self.create_new_sheet() # * He renames the second sheet self.rename_current_sheet('Snarf') # * He clicks 'my account' and goes back to dashboard page self.click_link('id_account_link') # * Both sheets are listed there self.assert_sheet_is_listed(sheet1_id) self.assert_sheet_is_listed(sheet2_id, 'Snarf')
src/optlang/tests/test_coinor_cbc_interface.py
Wealing/optlang
140
121826
<gh_stars>100-1000 # Copyright (c) 2013 Novo Nordisk Foundation Center for Biosustainability, DTU. # See LICENSE for details. import unittest import json import os import optlang.interface import pickle import copy import sys try: import mip except ImportError as e: if str(e).find('mip') >= 0: class TestMissingDependency(unittest.TestCase): @unittest.skip('Missing dependency - ' + str(e)) def test_fail(self): pass else: raise else: from optlang import coinor_cbc_interface from optlang.tests import abstract_test_cases TESTMODELPATH = os.path.join(os.path.dirname(__file__), 'data/coli_core.json') def same_ex(ex1, ex2): """Compare to expressions for mathematical equality.""" return ex1.simplify() == ex2.simplify() class VariableTestCase(abstract_test_cases.AbstractVariableTestCase): interface = coinor_cbc_interface def test_get_primal(self): self.assertEqual(self.var.primal, None) with open(TESTMODELPATH) as infile: model = self.interface.Model.from_json(json.load(infile)) model.optimize() self.assertEqual(model.status, optlang.interface.OPTIMAL) for var in model.variables: self.assertTrue(var.lb <= round(var.primal, 6) <= var.ub, (var.lb, var.primal, var.ub)) @unittest.skip("COIN-OR Cbc doesn't support variable name change") def test_changing_variable_names_is_reflected_in_the_solver(self): pass @unittest.skip("COIN-OR Cbc doesn't support variable name change") def test_change_name(self): pass def test_set_wrong_type_raises(self): self.assertRaises(ValueError, self.interface.Variable, name="test", type="mayo") self.assertRaises(Exception, setattr, self.var, 'type', 'ketchup') self.model.add(self.var) self.model.update() self.assertRaises(ValueError, setattr, self.var, "type", "mustard") def test_change_type(self): self.var.type = "continuous" self.assertEqual(self.var.lb, None) self.assertEqual(self.var.ub, None) self.var.type = "integer" self.assertEqual(self.var.lb, None) self.assertEqual(self.var.ub, None) self.var.type = "binary" self.assertEqual(self.var.lb, 0) self.assertEqual(self.var.ub, 1) self.var.type = "integer" self.assertEqual(self.var.lb, 0) self.assertEqual(self.var.ub, 1) self.var.type = "continuous" self.assertEqual(self.var.lb, 0) self.assertEqual(self.var.ub, 1) self.var.lb = -1.4 self.var.ub = 1.6 self.var.type = "integer" self.assertEqual(self.var.lb, -1) self.assertEqual(self.var.ub, 2) class ConstraintTestCase(abstract_test_cases.AbstractConstraintTestCase): interface = coinor_cbc_interface def test_get_primal(self): with open(TESTMODELPATH) as infile: self.model = self.interface.Model.from_json(json.load(infile)) self.assertEqual(self.constraint.primal, None) self.model.optimize() for c in self.model.constraints: if c.lb is not None: self.assertTrue(c.lb <= round(c.primal, 6)) if c.ub is not None: self.assertTrue(round(c.primal, 6) <= c.ub) @unittest.skip("COIN-OR Cbc doesn't support constraint name change") def test_change_constraint_name(self): pass @unittest.skip("TODO: Currently not supported") def test_indicator_constraint_support(self): pass class ObjectiveTestCase(abstract_test_cases.AbstractObjectiveTestCase): interface = coinor_cbc_interface def setUp(self): with open(TESTMODELPATH) as infile: self.model = self.interface.Model.from_json(json.load(infile)) self.obj = self.model.objective def test_change_direction(self): from mip import MAXIMIZE, MINIMIZE self.obj.direction = "min" self.assertEqual(self.obj.direction, "min") self.assertEqual(self.model.problem.sense, MINIMIZE) self.obj.direction = "max" self.assertEqual(self.obj.direction, "max") self.assertEqual(self.model.problem.sense, MAXIMIZE) class ConfigurationTestCase(abstract_test_cases.AbstractConfigurationTestCase): interface = coinor_cbc_interface class ModelTestCase(abstract_test_cases.AbstractModelTestCase): interface = coinor_cbc_interface def setUp(self): with open(TESTMODELPATH) as infile: self.model = self.interface.Model.from_json(json.load(infile)) def test_pickle_ability(self): self.model.optimize() value = self.model.objective.value pickle_string = pickle.dumps(self.model) from_pickle = pickle.loads(pickle_string) from_pickle.optimize() self.assertAlmostEqual(value, from_pickle.objective.value) self.assertEqual([(var.lb, var.ub, var.name, var.type) for var in from_pickle.variables.values()], [(var.lb, var.ub, var.name, var.type) for var in self.model.variables.values()]) self.assertEqual([(constr.lb, constr.ub, constr.name) for constr in from_pickle.constraints], [(constr.lb, constr.ub, constr.name) for constr in self.model.constraints]) def test_config_gets_copied_too(self): self.assertEqual(self.model.configuration.verbosity, 0) self.model.configuration.verbosity = 3 model_copy = copy.copy(self.model) self.assertEqual(model_copy.configuration.verbosity, 3) def test_init_from_existing_problem(self): self.assertEqual(len(self.model.variables), len(self.model.problem.vars)) # Divide by 2 because upper and lower constraints are represented seperately self.assertEqual(len(self.model.constraints), len(self.model.problem.constrs) / 2) self.assertEqual(self.model.variables.keys(), [var.name[2:] for var in self.model.problem.vars]) # Collect _lower and _upper constraints constrs= [] for con in self.model.constraints: constrs.append(con.constraint_name(True)) constrs.append(con.constraint_name(False)) self.assertEqual(constrs, [constr.name for constr in self.model.problem.constrs]) def test_add_non_cplex_conform_variable(self): var = self.interface.Variable('12x!!@#5_3', lb=-666, ub=666) self.model.add(var) self.assertTrue(var in self.model.variables.values()) self.assertEqual(self.model.variables['12x!!@#5_3'].lb, -666) self.assertEqual(self.model.variables['12x!!@#5_3'].ub, 666) repickled = pickle.loads(pickle.dumps(self.model)) var_from_pickle = repickled.variables['12x!!@#5_3'] self.assertTrue('v_' + var_from_pickle.name in [var.name for var in self.model.problem.vars]) @unittest.skip("COIN-OR Cbc doesn't support constraint name change") def test_change_constraint_name(self): pass def test_clone_model_with_lp(self): self.assertEqual(self.model.configuration.verbosity, 0) self.model.configuration.verbosity = 3 self.model.optimize() opt = self.model.objective.value cloned_model = self.interface.Model.clone(self.model, use_lp=True) self.assertEqual(cloned_model.configuration.verbosity, 3) self.assertEqual(len(cloned_model.variables), len(self.model.variables)) for var in self.model.variables: self.assertTrue(var.name in cloned_model.variables) var_clone = cloned_model.variables[var.name] self.assertEqual(var_clone.lb, var.lb) self.assertEqual(var_clone.ub, var.ub) self.assertEqual(len(cloned_model.constraints), len(self.model.constraints)) for con in self.model.constraints: self.assertTrue(con.name in cloned_model.constraints) con_clone = cloned_model.constraints[con.name] self.assertEqual(con_clone.lb, con.lb) self.assertEqual(con_clone.ub, con.ub) cloned_model.optimize() self.assertAlmostEqual(cloned_model.objective.value, opt) def test_clone_small_model_with_lp(self): x1 = self.interface.Variable('x1', lb=0) x2 = self.interface.Variable('x2', lb=0) x3 = self.interface.Variable('x3', lb=0) # A constraint is constructed from an expression of variables and a lower and/or upper bound (lb and ub). c1 = self.interface.Constraint(x1 + x2 + x3, ub=100, name='c1') c2 = self.interface.Constraint(10 * x1 + 4 * x2 + 5 * x3, ub=600, name='c2') c3 = self.interface.Constraint(2 * x1 + 2 * x2 + 6 * x3, ub=300, name='c3') # An objective can be formulated obj = self.interface.Objective(10 * x1 + 6 * x2 + 4 * x3, direction='max') # Variables, constraints and objective are combined in a Model object, which can subsequently be optimized. model = self.interface.Model(name='Simple model') model.objective = obj model.add([c1, c2, c3]) model.update() self.assertEqual(model.configuration.verbosity, 0) model.configuration.verbosity = 3 model.optimize() opt = model.objective.value cloned_model = self.interface.Model.clone(model, use_lp=True) self.assertEqual(cloned_model.configuration.verbosity, 3) self.assertEqual(len(cloned_model.variables), len(model.variables)) for var in model.variables: self.assertTrue(var.name in cloned_model.variables) var_clone = cloned_model.variables[var.name] self.assertEqual(var_clone.lb, var.lb) self.assertEqual(var_clone.ub, var.ub) self.assertEqual(len(cloned_model.constraints), len(model.constraints)) for con in model.constraints: self.assertTrue(con.name in cloned_model.constraints) con_clone = cloned_model.constraints[con.name] self.assertEqual(con_clone.lb, con.lb) self.assertEqual(con_clone.ub, con.ub) cloned_model.optimize() self.assertAlmostEqual(cloned_model.objective.value, opt) def test_change_of_constraint_is_reflected_in_low_level_solver(self): x = self.interface.Variable('x', lb=0, ub=1, type='continuous') y = self.interface.Variable('y', lb=-181133.3, ub=12000., type='continuous') z = self.interface.Variable('z', lb=0., ub=10., type='continuous') constr1 = self.interface.Constraint(0.3 * x + 0.4 * y + 66. * z, lb=-100, ub=0., name='test') self.model.add(constr1) self.model.update() self.assertEqual(self.model.problem.constr_by_name('c_test_lower').rhs, 100) self.assertEqual(self.model.problem.constr_by_name('c_test_upper').rhs, 0) constr1.lb = -9 constr1.ub = 10 self.assertEqual(self.model.problem.constr_by_name('c_test_lower').rhs, 9) self.assertEqual(self.model.problem.constr_by_name('c_test_upper').rhs, 10) self.model.optimize() constr1.lb = -90 constr1.ub = 100 self.assertEqual(self.model.problem.constr_by_name('c_test_lower').rhs, 90) self.assertEqual(self.model.problem.constr_by_name('c_test_upper').rhs, 100) def test_constraint_set_problem_to_None_caches_the_latest_expression_from_solver_instance(self): x = self.interface.Variable('x', lb=-83.3, ub=1324422.) y = self.interface.Variable('y', lb=-181133.3, ub=12000.) constraint = self.interface.Constraint(0.3 * x + 0.4 * y, lb=-100, name='test') self.model.add(constraint) z = self.interface.Variable('z', lb=2, ub=5, type='integer') constraint += 77. * z self.model.remove(constraint) self.assertEqual( (constraint.expression - (0.4 * y + 0.3 * x + 77.0 * z)).expand() - 0, 0 ) self.assertEqual(constraint.lb, -100) self.assertEqual(constraint.ub, None) def test_change_of_objective_is_reflected_in_low_level_solver(self): x = self.interface.Variable('x', lb=-83.3, ub=1324422.) y = self.interface.Variable('y', lb=-181133.3, ub=12000.) objective = self.interface.Objective(0.3 * x + 0.4 * y, name='test', direction='max') self.model.objective = objective self.model.update() grb_x = self.model.problem.var_by_name('v_' + x.name) grb_y = self.model.problem.var_by_name('v_' + y.name) expected = {grb_x: 0.3, grb_y: 0.4} self.assertEqual(self.model.problem.objective.expr, expected) z = self.interface.Variable('z', lb=4, ub=4, type='integer') self.model.objective += 77. * z self.model.update() grb_z = self.model.problem.var_by_name('v_' + z.name) expected[grb_z] = 77. self.assertEqual(self.model.problem.objective.expr, expected) def test_change_variable_bounds(self): import random inner_prob = self.model.problem inner_problem_bounds = [(var.lb, var.ub) for var in inner_prob.vars] bounds = [(var.lb, var.ub) for var in self.model.variables.values()] self.assertEqual(bounds, inner_problem_bounds) for var in self.model.variables.values(): var.ub = random.uniform(var.lb, 1000) var.lb = random.uniform(-1000, var.ub) self.model.update() inner_problem_bounds_new = [(var.lb, var.ub) for var in inner_prob.vars] bounds_new = [(var.lb, var.ub) for var in self.model.variables.values()] self.assertNotEqual(bounds, bounds_new) self.assertNotEqual(inner_problem_bounds, inner_problem_bounds_new) self.assertEqual(bounds_new, inner_problem_bounds_new) def test_change_constraint_bounds(self): constraint = self.model.constraints[0] value = 42 constraint.ub = value self.assertEqual(constraint.ub, value) constraint.lb = value self.assertEqual(constraint.lb, value) name = constraint.name self.assertEqual(self.model.problem.constr_by_name('c_' + name + '_upper').rhs, value) self.assertEqual(self.model.problem.constr_by_name('c_' + name + '_lower').rhs, -1*value) def test_initial_objective(self): self.assertIn('BIOMASS_Ecoli_core_w_GAM', self.model.objective.expression.__str__(), ) self.assertEqual( (self.model.objective.expression - ( 1.0 * self.model.variables.BIOMASS_Ecoli_core_w_GAM - 1.0 * self.model.variables.BIOMASS_Ecoli_core_w_GAM_reverse_712e5)).expand() - 0, 0 ) def test_change_objective(self): v1, v2 = self.model.variables.values()[0:2] self.model.objective = self.interface.Objective(1. * v1 + 1. * v2) self.assertIn(v1.name, str(self.model.objective)) self.assertIn(v2.name, str(self.model.objective)) self.assertTrue(same_ex(self.model.objective._expression, 1.*v1 + 1.*v2)) self.model.objective = self.interface.Objective(v1 + v2) self.assertIn(v1.name, str(self.model.objective)) self.assertIn(v2.name, str(self.model.objective)) self.assertTrue(same_ex(self.model.objective._expression, 1.*v1 + 1.*v2)) def test_iadd_objective(self): v2, v3 = self.model.variables.values()[1:3] obj_coeff = sorted(self.model.problem.objective.expr.values()) self.assertEqual(obj_coeff, [-1.0, 1.0]) self.model.objective += 2. * v2 - 3. * v3 obj_coeff = sorted(self.model.problem.objective.expr.values()) self.assertEqual(obj_coeff, [-3.0, -1.0, 1.0, 2.0]) def test_imul_objective(self): self.model.objective *= 2. obj_coeff = sorted(self.model.problem.objective.expr.values()) self.assertEqual(obj_coeff, [-2.0, 2.0]) v2, v3 = self.model.variables.values()[1:3] self.model.objective += 4. * v2 - 3. * v3 self.model.objective *= 3. obj_coeff = sorted(self.model.problem.objective.expr.values()) self.assertEqual(obj_coeff, [-9.0, -6.0, 6.0, 12.0]) self.model.objective *= -1 obj_coeff = sorted(self.model.problem.objective.expr.values()) self.assertEqual(obj_coeff, [-12.0, -6.0, 6.0, 9.0]) def test_set_copied_objective(self): mip_expr= self.model.problem.objective.expr obj_copy = copy.copy(self.model.objective) self.model.objective = obj_copy self.assertEqual(self.model.objective.direction, "max") self.assertEqual(mip_expr, self.model.problem.objective.expr) @unittest.skip("CBC-MIP timeout is flaky around 0") def test_timeout(self): pass def test_set_linear_coefficients_objective(self): self.model.objective.set_linear_coefficients({self.model.variables.BIOMASS_Ecoli_core_w_GAM: 666.}) var = self.model.problem.var_by_name('v_' + self.model.variables.BIOMASS_Ecoli_core_w_GAM.name) self.assertEqual(self.model.problem.objective.expr[var], 666.) def test_set_linear_coefficients_constraint(self): constraint = self.model.constraints[0] coeff_dict = constraint.expression.as_coefficients_dict() self.assertEqual(coeff_dict[self.model.variables.GAPD_reverse_459c1], -1.0) constraint.set_linear_coefficients({self.model.variables.GAPD_reverse_459c1: 666.}) coeff_dict = constraint.expression.as_coefficients_dict() self.assertEqual(coeff_dict[self.model.variables.GAPD_reverse_459c1], 666.) def test_coinor_cbc_coefficient_dict(self): x = self.interface.Variable("x") c = self.interface.Constraint(2 ** x, lb=0, sloppy=True) obj = self.interface.Objective(2 ** x, sloppy=True) model = self.interface.Model() self.assertRaises(Exception, setattr, model, "objective", obj) self.assertRaises(Exception, model._add_constraint, c) c = self.interface.Constraint(0, lb=0) obj = self.interface.Objective(0) model.add(c) model.objective = obj self.assertEqual(model.optimize(), optlang.interface.OPTIMAL) @unittest.skip('TODO: fix. Not working correctly') def test_integer_variable_dual(self): from functools import partial model = self.interface.Model() x = self.interface.Variable("x", lb=0) y = self.interface.Variable("y", lb=0) c = self.interface.Constraint(x + y, ub=1) model.add(c) model.objective = self.interface.Objective(x) model.optimize() self.assertEqual(y.dual, -1) x.type = "integer" model.optimize() # TODO: investigate. abstract test case has y. What should the # behavior be? self.assertRaises(ValueError, partial(getattr, x, "dual")) x.type = "continuous" model.optimize() self.assertEqual(y.dual, -1) self.assertEqual(x.dual, 0) @unittest.skip('TODO: fix. Not working correctly') def test_integer_constraint_dual(self): pass @unittest.skip('TODO: fix. Not working correctly') def test_integer_batch_duals(self): pass def test_relax_with_knapsack(self): p = [10, 13, 18, 31, 7, 15] w = [11, 15, 20, 35, 10, 33] c, I = 47, range(len(w)) x = [self.interface.Variable(type='binary', name='x{}'.format(i)) for i in I] obj = self.interface.Objective(sum(p[i] * x[i] for i in I), direction='max') c1 = self.interface.Constraint(sum(w[i] * x[i] for i in I), ub=c) model = self.interface.Model(name='knapsack') model.objective = obj model.add([c1]) model.configuration.relax = True status = model.optimize() self.assertTrue(model.problem.relax) self.assertEqual(model.status, 'optimal') self.assertTrue(model.objective.value >= 41.0) def test_max_nodes_max_solutions_with_knapsack(self): p = [10, 13, 18, 31, 7, 15] w = [11, 15, 20, 35, 10, 33] c, I = 47, range(len(w)) x = [self.interface.Variable(type='binary', name='x{}'.format(i)) for i in I] obj = self.interface.Objective(sum(p[i] * x[i] for i in I), direction='max') c1 = self.interface.Constraint(sum(w[i] * x[i] for i in I), ub=c) model = self.interface.Model(name='knapsack') model.objective = obj model.add([c1]) model.configuration.max_nodes = 0 model.configuration.max_solutions = 0 status = model.optimize() self.assertEqual(model.problem.max_nodes, 0) self.assertEqual(model.problem.max_solutions, 0) self.assertEqual(model.status, 'feasible') model.configuration.max_solutions = 10 status = model.optimize() self.assertEqual(model.problem.max_solutions, 10) self.assertEqual(model.status, 'optimal') def test_threads_cuts_emphasis_with_knapsack(self): p = [10, 13, 18, 31, 7, 15] w = [11, 15, 20, 35, 10, 33] c, I = 47, range(len(w)) x = [self.interface.Variable(type='binary', name='x{}'.format(i)) for i in I] obj = self.interface.Objective(sum(p[i] * x[i] for i in I), direction='max') c1 = self.interface.Constraint(sum(w[i] * x[i] for i in I), ub=c) model = self.interface.Model(name='knapsack') model.objective = obj model.add([c1]) model.configuration.threads = -1 model.configuration.cuts = 1 model.configuration.emphasis = 2 status = model.optimize() self.assertEqual(model.problem.threads, -1) self.assertEqual(model.problem.cuts, 1) self.assertEqual(model.problem.emphasis, 2) self.assertEqual(model.status, 'optimal') class MIPExamples(unittest.TestCase): interface = coinor_cbc_interface def test_constant_objective(self): x1 = self.interface.Variable('x1', lb=0, ub=5) c1 = self.interface.Constraint(x1, lb=-10, ub=10, name='c1') obj = self.interface.Objective(1) model = self.interface.Model() model.objective = obj model.add(c1) model.optimize() self.assertEqual(model.status, 'optimal') self.assertEqual(model.objective.value, 1.0) def test_knapsack(self): p = [10, 13, 18, 31, 7, 15] w = [11, 15, 20, 35, 10, 33] c, I = 47, range(len(w)) x = [self.interface.Variable(type='binary', name='x{}'.format(i)) for i in I] obj = self.interface.Objective(sum(p[i] * x[i] for i in I), direction='max') c1 = self.interface.Constraint(sum(w[i] * x[i] for i in I), ub=c) model = self.interface.Model(name='knapsack') model.objective = obj model.add([c1]) status = model.optimize() self.assertEqual(model.status, 'optimal') self.assertEqual(model.objective.value, 41.0) primal_values = [val for val in model.primal_values.values()] self.assertEqual(primal_values, [1, 0, 0, 1, 0, 0]) selected = [i for i in I if x[i].primal >= 0.99] self.assertEqual(selected, [0, 3]) def test_travelling_salesman(self): from itertools import product # names of places to visit places = ['Antwerp', 'Bruges', 'C-Mine', 'Dinant', 'Ghent', 'Grand-Place de Bruxelles', 'Hasselt', 'Leuven', 'Mechelen', 'Mons', 'Montagne de Bueren', 'Namur', 'Remouchamps', 'Waterloo'] # distances in an upper triangular matrix dists = [[83, 81, 113, 52, 42, 73, 44, 23, 91, 105, 90, 124, 57], [161, 160, 39, 89, 151, 110, 90, 99, 177, 143, 193, 100], [90, 125, 82, 13, 57, 71, 123, 38, 72, 59, 82], [123, 77, 81, 71, 91, 72, 64, 24, 62, 63], [51, 114, 72, 54, 69, 139, 105, 155, 62], [70, 25, 22, 52, 90, 56, 105, 16], [45, 61, 111, 36, 61, 57, 70], [23, 71, 67, 48, 85, 29], [74, 89, 69, 107, 36], [117, 65, 125, 43], [54, 22, 84], [60, 44], [97], []] # number of nodes and list of vertices n, V = len(dists), set(range(len(dists))) # distances matrix c = [[0 if i == j else dists[i][j-i-1] if j > i else dists[j][i-j-1] for j in V] for i in V] # binary variables indicating if arc (i,j) is used on the route or not x = [[self.interface.Variable(type='binary', name='x_i={}_j={}_arc'.format(i, j)) for j in V] for i in V] # continuous variable to prevent subtours: each city will have a # different sequential id in the planned route except the first one y = [self.interface.Variable(name='x{}'.format(i)) for i in V] # objective function: minimize the distance obj = self.interface.Objective(sum(c[i][j]*x[i][j] for i in V for j in V), direction='min') # constraint : leave each city only once cons = [] for i in V: cons.append(self.interface.Constraint(sum(x[i][j] for j in V - {i}), lb=1, ub=1)) # constraint : enter each city only once for i in V: cons.append(self.interface.Constraint(sum(x[j][i] for j in V - {i}), lb=1, ub=1)) # subtour elimination for (i, j) in product(V - {0}, V - {0}): if i != j: cons.append(self.interface.Constraint(y[i] - (n+1)*x[i][j] - y[j], lb=-1*n)) model = self.interface.Model(name='travelling_salesman') model.objective = obj model.add(cons) model.optimize() self.assertEqual(model.status, 'optimal') self.assertEqual(model.objective.value, 547.0)
dnsdb_common/dal/models/deploy_history.py
baiyongjie/open_dnsdb
378
121874
<reponame>baiyongjie/open_dnsdb<filename>dnsdb_common/dal/models/deploy_history.py # -*- coding: utf-8 -*- from . import AuditTimeMixin from .. import db class DeployHistory(db.Model, AuditTimeMixin): __tablename__ = 'tb_deploy_history' id = db.Column(db.Integer, primary_key=True) rtx_id = db.Column(db.String(50), nullable=False) deploy_desc = db.Column(db.Text, nullable=False) state = db.Column(db.String(50), nullable=False)
blendergltf/exporters/image.py
iamthad/blendergltf
343
121880
<reponame>iamthad/blendergltf<gh_stars>100-1000 import base64 import os import struct import zlib import bpy from .base import BaseExporter from .common import ( Buffer, Reference, SimpleID, ) EXT_MAP = {'BMP': 'bmp', 'JPEG': 'jpg', 'PNG': 'png', 'TARGA': 'tga'} class ImageExporter(BaseExporter): gltf_key = 'images' blender_key = 'images' @classmethod def check(cls, state, blender_data): errors = [] if blender_data.size[0] == 0: errors.append('x dimension is 0') if blender_data.size[1] == 0: errors.append('y dimension is 0') if blender_data.type != 'IMAGE': errors.append('not an image {}'.format(blender_data.type)) if errors: err_list = '\n\t'.join(errors) print( 'Unable to export image {} due to the following errors:\n\t{}' .format(blender_data.name, err_list) ) return False return True @classmethod def default(cls, state, blender_data): return { 'name': blender_data.name, 'uri': '' } @classmethod def image_to_data_uri(cls, image): width = image.size[0] height = image.size[1] buf = bytearray([int(p * 255) for p in image.pixels]) # reverse the vertical line order and add null bytes at the start width_byte_4 = width * 4 raw_data = b''.join(b'\x00' + buf[span:span + width_byte_4] for span in range((height - 1) * width_byte_4, -1, - width_byte_4)) def png_pack(png_tag, data): chunk_head = png_tag + data return (struct.pack("!I", len(data)) + chunk_head + struct.pack("!I", 0xFFFFFFFF & zlib.crc32(chunk_head))) png_bytes = b''.join([ b'\x89PNG\r\n\x1a\n', png_pack(b'IHDR', struct.pack("!2I5B", width, height, 8, 6, 0, 0, 0)), png_pack(b'IDAT', zlib.compress(raw_data, 9)), png_pack(b'IEND', b'')]) return png_bytes @classmethod def export(cls, state, blender_data): path = '' data = None gltf = {'name': blender_data.name} storage_setting = state['settings']['images_data_storage'] image_packed = blender_data.packed_file is not None if image_packed and storage_setting in ['COPY', 'REFERENCE']: if blender_data.file_format in EXT_MAP: # save the file to the output directory gltf['uri'] = '.'.join([blender_data.name, EXT_MAP[blender_data.file_format]]) temp = blender_data.filepath blender_data.filepath = os.path.join( state['settings']['gltf_output_dir'], gltf['uri'] ) blender_data.save() with open(bpy.path.abspath(blender_data.filepath), 'rb') as fin: data = fin.read() blender_data.filepath = temp else: # convert to png and save gltf['uri'] = '.'.join([blender_data.name, 'png']) data = cls.image_to_data_uri(blender_data) path = os.path.join(state['settings']['gltf_output_dir'], gltf['uri']) elif storage_setting == 'COPY': with open(bpy.path.abspath(blender_data.filepath), 'rb') as fin: data = fin.read() gltf['uri'] = bpy.path.basename(blender_data.filepath) path = os.path.join(state['settings']['gltf_output_dir'], gltf['uri']) elif storage_setting == 'REFERENCE': gltf['uri'] = blender_data.filepath.replace('//', '') elif storage_setting == 'EMBED': png_bytes = cls.image_to_data_uri(blender_data) gltf['mimeType'] = 'image/png' if state['settings']['gltf_export_binary']: buf = Buffer(blender_data.name) view_key = buf.add_view(len(png_bytes), 0, None) view = buf.buffer_views[view_key] view['data'] = png_bytes pad = 4 - len(png_bytes) % 4 if pad not in [0, 4]: buf.add_view(pad, 0, None) gltf['bufferView'] = Reference('bufferViews', view_key, gltf, 'bufferView') state['references'].append(gltf['bufferView']) state['buffers'].append(buf) state['input']['buffers'].append(SimpleID('buffer_' + blender_data.name)) else: gltf['uri'] = 'data:image/png;base64,' + base64.b64encode(png_bytes).decode() else: print( 'Encountered unknown option ({}) for images_data_storage setting' .format(storage_setting) ) if path: state['files'][path] = data return gltf
models/discriminator.py
tjtanaa/ml-gsn
202
121919
