max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
mhw_armor_edit/ftypes/lbm_skill.py
nicolas43000/MHWorldData
129
123333
# coding: utf-8 from mhw_armor_edit import ftypes as ft from mhw_armor_edit.ftypes import StructFile, Struct class LbmSkillEntry(Struct): STRUCT_SIZE = 10 unk1: ft.ubyte() unk2: ft.ubyte() item_id: ft.ushort() item_qty: ft.ushort() unk3: ft.pad(4) class LbmSkill(StructFile): EntryFactory = LbmSkillEntry MAGIC = 0x0046
pypykatz/smb/dcsync.py
wisdark/pypykatz
1,861
123337
<reponame>wisdark/pypykatz import asyncio from pypykatz import logging async def dcsync(url, username = None): from aiosmb.commons.connection.url import SMBConnectionURL from aiosmb.commons.interfaces.machine import SMBMachine smburl = SMBConnectionURL(url) connection = smburl.get_connection() users = [] if username is not None: users.append(username) async with connection: logging.debug('[DCSYNC] Connecting to server...') _, err = await connection.login() if err is not None: raise err logging.debug('[DCSYNC] Connected to server!') logging.debug('[DCSYNC] Running...') i = 0 async with SMBMachine(connection) as machine: async for secret, err in machine.dcsync(target_users=users): if err is not None: raise err i += 1 if i % 1000 == 0: logging.debug('[DCSYNC] Running... %s' % i) await asyncio.sleep(0) yield secret logging.debug('[DCSYNC] Finished!')
claf/machine/__init__.py
GMDennis/claf
225
123350
<reponame>GMDennis/claf from claf.machine.open_qa import OpenQA from claf.machine.nlu import NLU # fmt: off __all__ = [ "OpenQA", "NLU", ] # fmt: on
examples/custom/parallel_plot/parallel_reset.py
goncaloperes/bokeh
15,193
123357
from bokeh.models import ActionTool class ParallelResetTool(ActionTool): """ Tool to reset only plot axes and not selections """ __implementation__ = 'parallel_reset.ts'
sarpy/io/general/nitf_elements/tres/unclass/PIAPEA.py
spacefan/sarpy
119
123433
from ..tre_elements import TREExtension, TREElement __classification__ = "UNCLASSIFIED" __author__ = "<NAME>" class PIAPEAType(TREElement): def __init__(self, value): super(PIAPEAType, self).__init__() self.add_field('LASTNME', 's', 28, value) self.add_field('FIRSTNME', 's', 28, value) self.add_field('MIDNME', 's', 28, value) self.add_field('DOB', 's', 6, value) self.add_field('ASSOCTRY', 's', 2, value) class PIAPEA(TREExtension): _tag_value = 'PIAPEA' _data_type = PIAPEAType
DQMOffline/Trigger/python/HMesonGammaMonitor_Client_cff.py
ckamtsikis/cmssw
852
123441
<filename>DQMOffline/Trigger/python/HMesonGammaMonitor_Client_cff.py<gh_stars>100-1000 import FWCore.ParameterSet.Config as cms from DQMServices.Core.DQMEDHarvester import DQMEDHarvester hmesongammaEfficiency = DQMEDHarvester("DQMGenericClient", # subDirs = cms.untracked.vstring("HLT/Higgs/HMesonGamma/*"), subDirs = cms.untracked.vstring("HLT/HIG/HMesonGamma/*"), verbose = cms.untracked.uint32(0), # Set to 2 for all messages resolution = cms.vstring(), efficiency = cms.vstring( "effic_gammapt 'gamma pT turnON; PFGamma pT [GeV]; efficiency' gammapt_numerator gammapt_denominator", "effic_mesonpt 'meson pT turnON; PFMeson pT [GeV]; efficiency' mesonpt_numerator mesonpt_denominator", "effic_gammaeta 'gamma #eta turnON; gamma #eta; efficiency' gammaeta_numerator gammaeta_denominator", "effic_mesoneta 'meson #eta turnON; meson #eta; efficiency' mesoneta_numerator mesoneta_denominator", ), efficiencyProfile = cms.untracked.vstring( "effic_gammaetaVsLS 'Gamma #eta efficiency vs LS; LS; gamma #eta efficiency' gammaetaVsLS_numerator gammaetaVsLS_denominator", ), ) hmesongammaClient = cms.Sequence( hmesongammaEfficiency )
bookwyrm/tests/views/landing/test_landing.py
mouse-reeve/fedireads
270
123452
<reponame>mouse-reeve/fedireads<filename>bookwyrm/tests/views/landing/test_landing.py """ test for app action functionality """ from unittest.mock import patch from django.contrib.auth.models import AnonymousUser from django.template.response import TemplateResponse from django.test import TestCase from django.test.client import RequestFactory from bookwyrm import models from bookwyrm import views from bookwyrm.tests.validate_html import validate_html class LandingViews(TestCase): """pages you land on without really trying""" def setUp(self): """we need basic test data and mocks""" self.factory = RequestFactory() with patch("bookwyrm.suggested_users.rerank_suggestions_task.delay"), patch( "bookwyrm.activitystreams.populate_stream_task.delay" ), patch("bookwyrm.lists_stream.populate_lists_task.delay"): self.local_user = models.User.objects.create_user( "<EMAIL>", "<EMAIL>", "password", local=True, localname="mouse", ) self.anonymous_user = AnonymousUser self.anonymous_user.is_authenticated = False models.SiteSettings.objects.create() @patch("bookwyrm.suggested_users.SuggestedUsers.get_suggestions") def test_home_page(self, _): """there are so many views, this just makes sure it LOADS""" view = views.Home.as_view() request = self.factory.get("") request.user = self.local_user with patch("bookwyrm.activitystreams.ActivityStream.get_activity_stream"): result = view(request) self.assertEqual(result.status_code, 200) validate_html(result.render()) request.user = self.anonymous_user result = view(request) self.assertIsInstance(result, TemplateResponse) self.assertEqual(result.status_code, 200) validate_html(result.render()) def test_about_page(self): """there are so many views, this just makes sure it LOADS""" view = views.about request = self.factory.get("") request.user = self.local_user result = view(request) self.assertIsInstance(result, TemplateResponse) validate_html(result.render()) self.assertEqual(result.status_code, 200) def test_conduct_page(self): """there are so many views, this just makes sure it LOADS""" view = views.conduct request = self.factory.get("") request.user = self.local_user result = view(request) self.assertIsInstance(result, TemplateResponse) validate_html(result.render()) self.assertEqual(result.status_code, 200) def test_privacy_page(self): """there are so many views, this just makes sure it LOADS""" view = views.privacy request = self.factory.get("") request.user = self.local_user result = view(request) self.assertIsInstance(result, TemplateResponse) validate_html(result.render()) self.assertEqual(result.status_code, 200) def test_landing(self): """there are so many views, this just makes sure it LOADS""" view = views.Landing.as_view() request = self.factory.get("") result = view(request) self.assertIsInstance(result, TemplateResponse)
targets/arty/etherbone.py
skiphansen/litex-buildenv
198
123494
from litex.soc.integration.soc_core import mem_decoder from litex.soc.integration.soc_sdram import * from liteeth.common import convert_ip from liteeth.core import LiteEthUDPIPCore from liteeth.frontend.etherbone import LiteEthEtherbone from liteeth.mac import LiteEthMAC from liteeth.phy import LiteEthPHY from targets.arty.base import SoC as BaseSoC class EtherboneSoC(BaseSoC): def __init__(self, platform, *args, **kwargs): # Need a larger integrated ROM on or1k to fit the BIOS with TFTP support. if 'integrated_rom_size' not in kwargs and kwargs.get('cpu_type', 'lm32') != 'lm32': kwargs['integrated_rom_size'] = 0x10000 BaseSoC.__init__(self, platform, *args, **kwargs) # Ethernet --------------------------------------------------------------------------------- # Ethernet Phy self.submodules.ethphy = LiteEthPHY( clock_pads = self.platform.request("eth_clocks"), pads = self.platform.request("eth")) self.add_csr("ethphy") # Ethernet Core etherbone_mac_address = 0x10e2d5000000 etherbone_ip_address = "192.168.100.50" self.submodules.ethcore = LiteEthUDPIPCore( phy = self.ethphy, mac_address = etherbone_mac_address, ip_address = etherbone_ip_address, clk_freq = self.clk_freq) # Etherbone Core self.submodules.etherbone = LiteEthEtherbone(self.ethcore.udp, 1234) self.add_wb_master(self.etherbone.wishbone.bus) # timing constraints self.platform.add_period_constraint(self.ethphy.crg.cd_eth_rx.clk, 1e9/25e6) self.platform.add_period_constraint(self.ethphy.crg.cd_eth_tx.clk, 1e9/25e6) self.platform.add_false_path_constraints( self.crg.cd_sys.clk, self.ethphy.crg.cd_eth_rx.clk, self.ethphy.crg.cd_eth_tx.clk) # Analyzer --------------------------------------------------------------------------------- #analyzer_signals = [ # # FIXME: find interesting signals to probe # self.cpu.ibus, # self.cpu.dbus #] #self.submodules.analyzer = LiteScopeAnalyzer(analyzer_signals, 512) #self.add_csr("analyzer") def configure_iprange(self, iprange): iprange = [int(x) for x in iprange.split(".")] while len(iprange) < 4: iprange.append(0) # Our IP address self._configure_ip("LOCALIP", iprange[:-1]+[50]) # IP address of tftp host self._configure_ip("REMOTEIP", iprange[:-1]+[100]) def _configure_ip(self, ip_type, ip): for i, e in enumerate(ip): s = ip_type + str(i + 1) s = s.upper() self.add_constant(s, e) SoC = EtherboneSoC
vergeml/glossary.py
cclauss/vergeml
324
123509