import math import torch import torch.nn as nn from .layers import ConvLayer2d, ConvResBlock2d, EqualLinear class DiscriminatorHead(nn.Module): def __init__(self, in_channel, disc_stddev=False): super().__init__() self.disc_stddev = disc_stddev stddev_dim = 1 if disc_stddev else 0 self.conv_stddev = ConvLayer2d( in_channel=in_channel + stddev_dim, out_channel=in_channel, kernel_size=3, activate=True ) self.final_linear = nn.Sequential( nn.Flatten(), EqualLinear(in_channel=in_channel * 4 * 4, out_channel=in_channel, activate=True), EqualLinear(in_channel=in_channel, out_channel=1), ) def cat_stddev(self, x, stddev_group=4, stddev_feat=1): perm = torch.randperm(len(x)) inv_perm = torch.argsort(perm) batch, channel, height, width = x.shape x = x[perm] # shuffle inputs so that all views in a single trajectory don't get put together group = min(batch, stddev_group) stddev = x.view(group, -1, stddev_feat, channel // stddev_feat, height, width) stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8) stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2) stddev = stddev.repeat(group, 1, height, width) stddev = stddev[inv_perm] # reorder inputs x = x[inv_perm] out = torch.cat([x, stddev], 1) return out def forward(self, x): if self.disc_stddev: x = self.cat_stddev(x) x = self.conv_stddev(x) out = self.final_linear(x) return out class ConvDecoder(nn.Module): def __init__(self, in_channel, out_channel, in_res, out_res): super().__init__() log_size_in = int(math.log(in_res, 2)) log_size_out = int(math.log(out_res, 2)) self.layers = [] in_ch = in_channel for i in range(log_size_in, log_size_out): out_ch = in_ch // 2 self.layers.append( ConvLayer2d( in_channel=in_ch, out_channel=out_ch, kernel_size=3, upsample=True, bias=True, activate=True ) ) in_ch = out_ch self.layers.append( ConvLayer2d(in_channel=in_ch, out_channel=out_channel, kernel_size=3, bias=True, activate=False) ) self.layers = nn.Sequential(*self.layers) def forward(self, x): return self.layers(x) class StyleDiscriminator(nn.Module): def __init__(self, in_channel, in_res, ch_mul=64, ch_max=512, **kwargs): super().__init__() log_size_in = int(math.log(in_res, 2)) log_size_out = int(math.log(4, 2)) self.conv_in = ConvLayer2d(in_channel=in_channel, out_channel=ch_mul, kernel_size=3) # each resblock will half the resolution and double the number of features (until a maximum of ch_max) self.layers = [] in_channels = ch_mul for i in range(log_size_in, log_size_out, -1): out_channels = int(min(in_channels * 2, ch_max)) self.layers.append(ConvResBlock2d(in_channel=in_channels, out_channel=out_channels, downsample=True)) in_channels = out_channels self.layers = nn.Sequential(*self.layers) self.disc_out = DiscriminatorHead(in_channel=in_channels, disc_stddev=True) self.decoder = ConvDecoder(in_channel=in_channels, out_channel=in_channel, in_res=4, out_res=in_res) def forward(self, x): x = self.conv_in(x) x = self.layers(x) out = self.disc_out(x) recon = self.decoder(x) return out, recon
third_party/WebKit/Source/build/scripts/make_css_primitive_value_unit_trie.py
google-ar/chromium
777
121941
<gh_stars>100-1000 #!/usr/bin/env python # Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import sys import in_generator import trie_builder import template_expander class UnitTrieWriter(in_generator.Writer): defaults = { 'unit_type': None } def __init__(self, in_file_paths): super(UnitTrieWriter, self).__init__(in_file_paths) self._units = {entry['name']: entry['unit_type'] for entry in self.in_file.name_dictionaries} self._outputs = { 'CSSPrimitiveValueUnitTrie.cpp': self.generate_implementation } @template_expander.use_jinja('CSSPrimitiveValueUnitTrie.cpp.tmpl') def generate_implementation(self): return { 'length_tries': trie_builder.trie_list_by_str_length(self._units) } if __name__ == '__main__': in_generator.Maker(UnitTrieWriter).main(sys.argv)
Cheetah/Tests/Unicode.py
yegorich/cheetah3
111
121966
<filename>Cheetah/Tests/Unicode.py # -*- encoding: utf8 -*- from glob import glob import os from shutil import rmtree import tempfile import unittest from Cheetah.Compiler import Compiler from Cheetah.Template import Template from Cheetah import CheetahWrapper from Cheetah.compat import PY2, unicode, load_module_from_file class CommandLineTest(unittest.TestCase): def createAndCompile(self, source): fd, sourcefile = tempfile.mkstemp() os.close(fd) os.remove(sourcefile) sourcefile = sourcefile.replace('-', '_') if PY2: fd = open('%s.tmpl' % sourcefile, 'w') else: fd = open('%s.tmpl' % sourcefile, 'w', encoding='utf-8') fd.write(source) fd.close() wrap = CheetahWrapper.CheetahWrapper() wrap.main(['cheetah', 'compile', '--encoding=utf-8', '--settings=encoding="utf-8"', '--quiet', '--nobackup', sourcefile]) module_name = os.path.split(sourcefile)[1] module = load_module_from_file( module_name, module_name, sourcefile + '.py') template = getattr(module, module_name) os.remove('%s.tmpl' % sourcefile) for sourcefile_py in glob('%s.py*' % sourcefile): # *.py[co] os.remove(sourcefile_py) __pycache__ = os.path.join(os.path.dirname(sourcefile), '__pycache__') if os.path.exists(__pycache__): # PY3 rmtree(__pycache__) return template class JBQ_UTF8_Test1(unittest.TestCase): def runTest(self): t = Template.compile(source="""Main file with |$v| $other""") otherT = Template.compile(source="Other template with |$v|") other = otherT() t.other = other t.v = u'Unicode String' t.other.v = u'Unicode String' assert unicode(t()) class JBQ_UTF8_Test2(unittest.TestCase): def runTest(self): t = Template.compile(source="""Main file with |$v| $other""") otherT = Template.compile(source="Other template with |$v|") other = otherT() t.other = other t.v = u'Unicode String with eacute é' t.other.v = u'Unicode String' assert unicode(t()) class JBQ_UTF8_Test3(unittest.TestCase): def runTest(self): t = Template.compile(source="""Main file with |$v| $other""") otherT = Template.compile(source="Other template with |$v|") other = otherT() t.other = other t.v = u'Unicode String with eacute é' t.other.v = u'Unicode String and an eacute é' assert unicode(t()) class JBQ_UTF8_Test4(unittest.TestCase): def runTest(self): t = Template.compile(source="""#encoding utf-8 Main file with |$v| and eacute in the template é""") t.v = 'Unicode String' assert unicode(t()) class JBQ_UTF8_Test5(unittest.TestCase): def runTest(self): t = Template.compile(source="""#encoding utf-8 Main file with |$v| and eacute in the template é""") t.v = u'Unicode String' assert unicode(t()) class JBQ_UTF8_Test6(unittest.TestCase): def runTest(self): source = """#encoding utf-8 #set $someUnicodeString = u"Bébé" Main file with |$v| and eacute in the template é""" t = Template.compile(source=source) t.v = u'Unicode String' assert unicode(t()) class JBQ_UTF8_Test7(CommandLineTest): def runTest(self): source = """#encoding utf-8 #set $someUnicodeString = u"Bébé" Main file with |$v| and eacute in the template é""" template = self.createAndCompile(source) template.v = u'Unicode String' assert unicode(template()) class JBQ_UTF8_Test8(CommandLineTest): def testStaticCompile(self): source = """#encoding utf-8 #set $someUnicodeString = u"Bébé" $someUnicodeString""" template = self.createAndCompile(source)() a = unicode(template) if PY2: a = a.encode("utf-8") self.assertEqual("Bébé", a) def testDynamicCompile(self): source = """#encoding utf-8 #set $someUnicodeString = u"Bébé" $someUnicodeString""" template = Template(source=source) a = unicode(template) if PY2: a = a.encode("utf-8") self.assertEqual("Bébé", a) class EncodeUnicodeCompatTest(unittest.TestCase): """ Taken initially from Red Hat's bugzilla #529332 https://bugzilla.redhat.com/show_bug.cgi?id=529332 """ def runTest(self): t = Template("""Foo ${var}""", filter='EncodeUnicode') t.var = u"Text with some non-ascii characters: åäö" rc = t.respond() assert isinstance(rc, unicode), \ ('Template.respond() should return unicode', rc) rc = str(t) assert isinstance(rc, str), \ ('Template.__str__() should return a UTF-8 encoded string', rc) class Unicode_in_SearchList_Test(CommandLineTest): def test_BasicASCII(self): source = '''This is $adjective''' template = self.createAndCompile(source) assert template and issubclass(template, Template) template = template(searchList=[{'adjective': u'neat'}]) assert template.respond() def test_Thai(self): # The string is something in Thai source = '''This is $foo $adjective''' template = self.createAndCompile(source) assert template and issubclass(template, Template) template = template( searchList=[{ 'foo': 'bar', 'adjective': u'\u0e22\u0e34\u0e19\u0e14\u0e35\u0e15' u'\u0e49\u0e2d\u0e19\u0e23\u0e31\u0e1a' }]) assert template.respond() def test_Thai_utf8(self): utf8 = '\xe0\xb8\xa2\xe0\xb8\xb4\xe0\xb8\x99\xe0' \ '\xb8\x94\xe0\xb8\xb5\xe0\xb8\x95\xe0\xb9\x89\xe0' \ '\xb8\xad\xe0\xb8\x99\xe0\xb8\xa3\xe0\xb8\xb1\xe0\xb8\x9a' source = '''This is $adjective''' template = self.createAndCompile(source) assert template and issubclass(template, Template) template = template(searchList=[{'adjective': utf8}]) assert template.respond() class InlineSpanishTest(unittest.TestCase): def setUp(self): super(InlineSpanishTest, self).setUp() self.template = ''' <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <title>Pagina del vendedor</title> </head> <body> $header <h2>Bienvenido $nombre.</h2> <br /><br /><br /> <center> Usted tiene $numpedidos_noconf <a href="">pedidós</a> sin confirmar. <br /><br /> Bodega tiene fecha para $numpedidos_bodega <a href="">pedidos</a>. </center> </body> </html> ''' # noqa if PY2: # In PY3 templates are already unicode def test_failure(self): """ Test a template lacking a proper #encoding tag """ self.assertRaises(UnicodeDecodeError, Template, self.template, searchList=[{'header': '', 'nombre': '', 'numpedidos_bodega': '', 'numpedidos_noconf': ''}]) def test_success(self): """ Test a template with a proper #encoding tag """ template = '#encoding utf-8\n%s' % self.template template = Template(template, searchList=[{'header': '', 'nombre': '', 'numpedidos_bodega': '', 'numpedidos_noconf': ''}]) self.assertTrue(unicode(template)) class CompilerTest(unittest.TestCase): def test_compiler_str(self): """ Test Compiler.__str__ """ source = """#encoding utf-8 #set $someUnicodeString = u"Bébé" $someUnicodeString""" compiler = Compiler(source) self.assertIsInstance(str(compiler), str) self.assertEqual(compiler.getModuleEncoding(), 'utf-8')
libraries/botframework-streaming/botframework/streaming/transport/web_socket/web_socket_transport.py
andreikop/botbuilder-python
388
121983
<gh_stars>100-1000 # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. import traceback from typing import List from botframework.streaming.transport import TransportReceiverBase, TransportSenderBase from .web_socket import WebSocket from .web_socket_message_type import WebSocketMessageType from .web_socket_close_status import WebSocketCloseStatus from .web_socket_state import WebSocketState class WebSocketTransport(TransportReceiverBase, TransportSenderBase): def __init__(self, web_socket: WebSocket): self._socket = web_socket @property def is_connected(self): # TODO: mock logic return self._socket.status == WebSocketState.OPEN async def close(self): # TODO: mock logic if self._socket.status == WebSocketState.OPEN: try: await self._socket.close( WebSocketCloseStatus.NORMAL_CLOSURE, "Closed by the WebSocketTransport", ) except Exception: # pylint: disable=pointless-string-statement """ Any exception thrown here will be caused by the socket already being closed, which is the state we want to put it in by calling this method, which means we don't care if it was already closed and threw an exception when we tried to close it again. """ traceback.print_exc() # TODO: might need to remove offset and count if no segmentation possible # TODO: considering to create a BFTransportBuffer class to abstract the logic of binary buffers adapting to # current interfaces async def receive( self, buffer: List[int], offset: int = 0, count: int = None ) -> int: try: if self._socket: result = await self._socket.receive() buffer_index = offset result_length = count if count is not None else len(result.data) for result_index in range(result_length): buffer[buffer_index] = result.data[result_index] buffer_index += 1 if result.message_type == WebSocketMessageType.CLOSE: await self._socket.close( WebSocketCloseStatus.NORMAL_CLOSURE, "Socket closed" ) # Depending on ws implementation library next line might not be necessary if self._socket.status == WebSocketState.CLOSED: self._socket.dispose() return result_length except Exception as error: # Exceptions of the three types below will also have set the socket's state to closed, which fires an # event consumers of this class are subscribed to and have handling around. Any other exception needs to # be thrown to cause a non-transport-connectivity failure. raise error # TODO: might need to remove offset and count if no segmentation possible (or put them in BFTransportBuffer) async def send(self, buffer: List[int], offset: int = 0, count: int = None) -> int: try: if self._socket: await self._socket.send( buffer[offset:count] if count is not None else buffer, WebSocketMessageType.BINARY, True, ) return count or len(buffer) except Exception as error: # Exceptions of the three types below will also have set the socket's state to closed, which fires an # event consumers of this class are subscribed to and have handling around. Any other exception needs to # be thrown to cause a non-transport-connectivity failure. traceback.print_exc() raise error return 0
leetcode.com/python/198_House_Robber.py
vansh-tiwari/coding-interview-gym
713
121986
<filename>leetcode.com/python/198_House_Robber.py # # # Recursive + memo (top-down) # class Solution(object): # def rob(self, nums): # """ # :type nums: List[int] # :rtype: int # """ # cache = [-1] * len(nums) # return self.robHelper(nums, len(nums) - 1, cache) # # def robHelper(self, nums, currentHouse, cache): # if currentHouse < 0: # return 0 # if cache[currentHouse] >= 0: # return cache[currentHouse] # robbedMoney = max(self.robHelper(nums, currentHouse - 2, cache) + nums[currentHouse], # self.robHelper(nums, currentHouse - 1, cache)) # cache[currentHouse] = robbedMoney # return robbedMoney # Iterative + 2 variables (bottom-up) class Solution(object): def rob(self, nums): """ :type nums: List[int] :rtype: int """ if len(nums) <= 0: return 0 previousRobbedMoney, currentRobbedMoney = 0, nums[0] for i in range(1, len(nums)): currentRobbedMoneyHolder = currentRobbedMoney currentRobbedMoney = max(nums[i] + previousRobbedMoney, currentRobbedMoney) previousRobbedMoney = currentRobbedMoneyHolder return currentRobbedMoney sol = Solution() nums = [1,2,3,1] out = sol.rob(nums) print("Res: ", out)
maro/cli/grass/lib/services/node_api_server/root.py
yangboz/maro
598
121988
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. """ A Flask server for MARO Node API Server. Hosted by gunicorn at systemd. """ from flask import Flask from .blueprints.containers import blueprint as container_blueprint from .blueprints.status import blueprint as status_blueprint app = Flask(__name__) app.url_map.strict_slashes = False # Blueprints related app.register_blueprint(blueprint=container_blueprint) app.register_blueprint(blueprint=status_blueprint)
Lib/test/test_compiler/testcorpus/02_expr_rel.py
diogommartins/cinder
1,886
121990
<reponame>diogommartins/cinder<gh_stars>1000+ a == b a != b a < b a <= b a > b a >= b a is b a is not b a in b a not in b
lldb/test/API/dotest.py
medismailben/llvm-project
2,338
122025
<reponame>medismailben/llvm-project #!/usr/bin/env python if __name__ == "__main__": import use_lldb_suite import lldbsuite.test lldbsuite.test.run_suite()
symposion/reviews/migrations/0002_auto_20150812_0920.py
azkarmoulana/pycon
154
122050
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('reviews', '0001_initial'), ] operations = [ migrations.AlterField( model_name='notificationtemplate', name='from_address', field=models.EmailField(max_length=254), ), migrations.AlterField( model_name='resultnotification', name='from_address', field=models.EmailField(max_length=254), ), migrations.AlterField( model_name='resultnotification', name='to_address', field=models.EmailField(max_length=254), ), ]
src/DataJoin/data_join/data_block_maker.py
huangwei19/9nfl
103
122081
# Copyright 2020 The 9nFL Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 import logging import os import uuid import tensorflow.compat.v1 as tf from google.protobuf import text_format from tensorflow.compat.v1 import gfile from DataJoin.common import data_join_service_pb2 as data_join_pb from DataJoin.utils.process_manager import tf_record_iterator_factory, data_block_meta_file_name_wrap, \ block_id_wrap, data_block_file_name_wrap, partition_id_wrap from DataJoin.utils.base import get_host_ip import requests from DataJoin.config import HEADERS, HTTP_SERVICE_PORT, removed_items_nums_from_buffer host_ip = get_host_ip() mode = os.environ.get("MODE", None) def save_data_block_info(meta_path, block_path): action = getattr(requests, 'POST'.lower(), None) data = {'dfs_data_block_meta': meta_path, 'dfs_data_block': block_path} url = "http://{0}:{1}/v1/parse/data/block/meta".format(str(host_ip), HTTP_SERVICE_PORT) response = action(url=url, json=data, headers=HEADERS) res = response.json() logging.info('request result is :%s' % res) class DataBlockMaker(object): tmp_file_path_counter = 0 def __init__(self, data_block_dir_name, data_source_name, partition_id, data_block_index, example_num_threshold=None): self._data_source_name = data_source_name self._data_block_manager = None self._saved_example_num = 0 self._partition_id = partition_id self._data_block_meta = data_join_pb.DataBlockMeta() self._data_block_meta.partition_id = partition_id self._data_block_meta.data_block_index = data_block_index self._data_block_meta.follower_restart_index = 0 self._example_num_threshold = example_num_threshold self._data_block_dir_name = data_block_dir_name self._tmp_file_path = self._make_tmp_file_path() self._tf_record_writer = tf.io.TFRecordWriter(self._tmp_file_path) def build_data_block_manager(self, data_block_manager): self._data_block_manager = data_block_manager def save(self, data_record, example_id, event_time): self._tf_record_writer.write(data_record) self._data_block_meta.example_ids.append(example_id) if self._saved_example_num == 0: self._data_block_meta.start_time = event_time self._data_block_meta.end_time = event_time else: if event_time < self._data_block_meta.start_time: self._data_block_meta.start_time = event_time if event_time > self._data_block_meta.end_time: self._data_block_meta.end_time = event_time self._saved_example_num += 1 def init_maker_by_input_meta(self, data_block_meta): self._partition_id = data_block_meta.partition_id self._example_num_threshold = None self._data_block_meta = data_block_meta def set_restart_data_join_index(self, restart_data_join_index): self._data_block_meta.follower_restart_index = restart_data_join_index def is_data_block_exceed_threshold(self): if (self._example_num_threshold is not None and len(self._data_block_meta.example_ids) >= self._example_num_threshold): return True return False def save_data_record(self, record): self._tf_record_writer.write(record) self._saved_example_num += 1 def _make_tmp_file_path(self): tmp_file_name = str(uuid.uuid1()) + '-{}.tmp'.format(self.tmp_file_path_counter) self.tmp_file_path_counter += 1 return os.path.join(self._obtain_data_block_dir(), tmp_file_name) def _make_data_block_meta(self): meta_file_path_tmp = self._make_tmp_file_path() with tf.io.TFRecordWriter(meta_file_path_tmp) as meta_writer: meta_writer.write(text_format.MessageToString(self._data_block_meta).encode()) if self._data_block_manager is not None: meta_file_path = self._data_block_manager.update_data_block_meta( meta_file_path_tmp, self._data_block_meta ) else: meta_file_name = data_block_meta_file_name_wrap(self._data_source_name, self._partition_id, self._data_block_meta.data_block_index) meta_file_path = os.path.join(self._obtain_data_block_dir(), meta_file_name) gfile.Rename(meta_file_path_tmp, meta_file_path) return meta_file_path def data_block_finalizer(self): assert self._saved_example_num == len(self._data_block_meta.example_ids) self._tf_record_writer.close() if len(self._data_block_meta.example_ids) > 0: self._data_block_meta.block_id = block_id_wrap(self._data_source_name, self._data_block_meta) data_block_path = os.path.join( self._obtain_data_block_dir(), data_block_file_name_wrap( self._data_source_name, self._data_block_meta ) ) gfile.Rename(self._tmp_file_path, data_block_path, True) meta_path = self._make_data_block_meta() if mode == "distribute": save_data_block_info(meta_path, data_block_path) return self._data_block_meta gfile.Remove(self._tmp_file_path) return None def __del__(self): if self._tf_record_writer is not None: del self._tf_record_writer def _obtain_data_block_dir(self): return os.path.join( self._data_block_dir_name, partition_id_wrap(self._partition_id) )
rkqc/make.py
clairechingching/ScaffCC
158
122089
<reponame>clairechingching/ScaffCC<filename>rkqc/make.py #!/usr/bin/env python import subprocess, sys tee="tee -a" #append ROOT_DIR=sys.path[0] script_args = sys.argv script_name = script_args[0] def failure(): print ("couldn't parse arguments. Try "+ script_name +" -h") sys.exit(1); if len(sys.argv) == 1: failure() script_args.pop(0) script = script_args.pop(0); validScripts = ["bootstrap", "build", "clean"] validScriptsDesc =[ "initializes the revkit directory and libraries", "builds the algorithms", "cleans the revkit directory"] if script in ("-h", "--help"): print ("valid scripts are: " + ', '.join(validScripts)) for x in range (0, len(validScripts)): print ("- " + validScripts[x] + ": " + validScriptsDesc[x]) print ("Take a look at doc/README for further information.") sys.exit(2) elif script in (validScripts): SCRIPTS_DIR = ROOT_DIR+"/scripts/" LOG_DIR=ROOT_DIR + "/log" LOGFILE_SUFFIX=".log" LOGFILE=LOG_DIR + "/" + script + LOGFILE_SUFFIX ERRFILE=LOG_DIR + "/" + script + "_error" + LOGFILE_SUFFIX init = subprocess.Popen([SCRIPTS_DIR + "init" + " " + LOGFILE + " " + ERRFILE], shell=True ) if init.wait() != 0: print ("init error") sys.exit(1); proc = subprocess.Popen([SCRIPTS_DIR + script + " " +( ' '.join(script_args))], stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True ) out = subprocess.Popen([tee + " " + LOGFILE], stdin=proc.stdout, shell=True ) err = subprocess.Popen([tee + " " + ERRFILE], stdin=proc.stderr, shell=True ) exit(proc.wait()) #exit with the return code of the script else: failure()
tests/data/10.json.py
lemon24/reader
205
122145
<filename>tests/data/10.json.py import datetime from reader import Content from reader import Enclosure from reader._types import EntryData from reader._types import FeedData feed = FeedData( url='{}10.json'.format(url_base), version='json10', ) entries = []
pycwr/core/PyartRadar.py
aliny2003/pycwr
144
122183
""" ## pyart radar object pyart.core.radar ================ A general central radial scanning (or dwelling) instrument class. .. autosummary:: :toctree: generated/ _rays_per_sweep_data_factory _gate_data_factory _gate_lon_lat_data_factory _gate_altitude_data_factory .. autosummary:: :toctree: generated/ :template: dev_template.rst Radar """ # the code for Radar Object in this file were adapted from pyart by <NAME>. & <NAME>. # https://github.com/ARM-DOE/pyart from __future__ import print_function import numpy as np import sys from ..configure.pyart_config import get_metadata from ..configure.pyart_lazydict import LazyLoadDict from .transforms import antenna_vectors_to_cartesian, cartesian_to_geographic class Radar(object): """ A class for storing antenna coordinate radar data. The structure of the Radar class is based on the CF/Radial Data file format. Global attributes and variables (section 4.1 and 4.3) are represented as a dictionary in the metadata attribute. Other required and optional variables are represented as dictionaries in a attribute with the same name as the variable in the CF/Radial standard. When a optional attribute not present the attribute has a value of None. The data for a given variable is stored in the dictionary under the 'data' key. Moment field data is stored as a dictionary of dictionaries in the fields attribute. Sub-convention variables are stored as a dictionary of dictionaries under the meta_group attribute. Refer to the attribute section for information on the parameters. Attributes ---------- time : dict Time at the center of each ray. range : dict Range to the center of each gate (bin). fields : dict of dicts Moment fields. metadata : dict Metadata describing the instrument and data. scan_type : str Type of scan, one of 'ppi', 'rhi', 'sector' or 'other'. If the scan volume contains multiple sweep modes this should be 'other'. latitude : dict Latitude of the instrument. longitude : dict Longitude of the instrument. altitude : dict Altitude of the instrument, above sea level. altitude_agl : dict or None Altitude of the instrument above ground level. If not provided this attribute is set to None, indicating this parameter not available. sweep_number : dict The number of the sweep in the volume scan, 0-based. sweep_mode : dict Sweep mode for each mode in the volume scan. fixed_angle : dict Target angle for thr sweep. Azimuth angle in RHI modes, elevation angle in all other modes. sweep_start_ray_index : dict Index of the first ray in each sweep relative to the start of the volume, 0-based. sweep_end_ray_index : dict Index of the last ray in each sweep relative to the start of the volume, 0-based. rays_per_sweep : LazyLoadDict Number of rays in each sweep. The data key of this attribute is create upon first access from the data in the sweep_start_ray_index and sweep_end_ray_index attributes. If the sweep locations needs to be modified, do this prior to accessing this attribute or use :py:func:`init_rays_per_sweep` to reset the attribute. target_scan_rate : dict or None Intended scan rate for each sweep. If not provided this attribute is set to None, indicating this parameter is not available. rays_are_indexed : dict or None Indication of whether ray angles are indexed to a regular grid in each sweep. If not provided this attribute is set to None, indicating ray angle spacing is not determined. ray_angle_res : dict or None If rays_are_indexed is not None, this provides the angular resolution of the grid. If not provided or available this attribute is set to None. azimuth : dict Azimuth of antenna, relative to true North. Azimuth angles are recommended to be expressed in the range of [0, 360], but other representations are not forbidden. elevation : dict Elevation of antenna, relative to the horizontal plane. Elevation angles are recommended to be expressed in the range of [-180, 180], but other representations are not forbidden. gate_x, gate_y, gate_z : LazyLoadDict Location of each gate in a Cartesian coordinate system assuming a standard atmosphere with a 4/3 Earth's radius model. The data keys of these attributes are create upon first access from the data in the range, azimuth and elevation attributes. If these attributes are changed use :py:func:`init_gate_x_y_z` to reset. gate_longitude, gate_latitude : LazyLoadDict Geographic location of each gate. The projection parameter(s) defined in the `projection` attribute are used to perform an inverse map projection from the Cartesian gate locations relative to the radar location to longitudes and latitudes. If these attributes are changed use :py:func:`init_gate_longitude_latitude` to reset the attributes. projection : dic or str Projection parameters defining the map projection used to transform from Cartesian to geographic coordinates. The default dictionary sets the 'proj' key to 'pyart_aeqd' indicating that the native Py-ART azimuthal equidistant projection is used. This can be modified to specify a valid pyproj.Proj projparams dictionary or string. The special key '_include_lon_0_lat_0' is removed when interpreting this dictionary. If this key is present and set to True, which is required when proj='pyart_aeqd', then the radar longitude and latitude will be added to the dictionary as 'lon_0' and 'lat_0'. gate_altitude : LazyLoadDict The altitude of each radar gate as calculated from the altitude of the radar and the Cartesian z location of each gate. If this attribute is changed use :py:func:`init_gate_altitude` to reset the attribute. scan_rate : dict or None Actual antenna scan rate. If not provided this attribute is set to None, indicating this parameter is not available. antenna_transition : dict or None Flag indicating if the antenna is in transition, 1 = yes, 0 = no. If not provided this attribute is set to None, indicating this parameter is not available. rotation : dict or None The rotation angle of the antenna. The angle about the aircraft longitudinal axis for a vertically scanning radar. tilt : dict or None The tilt angle with respect to the plane orthogonal (Z-axis) to aircraft longitudinal axis. roll : dict or None The roll angle of platform, for aircraft right wing down is positive. drift : dict or None Drift angle of antenna, the angle between heading and track. heading : dict or None Heading (compass) angle, clockwise from north. pitch : dict or None Pitch angle of antenna, for aircraft nose up is positive. georefs_applied : dict or None Indicates whether the variables have had georeference calculation applied. Leading to Earth-centric azimuth and elevation angles. instrument_parameters : dict of dicts or None Instrument parameters, if not provided this attribute is set to None, indicating these parameters are not avaiable. This dictionary also includes variables in the radar_parameters CF/Radial subconvention. radar_calibration : dict of dicts or None Instrument calibration parameters. If not provided this attribute is set to None, indicating these parameters are not available ngates : int Number of gates (bins) in a ray. nrays : int Number of rays in the volume. nsweeps : int Number of sweep in the volume. """ def __init__(self, time, _range, fields, metadata, scan_type, latitude, longitude, altitude, sweep_number, sweep_mode, fixed_angle, sweep_start_ray_index, sweep_end_ray_index, azimuth, elevation, altitude_agl=None, target_scan_rate=None, rays_are_indexed=None, ray_angle_res=None, scan_rate=None, antenna_transition=None, instrument_parameters=None, radar_calibration=None, rotation=None, tilt=None, roll=None, drift=None, heading=None, pitch=None, georefs_applied=None, ): if 'calendar' not in time: time['calendar'] = 'gregorian' self.time = time self.range = _range self.fields = fields self.metadata = metadata self.scan_type = scan_type self.latitude = latitude self.longitude = longitude self.altitude = altitude self.altitude_agl = altitude_agl # optional self.sweep_number = sweep_number self.sweep_mode = sweep_mode self.fixed_angle = fixed_angle self.sweep_start_ray_index = sweep_start_ray_index self.sweep_end_ray_index = sweep_end_ray_index self.target_scan_rate = target_scan_rate # optional self.rays_are_indexed = rays_are_indexed # optional self.ray_angle_res = ray_angle_res # optional self.azimuth = azimuth self.elevation = elevation self.scan_rate = scan_rate # optional self.antenna_transition = antenna_transition # optional self.rotation = rotation # optional self.tilt = tilt # optional self.roll = roll # optional self.drift = drift # optional self.heading = heading # optional self.pitch = pitch # optional self.georefs_applied = georefs_applied # optional self.instrument_parameters = instrument_parameters # optional self.radar_calibration = radar_calibration # optional self.ngates = len(_range['data']) self.nrays = len(time['data']) self.nsweeps = len(sweep_number['data']) self.projection = {'proj': 'pyart_aeqd', '_include_lon_0_lat_0': True} # initalize attributes with lazy load dictionaries self.init_rays_per_sweep() self.init_gate_x_y_z() self.init_gate_longitude_latitude() self.init_gate_altitude() def __getstate__(self): """ Return object's state which can be pickled. """ state = self.