<reponame>cclauss/vergeml<gh_stars>100-1000 PARAM_DESCR = { 'epochs': 'How many epochs to train.', 'learning rate': 'Optimizer learning rate.', 'batch size': 'The number of samples to use in one training batch.', 'decay': 'Learning rate decay.', 'early stopping': 'Early stopping delta and patience.', 'dropout': 'Dropout rate.', 'layers': 'The number of hidden layers.', 'optimizer': 'Which optimizer to use.' } LONG_DESCR = { 'learning rate': 'A hyperparameter which determines how quickly new learnings override old ones during training. In general, find a learning rate that is low enough that the network will converge to something useful, but high enough that the training does not take too much time.', 'batch size': 'Defines the number of samples to be propagated through the network at once in a batch. The higher the batch size, the more memory you will need.', 'epochs': 'The number of epochs define how often the network will see the complete set of samples during training.', 'decay': 'When using learning rate decay, the learning rate is gradually reduced during training which may result in getting closer to the optimal performance.', 'early stopping': 'Early Stopping is a form of regularization used to avoid overfitting when training. It is controlled via two parameters: Delta defines the minimum change in the monitored quantity to qualify as an improvement. Patience sets the number of epochs with no improvement after which training will be stopped.', 'dropout': 'Dropout is a regularization technique for reducing overfitting in neural networks, The term "dropout" refers to dropping out units (both hidden and visible) in a neural network during training.', 'layers': 'Deep learning models consist of a number of layers which contain one or more neurons. Typically, the neurons in one layer are connected to the next. Models with a higher number of layers can learn more complex representations, but are also more prone to overfitting.', 'optimizer': 'The algorithm which updates model parameters such as the weight and bias values when training the network.', 'sgd': 'Stochastic gradient descent, also known as incremental gradient descent, is a method for optimizing a neural network. It is called stochastic because samples are selected randomly instead of as a single group, as in standard gradient descent.', 'adam': 'The Adam optimization algorithm is an extension to stochastic gradient descent which computes adaptive learning rates for each parameter. Adam is well suited for many practical deep learning problems.', 'environment variables': """\ The following environment variables are available in VergeML: - VERGEML_PERSISTENCE The number of persistent instances - VERGEML_THEME The theme of the command line application - VERGEML_FUNKY_ROBOTS Funky robots""", "overfitting": "When a model performs well on the training samples, but is not able to generalize well to unseen data. During training, a typical sign for overfitting is when your validation loss goes up while your training loss goes down.", "underfitting": "When a model can neither model the training data nor generalize to new data.", "hyperparameters": "Hyperparameters are the parameters of a model that can be set from outside, i.e. are not learned during training. (e.g. learning rate, number of layers, kernel size).", "random seed": "An integer value that seeds the random generator to generate random values. It is used to repeatably reproduce tasks and experiments.", "project": "A VergeML project is just a directory. Typically it contains a vergeml.yaml file, a trainings directory and a samples directory.", 'project file': "A YAML file you can use to configure models, device usage, data processing and taks options.", 'checkpoint': 'A checkpoint is a static image of a trained AI. It can be used to restore the AI after training and make predictions.', 'stats': 'Stats are used to measure the performance of a model (e.g. accuracy).', 'samples': 'Samples are pieces of data (e.g. images, texts) that is being used to train models to create AIs.', 'val split': "Samples different from training samples that are used to evaluate the performance of model hyperparameters. You can set it via the --val-split option. See 'ml help split'.", 'test split': "Samples different from training samples that are used to evaluate the final performance of the model. You can set it via the --test-split option. See 'ml help split'.", 'split': 'split is a part of the sample data reserved for validation and testing (--val-split and --test-split options). It can be configured as either a percentage value (e.g. --val-split=10%) to reserve a fraction of training samples, a number to reserve a fixed number of samples, or a directory where the samples of the split are stored.', 'cache dir': 'A directory which contains the processed data.', } SYNONYMS = { 'stochastic gradient descent': 'sgd', 'hyperparameter': 'hyperparameters', 'project dir': 'project', 'training samples': 'samples', 'overfit': 'overfitting', 'underfit': 'underfitting' } def long_descr(key): key = key.replace("-", " ") key = SYNONYMS.get(key, key) return LONG_DESCR.get(key, "").strip() def short_param_descr(key): key = key.replace("-", " ") key = SYNONYMS.get(key, key) return PARAM_DESCR.get(key, "").strip()