__dict__.copy() # copy the objects state # Remove unpicklable entries (those which are lazily loaded del state['rays_per_sweep'] del state['gate_x'] del state['gate_y'] del state['gate_z'] del state['gate_longitude'] del state['gate_latitude'] del state['gate_altitude'] return state def __setstate__(self, state): """ Restore unpicklable entries from pickled object. """ self.__dict__.update(state) self.init_rays_per_sweep() self.init_gate_x_y_z() self.init_gate_longitude_latitude() self.init_gate_altitude() # Attribute init/reset method def init_rays_per_sweep(self): """ Initialize or reset the rays_per_sweep attribute. """ lazydic = LazyLoadDict(get_metadata('rays_per_sweep')) lazydic.set_lazy('data', _rays_per_sweep_data_factory(self)) self.rays_per_sweep = lazydic def init_gate_x_y_z(self): """ Initialize or reset the gate_{x, y, z} attributes. """ gate_x = LazyLoadDict(get_metadata('gate_x')) gate_x.set_lazy('data', _gate_data_factory(self, 0)) self.gate_x = gate_x gate_y = LazyLoadDict(get_metadata('gate_y')) gate_y.set_lazy('data', _gate_data_factory(self, 1)) self.gate_y = gate_y gate_z = LazyLoadDict(get_metadata('gate_z')) gate_z.set_lazy('data', _gate_data_factory(self, 2)) self.gate_z = gate_z def init_gate_longitude_latitude(self): """ Initialize or reset the gate_longitude and gate_latitude attributes. """ gate_longitude = LazyLoadDict(get_metadata('gate_longitude')) gate_longitude.set_lazy('data', _gate_lon_lat_data_factory(self, 0)) self.gate_longitude = gate_longitude gate_latitude = LazyLoadDict(get_metadata('gate_latitude')) gate_latitude.set_lazy('data', _gate_lon_lat_data_factory(self, 1)) self.gate_latitude = gate_latitude def init_gate_altitude(self): """ Initialize the gate_altitude attribute. """ gate_altitude = LazyLoadDict(get_metadata('gate_altitude')) gate_altitude.set_lazy('data', _gate_altitude_data_factory(self)) self.gate_altitude = gate_altitude # private functions for checking limits, etc. def _check_sweep_in_range(self, sweep): """ Check that a sweep number is in range. """ if sweep < 0 or sweep >= self.nsweeps: raise IndexError('Sweep out of range: ', sweep) return # public check functions def check_field_exists(self, field_name): """ Check that a field exists in the fields dictionary. If the field does not exist raise a KeyError. Parameters ---------- field_name : str Name of field to check. """ if field_name not in self.fields: raise KeyError('Field not available: ' + field_name) return # Iterators def iter_start(self): """ Return an iterator over the sweep start indices. """ return (s for s in self.sweep_start_ray_index['data']) def iter_end(self): """ Return an iterator over the sweep end indices. """ return (s for s in self.sweep_end_ray_index['data']) def iter_start_end(self): """ Return an iterator over the sweep start and end indices. """ return ((s, e) for s, e in zip(self.iter_start(), self.iter_end())) def iter_slice(self): """ Return an iterator which returns sweep slice objects. """ return (slice(s, e+1) for s, e in self.iter_start_end()) def iter_field(self, field_name): """ Return an iterator which returns sweep field data. """ self.check_field_exists(field_name) return (self.fields[field_name]['data'][s] for s in self.iter_slice()) def iter_azimuth(self): """ Return an iterator which returns sweep azimuth data. """ return (self.azimuth['data'][s] for s in self.iter_slice()) def iter_elevation(self): """ Return an iterator which returns sweep elevation data. """ return (self.elevation['data'][s] for s in self.iter_slice()) # get methods def get_start(self, sweep): """ Return the starting ray index for a given sweep. """ self._check_sweep_in_range(sweep) return self.sweep_start_ray_index['data'][sweep] def get_end(self, sweep): """ Return the ending ray for a given sweep. """ self._check_sweep_in_range(sweep) return self.sweep_end_ray_index['data'][sweep] def get_start_end(self, sweep): """ Return the starting and ending ray for a given sweep. """ return self.get_start(sweep), self.get_end(sweep) def get_slice(self, sweep): """ Return a slice for selecting rays for a given sweep. """ start, end = self.get_start_end(sweep) return slice(start, end+1) def get_field(self, sweep, field_name, copy=False): """ Return the field data for a given sweep. When used with :py:func:`get_gate_x_y_z` this method can be used to obtain the data needed for plotting a radar field with the correct spatial context. Parameters ---------- sweep : int Sweep number to retrieve data for, 0 based. field_name : str Name of the field from which data should be retrieved. copy : bool, optional True to return a copy of the data. False, the default, returns a view of the data (when possible), changing this data will change the data in the underlying Radar object. Returns ------- data : array Array containing data for the requested sweep and field. """ self.check_field_exists(field_name) s = self.get_slice(sweep) data = self.fields[field_name]['data'][s] if copy: return data.copy() else: return data def get_azimuth(self, sweep, copy=False): """ Return an array of azimuth angles for a given sweep. Parameters ---------- sweep : int Sweep number to retrieve data for, 0 based. copy : bool, optional True to return a copy of the azimuths. False, the default, returns a view of the azimuths (when possible), changing this data will change the data in the underlying Radar object. Returns ------- azimuths : array Array containing the azimuth angles for a given sweep. """ s = self.get_slice(sweep) azimuths = self.azimuth['data'][s] if copy: return azimuths.copy() else: return azimuths def get_elevation(self, sweep, copy=False): """ Return an array of elevation angles for a given sweep. Parameters ---------- sweep : int Sweep number to retrieve data for, 0 based. copy : bool, optional True to return a copy of the elevations. False, the default, returns a view of the elevations (when possible), changing this data will change the data in the underlying Radar object. Returns ------- azimuths : array Array containing the elevation angles for a given sweep. """ s = self.get_slice(sweep) elevation = self.elevation['data'][s] if copy: return elevation.copy() else: return elevation def get_gate_x_y_z(self, sweep, edges=False, filter_transitions=False): """ Return the x, y and z gate locations in meters for a given sweep. With the default parameter this method returns the same data as contained in the gate_x, gate_y and gate_z attributes but this method performs the gate location calculations only for the specified sweep and therefore is more efficient than accessing this data through these attribute. When used with :py:func:`get_field` this method can be used to obtain the data needed for plotting a radar field with the correct spatial context. Parameters ---------- sweep : int Sweep number to retrieve gate locations from, 0 based. edges : bool, optional True to return the locations of the gate edges calculated by interpolating between the range, azimuths and elevations. False (the default) will return the locations of the gate centers with no interpolation. filter_transitions : bool, optional True to remove rays where the antenna was in transition between sweeps. False will include these rays. No rays will be removed if the antenna_transition attribute is not available (set to None). Returns ------- x, y, z : 2D array Array containing the x, y and z, distances from the radar in meters for the center (or edges) for all gates in the sweep. """ azimuths = self.get_azimuth(sweep) elevations = self.get_elevation(sweep) if filter_transitions and self.antenna_transition is not None: sweep_slice = self.get_slice(sweep) valid = self.antenna_transition['data'][sweep_slice] == 0 azimuths = azimuths[valid] elevations = elevations[valid] return antenna_vectors_to_cartesian( self.range['data'], azimuths, elevations, edges=edges) def get_gate_lat_lon_alt(self, sweep, reset_gate_coords=False, filter_transitions=False): """ Return the longitude, latitude and altitude gate locations. Longitude and latitude are in degrees and altitude in meters. With the default parameter this method returns the same data as contained in the gate_latitude, gate_longitude and gate_altitude attributes but this method performs the gate location calculations only for the specified sweep and therefore is more efficient than accessing this data through these attribute. If coordinates have at all, please use the reset_gate_coords parameter. Parameters ---------- sweep : int Sweep number to retrieve gate locations from, 0 based. reset_gate_coords : bool, optional Optional to reset the gate latitude, gate longitude and gate altitude attributes before using them in this function. This is useful when the geographic coordinates have changed and gate latitude, gate longitude and gate altitude need to be reset. filter_transitions : bool, optional True to remove rays where the antenna was in transition between sweeps. False will include these rays. No rays will be removed if the antenna_transition attribute is not available (set to None). Returns ------- lat, lon, alt : 2D array Array containing the latitude, longitude and altitude, for all gates in the sweep. """ s = self.get_slice(sweep) if reset_gate_coords: gate_latitude = LazyLoadDict(get_metadata('gate_latitude')) gate_latitude.set_lazy('data', _gate_lon_lat_data_factory(self, 1)) self.gate_latitude = gate_latitude gate_longitude = LazyLoadDict(get_metadata('gate_longitude')) gate_longitude.set_lazy('data', _gate_lon_lat_data_factory(self, 0)) self.gate_longitude = gate_longitude gate_altitude = LazyLoadDict(get_metadata('gate_altitude')) gate_altitude.set_lazy('data', _gate_altitude_data_factory(self)) self.gate_altitude = gate_altitude lat = self.gate_latitude['data'][s] lon = self.gate_longitude['data'][s] alt = self.gate_altitude['data'][s] if filter_transitions and self.antenna_transition is not None: valid = self.antenna_transition['data'][s] == 0 lat = lat[valid] lon = lon[valid] alt = alt[valid] return lat, lon, alt def get_nyquist_vel(self, sweep, check_uniform=True): """ Return the Nyquist velocity in meters per second for a given sweep. Raises a LookupError if the Nyquist velocity is not available, an Exception is raised if the velocities are not uniform in the sweep unless check_uniform is set to False. Parameters ---------- sweep : int Sweep number to retrieve data for, 0 based. check_uniform : bool True to check to perform a check on the Nyquist velocities that they are uniform in the sweep, False will skip this check and return the velocity of the first ray in the sweep. Returns ------- nyquist_velocity : float Array containing the Nyquist velocity in m/s for a given sweep. """ s = self.get_slice(sweep) try: nyq_vel = self.instrument_parameters['nyquist_velocity']['data'][s] except: raise LookupError('Nyquist velocity unavailable') if check_uniform: if np.any(nyq_vel != nyq_vel[0]): raise Exception('Nyquist velocities are not uniform in sweep') return float(nyq_vel[0]) # Methods def info(self, level='standard', out=sys.stdout): """ Print information on radar. Parameters ---------- level : {'compact', 'standard', 'full', 'c', 's', 'f'}, optional Level of information on radar object to print, compact is minimal information, standard more and full everything. out : file-like, optional Stream to direct output to, default is to print information to standard out (the screen). """ if level == 'c': level = 'compact' elif level == 's': level = 'standard' elif level == 'f': level = 'full' if level not in ['standard', 'compact', 'full']: raise ValueError('invalid level parameter') self._dic_info('altitude', level, out) self._dic_info('altitude_agl', level, out) self._dic_info('antenna_transition', level, out) self._dic_info('azimuth', level, out) self._dic_info('elevation', level, out) print('fields:', file=out) for field_name, field_dic in self.fields.items(): self._dic_info(field_name, level, out, field_dic, 1) self._dic_info('fixed_angle', level, out) if self.instrument_parameters is None: print('instrument_parameters: None', file=out) else: print('instrument_parameters:', file=out) for name, dic in self.instrument_parameters.items(): self._dic_info(name, level, out, dic, 1) self._dic_info('latitude', level, out) self._dic_info('longitude', level, out) print('nsweeps:', self.nsweeps, file=out) print('ngates:', self.ngates, file=out) print('nrays:', self.nrays, file=out) if self.radar_calibration is None: print('radar_calibration: None', file=out) else: print('radar_calibration:', file=out) for name, dic in self.radar_calibration.items(): self._dic_info(name, level, out, dic, 1) self._dic_info('range', level, out) self._dic_info('scan_rate', level, out) print('scan_type:', self.scan_type, file=out) self._dic_info('sweep_end_ray_index', level, out) self._dic_info('sweep_mode', level, out) self._dic_info('sweep_number', level, out) self._dic_info('sweep_start_ray_index', level, out) self._dic_info('target_scan_rate', level, out) self._dic_info('time', level, out) # Airborne radar parameters if self.rotation is not None: self._dic_info('rotation', level, out) if self.tilt is not None: self._dic_info('tilt', level, out) if self.roll is not None: self._dic_info('roll', level, out) if self.drift is not None: self._dic_info('drift', level, out) if self.heading is not None: self._dic_info('heading', level, out) if self.pitch is not None: self._dic_info('pitch', level, out) if self.georefs_applied is not None: self._dic_info('georefs_applied', level, out) # always print out all metadata last self._dic_info('metadata', 'full', out) def _dic_info(self, attr, level, out, dic=None, ident_level=0): """ Print information on a dictionary attribute. """ if dic is None: dic = getattr(self, attr) ilvl0 = '\t' * ident_level ilvl1 = '\t' * (ident_level + 1) if dic is None: print(str(attr) + ': None', file=out) return # make a string summary of the data key if it exists. if 'data' not in dic: d_str = 'Missing' elif not isinstance(dic['data'], np.ndarray): d_str = '<not a ndarray>' else: data = dic['data'] t = (data.dtype, data.shape) d_str = '<ndarray of type: %s and shape: %s>' % t # compact, only data summary if level == 'compact': print(ilvl0 + str(attr) + ':', d_str, file=out) # standard, all keys, only summary for data elif level == 'standard': print(ilvl0 + str(attr) + ':', file=out) print(ilvl1 + 'data:', d_str, file=out) for key, val in dic.items(): if key == 'data': continue print(ilvl1 + key + ':', val, file=out) # full, all keys, full data elif level == 'full': print(str(attr) + ':', file=out) if 'data' in dic: print(ilvl1 + 'data:', dic['data'], file=out) for key, val in dic.items(): if key == 'data': continue print(ilvl1 + key + ':', val, file=out) return def add_field(self, field_name, dic, replace_existing=False): """ Add a field to the object. Parameters ---------- field_name : str Name of the field to add to the dictionary of fields. dic : dict Dictionary contain field data and metadata. replace_existing : bool, optional True to replace the existing field with key field_name if it exists, loosing any existing data. False will raise a ValueError when the field already exists. """ # check that the field dictionary to add is valid if field_name in self.fields and replace_existing is False: err = 'A field with name: %s already exists' % (field_name) raise ValueError(err) if 'data' not in dic: raise KeyError("dic must contain a 'data' key") if dic['data'].shape != (self.nrays, self.ngates): t = (self.nrays, self.ngates) err = "'data' has invalid shape, should be (%i, %i)" % t raise ValueError(err) # add the field self.fields[field_name] = dic return def add_field_like(self, existing_field_name, field_name, data, replace_existing=False): """ Add a field to the object with metadata from a existing field. Note that the data parameter is not copied by this method. If data refers to a 'data' array from an existing field dictionary, a copy should be made within or prior to using this method. If this is not done the 'data' key in both field dictionaries will point to the same NumPy array and modification of one will change the second. To copy NumPy arrays use the copy() method. See the Examples section for how to create a copy of the 'reflectivity' field as a field named 'reflectivity_copy'. Parameters ---------- existing_field_name : str Name of an existing field to take metadata from when adding the new field to the object. field_name : str Name of the field to add to the dictionary of fields. data : array Field data. A copy of this data is not made, see the note above. replace_existing : bool, optional True to replace the existing field with key field_name if it exists, loosing any existing data. False will raise a ValueError when the field already exists. Examples -------- >>> radar.add_field_like('reflectivity', 'reflectivity_copy', ... radar.fields['reflectivity']['data'].copy()) """ if existing_field_name not in self.fields: err = 'field %s does not exist in object' % (existing_field_name) raise ValueError(err) dic = {} for k, v in self.fields[existing_field_name].items(): if k != 'data': dic[k] = v dic['data'] = data return self.add_field(field_name, dic, replace_existing=replace_existing) def extract_sweeps(self, sweeps): """ Create a new radar contains only the data from select sweeps. Parameters ---------- sweeps : array_like Sweeps (0-based) to include in new Radar object. Returns ------- radar : Radar Radar object which contains a copy of data from the selected sweeps. """ # parse and verify parameters sweeps = np.array(sweeps, dtype='int32') if np.any(sweeps > (self.nsweeps - 1)): raise ValueError('invalid sweeps indices in sweeps parameter') if np.any(sweeps < 0): raise ValueError('only positive sweeps can be extracted') def mkdic(dic, select): """ Make a dictionary, selecting out select from data key """ if dic is None: return None d = dic.copy() if 'data' in d and select is not None: d['data'] = d['data'][select].copy() return d # create array of rays which select the sweeps selected and # the number of rays per sweep. ray_count = (self.sweep_end_ray_index['data'] - self.sweep_start_ray_index['data'] + 1)[sweeps] ssri = self.sweep_start_ray_index['data'][sweeps] rays = np.concatenate( [range(s, s+e) for s, e in zip(ssri, ray_count)]).astype('int32') # radar location attribute dictionary selector if len(self.altitude['data']) == 1: loc_select = None else: loc_select = sweeps # create new dictionaries time = mkdic(self.time, rays) _range = mkdic(self.range, None) fields = {} for field_name, dic in self.fields.items(): fields[field_name] = mkdic(dic, rays) metadata = mkdic(self.metadata, None) scan_type = str(self.scan_type) latitude = mkdic(self.latitude, loc_select) longitude = mkdic(self.longitude, loc_select) altitude = mkdic(self.altitude, loc_select) altitude_agl = mkdic(self.altitude_agl, loc_select) sweep_number = mkdic(self.sweep_number, sweeps) sweep_mode = mkdic(self.sweep_mode, sweeps) fixed_angle = mkdic(self.fixed_angle, sweeps) sweep_start_ray_index = mkdic(self.sweep_start_ray_index, None) sweep_start_ray_index['data'] = np.cumsum( np.append([0], ray_count[:-1]), dtype='int32') sweep_end_ray_index = mkdic(self.sweep_end_ray_index, None) sweep_end_ray_index['data'] = np.cumsum(ray_count, dtype='int32') - 1 target_scan_rate = mkdic(self.target_scan_rate, sweeps) azimuth = mkdic(self.azimuth, rays) elevation = mkdic(self.elevation, rays) scan_rate = mkdic(self.scan_rate, rays) antenna_transition = mkdic(self.antenna_transition, rays) # instrument_parameters # Filter the instrument_parameter dictionary based size of leading # dimension, this might not always be correct. if self.instrument_parameters is None: instrument_parameters = None else: instrument_parameters = {} for key, dic in self.instrument_parameters.items(): if dic['data'].ndim != 0: dim0_size = dic['data'].shape[0] else: dim0_size = -1 if dim0_size == self.nsweeps: fdic = mkdic(dic, sweeps) elif dim0_size == self.nrays: fdic = mkdic(dic, rays) else: # keep everything fdic = mkdic(dic, None) instrument_parameters[key] = fdic # radar_calibration # copy all field in radar_calibration as is except for # r_calib_index which we filter based upon time. This might # leave some indices in the "r_calib" dimension not referenced in # the r_calib_index array. if self.radar_calibration is None: radar_calibration = None else: radar_calibration = {} for key, dic in self.radar_calibration.items(): if key == 'r_calib_index': radar_calibration[key] = mkdic(dic, rays) else: radar_calibration[key] = mkdic(dic, None) return Radar(time, _range, fields, metadata, scan_type, latitude, longitude, altitude, sweep_number, sweep_mode, fixed_angle, sweep_start_ray_index, sweep_end_ray_index, azimuth, elevation, altitude_agl=altitude_agl, target_scan_rate=target_scan_rate, scan_rate=scan_rate, antenna_transition=antenna_transition, instrument_parameters=instrument_parameters, radar_calibration=radar_calibration) def _rays_per_sweep_data_factory(radar): """ Return a function which returns the number of rays per sweep. """ def _rays_per_sweep_data(): """ The function which returns the number of rays per sweep. """ return (radar.sweep_end_ray_index['data'] - radar.sweep_start_ray_index['data'] + 1) return _rays_per_sweep_data def _gate_data_factory(radar, coordinate): """ Return a function which returns the Cartesian locations of gates. """ def _gate_data(): """ The function which returns the Cartesian locations of gates. """ ranges = radar.range['data'] azimuths = radar.azimuth['data'] elevations = radar.elevation['data'] cartesian_coords = antenna_vectors_to_cartesian( ranges, azimuths, elevations, edges=False) # load x, y, and z data except for the coordinate in question if coordinate != 0: radar.gate_x['data'] = cartesian_coords[0] if coordinate != 1: radar.gate_y['data'] = cartesian_coords[1] if coordinate != 2: radar.gate_z['data'] = cartesian_coords[2] return cartesian_coords[coordinate] return _gate_data def _gate_lon_lat_data_factory(radar, coordinate): """ Return a function which returns the geographic locations of gates. """ def _gate_lon_lat_data(): """ The function which returns the geographic locations gates. """ x = radar.gate_x['data'] y = radar.gate_y['data'] projparams = radar.projection.copy() if projparams.pop('_include_lon_0_lat_0', False): projparams['lon_0'] = radar.longitude['data'][0] projparams['lat_0'] = radar.latitude['data'][0] geographic_coords = cartesian_to_geographic(x, y, projparams) # set the other geographic coordinate if coordinate == 0: radar.gate_latitude['data'] = geographic_coords[1] else: radar.gate_longitude['data'] = geographic_coords[0] return geographic_coords[coordinate] return _gate_lon_lat_data def _gate_altitude_data_factory(radar): """ Return a function which returns the gate altitudes. """ def _gate_altitude_data(): """ The function which returns the gate altitudes. """ try: return radar.altitude['data'] + radar.gate_z['data'] except ValueError: return np.mean(radar.altitude['data']) + radar.gate_z['data'] return _gate_altitude_data
zhuaxia/downloader.py
yangchuansheng/zhuaxia
332
122236
<reponame>yangchuansheng/zhuaxia # -*- coding:utf-8 -*- from os import path import os import datetime import sys import requests import config, log, util import time import hist_handler import traceback from threadpool import ThreadPool from Queue import Queue from mutagen.id3 import ID3,TRCK,TIT2,TALB,TPE1,APIC,TDRC,COMM,TPOS,USLT from threading import Thread #see download_url_urllib doc import urllib2 import pydoc import codecs LOG = log.get_logger('zxLogger') if config.LANG.upper() == 'CN': import i18n.msg_cn as msg else: import i18n.msg_en as msg #total number of jobs total=0 #the number of finished jobs done=0 #progress dictionary, for progress display. {filename:Download_Progress obj} progress = {} #finsished job to be shown in progress done2show=[] #success/failed song lists (song objects) success_list=[] failed_list=[] class Download_Progress(object): """ a download progress object """ def __init__(self, filename): self.filename = filename self.total_length = 0 self.finished_length =0 self.start = datetime.datetime.now() def percent(self): """calculate downloaded percentage""" return float(self.finished_length) / float(self.total_length) if self.total_length else 0.0 def rate(self): """ calculate downloading rate """ elapsed = datetime.datetime.now() - self.start return float(self.total_length-self.finished_length)/float(elapsed.total_seconds())/1024 class Downloader(Thread): def __init__(self, songs, pool): Thread.__init__(self) self.songs = songs self.pool = pool def run(self): global progress for song in self.songs: self.pool.add_task(download_single_song, song) self.pool.wait_completion() def get_proxy(song): proxy = None if song.handler.need_proxy_pool: proxy = {'http':song.handler.proxy_pool.get_proxy()} elif song.handler.proxy: proxy={'http': song.handler.proxy} return proxy def write_mp3_meta(song): """ write mp3 meta data to downloaded mp3 files @song an Song instance """ id3 = ID3() id3.add(TIT2(encoding=3, text=song.song_name)) id3.add(TALB(encoding=3, text=song.album_name)) id3.add(TPE1(encoding=3, text=song.artist_name)) id3.add(TRCK(encoding=3, text=str(song.track_no))) id3.save(song.abs_path) def print_progress(): """ print progress info """ #the factor of width used for progress bar percent_bar_factor = 0.4 width = util.get_terminal_size()[1] -5 bar_count = (int(width*percent_bar_factor)-2/10) # number of percent bar #line = log.hl(u' %s\n'% ('-'*90), 'cyan') line = log.hl(u' %s\n'% ('+'*width), 'cyan') sep = log.hl(u' %s\n'% ('='*width), 'cyan') sys.stdout.write(u'\x1b[2J\x1b[H') #clear screen sys.stdout.write(line) header = msg.fmt_dl_header % (config.DOWNLOAD_DIR, config.THREAD_POOL_SIZE) #header = util.ljust(header, width) sys.stdout.write(log.hl(u' %s'%header,'warning')) sys.stdout.write(line) fmt_progress = '%s [%s] %.1f%% (%dkib/s)\n' all_p = [] #all progress bars, filled by following for loop sum_percent = 0 # total percent for running job sum_rate = 0 # total rate for running job total_percent = 0 for filename, prog_obj in progress.items(): percent = prog_obj.percent() rate = prog_obj.rate() #sum for the total progress sum_percent += percent sum_rate += rate bar = util.ljust('=' * int(percent * bar_count), bar_count) per100 = percent * 100 single_p = fmt_progress % \ (util.rjust(filename,(width - bar_count -22)), bar, per100,rate) # the -20 is for the xx.x% and [ and ] xx.xkb/s (spaces) all_p.append(log.hl(single_p,'green')) #calculate total progress percent total_percent = float(sum_percent+done)/total #global progress g_text = msg.fmt_dl_progress % (done, total) g_bar = util.ljust('#' * int(total_percent* bar_count), bar_count) g_progress = fmt_progress % \ (util.rjust(g_text,(width - bar_count -22)), g_bar, 100*total_percent,sum_rate) # the -20 is for the xx.x% and [ and ] xx.xkb/s (spaces) #output all total progress bars sys.stdout.write(log.hl(u'%s'%g_progress, 'red')) sys.stdout.write(sep) #output all downloads' progress bars sys.stdout.write(''.join(all_p)) # finished jobs if len(done2show): sys.stdout.write(line) sys.stdout.write(log.hl(msg.fmt_dl_last_finished % config.SHOW_DONE_NUMBER,'warning')) sys.stdout.write(line) #display finished jobs for d in done2show: sys.stdout.write(log.hl(u' √ %s\n'% d,'cyan')) #failed downloads if len(failed_list): sys.stdout.write(line) sys.stdout.write(log.hl(msg.fmt_dl_failed_jobs,'error')) sys.stdout.write(line) #display failed jobs for failed_song in failed_list: sys.stdout.write(log.hl(u' ✘ %s\n' % failed_song.filename,'red')) sys.stdout.write(line) sys.stdout.flush() def fill_download_progress(filename, total_length, finished_length): """ fill the global dict progress {} with download progress """ global progress if filename in progress: prog_obj = progress[filename] prog_obj.total_length = total_length prog_obj.finished_length = finished_length else: prog_obj = Download_Progress(filename) progress[filename] = prog_obj def download_url_urllib(url,filepath,show_progress=False, proxy=None): """ this function does the samething as the download_url(). The different is this function uses the standard urllib2 to download files. basic downloading function, download url and save to file path http.get timeout: 30s """ if ( not filepath ) or (not url): LOG.error( 'Url or filepath is not valid, resouce cannot be downloaded.') return 1 fname = path.basename(filepath) try: proxyServer = urllib2.ProxyHandler(proxy) if proxy else None opener = urllib2.build_opener() if proxyServer: opener = urllib2.build_opener(proxyServer) urllib2.install_opener(opener) r = urllib2.urlopen(url, timeout=30) if r.getcode() == 200: total_length = int(r.info().getheader('Content-Length').strip()) done_length = 0 chunk_size=1024 with open(filepath,'wb') as f: while True: chunk = r.read(chunk_size) done_length += len(chunk) if not chunk: break f.write(chunk) if show_progress: fill_download_progress(fname, total_length, done_length) return 0 else: LOG.debug("[DL_URL] HTTP Status %d . Song: %s " % (r.status_code,fname)) return 1 except Exception, err: LOG.debug("[DL_URL] downloading song %s timeout!" % fname) LOG.debug(traceback.format_exc()) return 1 def download_url(url,filepath,show_progress=False, proxy=None): """ basic downloading function, download url and save to file path http.get timeout: 30s """ if ( not filepath ) or (not url): LOG.error( 'Url or filepath is not valid, resouce cannot be downloaded.') return 1 fname = path.basename(filepath) try: #get request timeout 30 s r = requests.get(url, stream=True, timeout=30, proxies=proxy) if r.status_code == 200: total_length = int(r.headers.get('content-length')) done_length = 0 with open(filepath,'wb') as f: for chunk in r.iter_content(1024): done_length += len(chunk) f.write(chunk) if show_progress: fill_download_progress(fname, total_length, done_length) return 0 else: LOG.debug("[DL_URL] HTTP Status %d . Song: %s " % (r.status_code,fname)) return 1 except Exception, err: LOG.debug("[DL_URL] downloading song %s timeout!" % fname) LOG.debug(traceback.format_exc()) return 1 def download_single_song(song): """ download a single song max retry 5 times """ global done, progress #download retry count retry = 5 if ( not song.filename ) or (not song.dl_link): LOG.error( 'Song [id:%s] cannot be downloaded. Filename or dl_link is missing.' % song.song_id) fill_failed_list(song) done+=1 return mp3_file = song.abs_path dl_result = -1 # download return code LOG.debug("[DL_Song] downloading: %s " % song.dl_link) while retry > 0 : retry -= 1 LOG.debug("[DL_Song] start downloading: %s retry: %d" % (mp3_file, 5-retry)) #if file not in progress, add if song.filename not in progress: fill_download_progress(song.filename, 0.0, 0.0) #do the actual downloading dl_result = download_url_urllib(song.dl_link, mp3_file, show_progress=True, proxy= get_proxy(song)) if dl_result == 0: #success write_mp3_meta(song) LOG.debug("[DL_Song] Finished: %s" % mp3_file) break else: # return code is not 0 #remove from progress del progress[song.filename] if path.exists(song.abs_path): #remove file if already exists LOG.debug( '[DL_Song] remove incompleted file : ' + song.abs_path) os.remove(song.abs_path) # retry done+=1 #no matter success of fail, the task was done if dl_result == 0: #set the success flag song.success = True fill_done2show(song) #remove from progress del progress[song.filename] else: # if it comes here, 5 retries run out fill_failed_list(song) def fill_done2show(song): """ fill the given filename into global list 'done2show' Depends on the config.SHOW_DONE_NUMBER, the eldest entry will be poped out from the list. """ global done2show, success_list success_list.append(song) if len(done2show) == config.SHOW_DONE_NUMBER: done2show.pop() done2show.insert(0, song.filename) def fill_failed_list(song): """ fill the given song into global list 'failed2show' """ global failed_list failed_list.insert(0,song) def start_download(songs, skipped_hists): """ start multi-threading downloading songs. and generate a summary file songs: the list of songs need to be downloaded call the finish_hook function, pass skipped_hist """ global total total = len(songs) LOG.debug('init thread pool (%d) for downloading'% config.THREAD_POOL_SIZE) pool = ThreadPool(config.THREAD_POOL_SIZE) downloader = Downloader(songs, pool) LOG.debug('Start downloading' ) downloader.start() while done < total: time.sleep(1) print_progress() # handling lyrics downloading download_lyrics(songs) print log.hl(msg.fmt_insert_hist, 'warning') hist_handler.insert_hist(songs) print log.hl(msg.fmt_all_finished, 'warning') #call finish hook finish_summary(skipped_hists) def finish_summary(skipped_hist): """ build the summary after finishing all dl skipped_hist: a History list, contains skipped songs, it is not empty only if incremental_dl is true """ border= "\n"+u">>"*40 + u"\n" #build summary text: text = [] if skipped_hist: text.append( border+msg.fmt_summary_skip_title +border) text.append( msg.fmt_summary_skip_header) for hist in skipped_hist: text.append( "%s\t%s\t%s\t%s" % (msg.head_xm if hist.source ==1 else msg.head_163, hist.last_dl_time_str(), hist.song_name, hist.location)) if success_list: text.append( border+msg.fmt_summary_success_title +border) text.append( msg.fmt_summary_success_header) for song in success_list: text.append('%s\t%s'%(song.song_name, song.abs_path)) if failed_list: text.append( border+msg.fmt_summary_failed_title +border) text.append( msg.fmt_summary_failed_header) for song in failed_list: text.append('%s\t%s'%(song.song_name, song.abs_path)) while True: sys.stdout.write(msg.summary_prompt) choice = raw_input().lower() if choice == 'q' or choice == '': break elif choice == 'v': pydoc.pager(u"\n".join(text)) break elif choice == 's': summary = path.join(config.DOWNLOAD_DIR,'summary_'+str(datetime.datetime.today())+".txt") with codecs.open(summary, 'w', 'utf-8') as f: f.write("\n".join(text)) print log.hl(msg.summary_saved % summary ,'cyan') break else: sys.stdout.write(msg.summary_prompt_err) def download_lyrics(songs): """download / write lyric to file if it is needed""" url_lyric_163 = "http://music.163.com/api/song/lyric?id=%s&lv=1" percent_bar_factor = 0.4 width = util.get_terminal_size()[1] -5 bar_count = (int(width*percent_bar_factor)-2/10) # number of percent bar line = log.hl(u' %s'% ('+'*width), 'cyan') if songs[0].handler.dl_lyric == True: print log.hl(msg.fmt_dl_lyric_start, 'warning') print line for song in songs: if song.lyric_abs_path: print log.hl(u' %s '% song.lyric_filename,'cyan'), #the ending comma is for hide the newline if song.song_type == 1: #xiami if song.handler.need_proxy_pool: if song.lyric_link: download_url(song.lyric_link, song.lyric_abs_path, show_progress=True, proxy=get_proxy(song)) else: if song.lyric_link: download_url(song.lyric_link, song.lyric_abs_path, show_progress=True) print log.hl(u' √','cyan') else: #163 lyric_link = url_lyric_163 % song.song_id lyric_json = song.handler.read_link(lyric_link).json() if not lyric_json or not lyric_json.has_key('lrc') or not lyric_json['lrc'].has_key('lyric'): print log.hl(u' ✘ Not Found','red') continue song.lyric_text = song.handler.read_link(lyric_link).json()['lrc']['lyric'] import codecs with codecs.open(song.lyric_abs_path, 'w', 'utf-8') as f: f.write(song.lyric_text) print log.hl(u' √','cyan') print line
ansible/plugins/connection/onie.py
shubav/sonic-mgmt
132
122262
from __future__ import (absolute_import, division, print_function) __metaclass__ = type import os import subprocess import shlex import pipes import pexpect import random import select import fcntl import pwd import time from ansible import constants as C from ansible.errors import AnsibleError, AnsibleConnectionFailure, AnsibleFileNotFound from ansible.plugins.connection import ConnectionBase class Connection(ConnectionBase): ''' ssh based connections with expect ''' def __init__(self, *args, **kwargs): super(Connection, self).__init__(*args, **kwargs) self.host = self._play_context.remote_addr self.connection_retry_interval = 60 @property def transport(self): ''' used to identify this connection object from other classes ''' return 'onie' # The connection is created by running expect from the exec_command, so we don't # need to do any connection management here. def _connect(self): self._connect = True return self def _build_command(self): self._ssh_command = ['ssh', '-tt', '-q'] ansible_ssh_args = C.ANSIBLE_SSH_ARGS if ansible_ssh_args: self._ssh_command += shlex.split(ansible_ssh_args) else: self._ssh_command += ['-o', 'ControlMaster=auto', '-o', 'ControlPersist=60s', '-o', 'ControlPath=/tmp/ansible-ssh-%h-%p-%r'] if not C.HOST_KEY_CHECKING: self._ssh_command += ['-o', 'StrictHostKeyChecking=no'] self._ssh_command += ['-o', 'UserKnownHostsFile=/dev/null'] self._ssh_command += ['-o', 'GSSAPIAuthentication=no', '-o', 'PubkeyAuthentication=no'] self._ssh_command += ['-o', 'ConnectTimeout=30'] def _spawn_connect(self): client = None cmd = self._ssh_command + ['-l', "root", self.host] client = pexpect.spawn(' '.join(cmd), env={'TERM': 'dumb'}) client.expect(['#']) self.before_backup = client.before.split() return client def exec_command(self, *args, **kwargs): self.template = kwargs['template'] if kwargs['host'] is not None: self.host = kwargs['host'] self.url = kwargs['url'] self.install = kwargs['install'] self.nretry = kwargs['retry'] self._build_command() client = self._spawn_connect() # Set command timeout after connection is spawned if kwargs['timeout']: client.timeout = int(kwargs['timeout']) prompts = ["ONIE:.+ #", pexpect.EOF] stdout = "" if self.template: cmds = self.template.split('\n') else: cmds = [] for cmd in cmds: self._display.vvv('> %s' % (cmd), host=self.host) client.sendline(cmd) client.expect(prompts) stdout += client.before self._display.vvv('< %s' % (client.before), host=self.host) if self.install: client.sendline('onie-discovery-stop') client.expect(prompts) stdout += client.before attempt = 0 while attempt < self.nretry: client.sendline("onie-nos-install %s" % self.url) i = client.expect(["Installed SONiC base image SONiC-OS successfully"] + prompts) stdout += client.before if i == 0: break elif i == 1: attempt += 1 self._display.vvv("Installation fails, retry %d..." % attempt, host=self.host) else: raise AnsibleError("Failed to install sonic image. %s" % stdout) self._display.vvv("SONiC installed.", host=self.host) # for some platform, e.g., DELL S6000, it will do hard reboot, # which will not give EOF client.expect([pexpect.EOF, pexpect.TIMEOUT], timeout=15) stdout += client.before self._display.vvv("ONIE Rebooted. %s" % stdout, host=self.host) return stdout def put_file(self, in_path, out_path): pass def fetch_file(self, in_path, out_path): pass def close(self): self._connected = False
pysmt/solvers/interpolation.py
Ying1123/pysmt
435
122290
# # This file is part of pySMT. # # Copyright 2014 <NAME> and <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # class Interpolator(object): def __init__(self): self._destroyed = False def binary_interpolant(self, a, b): """Returns a binary interpolant for the pair (a, b), if And(a, b) is unsatisfaiable, or None if And(a, b) is satisfiable. """ raise NotImplementedError def sequence_interpolant(self, formulas): """Returns a sequence interpolant for the conjunction of formulas, or None if the problem is satisfiable. """ raise NotImplementedError def __enter__(self): """Manage entering a Context (i.e., with statement)""" return self def __exit__(self, exc_type, exc_val, exc_tb): """Manage exiting from Context (i.e., with statement) The default behaviour is to explicitely destroy the interpolator to free the associated resources. """ self.exit() def exit(self): """Destroys the solver and closes associated resources.""" if not self._destroyed: self._exit() self._destroyed = True def _exit(self): """Destroys the solver and closes associated resources.""" raise NotImplementedError
src/DataJoin/manager/data_managers.py
huangwei19/9nfl
103
122305
# Copyright 2020 The 9nFL Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 from DataJoin.utils.base import current_timestamp from DataJoin.db.db_models import DB, DataBlockMeta, DataSourceMeta, DataSource import logging class DataManagers(object): def __init__(self, block_id: str = None, partition_id: str = None, file_version: int = None, data_source_name: str = None, dfs_data_block_dir: str = None, dfs_raw_data_dir: str = None, data_source_role: int = None, data_source_state: int = None): self.block_id = block_id self.partition_id = partition_id self.file_version = file_version self.data_source_name = data_source_name self.dfs_data_block_dir = dfs_data_block_dir self.dfs_raw_data_dir = dfs_raw_data_dir self.data_source_role = data_source_role self.data_source_state = data_source_state def save_data_block_meta_info(self, data_block_meta_info, create=False): with DB.connection_context(): logging.info( 'save {} {} data_block_meta: {}'.format(self.block_id, self.partition_id, data_block_meta_info)) data_block_metas = DataBlockMeta.select().where(DataBlockMeta.block_id == self.block_id) is_insert = True if data_block_metas: data_block_meta = data_block_metas[0] is_insert = False elif create: data_block_meta = DataBlockMeta() data_block_meta.create_time = current_timestamp() data_block_meta.update_time = current_timestamp() else: return None data_block_meta.block_id = self.block_id data_block_meta.partition_id = self.partition_id data_block_meta.file_version = self.file_version for k, v in data_block_meta_info.items(): try: if k in ['block_id', 'partition_id', 'file_version'] or v == getattr(DataBlockMeta, k).default: continue setattr(data_block_meta, k, v) except: pass if is_insert: data_block_meta.save(force_insert=True) else: data_block_meta.save() def save_data_source_meta_info(self, data_source_meta_info, create=False): with DB.connection_context(): logging.info( 'save {} data_source_meta: {}'.format(self.data_source_name, data_source_meta_info)) data_source_metas = DataSourceMeta.select().where(DataSourceMeta.block_id == self.block_id) is_insert = True if data_source_metas: data_source_meta = data_source_metas[0] is_insert = False elif create: data_source_meta = DataSourceMeta() data_source_meta.create_time = current_timestamp() data_source_meta.update_time = current_timestamp() else: return None for k, v in data_source_meta_info.items(): try: if k in ['data_source_name'] or v == getattr(DataSourceMeta, k).default: continue setattr(data_source_meta, k, v) except: pass if is_insert: data_source_meta.save(force_insert=True) else: data_source_meta.save() def save_data_source_info(self, data_source_info, create=False): with DB.connection_context(): logging.info( 'save {} data_source: {}'.format(self.data_source_name, data_source_info)) data_sources = DataSource.select().where(DataSource.block_id == self.block_id) is_insert = True if data_sources: data_source = data_sources[0] is_insert = False elif create: data_source = DataSource() data_source.create_time = current_timestamp() data_source.update_time = current_timestamp() else: return None data_source.data_source_state = self.data_source_state data_source.dfs_data_block_dir = self.dfs_data_block_dir data_source.dfs_raw_data_dir = self.dfs_raw_data_dir for k, v in data_source_info.items(): try: if k in ['data_source_name'] or v == getattr(DataSource, k).default: continue setattr(data_source, k, v) except: pass if is_insert: data_source.save(force_insert=True) else: data_source.save()
data_structures/queues/array_based_queue.py
vinta/fuck-coding-interviews
590
122315
<gh_stars>100-1000 # coding: utf-8 class ArrayBasedQueue: def __init__(self): self.array = [] def __len__(self): return len(self.array) def __iter__(self): for item in self.array: yield item # O(1) def enqueue(self, value): self.array.append(value) # O(n) def dequeue(self): try: return self.array.pop(0) except IndexError: raise ValueError('queue is empty')
OSPatching/azure/servicemanagement/sqldatabasemanagementservice.py
shridpant/azure-linux-extensions
266
122355
#------------------------------------------------------------------------- # Copyright (c) Microsoft. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #-------------------------------------------------------------------------- from azure import ( MANAGEMENT_HOST, _parse_service_resources_response, ) from azure.servicemanagement import ( Servers, Database, ) from azure.servicemanagement.servicemanagementclient import ( _ServiceManagementClient, ) class SqlDatabaseManagementService(_ServiceManagementClient): ''' Note that this class is a preliminary work on SQL Database management. Since it lack a lot a features, final version can be slightly different from the current one. ''' def __init__(self, subscription_id=None, cert_file=None, host=MANAGEMENT_HOST): super(SqlDatabaseManagementService, self).__init__( subscription_id, cert_file, host) #--Operations for sql servers ---------------------------------------- def list_servers(self): ''' List the SQL servers defined on the account. ''' return self._perform_get(self._get_list_servers_path(), Servers) #--Operations for sql databases ---------------------------------------- def list_databases(self, name): ''' List the SQL databases defined on the specified server name ''' response = self._perform_get(self._get_list_databases_path(name), None) return _parse_service_resources_response(response, Database) #--Helper functions -------------------------------------------------- def _get_list_servers_path(self): return self._get_path('services/sqlservers/servers', None) def _get_list_databases_path(self, name): # *contentview=generic is mandatory* return self._get_path('services/sqlservers/servers/', name) + '/databases?contentview=generic'
paddle2onnx/op_mapper/sequence/im2sequence.py
AIpioneer/paddle2onnx
252
122367
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import numpy as np from paddle2onnx.constant import dtypes from paddle2onnx.utils import logging from paddle2onnx.op_mapper import OpMapper as op_mapper @op_mapper('im2sequence') class Im2Sequence(): support_opset_verison_range = (1, 12) @classmethod def opset_1(cls, graph, node, **kw): n, c, h, w = node.input_shape('X', 0) assert h > 0 and w > 0, "Only supported fixed input shape for im2sequence operator." stride_h, stride_w = node.attr('strides') paddings = node.attr('paddings') assert node.attr( 'out_stride' ) != 1, "Only out_stride==1 is supported for im2sequence operator." h = h + paddings[0] + paddings[1] w = w + paddings[1] + paddings[2] kernel_h, kernel_w = node.attr('kernels') out_h = 1 + (h - kernel_h + stride_h - 1) // stride_h out_w = 1 + (w - kernel_w + stride_w - 1) // stride_w h_steps = list() for i in range(out_h): h_steps.append([i * stride_h, i * stride_h + kernel_h]) w_steps = list() for i in range(out_w): w_steps.append([i * stride_w, i * stride_w + kernel_w]) slice_node_blocks = list() for i in range(out_h): for j in range(out_w): starts_node = graph.make_node( 'Constant', dtype=dtypes.ONNX.INT64, dims=[4], value=[0, 0, h_steps[i][0], w_steps[j][0]]) ends_node = graph.make_node( 'Constant', dtype=dtypes.ONNX.INT64, dims=[4], value=[999999, 999999, h_steps[i][1], w_steps[j][1]]) nodes.extend([starts_node, ends_node]) slice_block_node = graph.make_node( 'Slice', inputs=[node.input('X', 0), starts_node, ends_node]) flatten_block_node = graph.make_node( "Flatten", inputs=[slice_block_node], axis=0) nodes.extend([slice_block_node, flatten_block_node]) concat_block_node = graph.make_node( "Concat", inputs=slice_node_blocks, outputs=node.output('Out'), axis=0) logging.info("==========Importance Notice===========") logging.info( "Since im2sequence operator is used in your paddlepaddle model, the translated onnx model only support input data with batch_size=1." ) logging.info("======================================")
addons/bitbucket/tests/test_serializer.py
gaybro8777/osf.io
628
122371
<reponame>gaybro8777/osf.io # -*- coding: utf-8 -*- """Serializer tests for the Bitbucket addon.""" import mock from nose.tools import * # noqa (PEP8 asserts) import pytest from tests.base import OsfTestCase from addons.bitbucket.api import BitbucketClient from addons.bitbucket.tests.factories import BitbucketAccountFactory from addons.bitbucket.serializer import BitbucketSerializer from addons.base.tests.serializers import StorageAddonSerializerTestSuiteMixin pytestmark = pytest.mark.django_db class TestBitbucketSerializer(StorageAddonSerializerTestSuiteMixin, OsfTestCase): addon_short_name = 'bitbucket' Serializer = BitbucketSerializer ExternalAccountFactory = BitbucketAccountFactory client = BitbucketClient() def set_provider_id(self, pid): self.node_settings.repo = pid
tests/chainer_tests/functions_tests/array_tests/test_pad.py
zaltoprofen/chainer
3,705
122424
import numpy from chainer import functions from chainer import testing @testing.parameterize(*testing.product_dict( [ {'shape': (), 'pad_width': 1, 'mode': 'constant'}, {'shape': (2, 3), 'pad_width': 0, 'mode': 'constant'}, {'shape': (2, 3), 'pad_width': 1, 'mode': 'constant'}, {'shape': (2, 3), 'pad_width': (1, 2), 'mode': 'constant'}, {'shape': (2, 3), 'pad_width': ((1, 2), (3, 4)), 'mode': 'constant'}, {'shape': (2, 3, 2), 'pad_width': ((2, 5), (1, 2), (0, 7)), 'mode': 'constant'}, {'shape': (1, 3, 5, 2), 'pad_width': 2, 'mode': 'constant'} ], [ {'dtype': numpy.float16}, {'dtype': numpy.float32}, {'dtype': numpy.float64} ] )) @testing.inject_backend_tests( None, # CPU tests [ {}, ] # GPU tests + testing.product({ 'use_cuda': [True], 'use_cudnn': ['never', 'always'], 'cuda_device': [0, 1], }) # ChainerX tests + testing.product({ 'use_chainerx': [True], 'chainerx_device': ['native:0', 'cuda:0', 'cuda:1'], }) ) class TestPadDefault(testing.FunctionTestCase): def setUp(self): self.check_backward_options = {} if self.dtype == numpy.float16: self.check_backward_options.update({'atol': 3e-2, 'rtol': 3e-2}) def generate_inputs(self): x = numpy.random.uniform(-1, 1, self.shape).astype(self.dtype) return x, def forward(self, inputs, device): x, = inputs y = functions.pad(x, self.pad_width, self.mode) return y, def forward_expected(self, inputs): x, = inputs y_expected = numpy.pad(x, self.pad_width, self.mode) return y_expected.astype(self.dtype), @testing.parameterize(*testing.product_dict( [ {'shape': (2, 3), 'pad_width': 1, 'mode': 'constant', 'constant_values': 1}, {'shape': (2, 3), 'pad_width': (1, 2), 'mode': 'constant', 'constant_values': (1, 2)}, {'shape': (2, 3), 'pad_width': ((1, 2), (3, 4)), 'mode': 'constant', 'constant_values': ((1, 2), (3, 4))}, ], [ {'dtype': numpy.float16}, {'dtype': numpy.float32}, {'dtype': numpy.float64} ] )) @testing.inject_backend_tests( None, # CPU tests [ {}, ] # GPU tests + testing.product({ 'use_cuda': [True], 'use_cudnn': ['never', 'always'], 'cuda_device': [0, 1], }) # ChainerX tests + testing.product({ 'use_chainerx': [True], 'chainerx_device': ['native:0', 'cuda:0', 'cuda:1'], }) ) # Old numpy does not work with multi-dimensional constant_values @testing.with_requires('numpy>=1.11.1') class TestPad(testing.FunctionTestCase): def setUp(self): self.check_backward_options = {} if self.dtype == numpy.float16: self.check_backward_options.update({'atol': 3e-2, 'rtol': 3e-2}) def generate_inputs(self): x = numpy.random.uniform(-1, 1, self.shape).astype(self.dtype) return x, def forward_expected(self, inputs): x, = inputs y_expected = numpy.pad(x, self.pad_width, mode=self.mode, constant_values=self.constant_values) return y_expected, def forward(self, inputs, device): x, = inputs y = functions.pad(x, self.pad_width, mode=self.mode, constant_values=self.constant_values) return y, testing.run_module(__name__, __file__)
digest/migrations/0041_auto_20160401_1403.py
PURNA-ROCK/pythondigest
124
122443
# -*- coding: utf-8 -*- # Generated by Django 1.9.4 on 2016-04-01 14:03 from __future__ import unicode_literals import taggit_autosuggest.managers from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('digest', '0040_auto_20160330_1616'), ] operations = [ migrations.AlterField( model_name='item', name='keywords', field=taggit_autosuggest.managers.TaggableManager(blank=True, help_text='A comma-separated list of tags.', through='digest.KeywordGFK', to='digest.Keyword', verbose_name='Keywords'), ), ]
corehq/apps/users/migrations/0030_userhistory_user_upload_record.py
akashkj/commcare-hq
471
122474
# Generated by Django 2.2.24 on 2021-07-02 13:45 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('user_importer', '0001_initial'), ('users', '0029_userhistory'), ] operations = [ migrations.AddField( model_name='userhistory', name='user_upload_record', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='user_importer.UserUploadRecord'), ), ]
tests/conftest.py
billvsme/videoSpider
216
122478
import pytest from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from models import Base from config import create_new_sqla from helpers import (get_video_douban_ids, get_celebrity_douban_ids, get_animation_bilibili_ids) test_database_url = 'sqlite:///test.db' @pytest.fixture(scope='session') def session(request): sqla = create_new_sqla(test_database_url, echo=False) session = sqla['session'] engine = sqla['engine'] Base.metadata.create_all(engine) def teardown(): Base.metadata.drop_all(engine) request.addfinalizer(teardown) return session @pytest.fixture def douban_movie_ids(): return list(get_video_douban_ids()) @pytest.fixture def douban_celebrity_ids(): return list(get_celebrity_douban_ids()) @pytest.fixture def bilibili_animation_ids(): return list(get_animation_bilibili_ids())
syzygy/scripts/test_bot/chrome_page_load.py
nzeh/syzygy
343
122493
#!python # Copyright 2014 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Script for launching Chrome, having it load a set of pages, and then cleanly shutting it down. """ # Standard modules. import json import optparse import os import sys # Local modules. import log_helper # Modules from other locations in the repo. _CUR_DIR = os.path.abspath(os.path.dirname(__file__)) _BENCHMARK_DIR = os.path.abspath(os.path.join(_CUR_DIR, '..', 'benchmark')) _ETW_DB_DIR = os.path.abspath(os.path.join(_CUR_DIR, '..', '..', 'py', 'etw_db')) _ETW_DIR = os.path.abspath(os.path.join(_CUR_DIR, '..', '..', '..', 'third_party', 'sawbuck', 'py', 'etw')) sys.path.append(_BENCHMARK_DIR) sys.path.append(_ETW_DB_DIR) sys.path.append(_ETW_DIR) import chrome_control import runner _LOGGER = log_helper.GetLogger(__file__) def _ParseArgs(): """Parses the command-line.""" parser = optparse.OptionParser( 'Usage: %prog [options] [url1 [url2 [ ... ]]]') parser.add_option('--chrome-dir', help='Location of Chrome installation.') parser.add_option('--iterations', default=1, type='int', help='Number of iterations.') parser.add_option('--url-list', help='File with list of URLs to be opened.') opts, args = parser.parse_args() if not opts.chrome_dir: parser.error("Must specify --chrome-dir.") return (opts, args) def _GetUrlList(opts, args): """Gets the list of URLs to be loaded.""" urls = args if opts.url_list: _LOGGER.info('Loading list of URLs from \"%s\".', opts.url_list) urls += open(opts.url_list, 'rb').readlines() return urls def main(): if sys.platform == 'win32': # Don't show error dialog boxes on crashes or debug-breaks. This setting # is inherited by child processes, so a crash won't block automated tests. import ctypes ctypes.windll.kernel32.SetErrorMode(3) opts, args = _ParseArgs() # Get the list of URLs and determine the startup type. urls = _GetUrlList(opts, args) startup_type = chrome_control.STARTUP_NEW_TAB_PAGE if urls: startup_type = chrome_control.STARTUP_RESTORE_SESSION # Configure and launch the Chrome runner. chrome_exe = os.path.abspath(os.path.join(opts.chrome_dir, 'chrome.exe')) if not os.path.exists(chrome_exe): raise Exception('File not found: %s' % chrome_exe) chrome = runner.ChromeRunner(chrome_exe, None, True) chrome.ConfigureStartup(startup_type, urls) chrome.Run(opts.iterations) return 0 if __name__ == '__main__': sys.exit(main())
test/com/facebook/buck/features/python/testdata/python_binary/preload_deps/preload_order.py
Unknoob/buck
8,027
122520
import ctypes ctypes.CDLL(None).func()
TransForm_Kit/DnsChannelpruning/channel_pruning.py
Abraham-Xu/TF2
144
122550
# Copyright 2019 Inspur Corporation. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import os import torch.nn as nn import torch import time from parse_model import ParseModel from find_dnscp_conv import * from dnscp_core import DnscpCore from utility import * from model_convert import * from finetune import validate from finetune import train_val ''' dnscp train and val''' def dnscp_train_val(train_loader, val_loader,model, InputShape,criterion, optimizer,args): """ find connect layer! """ print('find connect layer begin...') parse_model_instance = ParseModel() layername_type_dict,layername_lainjie_dict = parse_model_instance.parse_model_caffe\ (model, InputShape, softmax = False) print('find connect layer Done.') """ find conv layer that needs to be pruned ! """ print('find pruned layer begin...') conv_dnscp_flag_list = find_dnscp_conv(model,layername_type_dict,layername_lainjie_dict) print('find pruned layer Done.') print('conv_dnscp_flag:',conv_dnscp_flag_list) print('train begin') '''init dnscp core''' net_dnscp = DnscpCore() best_acc1 = 0 train_cp_stop_flag=False is_best = False for epoch in range(args.start_epoch, args.epochs): if args.distributed: train_sampler.set_epoch(epoch) adjust_learning_rate(optimizer, epoch, args) batch_time = AverageMeter('Time', ':6.3f') data_time = AverageMeter('Data', ':6.3f') losses = AverageMeter('Loss', ':.4e') top1 = AverageMeter('Acc@1', ':6.2f') top5 = AverageMeter('Acc@5', ':6.2f') progress = ProgressMeter( len(train_loader), [batch_time, data_time, losses, top1, top5], prefix="Epoch: [{}]".format(epoch)) '''switch to train mode''' model.train() end = time.time() for i, (images, target) in enumerate(train_loader): '''measure data loading time''' data_time.update(time.time() - end) if args.gpu is not None: images = images.cuda(args.gpu, non_blocking=True) target = target.cuda(args.gpu, non_blocking=True) '''forward dnscp layer''' iter = i+len(train_loader)*epoch conv_param_before_cplist,conv_param_cpmasklist = \ net_dnscp.forward_dnscp_layer(model,conv_dnscp_flag_list,iter) '''model forward''' output = model(images) '''measure accuracy and record loss''' loss = criterion(output, target) acc1, acc5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), images.size(0)) top1.update(acc1[0], images.size(0)) top5.update(acc5[0], images.size(0)) ''' compute gradient and do SGD step''' optimizer.zero_grad() loss.backward() '''replace weight with cp before''' conv_index = 0 for module in model.modules(): if isinstance(module,nn.Conv2d): module.weight.data = conv_param_before_cplist[conv_index] conv_index+=1 optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0 or i % (len(train_loader)-1) == 0: progress.display(i) pruned_model = generate_prunedmodel(model,conv_dnscp_flag_list,conv_param_cpmasklist) convparam_kept,convflops_kept = calculate_compress_rate(model,pruned_model,InputShape) print("kept ratio:",convflops_kept) '''control train epoch''' '''if convflops_kept >= args.kept_ratio+0.2: train_cp_stop_flag = True if iter<10000: print("please set kept ratio bigger than ",args.kept_ratio) break''' if iter % 2000 == 0: pruned_model = generate_prunedmodel(model,conv_dnscp_flag_list,conv_param_cpmasklist) convparam_kept,convflops_kept = calculate_compress_rate(model,pruned_model,InputShape) '''evaluate on validation set''' acc1 = dnscp_validate(val_loader, model, criterion, conv_param_cpmasklist,args) if convflops_kept >= args.kept_ratio-0.05 and convflops_kept <= args.kept_ratio+0.05: '''remember best acc@1 and save checkpoint''' is_best = acc1 > best_acc1 best_acc1 = acc1 if not args.multiprocessing_distributed or (args.multiprocessing_distributed and args.rank % ngpus_per_node == 0): save_checkpoint({ 'epoch': epoch + 1, 'arch': args.arch, 'state_dict': model.state_dict(), 'acc1': acc1, 'optimizer' : optimizer.state_dict(), 'mask':conv_param_cpmasklist, 'conv_cpflag':conv_dnscp_flag_list, 'kept_ratio':convflops_kept, 'iter':iter }, is_best,args.snapshotmodelname) is_best = False if train_cp_stop_flag == True: break def dnscp_train(train_loader, model, criterion, optimizer, epoch,net_dnscp,conv_dnscp_flag,InputShape,args): batch_time = AverageMeter('Time', ':6.3f') data_time = AverageMeter('Data', ':6.3f') losses = AverageMeter('Loss', ':.4e') top1 = AverageMeter('Acc@1', ':6.2f') top5 = AverageMeter('Acc@5', ':6.2f') progress = ProgressMeter( len(train_loader), [batch_time, data_time, losses, top1, top5], prefix="Epoch: [{}]".format(epoch)) train_cp_stop_flag=False '''switch to train mode''' model.train() end = time.time() for i, (images, target) in enumerate(train_loader): '''measure data loading time''' data_time.update(time.time() - end) if args.gpu is not None: images = images.cuda(args.gpu, non_blocking=True) target = target.cuda(args.gpu, non_blocking=True) '''compute output''' iter = i+len(train_loader)*epoch #print("iter:",iter) '''conv_index = 0 for module in model.modules(): if isinstance(module,nn.Conv2d): if conv_index == 2: print("ith weight data:",module.weight.data.cpu().numpy()[0,0:16,:,:]) conv_index+=1''' conv_param_before_cplist,conv_param_cpmasklist = net_dnscp.forward_dnscp_layer(model,conv_dnscp_flag,iter) '''conv_index = 0 for module in model.modules(): if isinstance(module,nn.Conv2d): if conv_index == 2: print("ith mask weight data:",module.weight.data.cpu().numpy()[0,0:16,:,:]) conv_index+=1''' output = model(images) loss = criterion(output, target) '''measure accuracy and record loss''' acc1, acc5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), images.size(0)) top1.update(acc1[0], images.size(0)) top5.update(acc5[0], images.size(0)) # compute gradient and do SGD step optimizer.zero_grad() loss.backward() '''replace weight with cp before''' conv_index = 0 for module in model.modules(): if isinstance(module,nn.Conv2d): '''if conv_index == 2: print("optimizer i+1 weight data:",module.weight.data.cpu().numpy()[0,0:16,:,:]) print("grad:",module.weight.grad.cpu().numpy()[0,0:16,:,:]) print("before_update_mask weight data:",conv_param_before_cp[conv_index].cpu().numpy()[0,0:16,:,:]) print("before_update_mask weight data:",conv_param_before_cplist[conv_index].cpu().numpy()[0,0:16,:,:])''' module.weight.data = conv_param_before_cplist[conv_index] conv_index+=1 optimizer.step() '''only print''' '''conv_index = 0 for module in model.modules(): if isinstance(module,nn.Conv2d): if conv_index == 2: print("i+1 weight data:",module.weight.data.cpu().numpy()[0,0:16,:,:]) print("grad:",module.weight.grad.cpu().numpy()[0,0:16,:,:]) print("before_update_mask weight data:",conv_param_before_cplist[conv_index].cpu().numpy()[0,0:16,:,:]) #module.weight.data = conv_param_before_cplist[conv_index]-args.lr*module.weight.grad conv_index+=1''' # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0 or i % (len(train_loader)-1) == 0: progress.display(i) pruned_model = generate_prunedmodel(model,conv_dnscp_flag,conv_param_cpmasklist) convparam_kept,convflops_kept = calculate_compress_rate(model,pruned_model,InputShape) print("kept ratio:",convflops_kept) if convflops_kept >= args.kept_ratio+0.02: train_cp_stop_flag = True break #if i % (len(train_loader)//2) == 0 or i == len(train_loader): ###end simple test return conv_param_cpmasklist,train_cp_stop_flag,convflops_kept def dnscp_validate(val_loader, model, criterion, conv_param_cpmasklist,args): batch_time = AverageMeter('Time', ':6.3f') losses = AverageMeter('Loss', ':.4e') top1 = AverageMeter('Acc@1', ':6.2f') top5 = AverageMeter('Acc@5', ':6.2f') progress = ProgressMeter( len(val_loader), [batch_time, losses, top1, top5], prefix='Test: ') # switch to evaluate mode model.eval() '''replace weight with weight*mask for forward''' conv_index = 0 conv_param_nocp_list = [] for module in model.modules(): if isinstance(module,nn.Conv2d): conv_param_nocp_list.append(module.weight.data) #print(module.weight.data.shape,conv_param_cpmasklist[conv_index].shape) module.weight.data = module.weight.data * conv_param_cpmasklist[conv_index] conv_index+=1 with torch.no_grad(): end = time.time() for i, (images, target) in enumerate(val_loader): if args.gpu is not None: images = images.cuda(args.gpu, non_blocking=True) target = target.cuda(args.gpu, non_blocking=True) output = model(images) loss = criterion(output, target) # measure accuracy and record loss acc1, acc5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), images.size(0)) top1.update(acc1[0], images.size(0)) top5.update(acc5[0], images.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: progress.display(i) # TODO: this should also be done with the ProgressMeter print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}' .format(top1=top1, top5=top5)) '''replace weight*mask with weight''' conv_index = 0 for module in model.modules(): if isinstance(module,nn.Conv2d): module.weight.data = conv_param_nocp_list[conv_index] conv_index+=1 return top1.avg
tests/roots/test-ext-autodoc/target/empty_all.py
samdoran/sphinx
4,973
122571
""" docsting of empty_all module. """ __all__ = [] def foo(): """docstring""" def bar(): """docstring""" def baz(): """docstring"""
pappyproxy/colors.py
Jab2870/pappy-proxy
440
122580
<reponame>Jab2870/pappy-proxy import re import itertools from pygments import highlight from pygments.lexers.data import JsonLexer from pygments.lexers.html import XmlLexer from pygments.lexers import get_lexer_for_mimetype, HttpLexer from pygments.formatters import TerminalFormatter def clen(s): ansi_escape = re.compile(r'\x1b[^m]*m') return len(ansi_escape.sub('', s)) class Colors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' # Effects ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' # Colors BLACK = '\033[30m' RED = '\033[31m' GREEN = '\033[32m' YELLOW = '\033[33m' BLUE = '\033[34m' MAGENTA = '\033[35m' CYAN = '\033[36m' WHITE = '\033[37m' # BG Colors BGBLACK = '\033[40m' BGRED = '\033[41m' BGGREEN = '\033[42m' BGYELLOW = '\033[43m' BGBLUE = '\033[44m' BGMAGENTA = '\033[45m' BGCYAN = '\033[46m' BGWHITE = '\033[47m' # Light Colors LBLACK = '\033[90m' LRED = '\033[91m' LGREEN = '\033[92m' LYELLOW = '\033[93m' LBLUE = '\033[94m' LMAGENTA = '\033[95m' LCYAN = '\033[96m' LWHITE = '\033[97m' class Styles: ################ # Request tables TABLE_HEADER = Colors.BOLD+Colors.UNDERLINE VERB_GET = Colors.CYAN VERB_POST = Colors.YELLOW VERB_OTHER = Colors.BLUE STATUS_200 = Colors.CYAN STATUS_300 = Colors.MAGENTA STATUS_400 = Colors.YELLOW STATUS_500 = Colors.RED PATH_COLORS = [Colors.CYAN, Colors.BLUE] KV_KEY = Colors.GREEN KV_VAL = Colors.ENDC UNPRINTABLE_DATA = Colors.CYAN def verb_color(verb): if verb and verb == 'GET': return Styles.VERB_GET elif verb and verb == 'POST': return Styles.VERB_POST else: return Styles.VERB_OTHER def scode_color(scode): if scode and scode[0] == '2': return Styles.STATUS_200 elif scode and scode[0] == '3': return Styles.STATUS_300 elif scode and scode[0] == '4': return Styles.STATUS_400 elif scode and scode[0] == '5': return Styles.STATUS_500 else: return Colors.ENDC def path_formatter(path, width=-1): if len(path) > width and width != -1: path = path[:width] path = path[:-3]+'...' parts = path.split('/') colparts = [] for p, c in zip(parts, itertools.cycle(Styles.PATH_COLORS)): colparts.append(c+p+Colors.ENDC) return '/'.join(colparts) def color_string(s, color_only=False): """ Return the string with a a color/ENDC. The same string will always be the same color. """ from .util import str_hash_code # Give each unique host a different color (ish) if not s: return "" strcols = [Colors.RED, Colors.GREEN, Colors.YELLOW, Colors.BLUE, Colors.MAGENTA, Colors.CYAN, Colors.LRED, Colors.LGREEN, Colors.LYELLOW, Colors.LBLUE, Colors.LMAGENTA, Colors.LCYAN] col = strcols[str_hash_code(s)%(len(strcols)-1)] if color_only: return col else: return col + s + Colors.ENDC def pretty_msg(msg): to_ret = pretty_headers(msg) + '\r\n' + pretty_body(msg) return to_ret def pretty_headers(msg): to_ret = msg.headers_section() to_ret = highlight(to_ret, HttpLexer(), TerminalFormatter()) return to_ret def pretty_body(msg): from .util import printable_data to_ret = printable_data(msg.body, colors=False) if 'content-type' in msg.headers: try: lexer = get_lexer_for_mimetype(msg.headers.get('content-type').split(';')[0]) to_ret = highlight(to_ret, lexer, TerminalFormatter()) except: pass return to_ret def url_formatter(req, colored=False, always_have_path=False, explicit_path=False, explicit_port=False): retstr = '' if not req.use_tls: if colored: retstr += Colors.RED retstr += 'http' if colored: retstr += Colors.ENDC retstr += '://' else: retstr += 'https://' if colored: retstr += color_string(req.dest_host) else: retstr += req.dest_host if not ((req.use_tls and req.dest_port == 443) or \ (not req.use_tls and req.dest_port == 80) or \ explicit_port): if colored: retstr += ':' retstr += Colors.MAGENTA retstr += str(req.dest_port) retstr += Colors.ENDC else: retstr += ':{}'.format(req.dest_port) if (req.url.path and req.url.path != '/') or always_have_path: if colored: retstr += path_formatter(req.url.path) else: retstr += req.url.path if req.url.params: retstr += '?' params = req.url.params.split("&") pairs = [tuple(param.split("=")) for param in params] paramstrs = [] for k, v in pairs: if colored: paramstrs += (Colors.GREEN + '{}' + Colors.ENDC + '=' + Colors.LGREEN + '{}' + Colors.ENDC).format(k, v) else: paramstrs += '{}={}'.format(k, v) retstr += '&'.join(paramstrs) if req.url.fragment: retstr += '#%s' % req.url.fragment return retstr
pyti/moving_average_envelope.py
dibyajyotidash/https-github.com-kylejusticemagnuson-pyti
635
122627
<gh_stars>100-1000 from __future__ import absolute_import from pyti.simple_moving_average import simple_moving_average as sma def center_band(data, period): """ Center Band. Formula: SMA(data) """ cb = sma(data, period) return cb def upper_band(data, period, env_percentage): """ Upper Band. Formula: ub = cb(t) * (1 + env_percentage) """ cb = center_band(data, period) ub = [val * (1 + float(env_percentage)) for val in cb] return ub def lower_band(data, period, env_percentage): """ Lower Band. Formula: lb = cb * (1 - env_percentage) """ cb = center_band(data, period) lb = [val * (1 - float(env_percentage)) for val in cb] return lb
ykdl/extractors/netease/__init__.py
panda-mute/ykdl
136
122633
# -*- coding: utf-8 -*- def get_extractor(url): if 'v.163.com/movie/' in url: url = url.replace('v.163', 'open.163') if 'cc.163' in url: from . import livecc as s elif 'live.163' in url: from . import live as s elif 'open.163' in url or '/opencourse/' in url: from . import openc as s elif 'music.163' in url: from . import music as s return s.get_extractor(url) elif '3g.163' in url: from . import m3g as s else: from . import video as s return s.site, url
docker/examples/iris/xgboost_rpc/python/iris_pb2.py
smsahu/seldon-server
1,645
122650
<gh_stars>1000+ # Generated by the protocol buffer compiler. DO NOT EDIT! # source: iris.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='iris.proto', package='io.seldon.microservice.iris', syntax='proto3', serialized_pb=_b('\n\niris.proto\x12\x1bio.seldon.microservice.iris\"D\n\x12IrisPredictRequest\x12\n\n\x02\x66\x31\x18\x01 \x01(\x02\x12\n\n\x02\x66\x32\x18\x02 \x01(\x02\x12\n\n\x02\x66\x33\x18\x03 \x01(\x02\x12\n\n\x02\x66\x34\x18\x04 \x01(\x02\x42/\n\x1bio.seldon.microservice.irisB\x0eIrisClassifierP\x01\x62\x06proto3') ) _sym_db.RegisterFileDescriptor(DESCRIPTOR) _IRISPREDICTREQUEST = _descriptor.Descriptor( name='IrisPredictRequest', full_name='io.seldon.microservice.iris.IrisPredictRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='f1', full_name='io.seldon.microservice.iris.IrisPredictRequest.f1', index=0, number=1, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='f2', full_name='io.seldon.microservice.iris.IrisPredictRequest.f2', index=1, number=2, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='f3', full_name='io.seldon.microservice.iris.IrisPredictRequest.f3', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='f4', full_name='io.seldon.microservice.iris.IrisPredictRequest.f4', index=3, number=4, type=2, cpp_type=6, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=43, serialized_end=111, ) DESCRIPTOR.message_types_by_name['IrisPredictRequest'] = _IRISPREDICTREQUEST IrisPredictRequest = _reflection.GeneratedProtocolMessageType('IrisPredictRequest', (_message.Message,), dict( DESCRIPTOR = _IRISPREDICTREQUEST, __module__ = 'iris_pb2' # @@protoc_insertion_point(class_scope:io.seldon.microservice.iris.IrisPredictRequest) )) _sym_db.RegisterMessage(IrisPredictRequest) DESCRIPTOR.has_options = True DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b('\n\033io.seldon.microservice.irisB\016IrisClassifierP\001')) import grpc from grpc.beta import implementations as beta_implementations from grpc.beta import interfaces as beta_interfaces from grpc.framework.common import cardinality from grpc.framework.interfaces.face import utilities as face_utilities # @@protoc_insertion_point(module_scope)
wargames/overthewire-vortex/level1/win.py
spchal/pwntools-write-ups
456
122659
#!/usr/bin/env python2 from pwn import * import time level = 1 host = 'vortex.labs.overthewire.org' user = 'vortex%i' % level chal = 'vortex%i' % level password = args['PASSWORD'] passfile = '/etc/vortex_pass/<PASSWORD>%i' % (level+1) binary = '/vortex/%s' % chal shell = ssh(host=host, user=user, password=password) r = shell.run(binary) # Stack layout looks like this: # -00000214 ptr dd ? # -00000210 char dd ? # -0000020C buffer db 512 dup(?) # # We start out in the middle of buffer off_buffer = -0x20c off_ptr = -0x214 ptr = off_buffer+0x100 r.send('\\' * (ptr-off_ptr-3)) # Underflow PTR, -3 so we set the high byte. r.send('\xca') # Write the byte r.send('\\') # Move backward again to undo the ++ r.send('\xca') # Send any byte at all, triggers e() r.clean() time.sleep(1) # Win r.send('id\n') log.success('id: %s' % r.recv().strip()) r.send('cat /etc/vortex_pass/vortex2\n') password = r.recv().strip() log.success('Password: %s' % password) print password
yargy/tests/test_relations.py
xepozz/yargy
250
122675
<filename>yargy/tests/test_relations.py from yargy import ( Parser, rule, and_, ) from yargy.predicates import gram from yargy.relations import ( main, gnc_relation, number_relation, gender_relation ) from yargy.interpretation import fact def test_name(): Name = fact( 'Name', ['first', 'last'] ) gnc = gnc_relation() FIRST = gram('Name').interpretation( Name.first.inflected() ).match(gnc) LAST = gram('Surn').interpretation( Name.last.inflected() ).match(gnc) NAME = rule( FIRST, LAST ).interpretation(Name) parser = Parser(NAME) match = parser.match('саше иванову') assert match.fact == Name(first='саша', last='иванов') match = parser.match('сашу иванову') assert match.fact == Name(first='саша', last='иванова') match = parser.match('сашу ивановой') assert not match def test_main(): relation = and_( number_relation(), gender_relation() ) A = rule( gram('Surn'), main(gram('Name')) ).match(relation) B = gram('VERB').match(relation) AB = rule(A, B) parser = Parser(AB) match = parser.match('иванов иван стал') assert match match = parser.match('иванов иван стали') assert not match match = parser.match('ивановы иван стал') assert match
html5validator/validator.py
adamchainz/html5validator
266
122711
<gh_stars>100-1000 # -*- coding: utf-8 -*- """The main validator class.""" from __future__ import unicode_literals import errno import fnmatch import logging import os import re import subprocess import sys import vnujar LOGGER = logging.getLogger(__name__) DEFAULT_IGNORE_RE = [ r'\APicked up _JAVA_OPTIONS:.*', r'\ADocument checking completed. No errors found.*', ] DEFAULT_IGNORE = [ '{"messages":[]}' ] DEFAULT_IGNORE_XML = [ '</messages>', '<?xml version=\'1.0\' encoding=\'utf-8\'?>', '<messages xmlns="http://n.validator.nu/messages/">' ] class JavaNotFoundException(Exception): """Error raised is there is no Java found""" def __str__(self): return ('Missing Java Runtime Environment on this system. ' 'The command "java" must be available.') def all_files(directory='.', match='*.html', blacklist=None, skip_invisible=True): if blacklist is None: blacklist = [] if not isinstance(match, list): match = [match] files = [] for root, dirnames, filenames in os.walk(directory): # filter out blacklisted directory names for b in blacklist: if b in dirnames: dirnames.remove(b) if b in filenames: filenames.remove(b) if skip_invisible: # filter out directory names starting with '.' invisible_dirs = [d for d in dirnames if d[0] == '.'] for d in invisible_dirs: dirnames.remove(d) for pattern in match: for filename in fnmatch.filter(filenames, pattern): if skip_invisible and filename[0] == '.': # filter out invisible files continue files.append(os.path.join(root, filename)) return files def _cygwin_path_convert(filepath): return subprocess.check_output( ['cygpath', '-w', filepath], shell=False).strip().decode('utf8') def _normalize_string(s): s = s.replace('“', '"') s = s.replace('”', '"') return s class Validator(object): def __init__(self, ignore=None, ignore_re=None, errors_only=False, detect_language=True, format=None, stack_size=None, vnu_args=None): self.ignore = ignore if ignore else [] self.ignore_re = ignore_re if ignore_re else [] # java options self.stack_size = stack_size # vnu options self.errors_only = errors_only self.detect_language = detect_language self.format = format self.vnu_args = vnu_args # add default ignore_re self.ignore_re += DEFAULT_IGNORE_RE # add default ignore self.ignore += DEFAULT_IGNORE # process fancy quotes in ignore self.ignore = [_normalize_string(s) for s in self.ignore] self.ignore_re = [_normalize_string(s) for s in self.ignore_re] # Determine jar location. self.vnu_jar_location = (vnujar.__file__ .replace('__init__.pyc', 'vnu.jar') .replace('__init__.py', 'vnu.jar')) if sys.platform == 'cygwin': self.vnu_jar_location = _cygwin_path_convert( self.vnu_jar_location) def _java_options(self): java_options = [] if self.stack_size is not None: java_options.append('-Xss{}k'.format(self.stack_size)) return java_options def _vnu_options(self): vnu_options = [] if self.errors_only: vnu_options.append('--errors-only') if not self.detect_language: vnu_options.append('--no-langdetect') if self.format is not None: vnu_options.append('--format') vnu_options.append(self.format) if self.vnu_args is not None: vnu_options += self.vnu_args return vnu_options def run_vnu(self, arguments): try: cmd = (['java'] + self._java_options() + ['-jar', self.vnu_jar_location] + arguments) LOGGER.debug(cmd) p = subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) stdout, stderr = p.communicate() except OSError as e: if e.errno == errno.ENOENT: raise JavaNotFoundException() else: raise except subprocess.CalledProcessError as error: raise (error.output.decode('utf-8')) return stdout.decode('utf-8'), stderr.decode('utf-8') def validate(self, files): if sys.platform == 'cygwin': files = [_cygwin_path_convert(f) for f in files] stdout, stderr = self.run_vnu(self._vnu_options() + files) # process fancy quotes into standard quotes stdout = _normalize_string(stdout) stderr = _normalize_string(stderr) err = stdout.splitlines() + stderr.splitlines() # Removes any empty items in the list err = list(filter(None, err)) # Prevents removal of xml tags if there are errors if self.format == "xml" and len(err) < 4: self.ignore = DEFAULT_IGNORE_XML LOGGER.debug(err) for ignored in self.ignore: err = [line for line in err if ignored not in line] for ignored in self.ignore_re: regex = re.compile(ignored) err = [line for line in err if not regex.search(line)] if err: for line in err: print(line) else: LOGGER.info('All good.') return len(err)
robogym/envs/rearrange/blocks_duplicate.py
0xflotus/robogym
288
122769
<filename>robogym/envs/rearrange/blocks_duplicate.py from typing import List from robogym.envs.rearrange.blocks import BlockRearrangeEnv from robogym.envs.rearrange.simulation.base import ObjectGroupConfig class DuplicateBlockRearrangeEnv(BlockRearrangeEnv): def _sample_random_object_groups( self, dedupe_objects: bool = False ) -> List[ObjectGroupConfig]: """ Create one group of block objects with a random color. Overwrite the object groups info to contain only one group for all the blocks. """ object_groups = super()._sample_random_object_groups() num_objects = self.parameters.simulation_params.num_objects first_object_group = object_groups[0] first_object_group.count = num_objects first_object_group.object_ids = list(range(num_objects)) object_groups = [first_object_group] return object_groups make_env = DuplicateBlockRearrangeEnv.build
test_frame/other_tests/test_import_time.py
DJMIN/funboost
333
122786
import datetime print(1,datetime.datetime.now()) import apscheduler print(2,datetime.datetime.now()) import gevent print(3,datetime.datetime.now()) import eventlet print(4,datetime.datetime.now()) import asyncio print(5,datetime.datetime.now()) import threading print(6,datetime.datetime.now()) import pymongo print(7,datetime.datetime.now()) import redis print(8,datetime.datetime.now()) import pysnooper print(9,datetime.datetime.now())
exercises/ja/exc_02_02_01.py
Jette16/spacy-course
2,085
122792
<filename>exercises/ja/exc_02_02_01.py from spacy.lang.ja import Japanese nlp = Japanese() doc = nlp("私はネコを飼っています") # 単語「ネコ」のハッシュを引く cat_hash = ____.____.____[____] print(cat_hash) # cat_hashを使って文字列を引く cat_string = ____.____.____[____] print(cat_string)
pipelines/FBCSP.py
plcrodrigues/moabb
321
122794
import numpy as np from pyriemann.estimation import Covariances from pyriemann.spatialfilters import CSP from sklearn.feature_selection import SelectKBest, mutual_info_classif from sklearn.model_selection import GridSearchCV from sklearn.pipeline import make_pipeline from sklearn.svm import SVC from moabb.pipelines.utils import FilterBank parameters = {"C": np.logspace(-2, 2, 10)} clf = GridSearchCV(SVC(kernel="linear"), parameters) fb = FilterBank(make_pipeline(Covariances(estimator="oas"), CSP(nfilter=4))) pipe = make_pipeline(fb, SelectKBest(score_func=mutual_info_classif, k=10), clf) # this is what will be loaded PIPELINE = { "name": "FBCSP + optSVM", "paradigms": ["FilterBankMotorImagery"], "pipeline": pipe, }
virtual/lib/python3.6/site-packages/pylint/test/input/func_noerror_builtin_module_test.py
drewheathens/The-Moringa-Tribune
463
122808
<reponame>drewheathens/The-Moringa-Tribune """test import from a builtin module""" from __future__ import absolute_import from math import log10 __revision__ = None def log10_2(): """bla bla bla""" return log10(2)
snorkel/slicing/apply/dask.py
melonwater211/snorkel
2,906
122826
<filename>snorkel/slicing/apply/dask.py from snorkel.labeling.apply.dask import ( # pragma: no cover DaskLFApplier, PandasParallelLFApplier, ) class DaskSFApplier(DaskLFApplier): # pragma: no cover """SF applier for a Dask DataFrame. See ``snorkel.labeling.apply.dask.DaskLFApplier`` for details. """ _use_recarray = True class PandasParallelSFApplier(PandasParallelLFApplier): # pragma: no cover """Parallel SF applier for a Pandas DataFrame. See ``snorkel.labeling.apply.dask.PandasParallelLFApplier`` for details. """ _use_recarray = True
SimCalorimetry/EcalTrigPrimProducers/python/ecalTriggerPrimitiveDigis_readDBOffline_cff.py
ckamtsikis/cmssw
852
122851
import FWCore.ParameterSet.Config as cms # Trigger Primitive Producer from SimCalorimetry.EcalTrigPrimProducers.ecalTriggerPrimitiveDigis_readDBOffline_cfi import *
fairlearn/metrics/_function_container.py
alliesaizan/fairlearn
1,142
122857
# Copyright (c) Microsoft Corporation and Fairlearn contributors. # Licensed under the MIT License. from typing import Any, Callable, Dict, Optional import logging import numpy as np logger = logging.getLogger(__name__) _DEFAULT_NAME = 'metric' _METRIC_FUNCTION_NONE = "Found 'None' instead of metric function" _METRIC_FUNCTION_NOT_CALLABLE = "Object passed as metric function not callable" _SAMPLE_PARAMS_NOT_DICT = "Sample parameters must be a dictionary" class FunctionContainer: """A helper class for metrics. Parameters ---------- func : Callable The metric function name : str The name of the metric. If ``None`` then the ``__name__`` property of the ``func`` is used, or if that is not available a default is used. sample_params : dict[str,array_like] Sample parameters, which are to be sliced up along with ``y_true`` and ``y_pred`` """ def __init__(self, func: Callable, name: Optional[str], sample_params: Optional[Dict[str, Any]]): """Read a placeholder comment.""" if func is None: raise ValueError(_METRIC_FUNCTION_NONE) if not callable(func): raise ValueError(_METRIC_FUNCTION_NOT_CALLABLE) self._func = func if name is None: if hasattr(func, '__name__'): self._name = func.__name__ else: logger.warning("Supplied 'func' had no __name__ attribute") self._name = _DEFAULT_NAME else: self._name = name self._sample_params = dict() if sample_params is not None: if not isinstance(sample_params, dict): raise ValueError(_SAMPLE_PARAMS_NOT_DICT) for k, v in sample_params.items(): if v is not None: # Coerce any sample_params to being ndarrays for easy masking self._sample_params[k] = np.asarray(v) @property def func_(self) -> Callable: """Return the contained metric function.""" return self._func @property def name_(self) -> str: """Return the name of the metric.""" return self._name @property def sample_params_(self) -> Dict[str, np.ndarray]: """Return the dictionary of sample parameters (as ndarray).""" return self._sample_params def generate_sample_params_for_mask(self, mask: np.ndarray) -> Dict[str, np.ndarray]: """Return the sample parameters selected by the given mask.""" curr_sample_params = dict() for name, value in self.sample_params_.items(): curr_sample_params[name] = value[mask] return curr_sample_params def evaluate(self, y_true, y_pred, mask: np.ndarray) -> Any: """Evaluate the metric for the given mask and input data. The mask will be applied to ``y_true``, ``y_pred`` and the sample parameters. """ # Following are internal sanity checks assert isinstance(y_true, np.ndarray) assert isinstance(y_pred, np.ndarray) assert len(y_true) == len(y_pred) assert len(y_true) == len(mask) params = self.generate_sample_params_for_mask(mask) return self.func_(y_true[mask], y_pred[mask], **params) def evaluate_all(self, y_true, y_pred) -> Any: """Evaluate the metric on all data.""" return self.func_(y_true, y_pred, **self.sample_params_)
tests/pyb/modstm.py
learnforpractice/micropython-cpp
13,648
122883
# test stm module import stm import pyb # test storing a full 32-bit number # turn on then off the A15(=yellow) LED BSRR = 0x18 stm.mem32[stm.GPIOA + BSRR] = 0x00008000 pyb.delay(100) print(hex(stm.mem32[stm.GPIOA + stm.GPIO_ODR] & 0x00008000)) stm.mem32[stm.GPIOA + BSRR] = 0x80000000 print(hex(stm.mem32[stm.GPIOA + stm.GPIO_ODR] & 0x00008000))
bazel/toolchain/aarch64-none-linux-gnu/cc_toolchain_config.bzl
mazzystr/kubevirt
3,231
122934
<gh_stars>1000+ load("@bazel_tools//tools/build_defs/cc:action_names.bzl", "ACTION_NAMES") load( "@bazel_tools//tools/cpp:cc_toolchain_config_lib.bzl", "feature", "flag_group", "flag_set", "tool_path", ) all_link_actions = [ ACTION_NAMES.cpp_link_executable, ACTION_NAMES.cpp_link_dynamic_library, ACTION_NAMES.cpp_link_nodeps_dynamic_library, ] all_compile_actions = [ ACTION_NAMES.assemble, ACTION_NAMES.c_compile, ACTION_NAMES.clif_match, ACTION_NAMES.cpp_compile, ACTION_NAMES.cpp_header_parsing, ACTION_NAMES.cpp_module_codegen, ACTION_NAMES.cpp_module_compile, ACTION_NAMES.linkstamp_compile, ACTION_NAMES.lto_backend, ACTION_NAMES.preprocess_assemble, ] def _impl(ctx): tool_paths = [ tool_path( name = "ar", path = "wrappers/aarch64-none-linux-gnu-ar", ), tool_path( name = "cpp", path = "wrappers/aarch64-none-linux-gnu-cpp", ), tool_path( name = "gcc", path = "wrappers/aarch64-none-linux-gnu-gcc", ), tool_path( name = "gcov", path = "wrappers/aarch64-none-linux-gnu-gcov", ), tool_path( name = "ld", path = "wrappers/aarch64-none-linux-gnu-ld", ), tool_path( name = "nm", path = "wrappers/aarch64-none-linux-gnu-nm", ), tool_path( name = "objdump", path = "wrappers/aarch64-none-linux-gnu-objdump", ), tool_path( name = "strip", path = "wrappers/aarch64-none-linux-gnu-strip", ), ] default_compiler_flags = feature( name = "default_compiler_flags", enabled = True, flag_sets = [ flag_set( actions = all_compile_actions, flag_groups = [ flag_group( flags = [ "-no-canonical-prefixes", "-fno-canonical-system-headers", "-Wno-builtin-macro-redefined", "-D__DATE__=\"redacted\"", "-D__TIMESTAMP__=\"redacted\"", "-D__TIME__=\"redacted\"", ], ), ], ), ], ) default_linker_flags = feature( name = "default_linker_flags", enabled = True, flag_sets = [ flag_set( actions = all_link_actions, flag_groups = ([ flag_group( flags = [ "-lstdc++", ], ), ]), ), ], ) features = [ default_compiler_flags, default_linker_flags, ] return cc_common.create_cc_toolchain_config_info( ctx = ctx, cxx_builtin_include_directories = [ "/proc/self/cwd/external/aarch64-none-linux-gnu/aarch64-none-linux-gnu/include/c++/10.2.1/", "/proc/self/cwd/external/aarch64-none-linux-gnu/aarch64-none-linux-gnu/libc/usr/include/", "/proc/self/cwd/external/aarch64-none-linux-gnu/lib/gcc/aarch64-none-linux-gnu/10.2.1/include/", "/proc/self/cwd/external/aarch64-none-linux-gnu/aarch64-none-linux-gnu/libc/lib/", ], features = features, toolchain_identifier = "aarch64-toolchain", host_system_name = "local", target_system_name = "unknown", target_cpu = "unknown", target_libc = "unknown", compiler = "unknown", abi_version = "unknown", abi_libc_version = "unknown", tool_paths = tool_paths, ) cc_toolchain_config = rule( implementation = _impl, attrs = {}, provides = [CcToolchainConfigInfo], )
totalpass/target.py
0xHJK/TotalPass
153
122936
#!/usr/bin/env python3 # -*- coding=utf-8 -*- """ 格式化目标对象 """ import os import re import sys import copy import logging import socket import click from netaddr import IPNetwork from netaddr.core import AddrFormatError from .settings import opts from . import addons class Target(object): """ 测试目标对象,不同目标之间IP、端口、分类均不同 """ logger = logging.getLogger("TotalPass") def __init__(self, host=None, port=None, category=None, protocol=None, url=None): self.logger = Target.logger self.host = host port = port or opts.port port = int(re.sub(r"\D", "", str(port))) if port else None self.port = port if port and 0 < port < 65535 else None self.category = category or protocol self.protocol = protocol self.url = url def __eq__(self, other): return self.__dict__ == other.__dict__ def __repr__(self): s1 = "%s://" % self.protocol if self.protocol else "" s2 = self.host or "" s3 = ":%s" % self.port if self.port else "" s = s1 + s2 + s3 if s2 else "" return s def alive(self) -> bool: """ 检查端口是否开放 """ if not self.port: click.secho("[x] %s No port specified." % self.host, fg="red") return False addr = (self.host, int(self.port)) try: # 检测TCP s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.settimeout(opts.timeout_alive) s.connect(addr) s.close() click.secho("[+] [TCP] %s:%s is open." % (self.host, self.port), fg="green") return True except ConnectionRefusedError as e: # 检测UDP s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.settimeout(opts.timeout_alive) s.connect(addr) s.close() click.secho("[+] [UDP] %s:%s is open." % (self.host, self.port), fg="green") return True except Exception as e: click.secho("[x] %s:%s is close." % (self.host, self.port), fg="red") self.logger.debug("%s Exception: %s" % (type(e).__name__, str(e))) return False def load_scanners(self) -> list: """ 加载对应的扫描器 """ scanners = [] if self.category and self.category in addons.__all__: addon = sys.modules.get("%s.addons.%s" % (__package__, self.category)) self.logger.info("Creating %s %s scanners..." % (self.category, self)) for passwd in opts.passwds: if passwd.category != self.category and passwd.category != opts.common: continue for cred in passwd.credentials: scanners.append( addon.mkscanner( passwd, self, cred.get("username", ""), cred.get("password", ""), ) ) else: click.secho( "[x] #%s %s is not yet supported." % (self.category, self), fg="red" ) return scanners @classmethod def parse(cls, target) -> list: """ 解析目标主机生成target list target 可能是tuple/list/str或文件 """ mid_targets = [] # 中间结果 ret_targets = [] # 最终结果(补全了端口) if isinstance(target, str): if os.path.isfile(target): # TODO pass else: mid_targets = cls._parse_str(target) elif isinstance(target, tuple) or isinstance(target, list): for t in target: mid_targets += cls._parse_str(t) # return mid_targets # 为targets补全端口和分类 for t in mid_targets: if t.category: t.port = t.port or opts.port or opts.port_map.get(t.category, 0) ret_targets.append(t) else: for cat in opts.categories: nt = copy.deepcopy(t) nt.category = cat nt.port = nt.port or opts.port or opts.port_map.get(cat, 0) ret_targets.append(nt) return ret_targets @classmethod def _parse_str(cls, target) -> list: """ 解析字符串形式的目标 """ cls.logger.info("Parsing target %s" % target) if not isinstance(target, str): cls.logger.error("Target %s is not str" % target) return [] target = target.strip().rstrip("/") targets = [] try: for ip in IPNetwork(target).iter_hosts(): # (covers IP or cidr) #3,4 targets.append(Target(host=str(ip))) except AddrFormatError: if len(target.split(":")) == 3: # mysql://127.0.0.1:3306 protocol = target.split(":")[0] host = target.split(":")[1].replace("//", "") port = target.split(":")[2] targets.append(Target(host=host, port=port, protocol=protocol)) elif "://" in target: # snmp://127.0.0.1 protocol = target.split(":")[0] host = target.split(":")[1].replace("//", "") targets.append(Target(host=host, protocol=protocol)) elif ":" in target: # 127.0.0.1:8080 host = target.split(":")[0] port = target.split(":")[1] targets.append(Target(host=host, port=port)) else: targets.append(Target(host=target)) return targets
spk/haproxy/src/app/application/db_upgrade_16.py
BKSteve/spksrc
2,211
122956
# -*- coding: utf-8 -*- from __future__ import unicode_literals from db import * from direct import Configuration def upgrade(): config = Configuration() session = Session() frontend = session.query(Frontend).\ filter_by(name='https', binds=':5443 ssl crt /usr/local/haproxy/var/crt/default.pem', options=r'option http-server-close,option forwardfor,rspirep ^Location:\ http://(.*)$ Location:\ https://\1').\ first() if frontend: frontend.binds += ' ciphers AESGCM+AES128:AES128:AESGCM+AES256:AES256:RSA+RC4+SHA:!RSA+AES:!CAMELLIA:!aECDH:!3DES:!DSS:!PSK:!SRP:!aNULL no-sslv3' frontend.options += r', rspadd Strict-Transport-Security:\ max-age=31536000;\ includeSubDomains' session.commit() config.write(restart=False) if __name__ == '__main__': upgrade()
DOC/bin/body.py
notinaboat/pigpio
109
122975
<gh_stars>100-1000 #!/usr/bin/env python3 import glob for fn in glob.glob("src/html/*.html"): f = open(fn) h = f.read() f.close() s1,d1,e1=h.partition("<body>") s2,d2,e2=e1.partition("</body>") f = open("tmp/body/" + fn[9:-5] + ".body", "w") f.write(s2) f.close()
valentyusb/usbcore/tx/nrzi.py
rjeschmi/valentyusb
105
123000
#!/usr/bin/env python3 import unittest from migen import * from .tester import module_tester from ..test.common import BaseUsbTestCase class TxNRZIEncoder(Module): """ NRZI Encode In order to ensure there are enough bit transitions for a receiver to recover the clock usb uses NRZI encoding. This module processes the incoming dj, dk, se0, and valid signals and decodes them to data values. It also pipelines the se0 signal and passes it through unmodified. https://www.pjrc.com/teensy/beta/usb20.pdf, USB2 Spec, 7.1.8 https://en.wikipedia.org/wiki/Non-return-to-zero Clock Domain ------------ usb_48 : 48MHz Input Ports ----------- i_valid : Signal(1) Qualifies oe, data, and se0. i_oe : Signal(1) Indicates that the transmit pipeline should be driving USB. i_data : Signal(1) Data bit to be transmitted on USB. Qualified by o_valid. i_se0 : Signal(1) Overrides value of o_data when asserted and indicates that SE0 state should be asserted on USB. Qualified by o_valid. Output Ports ------------ o_usbp : Signal(1) Raw value of USB+ line. o_usbn : Signal(1) Raw value of USB- line. o_oe : Signal(1) When asserted it indicates that the tx pipeline should be driving USB. """ def __init__(self): self.i_valid = Signal() self.i_oe = Signal() self.i_data = Signal() # Simple state machine to perform NRZI encoding. self.submodules.nrzi = nrzi = FSM() usbp = Signal(1) usbn = Signal(1) oe = Signal(1) # wait for new packet to start nrzi.act("IDLE", usbp.eq(1), usbn.eq(0), oe.eq(0), If(self.i_valid, If(self.i_oe, # first bit of sync always forces a transition, we idle # in J so the first output bit is K. NextState("DK") ) ) ) # the output line is in state J nrzi.act("DJ", usbp.eq(1), usbn.eq(0), oe.eq(1), If(self.i_valid, If(~self.i_oe, NextState("SE0A") ).Elif(self.i_data, NextState("DJ") ).Else( NextState("DK") ) ) ) # the output line is in state K nrzi.act("DK", usbp.eq(0), usbn.eq(1), oe.eq(1), If(self.i_valid, If(~self.i_oe, NextState("SE0A") ).Elif(self.i_data, NextState("DK") ).Else( NextState("DJ") ) ) ) # first bit of the SE0 state nrzi.act("SE0A", usbp.eq(0), usbn.eq(0), oe.eq(1), If(self.i_valid, NextState("SE0B") ) ) # second bit of the SE0 state nrzi.act("SE0B", usbp.eq(0), usbn.eq(0), oe.eq(1), If(self.i_valid, NextState("EOPJ") ) ) # drive the bus back to J before relinquishing control nrzi.act("EOPJ", usbp.eq(1), usbn.eq(0), oe.eq(1), If(self.i_valid, NextState("IDLE") ) ) # flop all outputs self.o_usbp = Signal(1) self.o_usbn = Signal(1) self.o_oe = Signal(1) self.sync += [ self.o_oe.eq(oe), self.o_usbp.eq(usbp), self.o_usbn.eq(usbn), ]
.deprecated/mod_armoring_extended/mod_armoring_extended203.py
angelsoft1/spoter-mods
150
123044
<reponame>angelsoft1/spoter-mods<gh_stars>100-1000 # -*- coding: utf-8 -*- import datetime import re import random import string import os import json import codecs import urllib2 import urllib import threading import weakref from functools import partial import BigWorld import Math import GUI import Keys import game from constants import AUTH_REALM, VEHICLE_HIT_EFFECT from gui import InputHandler, g_guiResetters from gui.Scaleform import Minimap from gui.Scaleform.Flash import Flash from gui.Scaleform.Battle import Battle from gui.Scaleform.daapi.view.lobby.hangar import Hangar from Vehicle import Vehicle from VehicleEffects import DamageFromShotDecoder from gui.app_loader import g_appLoader class Config(object): def __init__(self): self.enable = True self.debug = False self.ru = True if AUTH_REALM == 'RU' else False self.version = 'v2.03(30.08.2015)' self.author = 'by spoter, reven86' self.description = 'armoring_extended' self.name = 'armoring_extended' self.description_analytics = 'Мод: "Броняня"' self.description_ru = 'Мод: "Броняня"' self.author_ru = 'авторы: spoter, reven86' self.tid = 'UA-57975916-9' self.setup = {'MODIFIER': {'MODIFIER_NONE': 0, 'MODIFIER_SHIFT': 1, 'MODIFIER_CTRL': 2, 'MODIFIER_ALT': 4}} self.sys_mes = {} self._thread_analytics = None self.analytics_started = False self.language = None self.xvm_installed = False self.xvm_check() self.res_mods = self.res_mods_init() self.data = {} self.default_config() new_config = self.load_json(self.name, self.data) self.data = new_config if 'Русский' in self.data['config'].get('language'): self.ru = True if self.ru: self.description = self.description_ru self.author = self.author_ru @staticmethod def res_mods_init(): wd = os.path.dirname(os.path.realpath(__file__)) wd = wd[0:wd.rfind('\\')] wd = wd[0:wd.rfind('\\')] wd = wd[0:wd.rfind('\\')] return wd def xvm_check(self): try: # import xvm_main self.xvm_installed = True except StandardError: pass def default_config(self): self.data = { 'config': { 'enable': True, 'debug': False, 'activate_message': True, 'only_HeavyTank': False, 'language': 'Русский' }, 'language': { 'Русский': { 'main_text': 'Танканул <font color="#fdf498">{NumDmg}</font> раз(а) на <img align="top" src="img://gui/maps/icons/library/ClanBattleResultIcon-1.png" height="16" width="16" ' 'vspace="-3" /><font color="#fdf498">{AvgDmg}</font> урона', 'activate_message': 'Броняня: Активирована', 'activate_message_only_HeavyTank': 'Броняня: Активирована, режим ТТ' }, 'English': { 'main_text': '<font color="#fdf498">{NumDmg}</font> Blocked <img align="top" src="img://gui/maps/icons/library/ClanBattleResultIcon-1.png" height="16" width="16" vspace="-3" ' '/><font color="#fdf498">{AvgDmg}</font> damage', 'activate_message': 'Armoring Extended: Activated', 'activate_message_only_HeavyTank': 'Armoring Extended: Activated, only Heavy Tanks' }, 'Deutsch': { 'main_text': '<font color="#fdf498">{NumDmg}</font> Blocked <img align="top" src="img://gui/maps/icons/library/ClanBattleResultIcon-1.png" height="16" width="16" vspace="-3" ' '/><font color="#fdf498">{AvgDmg}</font> Schaden', 'activate_message': 'Armoring Extended: Aktiviert', 'activate_message_only_HeavyTank': 'Armoring Extended: Aktiviert, nur schwere Panzer' } }, 'flash': { 'text': { 'x': 20, 'y': 450, 'alignX': 'left', 'alignY': 'top', 'default_font': '$IMELanguageBar', 'default_font_size': 14, 'default_font_color': '#BDFA64' }, 'background': { 'enable': False, 'image': 'img://../res_mods/configs/spoter_mods/%s/background.png' % self.name, 'x': 18, 'y': 448, 'width': 250, 'height': 27, 'alpha': 80 }, 'shadow': { 'enable': True, 'distance': 0, 'angle': 0, 'color': '#000000', 'alpha': 60, 'size': 40, 'strength': 500 } } } def do_config(self): self.enable = self.data['config'].get('enable', False) self.debug = self.data['config'].get('debug', False) if self.data['config'].get('language') in self.data['language']: self.language = self.data['language'].get(self.data['config'].get('language')) else: self.data['config']['language'] = 'English' self.language = self.data['language'].get('English') if armor.flash: text = self.data['flash'].get('text') background = self.data['flash'].get('background') shadow = self.data['flash'].get('shadow') if text: armor.flash.data.set_text_config(text.get('x', 0), text.get('y', 0), text.get('alignX', 'left'), text.get('alignY', 'top'), text.get('default_font', '$IMELanguageBar'), text.get('default_font_size', 14), text.get('default_font_color', '#BDFA64')) if background: armor.flash.data.set_background_config(background.get('enable'), background.get('image'), background.get('x'), background.get('y'), background.get('width'), background.get('height'), background.get('alpha')) if shadow: armor.flash.data.set_shadow_config(shadow.get('enable'), shadow.get('distance'), shadow.get('angle'), shadow.get('color'), shadow.get('alpha'), shadow.get('size'), shadow.get('strength')) def update_cord(self, text_x, text_y, back_x, back_y): flash = self.data['flash'] text = flash.get('text') background = flash.get('background') text['x'] = text_x text['y'] = text_y background['x'] = back_x background['y'] = back_y def byte_ify(self, inputs): if inputs: if isinstance(inputs, dict): return {self.byte_ify(key): self.byte_ify(value) for key, value in inputs.iteritems()} elif isinstance(inputs, list): return [self.byte_ify(element) for element in inputs] elif isinstance(inputs, unicode): return inputs.encode('utf-8') else: return inputs return inputs @staticmethod def json_comments(text): regex = r'\s*(#|\/{2}).*$' regex_inline = r'(:?(?:\s)*([A-Za-z\d\.{}]*)|((?<=\").*\"),?)(?:\s)*(((#|(\/{2})).*)|)$' lines = text.split('\n') excluded = [] for index, line in enumerate(lines): if re.search(regex, line): if re.search(r'^' + regex, line, re.IGNORECASE): excluded.append(lines[index]) elif re.search(regex_inline, line): lines[index] = re.sub(regex_inline, r'\1', line) for line in excluded: lines.remove(line) return '\n'.join(lines) def load_json(self, name, config_old, save=False): config_new = config_old path = './res_mods/configs/spoter_mods/%s/' % self.name if not os.path.exists(path): os.makedirs(path) new_path = '%s%s.json' % (path, name) if save: with codecs.open(new_path, 'w', encoding='utf-8-sig') as json_file: data = json.dumps(config_old, sort_keys=True, indent=4, ensure_ascii=False, encoding='utf-8-sig', separators=(',', ': ')) json_file.write('%s' % self.byte_ify(data)) json_file.close() config_new = config_old else: if os.path.isfile(new_path): try: with codecs.open(new_path, 'r', encoding='utf-8-sig') as json_file: data = self.json_comments(json_file.read().decode('utf-8-sig')) config_new = self.byte_ify(json.loads(data)) json_file.close() except Exception as e: self.sys_mess() print '%s%s' % (self.sys_mes['ERROR'], e) else: self.sys_mess() print '%s[%s, %s %s]' % (self.sys_mes['ERROR'], self.code_pa(self.description), self.version, self.sys_mes['MSG_RECREATE_CONFIG']) with codecs.open(new_path, 'w', encoding='utf-8-sig') as json_file: data = json.dumps(config_old, sort_keys=True, indent=4, ensure_ascii=False, encoding='utf-8-sig', separators=(',', ': ')) json_file.write('%s' % self.byte_ify(data)) json_file.close() config_new = config_old print '%s[%s, %s %s]' % (self.sys_mes['INFO'], self.code_pa(self.description), self.version, self.sys_mes['MSG_RECREATE_CONFIG_DONE']) return config_new @staticmethod def code_pa(text): try: return text.encode('windows-1251') except StandardError: return text def debugs(self, text): if self.debug: try: text = text.encode('windows-1251') except StandardError: pass print '%s%s [%s]: %s' % (datetime.datetime.now(), self.sys_mes['DEBUG'], self.code_pa(self.description), text) def analytics_do(self): if not self.analytics_started: player = BigWorld.player() param = urllib.urlencode({ 'v': 1, # Version. 'tid': '%s' % self.tid, # Tracking ID / Property ID. 'cid': player.databaseID, # Anonymous Client ID. 't': 'screenview', # Screenview hit type. 'an': '%s' % self.description_analytics, # App name. 'av': '%s %s' % (self.description_analytics, self.version), # App version. 'cd': 'start [%s]' % AUTH_REALM # Screen name / content description. }) self.debugs('http://www.google-analytics.com/collect?%s' % param) urllib2.urlopen(url='http://www.google-analytics.com/collect?', data=param).read() self.analytics_started = True def analytics(self): self._thread_analytics = threading.Thread(target=self.analytics_do, name='Thread') self._thread_analytics.start() def sys_mess(self): self.sys_mes = { 'DEBUG': '[DEBUG]', 'LOAD_MOD': self.code_pa('[ЗАГРУЗКА]: ') if self.ru else '[LOAD_MOD]: ', 'INFO': self.code_pa('[ИНФО]: ') if self.ru else '[INFO]: ', 'ERROR': self.code_pa('[ОШИБКА]: ') if self.ru else '[ERROR]: ', 'MSG_RECREATE_CONFIG': self.code_pa('конфиг не найден, создаем заново') if self.ru else 'Config not found, recreating', 'MSG_RECREATE_CONFIG_DONE': self.code_pa('конфиг создан УСПЕШНО') if self.ru else 'Config recreating DONE', 'MSG_INIT': self.code_pa('применение настроек...') if self.ru else 'initialized ...', 'MSG_LANGUAGE_SET': self.code_pa('Выбран язык:') if self.ru else 'Language set to:', 'MSG_DISABLED': self.code_pa('отключен ...') if self.ru else 'disabled ...' } def load_mod(self): self.do_config() self.sys_mess() print '' print '%s[%s, %s]' % (self.sys_mes['LOAD_MOD'], self.code_pa(self.description), self.code_pa(self.author)) if self.enable: self.debugs('Debug Activated ...') print '%s[%s %s %s...]' % (self.sys_mes['INFO'], self.code_pa(self.description), self.sys_mes['MSG_LANGUAGE_SET'], self.code_pa(self.data['config'].get('language'))) print '%s[%s, %s %s]' % (self.sys_mes['INFO'], self.code_pa(self.description), self.version, self.sys_mes['MSG_INIT']) else: print '%s[%s, %s %s]' % (self.sys_mes['INFO'], self.code_pa(self.description), self.version, self.sys_mes['MSG_DISABLED']) print '' def save_config_debug(self): new_config = self.load_json('armoring_extended', self.data, True) self.data = new_config self.do_config() def load_config_debug(self): new_config = self.load_json('armoring_extended', self.data) self.data = new_config self.do_config() if armor: armor.shout_damage() class TextFlash(Flash): def __init__(self, parent_ui, flash_name): Flash.__init__(self, flash_name) self.parentUI = parent_ui self.isVisible = False self.movie.backgroundAlpha = 0.0 self.component.wg_inputKeyMode = 2 self.component.position.z = 0.5 self.component.focus = False self.component.moveFocus = False self.component.heightMode = 'PIXEL' self.component.widthMode = 'PIXEL' self.flashSize = GUI.screenResolution() self.text = {} self.shadow = {} self.background = {} def start(self): self.active(True) self.visible_view(True) self.component.visible = False self.set_def_config() self.update_pos() def set_def_config(self): text = config.data['flash'].get('text') background = config.data['flash'].get('background') shadow = config.data['flash'].get('shadow') self.text['x'] = text['x'] self.text['y'] = text['y'] self.text['alignX'] = text['alignX'] self.text['alignY'] = text['alignY'] self.text['default_font'] = text['default_font'] self.text['default_font_size'] = text['default_font_size'] self.text['default_font_color'] = text['default_font_color'] self.background['enable'] = background['enable'] self.background['image'] = background['image'] self.background['x'] = background['x'] self.background['y'] = background['y'] self.background['width'] = background['width'] self.background['height'] = background['height'] self.background['alpha'] = background['alpha'] self.shadow['enable'] = shadow['enable'] self.shadow['distance'] = shadow['distance'] self.shadow['angle'] = shadow['angle'] self.shadow['color'] = shadow['color'] self.shadow['alpha'] = shadow['alpha'] self.shadow['size'] = shadow['size'] self.shadow['strength'] = shadow['strength'] def set_text_config(self, x=None, y=None, align_x=None, align_y=None, default_font=None, default_font_size=None, default_font_color=None): if x is not None: self.text['x'] = int(x) if y is not None: self.text['y'] = int(y) if align_x is not None: self.text['alignX'] = '%s' % align_x if align_y is not None: self.text['alignY'] = '%s' % align_y if default_font is not None: self.text['default_font'] = '%s' % default_font if default_font_size is not None: self.text['default_font_size'] = int(default_font_size) if default_font_color is not None: self.text['default_font_color'] = '%s' % default_font_color def set_background_config(self, enable=None, image=None, x=None, y=None, width=None, height=None, alpha=None): if enable is not None: self.background['enable'] = enable if image is not None: self.background['image'] = '%s' % image if x is not None: self.background['x'] = int(x) if y is not None: self.background['y'] = int(y) if width is not None: self.background['width'] = int(width) if height is not None: self.background['height'] = int(height) if alpha is not None: self.background['alpha'] = int(alpha) def set_shadow_config(self, enable=None, distance_shadow=None, angle_shadow=None, color_shadow=None, alpha_shadow=None, size_shadow=None, strength_shadow=None): if enable is not None: self.shadow['enable'] = enable if distance_shadow is not None: self.shadow['distance'] = int(distance_shadow) if angle_shadow is not None: self.shadow['angle'] = int(angle_shadow) if color_shadow is not None: self.shadow['color'] = '%s' % color_shadow if alpha_shadow is not None: self.shadow['alpha'] = int(alpha_shadow) if size_shadow is not None: self.shadow['size'] = int(size_shadow) if strength_shadow is not None: self.shadow['strength'] = int(strength_shadow) def destroy(self): self.close() def visible_view(self, boole): self.isVisible = boole self.component.visible = boole def visible_tab(self, event): isdown, key, mods, is_repeat = game.convertKeyEvent(event) if not is_repeat and key == 15: boole = not isdown if self.isVisible else False self.component.visible = boole def update_pos_debug(self, mod_x, mod_y): self.text['x'] += mod_x self.text['y'] += mod_y self.background['x'] += mod_x self.background['y'] += mod_y def update_pos(self): screen_gui = GUI.screenResolution() screen_x = {'left': 0, 'center': screen_gui[0] / 2, 'right': screen_gui[0]} screen_y = {'top': 0, 'center': screen_gui[1] / 2, 'bottom': screen_gui[1]} if self.text['x'] + 10 > screen_gui[0]: self.text['x'] = screen_gui[0] - 10 if self.text['y'] + 10 > screen_gui[1]: self.text['y'] = screen_gui[1] - 10 x = self.text['x'] y = self.text['y'] align_x = self.text['alignX'] align_y = self.text['alignY'] elem_x = x + screen_x.get(align_x, 0) elem_y = y + screen_y.get(align_y, 0) self.set_position(elem_x, elem_y) if self.background['x'] + 10 > screen_gui[0]: self.background['x'] = screen_gui[0] - 10 if self.background['y'] + 10 > screen_gui[1]: self.background['y'] = screen_gui[1] - 10 if self.background['enable']: self.set_bg(self.background['image'], self.background['x'], self.background['y'], self.background['width'], self.background['height'], self.background['alpha']) else: self.set_bg(None, 0, 0, 0, 0, 0) config.update_cord(self.text['x'], self.text['y'], self.background['x'], self.background['y']) def set_position(self, pos_x, pos_y): self.flash_call('setPosition', [pos_x, pos_y]) def set_visible(self, boole): self.flash_call('setVisible', [boole]) def set_alpha(self, alpha): self.flash_call('setAlpha', [alpha]) def set_shadow(self, distance_shadow, angle_shadow, color_shadow, alpha_shadow, size_shadow, strength_shadow): self.flash_call('setShadow', [distance_shadow, angle_shadow, color_shadow, alpha_shadow, size_shadow, strength_shadow]) def set_bg(self, image_bg, x_pos_bg, y_pos_bg, width_bg, height_bg, alpha_bg): self.flash_call('setBG', [image_bg, x_pos_bg, y_pos_bg, width_bg, height_bg, alpha_bg]) def set_text_flash(self, text): text = '<font size="%s" face="%s" color="%s" >%s</font>' % (self.text['default_font_size'], self.text['default_font'], self.text['default_font_color'], text) self.flash_call('setText', [text]) def set_text(self, text): if self.isVisible: self.component.visible = True self.set_text_flash(text) if self.shadow['enable']: self.set_shadow(self.shadow['distance'], self.shadow['angle'], self.shadow['color'], self.shadow['alpha'], self.shadow['size'], self.shadow['strength']) else: self.set_shadow(0, 0, '#000000', 0, 0, 0) def flash_call(self, func_name, args=None): self.call('TextFlash.' + func_name, args) class CustomFlash(object): def __init__(self, flash_name): self.data = TextFlash(weakref.proxy(self), flash_name) class ArmoringExtended(object): def __init__(self): self.on_off = False self.flash = None self.num = 0 self.avgDMG = 0 self.SumAvgDmg = 0 self.list = {} self.shots = 0 def cleanup_battle_data(self): self.num = 0 self.avgDMG = 0 self.SumAvgDmg = 0 self.list = {} self.shots = 0 @staticmethod def message(): app = g_appLoader.getDefBattleApp() if config.data['config'].get('only_HeavyTank'): app.call('battle.PlayerMessagesPanel.ShowMessage', [config.language['activate_message_only_HeavyTank'] + random.choice(string.ascii_letters), config.language['activate_message_only_HeavyTank'].decode('utf-8-sig'), 'gold']) else: app.call('battle.PlayerMessagesPanel.ShowMessage', [config.language['activate_message'] + random.choice(string.ascii_letters), config.language['activate_message'].decode('utf-8-sig'), 'gold']) def start_battle(self): if not config.enable: return if config.data['config'].get('only_HeavyTank'): if 'heavyTank' in BigWorld.player().vehicleTypeDescriptor.type.tags: self.on_off = True else: self.on_off = True if config.data['config'].get('activate_message') and self.on_off: BigWorld.callback(5.0, self.message) BigWorld.callback(5.0, self.shout_damage) def clear_data(self): self.avgDMG = 0 @staticmethod def blocked_armor_hit(vehicle, decode_comp_name): can_hit_primary_armor = None comp_matrix = Math.Matrix(vehicle.appearance.modelsDesc[decode_comp_name.componentName]['model'].matrix) first_hit_dir_local = decode_comp_name.matrix.applyToAxis(2) first_hit_dir = comp_matrix.applyVector(first_hit_dir_local) first_hit_point = decode_comp_name.matrix.translation first_hit_pos = comp_matrix.applyPoint(first_hit_point) world_to_veh_matrix = Math.Matrix(vehicle.model.matrix) world_to_veh_matrix.invert() start_point = world_to_veh_matrix.applyPoint(first_hit_pos - first_hit_dir) end_point = world_to_veh_matrix.applyPoint(first_hit_pos + first_hit_dir.scale(10.0)) for compDescr, comp_matrix, isAttached in vehicle.getComponents(): if not isAttached: continue collisions = compDescr['hitTester'].localHitTest(comp_matrix.applyPoint(start_point), comp_matrix.applyPoint(end_point)) if collisions is None: continue for dist, _, hitAngleCos, matKind in collisions: mat_info = compDescr['materials'].get(matKind) can_hit_primary_armor = True if mat_info is not None and mat_info.useArmorHomogenization else False if can_hit_primary_armor: break if can_hit_primary_armor: break return can_hit_primary_armor def shout_damage(self): if self.avgDMG != 0: self.num += 1 self.SumAvgDmg += self.avgDMG format_str = {'NumDmg': BigWorld.wg_getIntegralFormat(self.num), 'AvgDmg': BigWorld.wg_getIntegralFormat(self.SumAvgDmg)} self.flash.data.set_text(config.language['main_text'].format(**format_str)) self.clear_data() def shout_damage_hp(self, shots): if self.list[shots]: if self.list[shots]['isDamage']: self.list[shots] = None return if self.list[shots]['avgDMG'] != 0: self.num += 1 self.SumAvgDmg += self.list[shots]['avgDMG'] format_str = {'NumDmg': BigWorld.wg_getIntegralFormat(self.num), 'AvgDmg': BigWorld.wg_getIntegralFormat(self.SumAvgDmg)} self.flash.data.set_text(config.language['main_text'].format(**format_str)) self.list[shots] = None def shot(self, vehicle, attacker_id, points, effects_index): if not (config.enable and self.on_off): return if not vehicle.isStarted: return if not vehicle.isPlayer: return if BigWorld.player().team == BigWorld.player().arena.vehicles.get(attacker_id)['team']: return if vehicle.health < 1: return self.shots += 1 index_hit, decode_comp_name = DamageFromShotDecoder.decodeHitPoints(points, vehicle.typeDescriptor) #compName = decode_comp_name[0].componentName if decode_comp_name else None has_pierced_hit = index_hit >= VEHICLE_HIT_EFFECT.ARMOR_PIERCED is_blocked = self.blocked_armor_hit(vehicle, decode_comp_name[0]) if decode_comp_name else False if is_blocked: for shell in BigWorld.player().arena.vehicles.get(attacker_id)['vehicleType'].gun['shots']: if effects_index == shell['shell']['effectsIndex']: type_shell = shell['shell']['kind'] if type_shell != 'HIGH_EXPLOSIVE': self.avgDMG, _ = shell['shell']['damage'] if has_pierced_hit: self.list[self.shots] = {'id': attacker_id, 'avgDMG': self.avgDMG, 'isDamage': False, 'used': False} BigWorld.callback(0.15, partial(self.shout_damage_hp, self.shots)) else: self.shout_damage() break else: self.clear_data() def heal(self, vehicle, new_health, attacker_id): if not (config.enable and self.on_off): return if not vehicle.isStarted or not vehicle.isPlayer: return is_damage = max(0, new_health) if is_damage: for shots in self.list: if self.list[shots] and 'id' in self.list[shots] and self.list[shots]['id'] == attacker_id and not self.list[shots]['used']: self.list[shots]['isDamage'] = True self.list[shots]['used'] = True break # deformed functions: def hook_show_all(self_battle, old_hooked_show_all, is_show): old_hooked_show_all(self_battle, is_show) if config.enable: if armor.flash is None: return armor.flash.data.visible_view(is_show) def hook_after_create(self): hooked_afterCreate(self) if config.enable: armor.flash = CustomFlash('%s.swf' % config.name) armor.flash.data.start() g_guiResetters.add(armor.flash.data.update_pos) config.do_config() armor.cleanup_battle_data() def hook_before_delete(self): hooked_beforeDelete(self) if config.enable: armor.cleanup_battle_data() if armor.flash is None: return armor.flash.data.destroy() g_guiResetters.discard(armor.flash.data.update_pos) armor.flash.data = None armor.flash = None def hook_update_all(self): hooked_update_all(self) config.analytics() def inject_handle_key_event(event): if config.enable: is_down, key, mods, is_repeat = game.convertKeyEvent(event) if config.debug and armor.flash: if key == Keys.KEY_NUMPAD6 and is_down and mods == config.setup['MODIFIER']['MODIFIER_ALT']: armor.flash.data.update_pos_debug(10, 0) armor.flash.data.update_pos() config.save_config_debug() print 'position change x +10' if key == Keys.KEY_NUMPAD4 and is_down and mods == config.setup['MODIFIER']['MODIFIER_ALT']: armor.flash.data.update_pos_debug(-10, 0) armor.flash.data.update_pos() config.save_config_debug() print 'position change x -10' if key == Keys.KEY_NUMPAD8 and is_down and mods == config.setup['MODIFIER']['MODIFIER_ALT']: armor.flash.data.update_pos_debug(0, -10) armor.flash.data.update_pos() config.save_config_debug() print 'position change y -10' if key == Keys.KEY_NUMPAD2 and is_down and mods == config.setup['MODIFIER']['MODIFIER_ALT']: armor.flash.data.update_pos_debug(0, 10) armor.flash.data.update_pos() config.save_config_debug() print 'position change y +10' if key == Keys.KEY_NUMPADMINUS and is_down and mods == config.setup['MODIFIER']['MODIFIER_ALT']: config.load_config_debug() armor.flash.data.update_pos() print 'config reloaded' def hook_vehicle_show_damage_from_shot(self, attacker_id, points, effects_index): hooked_vehicle_show_damage_from_shot(self, attacker_id, points, effects_index) if armor.on_off: armor.shot(self, attacker_id, points, effects_index) def hook_vehicle_on_health_changed(self, new_health, attacker_id, attack_reason_id): hooked_vehicle_on_health_changed(self, new_health, attacker_id, attack_reason_id) if armor.on_off: armor.heal(self, new_health, attacker_id) def hook_minimap_start(self): hooked_minimap_start(self) armor.start_battle() #start mod armor = ArmoringExtended() config = Config() config.load_mod() #hooked hooked_show_all = Battle.showAll hooked_afterCreate = Battle.afterCreate hooked_beforeDelete = Battle.beforeDelete # noinspection PyProtectedMember hooked_update_all = Hangar._Hangar__updateAll hooked_vehicle_show_damage_from_shot = Vehicle.showDamageFromShot hooked_vehicle_on_health_changed = Vehicle.onHealthChanged hooked_minimap_start = Minimap.Minimap.start #hook Battle.showAll = lambda self_battle, is_show: hook_show_all(self_battle, hooked_show_all, is_show) Battle.afterCreate = hook_after_create Battle.beforeDelete = hook_before_delete # noinspection PyProtectedMember Hangar._Hangar__updateAll = hook_update_all Vehicle.showDamageFromShot = hook_vehicle_show_damage_from_shot Vehicle.onHealthChanged = hook_vehicle_on_health_changed Minimap.Minimap.start = hook_minimap_start #Inject InputHandler.g_instance.onKeyDown += inject_handle_key_event InputHandler.g_instance.onKeyUp += inject_handle_key_event
Codes/gracekoo/162_find-peak-element.py
liuxiaohui1221/algorithm
256
123056
# -*- coding: utf-8 -*- # @Time: 2020/4/27 12:46 # @Author: GraceKoo # @File: 162_find-peak-element.py # @Desc: https://leetcode-cn.com/problems/find-peak-element/ from typing import List class Solution: def findPeakElement(self, nums: List[int]) -> int: left = 0 right = len(nums) - 1 while left < right: middle = (left + right) // 2 # 从middle左侧开始找峰值 if nums[middle] > nums[middle + 1]: right = middle # 从middle右侧开始找峰值 else: left = middle + 1 return left so = Solution() print(so.findPeakElement([1, 2, 1, 3, 5, 6, 4]))
auth/migrations/0001_initial.py
ujlbu4/vas3k.club
496
123063
<filename>auth/migrations/0001_initial.py # Generated by Django 3.0.4 on 2020-04-08 10:09 import uuid import django.db.models.deletion from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ('users', '0001_initial'), ] operations = [ migrations.CreateModel( name='Apps', fields=[ ('id', models.UUIDField(default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('name', models.CharField(max_length=64, unique=True)), ('secret_key', models.CharField(max_length=128, unique=True)), ('app_key', models.CharField(max_length=256, unique=True)), ('redirect_urls', models.TextField()), ], options={ 'db_table': 'apps', }, ), migrations.CreateModel( name='Session', fields=[ ('id', models.UUIDField(default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('token', models.CharField(db_index=True, max_length=128, unique=True)), ('created_at', models.DateTimeField(auto_now_add=True)), ('expires_at', models.DateTimeField(null=True)), ('app', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='sessions', to='auth.Apps')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='sessions', to='users.User')), ], options={ 'db_table': 'sessions', }, ), ]
src/genie/libs/parser/iosxe/tests/ShowAuthenticationSessionsInterfaceDetails/cli/equal/golden_output_10_expected.py
balmasea/genieparser
204
123078
<reponame>balmasea/genieparser expected_output = { "interfaces": { "GigabitEthernet1/0/17": { "mac_address": { "0024.9bff.0ac8": { "acct_session_id": "0x0000008d", "common_session_id": "0A8628020000007168945FE6", "current_policy": "Test_DOT1X-DEFAULT_V1", "domain": "DATA", "handle": "0x86000067", "iif_id": "0x1534B4E2", "ipv4_address": "Unknown", "ipv6_address": "Unknown", "user_name": "host/Laptop123.test.com", "status": "Authorized", "oper_host_mode": "multi-auth", "oper_control_dir": "both", "session_timeout": {"type": "N/A"}, "server_policies": { 1: { "name": "ACS ACL", "policies": "xACSACLx-IP-Test_ACL_PERMIT_ALL-565bad69", "security_policy": "None", "security_status": "Link Unsecured", } }, "method_status": { "dot1x": {"method": "dot1x", "state": "Authc Success"}, "mab": {"method": "mab", "state": "Stopped"}, }, } } } } }
thermo/phases/virial_phase.py
RoryKurek/thermo
380
123084
# -*- coding: utf-8 -*- '''Chemical Engineering Design Library (ChEDL). Utilities for process modeling. Copyright (C) 2019, 2020 <NAME> <<EMAIL>> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' __all__ = ['VirialCorrelationsPitzerCurl', 'VirialGas'] from fluids.numerics import newton from chemicals.utils import log from thermo.heat_capacity import HeatCapacityGas from .phase import Phase from chemicals.virial import BVirial_Pitzer_Curl, Z_from_virial_density_form class VirialCorrelationsPitzerCurl(object): def __init__(self, Tcs, Pcs, omegas): self.Tcs = Tcs self.Pcs = Pcs self.omegas = omegas self.N = len(Tcs) def C_pures(self, T): return [0.0]*self.N def dC_dT_pures(self, T): return [0.0]*self.N def d2C_dT2_pures(self, T): return [0.0]*self.N def C_interactions(self, T): N = self.N Ciij = [[0.0]*N for i in range(N)] Cijj = [[0.0]*N for i in range(N)] # Full return should be (Ciij, Ciji, Cjii), (Cijj, Cjij, Cjji) # but due to symmetry there is only those two matrices return Ciij, Cijj def dC_dT_interactions(self, T): N = self.N Ciij = [[0.0]*N for i in range(N)] Cijj = [[0.0]*N for i in range(N)] return Ciij, Cijj def d2C_dT2_interactions(self, T): N = self.N Ciij = [[0.0]*N for i in range(N)] Cijj = [[0.0]*N for i in range(N)] return Ciij, Cijj def B_pures(self, T): Tcs, Pcs, omegas = self.Tcs, self.Pcs, self.omegas return [BVirial_Pitzer_Curl(T, Tcs[i], Pcs[i], omegas[i]) for i in range(self.N)] def dB_dT_pures(self, T): Tcs, Pcs, omegas = self.Tcs, self.Pcs, self.omegas return [BVirial_Pitzer_Curl(T, Tcs[i], Pcs[i], omegas[i], 1) for i in range(self.N)] def B_interactions(self, T): N = self.N return [[0.0]*N for i in range(N)] def dB_dT_interactions(self, T): N = self.N return [[0.0]*N for i in range(N)] def B_matrix(self, T): N = self.N B_mat = [[0.0]*N for i in range(N)] pures = self.B_pures(T) B_interactions = self.B_interactions(T) for i in range(N): B_mat[i][i] = pures[i] for i in range(N): for j in range(i): B_mat[i][j] = B_interactions[i][j] B_mat[j][i] = B_interactions[j][i] return B_mat def dB_dT_matrix(self, T): N = self.N B_mat = [[0.0]*N for i in range(N)] pures = self.dB_dT_pures(T) B_interactions = self.dB_dT_interactions(T) for i in range(N): B_mat[i][i] = pures[i] for i in range(N): for j in range(i): B_mat[i][j] = B_interactions[i][j] B_mat[j][i] = B_interactions[j][i] return B_mat def d2B_dT2_pures(self, T): Tcs, Pcs, omegas = self.Tcs, self.Pcs, self.omegas return [BVirial_Pitzer_Curl(T, Tcs[i], Pcs[i], omegas[i], 2) for i in range(self.N)] def d2B_dT2_interactions(self, T): N = self.N return [[0.0]*N for i in range(N)] def d2B_dT2_matrix(self, T): N = self.N B_mat = [[0.0]*N for i in range(N)] pures = self.d2B_dT2_pures(T) B_interactions = self.d2B_dT2_interactions(T) for i in range(N): B_mat[i][i] = pures[i] for i in range(N): for j in range(i): B_mat[i][j] = B_interactions[i][j] B_mat[j][i] = B_interactions[j][i] return B_mat class VirialGas(Phase): phase = 'g' force_phase = 'g' is_gas = True is_liquid = False ideal_gas_basis = True pure_references = ('HeatCapacityGases',) pure_reference_types = (HeatCapacityGas, ) def __init__(self, model, HeatCapacityGases=None, Hfs=None, Gfs=None, T=None, P=None, zs=None): self.model = model self.HeatCapacityGases = HeatCapacityGases self.Hfs = Hfs self.Gfs = Gfs if Hfs is not None and Gfs is not None and None not in Hfs and None not in Gfs: self.Sfs = [(Hfi - Gfi)/298.15 for Hfi, Gfi in zip(Hfs, Gfs)] else: self.Sfs = None for i in (zs, HeatCapacityGases, Hfs, Gfs): if i is not None: self.N = len(i) break if zs is not None: self.zs = zs if T is not None: self.T = T if P is not None: self.P = P if T is not None and P is not None and zs is not None: Z = Z_from_virial_density_form(T, P, self.B(), self.C()) self._V = Z*self.R*T/P def V(self): return self._V def dP_dT(self): r''' .. math:: \left(\frac{\partial P}{\partial T}\right)_{V} = \frac{R \left(T \left(V \frac{d}{d T} B{\left(T \right)} + \frac{d}{d T} C{\left(T \right)}\right) + V^{2} + V B{\left(T \right)} + C{\left(T \right)} \right)}{V^{3}} ''' try: return self._dP_dT except: pass T, V = self.T, self._V self._dP_dT = dP_dT = self.R*(T*(V*self.dB_dT() + self.dC_dT()) + V*(V + self.B()) + self.C())/(V*V*V) return dP_dT def dP_dV(self): r''' .. math:: \left(\frac{\partial P}{\partial V}\right)_{T} = - \frac{R T \left(V^{2} + 2 V B{\left(T \right)} + 3 C{\left(T \right)}\right)}{V^{4}} ''' try: return self._dP_dV except: pass T, V = self.T, self._V self._dP_dV = dP_dV = -self.R*T*(V*V + 2.0*V*self.B() + 3.0*self.C())/(V*V*V*V) return dP_dV def d2P_dTdV(self): r''' .. math:: \left(\frac{\partial^2 P}{\partial V\partial T}\right)_{T} = - \frac{R \left(2 T V \frac{d}{d T} B{\left(T \right)} + 3 T \frac{d}{d T} C{\left(T \right)} + V^{2} + 2 V B{\left(T \right)} + 3 C{\left(T \right)}\right)}{V^{4}} ''' try: return self._d2P_dTdV except: pass T, V = self.T, self._V V2 = V*V self._d2P_dTdV = d2P_dTdV = -self.R*(2.0*T*V*self.dB_dT() + 3.0*T*self.dC_dT() + V2 + 2.0*V*self.B() + 3.0*self.C())/(V2*V2) return d2P_dTdV def d2P_dV2(self): r''' .. math:: \left(\frac{\partial^2 P}{\partial V^2}\right)_{T} = \frac{2 R T \left(V^{2} + 3 V B{\left(T \right)} + 6 C{\left(T \right)}\right)}{V^{5}} ''' try: return self._d2P_dV2 except: pass T, V = self.T, self._V V2 = V*V self._d2P_dV2 = d2P_dV2 = 2.0*self.R*T*(V2 + 3.0*V*self.B() + 6.0*self.C())/(V2*V2*V) return d2P_dV2 def d2P_dT2(self): r''' .. math:: \left(\frac{\partial^2 P}{\partial T^2}\right)_{V} = \frac{R \left(T \left(V \frac{d^{2}}{d T^{2}} B{\left(T \right)} + \frac{d^{2}}{d T^{2}} C{\left(T \right)}\right) + 2 V \frac{d}{d T} B{\left(T \right)} + 2 \frac{d}{d T} C{\left(T \right)}\right)}{V^{3}} ''' try: return self._d2P_dT2 except: pass T, V = self.T, self._V V2 = V*V self._d2P_dT2 = d2P_dT2 = self.R*(T*(V*self.d2B_dT2() + self.d2C_dT2()) + 2.0*V*self.dB_dT() + 2.0*self.dC_dT())/(V*V*V) return d2P_dT2 def H_dep(self): r''' .. math:: H_{dep} = \frac{R T^{2} \left(2 V \frac{d}{d T} B{\left(T \right)} + \frac{d}{d T} C{\left(T \right)}\right)}{2 V^{2}} - R T \left(-1 + \frac{V^{2} + V B{\left(T \right)} + C{\left(T \right)}}{V^{2}} \right) ''' ''' from sympy import * Z, R, T, V, P = symbols('Z, R, T, V, P') B, C = symbols('B, C', cls=Function) base =Eq(P*V/(R*T), 1 + B(T)/V + C(T)/V**2) P_sln = solve(base, P)[0] Z = P_sln*V/(R*T) # Two ways to compute H_dep Hdep2 = R*T - P_sln*V + integrate(P_sln - T*diff(P_sln, T), (V, oo, V)) Hdep = -R*T*(Z-1) -integrate(diff(Z, T)/V, (V, oo, V))*R*T**2 ''' try: return self._H_dep except: pass T, V = self.T, self._V V2 = V*V RT = self.R*T self._H_dep = H_dep = RT*(T*(2.0*V*self.dB_dT() + self.dC_dT())/(2.0*V2) - (-1.0 + (V2 + V*self.B() + self.C())/V2)) return H_dep def dH_dep_dT(self): r''' .. math:: \frac{\partial H_{dep}}{\partial T} = \frac{R \left(2 T^{2} V \frac{d^{2}}{d T^{2}} B{\left(T \right)} + T^{2} \frac{d^{2}}{d T^{2}} C{\left(T \right)} + 2 T V \frac{d}{d T} B{\left(T \right)} - 2 V B{\left(T \right)} - 2 C{\left(T \right)}\right)}{2 V^{2}} ''' try: return self._dH_dep_dT except: pass T, V = self.T, self._V self._dH_dep_dT = dH_dep_dT = (self.R*(2.0*T*T*V*self.d2B_dT2() + T*T*self.d2C_dT2() + 2.0*T*V*self.dB_dT() - 2.0*V*self.B() - 2.0*self.C())/(2.0*V*V)) return dH_dep_dT def S_dep(self): r''' .. math:: S_{dep} = \frac{R \left(- T \frac{d}{d T} C{\left(T \right)} + 2 V^{2} \ln{\left(\frac{V^{2} + V B{\left(T \right)} + C{\left(T \right)}} {V^{2}} \right)} - 2 V \left(T \frac{d}{d T} B{\left(T \right)} + B{\left(T \right)}\right) - C{\left(T \right)}\right)}{2 V^{2}} ''' ''' dP_dT = diff(P_sln, T) S_dep = integrate(dP_dT - R/V, (V, oo, V)) + R*log(Z) ''' try: return self._S_dep except: pass T, V = self.T, self._V V2 = V*V self._S_dep = S_dep = (self.R*(-T*self.dC_dT() + 2*V2*log((V2 + V*self.B() + self.C())/V**2) - 2*V*(T*self.dB_dT() + self.B()) - self.C())/(2*V2)) return S_dep def dS_dep_dT(self): r''' .. math:: \frac{\partial S_{dep}}{\partial T} = \frac{R \left(2 V^{2} \left(V \frac{d}{d T} B{\left(T \right)} + \frac{d}{d T} C{\left(T \right)} \right) - \left(V^{2} + V B{\left(T \right)} + C{\left(T \right)} \right) \left(T \frac{d^{2}}{d T^{2}} C{\left(T \right)} + 2 V \left(T \frac{d^{2}}{d T^{2}} B{\left(T \right)} + 2 \frac{d}{d T} B{\left(T \right)}\right) + 2 \frac{d}{d T} C{\left(T \right)} \right)\right)}{2 V^{2} \left(V^{2} + V B{\left(T \right)} + C{\left(T \right)}\right)} ''' try: return self._dS_dep_dT except: pass T, V = self.T, self._V V2 = V*V self._dS_dep_dT = dS_dep_dT = (self.R*(2.0*V2*(V*self.dB_dT() + self.dC_dT()) - (V2 + V*self.B() + self.C())*(T*self.d2C_dT2() + 2.0*V*(T*self.d2B_dT2() + 2.0*self.dB_dT()) + 2.0*self.dC_dT()))/(2.0*V2*(V2 + V*self.B() + self.C()))) return dS_dep_dT def to_TP_zs(self, T, P, zs): new = self.__class__.__new__(self.__class__) new.T = T new.P = P new.zs = zs new.N = self.N new.HeatCapacityGases = self.HeatCapacityGases new.model = self.model new.Hfs = self.Hfs new.Gfs = self.Gfs new.Sfs = self.Sfs Z = Z_from_virial_density_form(T, P, new.B(), new.C()) new._V = Z*self.R*T/P return new def to(self, zs, T=None, P=None, V=None): new = self.__class__.__new__(self.__class__) new.zs = zs new.N = self.N new.HeatCapacityGases = self.HeatCapacityGases new.model = model = self.model new.Hfs = self.Hfs new.Gfs = self.Gfs new.Sfs = self.Sfs if T is not None: new.T = T if P is not None: new.P = P Z = Z_from_virial_density_form(T, P, new.B(), new.C()) new._V = Z*self.R*T/P elif V is not None: P = new.P = self.R*T*(V*V + V*new.B() + new.C())/(V*V*V) new._V = V elif P is not None and V is not None: new.P = P # PV specified, solve for T def err(T): # Solve for P matching; probably there is a better solution here that does not # require the cubic solution but this works for now # TODO: instead of using self.to_TP_zs to allow calculating B and C, # they should be functional new_tmp = self.to_TP_zs(T=T, P=P, zs=zs) B = new_tmp.B() C = new_tmp.C() x2 = V*V + V*B + C x3 = self.R/(V*V*V) P_err = T*x2*x3 - P dP_dT = x3*(T*(V*new_tmp.dB_dT() + new_tmp.dC_dT()) + x2) return P_err, dP_dT T_ig = P*V/self.R # guess T = newton(err, T_ig, fprime=True, xtol=1e-15) new.T = T else: raise ValueError("Two of T, P, or V are needed") return new def B(self): try: return self._B except: pass N = self.N T = self.T if N == 1: return self.model.B_pures(T)[0] zs = self.zs B_matrix = self.model.B_matrix(T) B = 0.0 for i in range(N): B_tmp = 0.0 row = B_matrix[i] for j in range(N): B += zs[j]*row[j] B += zs[i]*B_tmp self._B = B return B def dB_dT(self): try: return self._dB_dT except: pass N = self.N T = self.T if N == 1: return self.model.dB_dT_pures(T)[0] zs = self.zs dB_dT_matrix = self.model.dB_dT_matrix(T) dB_dT = 0.0 for i in range(N): dB_dT_tmp = 0.0 row = dB_dT_matrix[i] for j in range(N): dB_dT += zs[j]*row[j] dB_dT += zs[i]*dB_dT_tmp self._dB_dT = dB_dT return dB_dT def d2B_dT2(self): try: return self._d2B_dT2 except: pass N = self.N T = self.T if N == 1: return self.model.d2B_dT2_pures(T)[0] zs = self.zs d2B_dT2_matrix = self.model.d2B_dT2_matrix(T) d2B_dT2 = 0.0 for i in range(N): d2B_dT2_tmp = 0.0 row = d2B_dT2_matrix[i] for j in range(N): d2B_dT2 += zs[j]*row[j] d2B_dT2 += zs[i]*d2B_dT2_tmp self._d2B_dT2 = d2B_dT2 return d2B_dT2 def C(self): try: return self._C except: pass T = self.T zs = self.zs C_pures = self.model.C_pures(T) Ciij, Cijj = self.model.C_interactions(T) C = 0.0 N = self.N for i in range(N): for j in range(N): # poling 5-4.3b should be able to be used to take out the k loop? for k in range(N): if i == j == k: Cval = C_pures[i] elif i == j: Cval = Ciij[i][j] else: Cval = Cijj[i][j] C += zs[i]*zs[j]*zs[k]*Cval self._C = C return C def dC_dT(self): try: return self._dC_dT except: pass T = self.T zs = self.zs dC_dT_pures = self.model.dC_dT_pures(T) dC_dTiij, dC_dTijj = self.model.dC_dT_interactions(T) dC_dT = 0.0 N = self.N for i in range(N): for j in range(N): # poling 5-4.3b should be able to be used to take out the k loop? for k in range(N): if i == j == k: dC_dTval = dC_dT_pures[i] elif i == j: dC_dTval = dC_dTiij[i][j] else: dC_dTval = dC_dTijj[i][j] dC_dT += zs[i]*zs[j]*zs[k]*dC_dTval self._dC_dT = dC_dT return dC_dT def d2C_dT2(self): try: return self._d2C_dT2 except: pass T = self.T zs = self.zs d2C_dT2_pures = self.model.d2C_dT2_pures(T) d2C_dT2iij, d2C_dT2ijj = self.model.d2C_dT2_interactions(T) d2C_dT2 = 0.0 N = self.N for i in range(N): for j in range(N): # poling 5-4.3b should be able to be used to take out the k loop? for k in range(N): if i == j == k: d2C_dT2val = d2C_dT2_pures[i] elif i == j: d2C_dT2val = d2C_dT2iij[i][j] else: d2C_dT2val = d2C_dT2ijj[i][j] d2C_dT2 += zs[i]*zs[j]*zs[k]*d2C_dT2val self._d2C_dT2 = d2C_dT2 return d2C_dT2
DQM/TrackingMonitorSource/python/TrackingSourceConfigP5_cff.py
malbouis/cmssw
852
123106
<reponame>malbouis/cmssw<filename>DQM/TrackingMonitorSource/python/TrackingSourceConfigP5_cff.py import FWCore.ParameterSet.Config as cms # TrackingMonitor #### # Clone for Cosmic Track Finder from DQM.TrackingMonitor.TrackerCosmicsTrackingMonitor_cfi import * TrackMon_cosmicTk = TrackerCosmicTrackMon.clone( TrackProducer = 'cosmictrackfinderP5', AlgoName = 'CosmicTk', FolderName = 'Tracking/TrackParameters', doSeedParameterHistos = True, TkSizeBin = 4, TkSizeMax = 3.5, TkSizeMin = -0.5 ) # Clone for CKF Tracks from DQM.TrackingMonitor.TrackerCosmicsTrackingMonitor_cfi import * TrackMon_ckf = TrackerCosmicTrackMon.clone( TrackProducer = 'ctfWithMaterialTracksP5', AlgoName = 'CKFTk', FolderName = 'Tracking/TrackParameters', doSeedParameterHistos = True, TkSizeBin = 4, TkSizeMax = 3.5, TkSizeMin = -0.5 ) # Clone for Road Search Tracks # from DQM.TrackingMonitor.TrackerCosmicsTrackingMonitor_cfi import * # TrackMon_rs = TrackerCosmicTrackMon.clone( # TrackProducer = 'rsWithMaterialTracksP5', # AlgoName = 'RSTk', # FolderName = 'Tracking/TrackParameters', # doSeedParameterHistos = True # ) # Clone for General Track (for Collision data) from DQM.TrackingMonitor.TrackerCollisionTrackingMonitor_cfi import * TrackMon_gentk = TrackerCollisionTrackMon.clone( FolderName = 'Tracking/TrackParameters', BSFolderName = 'Tracking/TrackParameters/BeamSpotParameters' # decrease number of histograms # doTrackerSpecific = False ) # Clone for Heavy Ion Tracks (for HI Collisions) from DQM.TrackingMonitor.TrackerHeavyIonTrackingMonitor_cfi import * TrackMon_hi = TrackerHeavyIonTrackMon.clone( FolderName = 'Tracking/TrackParameters', BSFolderName = 'Tracking/TrackParameters/BeamSpotParameters' ) # Tracking Efficiency #### # Clone for Cosmic Tracks from DQM.TrackingMonitor.TrackEfficiencyMonitor_cfi import * TrackEffMon_cosmicTk = TrackEffMon.clone( TKTrackCollection = 'cosmictrackfinderP5', AlgoName = 'CosmicTk', FolderName = 'Tracking/TrackParameters/TrackEfficiency' ) # Clone for CKF Tracks from DQM.TrackingMonitor.TrackEfficiencyMonitor_cfi import * TrackEffMon_ckf = TrackEffMon.clone( TKTrackCollection = 'ctfWithMaterialTracksP5', AlgoName = 'CKFTk', FolderName = 'Tracking/TrackParameters/TrackEfficiency' ) # Clone for RS Tracks # from DQM.TrackingMonitor.TrackEfficiencyMonitor_cfi import * # TrackEffMon_rs = TrackEffMon.clone( # TKTrackCollection = 'rsWithMaterialTracksP5', # AlgoName = 'RSTk', # FolderName = 'Tracking/TrackParameters/TrackEfficiency' # ) # Clone for Beam Halo Tracks from DQM.TrackingMonitor.TrackEfficiencyMonitor_cfi import * TrackEffMon_bhmuon = TrackEffMon.clone( TKTrackCollection = 'ctfWithMaterialTracksBeamHaloMuon', AlgoName = 'BHMuonTk', FolderName = 'Tracking/TrackParameters/TrackEfficiency' ) # Clone for Heavy Ion Tracks (for HI Collisions) from DQM.TrackingMonitor.TrackEfficiencyMonitor_cfi import * TrackEffMon_hi = TrackEffMon.clone( TKTrackCollection = 'hiGeneralTracks', AlgoName = 'HeavyIonTk', FolderName = 'Tracking/TrackParameters/TrackEfficiency' )
Tools/Find V-Ray Versions/GetVRayVersions.py
aplishka-az/Deadline
113
123110
<reponame>aplishka-az/Deadline<filename>Tools/Find V-Ray Versions/GetVRayVersions.py import _winreg import pprint SOFTWARE = 'V-Ray' try: i = 0 explorer = _winreg.OpenKey( _winreg.HKEY_LOCAL_MACHINE, 'SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Uninstall' ) while True: key = _winreg.EnumKey(explorer, i) if SOFTWARE in key: item = _winreg.OpenKey(explorer, key) version, type = _winreg.QueryValueEx(item, "DisplayVersion") _winreg.CloseKey(item) print('{0}:\n\t{1}'.format(key, version)) i += 1 except WindowsError as e: print(e) _winreg.CloseKey(explorer)
openbook_posts/migrations/0003_postreaction_emoji.py
TamaraAbells/okuna-api
164
123122
<gh_stars>100-1000 # Generated by Django 2.1.2 on 2018-10-22 12:26 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('openbook_posts', '0002_auto_20181022_1406'), ] operations = [ migrations.AddField( model_name='postreaction', name='emoji', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, related_name='reactions', to='openbook_posts.PostReactionEmoji'), preserve_default=False, ), ]
Qt-Widgets-and-more/compileTime/time-compile.py
jgompis/kdabtv
140
123134
import subprocess, re, sys,os, os.path, shutil, time, glob ROOT="/home/blackie/dump/KDABViewer" BUILDROOT=ROOT+"/build" ITERATIONS=5 FOREAL=1 CCACHE="/usr/lib/ccache" def runCommand(cmd): print(" ".join(cmd)) if FOREAL: process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) res = process.communicate()[0] #print(res) def nukeBuildDir(): if FOREAL: shutil.rmtree(BUILDROOT) os.mkdir(BUILDROOT) def clearCCache(): runCommand(["/usr/bin/ccache", "-C"]) def runCMake(clang, ninja, define=None): command=["cmake"] if clang: command = command + ["-DCMAKE_CXX_COMPILER=clang++"] if ninja: command = command + ["-G", "Ninja"] if define: command = command + ["-DCMAKE_CXX_FLAGS=-D" + define] command = command + [".."] runCommand(command) def compile(ninja): os.environ["MAKEFLAGS"]="-j 16" command = ["make", "-j", "16"] if ninja: command = ["ninja"] runCommand(command) def setOutputFile(filename): global TIMINGFILE TIMINGFILE="/home/blackie/profiling/"+filename writeHeader() def writeHeader(): FILE = open(TIMINGFILE, "w") FILE.write("compiler,build system,cclang on,stage,time\n") def addOutputLine(clang,ninja,step,time): FILE = open(TIMINGFILE, "a+") ccacheon = "ccache" in os.environ["PATH"] FILE.write("%s,%s,%s,%s,%s\n" % ("clang" if clang else "gcc", "ninja" if ninja else "make", "yes" if ccacheon else "no", step, int(round(time)))) def makeClean(ninja): runCommand(["ninja" if ninja else "make", "clean"]) def timeAndWrite(clang,ninja,step): start=time.time() compile(ninja) end = time.time() addOutputLine(clang,ninja, step, end-start) def setOrUnsetCCacheInPath(doInclude): path = os.environ["PATH"].split(":") path = filter(lambda item: "ccache" not in item, path) if doInclude: path = [CCACHE] + path os.environ["PATH"] = ":".join(path) # ---------------------------- Test funcitons def oneGoWithCompilterAndBuildSystem(clang,ninja): clearCCache() nukeBuildDir() os.chdir(BUILDROOT) runCMake(clang=clang, ninja=ninja) timeAndWrite(clang, ninja, "full build") # rebuild after make clean clearCCache() makeClean(ninja) timeAndWrite(clang, ninja, "clean build") def compileAndBuildSystemTest(): setOutputFile("compilerAndBuild.csv") setOrUnsetCCacheInPath(0) for round in range(ITERATIONS): print("compileAndBuildSystemTest------> Round %d of %d" % (round+1, ITERATIONS)) for ninja in [0, 1]: for clang in [0,1]: oneGoWithCompilterAndBuildSystem(clang=clang,ninja=ninja) def ccacheTest(): setOutputFile("ccache.csv") for useccache in [0,1]: setOrUnsetCCacheInPath(useccache) for round in range(ITERATIONS): print("ccacheTest------> Round %d of %d (using CCache=%s)" % (useccache*ITERATIONS + round+1, ITERATIONS*2,"yes" if useccache else "no")) oneGoWithCompilterAndBuildSystem(clang=1, ninja=1) def runPCHMutation(headers): for index in range(len(headers)+1): subList = headers[:index] if FOREAL: FILE = open(ROOT + "/KDABViewer_pch.h","w") for x in subList: FILE.write("#include <%s>\n" % x) FILE.close() nukeBuildDir() os.chdir(BUILDROOT) runCMake(clang=1,ninja=1) compile(ninja=1) for round in range(ITERATIONS): print("pchTest------> Round %d of %d" % (index*ITERATIONS + round+1, ITERATIONS*len(headers)+1)) clearCCache() makeClean(ninja=1) timeAndWrite(clang=1, ninja=1, step="/" + "/".join(subList)) def pchTest(): setOutputFile("PCH.csv") setOrUnsetCCacheInPath(0) runPCHMutation(["QtWidgets", "QtGui", "QtCore", "KDChart", "memory", "functional"]) # "chrono", "cmath", "optional", "mutex", "array", "vector", "numeric", "algorithm" runPCHMutation(["QtCore", "QtGui", "QtWidgets"]) # -------- pchMostUsedTest REGEXP = re.compile("^#include *<(Q.*/)?([a-zA-Z_]+)>") def countIncludes(filename, map): with open(filename) as fp: for line in fp.readlines(): match = REGEXP.match(line) if match: str = match.group(2) if str in map: map[str]= map[str]+1 else: map[str] = 1 def findSystemIncludes(): map = {} for filename in glob.glob(ROOT + "/**/*.cpp", recursive=1)+ glob.glob(ROOT + "/**/*.h",recursive=1) : if "3rdparty" in filename or "prefix" in filename or "xternal" in filename: continue countIncludes(filename, map) list = sorted(map.items(), key=lambda x: x[1]) list.reverse() print(list) return [key for (key,count) in list] def pchMostUsedTest(): setOutputFile("PCH-most-used.csv") setOrUnsetCCacheInPath(0) nukeBuildDir() os.chdir(BUILDROOT) # We need to build it all first, so we get all the ui_* files into existance runCMake(clang=1,ninja=1) compile(ninja=1) list = findSystemIncludes() steps=len(list) for stage in range(steps): with open(ROOT + "/KDABViewer_pch.h","w") as FILE: for i in range(stage): FILE.write("#include<%s>\n" % list[i]) runCMake(clang=1,ninja=1) compile(ninja=1) for round in range(ITERATIONS): print("pchMostUsedTest------> Round %d of %d" % (stage*ITERATIONS + round+1, ITERATIONS*steps)) makeClean(ninja=1) timeAndWrite(clang=1, ninja=1, step="%d" % stage) #compileAndBuildSystemTest() #ccacheTest() #pchTest() #pchMostUsedTest()
lwp/authenticators/database.py
cocoy/LXC-Web-Panel
237
123158
<gh_stars>100-1000 # -*- coding: utf-8 -*- from lwp.utils import query_db, hash_passwd class database: def authenticate(self, username, password): hash_password = hash_passwd(password) return query_db('select name, username, su from users where username=? and password=?', [username, hash_password], one=True)
avionics/firmware/startup/build_rules.bzl
leozz37/makani
1,178
123164
<reponame>leozz37/makani<filename>avionics/firmware/startup/build_rules.bzl """This module contains rules for the startup c library.""" load("//lib/bazel:c_rules.bzl", "makani_c_library") def _get_linkopts(ld_files): return (["-Tavionics/firmware/startup/" + f for f in ld_files]) def startup_c_library(name, deps = [], ld_files = [], linkopts = [], **kwargs): makani_c_library( name = name, deps = deps + ld_files, linkopts = linkopts + _get_linkopts(ld_files), **kwargs )
examples/neural_network_vgg7/import_vgg7.py
dSandley20/KomputeParticles
445
123205
import numpy import json import os import sys import time import sh_common if len(sys.argv) != 2: print("import_vgg7.py JSONPATH") print(" i.e. import_vgg7.py /home/you/Documents/External/waifu2x/models/vgg_7/art/scale2.0x_model.json") sys.exit(1) try: os.mkdir("model-kipper") except: pass data_list = json.load(open(sys.argv[1], "rb")) idx = 0 for i in range(7): layer = data_list[i] w = numpy.array(layer["weight"]) w.reshape((-1, 3, 3)).transpose((0, 2, 1)) b = numpy.array(layer["bias"]) sh_common.save_param("kipper", idx, w) idx += 1 sh_common.save_param("kipper", idx, b) idx += 1
part9/SpaceSciencePython_part9.py
ajpmaclean/SpaceScienceTutorial
167
123236
# Import the standard modules import sqlite3 import spiceypy # Import the installed modules import pandas as pd import numpy as np # Import matplotlib for plotting from matplotlib import pyplot as plt # Import scipy for the Kernel Density Estimator functionality from scipy import stats #%% # Connect to the comet database. This database has been created in tutorial # part 7, however, due to its small size the database is uploaded on GitHub con = sqlite3.connect('../_databases/_comets/mpc_comets.db') # Set a cursor cur = con.cursor() # Create a pandas dataframe that contains the name of the comet (needed later), # the semi-major axis, inclination and eccentricity # for P type ... P_TYPE_DF = pd.read_sql('SELECT NAME, SEMI_MAJOR_AXIS_AU, INCLINATION_DEG, ' \ 'ECCENTRICITY FROM comets_main WHERE ORBIT_TYPE="P"', \ con) # ... and C type comets. For this type: set the eccentricity smaller 1 (bound # orbits) C_TYPE_DF = pd.read_sql('SELECT NAME, SEMI_MAJOR_AXIS_AU, INCLINATION_DEG, ' \ 'ECCENTRICITY FROM comets_main WHERE ORBIT_TYPE="C" ' \ 'AND ECCENTRICITY<1', con) #%% # The Tisserand parameter will help us to distinguish between Jupiter Family # Comets (JFCs) and Non-JFCss more easily. For this parameter (next block) we # need the semi-major axis of Jupiter # Import a kernel meta file spiceypy.furnsh('kernel_meta.txt') # Set any Ephemeris time (ET) SAMPLE_ET = spiceypy.utc2et('2000-001T00:00:00') # Compute the state vector of Jupiter in ECLIPJ2000 (Jupiter (599) is not # available in the kernel, we use the barycentre (5)) STATE_VEC_JUPITER, _ = spiceypy.spkgeo(targ=5, \ et=SAMPLE_ET, \ ref='ECLIPJ2000', \ obs=10) # Get the G*M value of the Sun _, GM_SUN_PRE = spiceypy.bodvcd(bodyid=10, item='GM', maxn=1) GM_SUN = GM_SUN_PRE[0] # Compute the orbital elements of Jupiter ORB_ELEM_JUPITER = spiceypy.oscltx(STATE_VEC_JUPITER, SAMPLE_ET, GM_SUN) # Get the semi-major axis value A_JUPITER_KM = ORB_ELEM_JUPITER[-2] # Convert the value from km to AU A_JUPITER_AU = spiceypy.convrt(A_JUPITER_KM, 'km', 'AU') #%% # Define a lambda function for the Tisserand parameter, a, i and e are the # input parameters semi-major axis, inclination and eccentricity, respectively tisr_jup = lambda a, i, e: (A_JUPITER_AU / a) + 2 * np.cos(i) \ * np.sqrt((a / A_JUPITER_AU) * (1 - (e**2.0))) # Create a new dataframe columns that contains the Tisserand parameter P_TYPE_DF.loc[:, 'TISSERAND_JUP'] = \ P_TYPE_DF.apply(lambda x: (tisr_jup(a=x['SEMI_MAJOR_AXIS_AU'], \ i=np.radians(x['INCLINATION_DEG']), \ e=x['ECCENTRICITY'])), axis=1) C_TYPE_DF.loc[:, 'TISSERAND_JUP'] = \ C_TYPE_DF.apply(lambda x: (tisr_jup(a=x['SEMI_MAJOR_AXIS_AU'], \ i=np.radians(x['INCLINATION_DEG']), \ e=x['ECCENTRICITY'])), axis=1) #%% # Print some descriptive statistics of the P type comets print('Descriptive statistics of the Tisserand parameter of P type comets') print(f'{P_TYPE_DF["TISSERAND_JUP"].describe()}') print('\n') # Compute the percentage of Jupiter-Family Comets (JFCs) based on P types PERC_P_TYPE_JFCS = len(P_TYPE_DF.loc[(P_TYPE_DF["TISSERAND_JUP"] > 2) \ & (P_TYPE_DF["TISSERAND_JUP"] < 3)]) \ / len(P_TYPE_DF.index) * 100 PERC_P_TYPE_JFCS = round(PERC_P_TYPE_JFCS, 0) # Print how many P comets have a Tisserand parameter between 2 and 3: print('Percentage of P type comets with a Tisserand parameter between ' \ f'2 and 3: {PERC_P_TYPE_JFCS}%') print('\n') # Print some descriptive statistics of the C type comets print('Descriptive statistics of the Tisserand parameter of C type comets') print(f'{C_TYPE_DF["TISSERAND_JUP"].describe()}') print('\n') #%% # We define a function to add a new column in an already existing database # table. This code snippet may be helpful in the future def add_col2tab(con_db, cur_db, tab_name, col_name, col_type): """ This function adds a new column to an already existing SQLite table. Setting a new or editing an existing key (primary or foreign) is not possible. Parameters ---------- con_db : sqlite3.Connection Connection object to the SQLite database. cur_db : sqlite3.Cursor Connection corresponding cursor. tab_name : str Table name. col_name : str New column name that shall be added. col_type : str New column name corresponding SQLite column type. Returns ------- None. """ # Iterate through all existing column names of the database table using # the PRAGMA table_info command for row in cur_db.execute(f'PRAGMA table_info({tab_name})'): # If the column exists: exit the function if row[1] == col_name: break # If the column is not existing yet, add the new column else: cur_db.execute(f'ALTER TABLE {tab_name} ' \ f'ADD COLUMN {col_name} {col_type}') con_db.commit() # Add a new column in the comets_main table for the Tisserand parameters add_col2tab(con_db=con, \ cur_db=cur, \ tab_name='comets_main', \ col_name='TISSERAND_JUP', \ col_type='REAL') #%% # Add the Tisserand parameter results to the database cur.executemany('UPDATE comets_main SET TISSERAND_JUP=? WHERE NAME=?', \ P_TYPE_DF[['TISSERAND_JUP', 'NAME']].values) con.commit() cur.executemany('UPDATE comets_main SET TISSERAND_JUP=? WHERE NAME=?', \ C_TYPE_DF[['TISSERAND_JUP', 'NAME']].values) con.commit() #%% # Compute the KDE distribution for the Tisserand values, ranging from -1 to # 5 TISSERAND_RANGE = np.linspace(0, 5, 1000) # Kernel and distribution computation for the P type comets P_TYPE_TISR_KERNEL = stats.gaussian_kde(P_TYPE_DF['TISSERAND_JUP']) P_TYPE_TISR_DISTR = P_TYPE_TISR_KERNEL(TISSERAND_RANGE) # Kernel and distribution computation for the C type comets C_TYPE_TISR_KERNEL = stats.gaussian_kde(C_TYPE_DF['TISSERAND_JUP']) C_TYPE_TISR_DISTR = C_TYPE_TISR_KERNEL(TISSERAND_RANGE) #%% # Square-root choice for the histograms number of bins nr_of_bins = lambda data_array: int(np.floor(np.sqrt(len(data_array)))) # Let's set a dark background plt.style.use('dark_background') # Set a default font size for better readability plt.rcParams.update({'font.size': 14}) # Create a figure and axis fig, ax = plt.subplots(figsize=(12, 8)) # Histogram of the P and C type comets' Tisserand parameter. ax.hist(P_TYPE_DF['TISSERAND_JUP'], \ bins=nr_of_bins(P_TYPE_DF['TISSERAND_JUP']), \ density=True, color='tab:orange', alpha=0.5, label='P Type') ax.hist(C_TYPE_DF['TISSERAND_JUP'], \ bins=nr_of_bins(C_TYPE_DF['TISSERAND_JUP']), \ density=True, color='tab:blue', alpha=0.5, label='C Type') # Plot the KDE of the P type comets ax.plot(TISSERAND_RANGE, P_TYPE_TISR_DISTR, color='tab:orange', alpha=1, linestyle='solid') # Plot the KDE of the C type comets ax.plot(TISSERAND_RANGE, C_TYPE_TISR_DISTR, color='tab:blue', alpha=1, linestyle='solid') # Set an x axis limits ax.set_xlim(0, 5) # Add a grid for better readability ax.grid(axis='both', linestyle='dashed', alpha=0.2) # Set an x and y label ax.set_xlabel('Tisserand Parameter w.r.t. Jupiter') ax.set_ylabel('Normalised Distribution') # Re-define the opacity (alpha value) of the markers / lines in the # legend for better visibility leg = ax.legend(fancybox=True, loc='upper right', framealpha=1) for lh in leg.legendHandles: lh.set_alpha(1) # Save the figure plt.savefig('comets_kde_tisserand_jup.png', dpi=300)
cars/core/inputs.py
CNES/cars
134
123246
<gh_stars>100-1000 #!/usr/bin/env python # coding: utf8 # # Copyright (c) 2020 Centre National d'Etudes Spatiales (CNES). # # This file is part of CARS # (see https://github.com/CNES/cars). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Inputs module: contains some CARS global shared general purpose inputs functions """ # Standard imports import logging import warnings from typing import Tuple # Third party imports import fiona import rasterio as rio import xarray as xr from json_checker import Checker from shapely.geometry import shape # Filter rasterio warning when image is not georeferenced warnings.filterwarnings("ignore", category=rio.errors.NotGeoreferencedWarning) def read_vector(path_to_file): """ Read vector file and returns the corresponding polygon :raise Exception when the input file is unreadable :param path_to_file: path to the file to open :type path_to_file: str :return: a shapely polygon :rtype: tuple (polygon, epsg) """ try: polys = [] with fiona.open(path_to_file) as vec_file: _, epsg = vec_file.crs["init"].split(":") for feat in vec_file: polys.append(shape(feat["geometry"])) except BaseException as base_except: raise Exception( "Impossible to read {} file".format(path_to_file) ) from base_except if len(polys) == 1: return polys[0], int(epsg) if len(polys) > 1: logging.info( "Multi features files are not supported, " "the first feature of {} will be used".format(path_to_file) ) return polys[0], int(epsg) logging.info("No feature is present in the {} file".format(path_to_file)) return None def rasterio_get_nb_bands(raster_file: str) -> int: """ Get the number of bands in an image file :param f: Image file :returns: The number of bands """ with rio.open(raster_file, "r") as descriptor: return descriptor.count def rasterio_get_size(raster_file: str) -> Tuple[int, int]: """ Get the size of an image (file) :param raster_file: Image file :returns: The size (width, height) """ with rio.open(raster_file, "r") as descriptor: return (descriptor.width, descriptor.height) def rasterio_can_open(raster_file: str) -> bool: """ Test if a file can be open by rasterio :param raster_file: File to test :returns: True if rasterio can open file and False otherwise """ try: rio.open(raster_file) return True except Exception as read_error: logging.warning( "Impossible to read file {}: {}".format(raster_file, read_error) ) return False def ncdf_can_open(file_path): """ Checks if the given file can be opened by NetCDF :param file_path: file path. :type file_path: str :return: True if it can be opened, False otherwise. :rtype: bool """ try: with xr.open_dataset(file_path) as _: return True except Exception as read_error: logging.warning( "Exception caught while trying to read file {}: {}".format( file_path, read_error ) ) return False def check_json(conf, schema): """ Check a dictionary with respect to a schema :param conf: The dictionary to check :type conf: dict :param schema: The schema to use :type schema: dict :returns: conf if check succeeds (else raises CheckerError) :rtype: dict """ schema_validator = Checker(schema) checked_conf = schema_validator.validate(conf) return checked_conf
models/rfmodel.py
arp19690/AIAlpha
1,115
123295
<gh_stars>1000+ import pandas as pd import numpy as np from sklearn.ensemble import RandomForestClassifier as RF from sklearn.ensemble import BaggingClassifier as BC from sklearn.metrics import f1_score from sklearn.metrics import log_loss class RFModel: def __init__(self, input_shape): self.input_shape = input_shape def make_model(self, n_estimators, n_jobs, verbose=1): model1 = RF(n_estimators=1, criterion='entropy', bootstrap=False, class_weight='balanced_subsample') self.model = BC(base_estimator=model1, n_estimators=n_estimators, max_features=1., verbose=verbose) def train_model(self, x, y, sample_weights=None): self.model.fit(x, y, sample_weight=sample_weights) def test_model(self, x, y, sample_weights=None): # model_acc = self.model.score(x, y, sample_weight=sample_weights) # zeros_count = y['y_values'].value_counts().loc[0] # null_acc = zeros_count/len(y) y_true = pd.DataFrame(index=y.index) y_true.loc[y['y_values'] == 1, 'up'] = 1 y_true.loc[y['y_values'] == -1, 'down'] = 1 y_true.loc[y['y_values'] == 0, 'no_ch'] = 1 y_true = y_true.fillna(0) y_pred = self.model.predict_proba(x) model_loss = log_loss(y_true, y_pred, sample_weight=sample_weights) base_case = pd.DataFrame(index=y.index) base_case['up'] = np.zeros(len(y)) base_case['down'] = np.zeros(len(y)) base_case['no_ch'] = np.ones(len(y)) base_loss = log_loss(y_true, base_case) # print(f'Model accuracy: {model_acc}') # print(f'Null accuracy: {null_acc}') print(f'Model log loss: {model_loss}') print(f'Base log loss: {base_loss}')
src/qrcode/pyqart/qr/data/base.py
lapinozz/ArtCoder
525
123305
# Added at : 2016.7.28 # Author : 7sDream # Usage : A base data mode class for encoding data to bytes. # All specific data model inherit from this class. import abc from ...common import Bits from .exception import QrEncodingException __all__ = ['BaseType'] class BaseType(object): def __init__(self, data, cci_length): """ :param data: Data to be encoded :param int cci_length: value_upper of Char Count Indicator in bit """ assert len(data) > 0, 'Unable to encode empty data.' self._data = data self._cci_length = cci_length self._validate() @property def data(self): """ :return: provided, raw original data """ return self._data @property @abc.abstractmethod def _encoded_data_part_length(self): return 0 @property def needed_space(self): return 4 + self._cci_length + self._encoded_data_part_length @property @abc.abstractmethod def _mode_indicator(self): """ :return: A 4-bit data to indicate what model is using, Use the lower 4 data. :rtype: int """ pass @property def _char_count_indicator(self): """ :return: Placed before encoded data to indicate data value_upper, it's own value_upper is decided by :any:`cci_length`. :rtype: Bits """ bits = Bits() bits.append(0, self._cci_length - len(self.data).bit_length()) bits.append(len(self.data), len(self.data).bit_length()) return bits @abc.abstractmethod def _validate(self): """ validate data, raise :any:`QrDataInvalidException` if data is invalid, implemented by subclasses. :raise: QrDataInvalidException """ pass @property @abc.abstractmethod def _encoded_data_part(self): """ encode data to bytes use specific model, implemented by subclasses. :return: encoded data :rtype: Bits """ pass @property def output(self): """ :return: Output encoded data. :rtype: Bits """ bits = Bits() bits.append(self._mode_indicator, 4) bits.extend(self._char_count_indicator) bits.extend(self._encoded_data_part) if bits.length != self.needed_space: raise QrEncodingException( type(self), self.data, info="Encoded data value_upper does not match expectations.", exception=self.needed_space, actual=bits.length, ) return bits def __str__(self): mi = Bits() mi.append(self._mode_indicator, 4) cci = Bits() cci.extend(self._char_count_indicator) encoded_data = Bits() encoded_data.extend(self._encoded_data_part) string = "{type} at {id:x}: " \ "{{data: {data}, mi: {mi}, cci: {cci}, encode: {code}}}" return string.format( type=type(self).__name__, id=id(self), data=self.data, mi=mi, cci=cci, code=encoded_data, )