python/tests/test_auxdata.py
clayne/gtirb
230
123523
<gh_stars>100-1000 import unittest from unittest import mock import gtirb class AuxDataTest(unittest.TestCase): def setUp(self): self.fake_ir = mock.MagicMock() self.fake_ir.get_by_uuid = None def test_lazy(self): ad1 = gtirb.AuxData("test1", "string") self.assertEqual(ad1.data, "test1") serialized = ad1._to_protobuf() ad2 = gtirb.AuxData._from_protobuf(serialized, self.fake_ir) # Peek inside: the data is not yet deserialized self.assertTrue(ad2._data is None) # Accessing the data should deserialize self.assertEqual(ad1.data, ad2.data) self.assertTrue(ad2._data is not None) # Just exercise repr self.assertEqual( repr(ad2), "AuxData(type_name='string', data='test1', )" ) def test_lazy_never_deserialized(self): serialized = gtirb.AuxData("testing 123", "string")._to_protobuf() ad1 = gtirb.AuxData._from_protobuf(serialized, self.fake_ir) # Peek inside: the data is not yet deserialized self.assertTrue(ad1._data is None) serialized2 = ad1._to_protobuf() self.assertTrue(ad1._data is None) self.assertEqual(serialized, serialized2) if __name__ == "__main__": unittest.main()
bups/scheduler/__init__.py
emersion/bups
106
123583
<filename>bups/scheduler/__init__.py import anacron import systemd import systemd_user schedulers = { "anacron": anacron, "systemd": systemd, "systemd-user": systemd_user }
upvote/gae/modules/upvote_app/api/web/events.py
iwikmai/upvote
453
123595
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Handlers related to Events.""" import httplib import logging import webapp2 from webapp2_extras import routes from google.appengine.ext import ndb from upvote.gae.datastore import utils as datastore_utils from upvote.gae.datastore.models import binary as binary_models from upvote.gae.datastore.models import cert as cert_models from upvote.gae.datastore.models import event as event_models from upvote.gae.datastore.models import host as host_models from upvote.gae.datastore.models import package as package_models from upvote.gae.datastore.models import user as user_models from upvote.gae.datastore.models import vote as vote_models from upvote.gae.modules.upvote_app.api.web import monitoring from upvote.gae.utils import handler_utils from upvote.gae.utils import user_utils from upvote.shared import constants def _GetEventContext(events): """Adds relevant entities corresponding to the listed Events. The entities included (if present) are the Blockable run, the Certificate associated with run, the Host on which it was run, and the Vote cast by the user. Args: events: list of Events, The events for which context should be fetched. Returns: A list of dicts where each dict is of the form: {'event': Event, 'blockable': Blockable, 'cert': Certificate, 'host': Host, 'vote': Vote} If any of the entities are not found (e.g. the user hasn't voted on a Blockable), that dict entry is present but set to None. """ host_futures = ndb.get_multi_async( ndb.Key(host_models.Host, event.host_id) for event in events) # Fetch the entities associated with Event.blockable_key. blockable_futures = ndb.get_multi_async( event.blockable_key for event in events) vote_futures = ndb.get_multi_async( vote_models.Vote.GetKey(event.blockable_key, event.user_key) for event in events) # Fetch the entities associated with SantaEvent.bundle_key. has_bundle = ( lambda e: isinstance(e, event_models.SantaEvent) and e.bundle_key) bundle_futures = [ (event.bundle_key.get_async() if has_bundle(event) else datastore_utils.GetNoOpFuture()) for event in events] bundle_vote_futures = [ (vote_models.Vote.GetKey(event.bundle_key, event.user_key).get_async() if has_bundle(event) else datastore_utils.GetNoOpFuture()) for event in events] # Fetch the Certificate associated with the Event. cert_futures = [] for event in events: if event.cert_key: cert_future = event.cert_key.get_async() elif isinstance(event, event_models.SantaEvent) and event.cert_sha256: cert_future = ndb.Key( cert_models.SantaCertificate, event.cert_sha256).get_async() else: cert_future = datastore_utils.GetNoOpFuture() cert_futures.append(cert_future) # Merge all Event context entities into their associated dicts. events_with_context = [] for i, event in enumerate(events): context_dict = { 'event': event, 'host': host_futures[i].get_result(), } bundle = bundle_futures[i].get_result() if bundle is None: context_dict.update({ 'blockable': blockable_futures[i].get_result(), 'cert': cert_futures[i].get_result(), 'vote': vote_futures[i].get_result(), }) else: context_dict.update({ 'blockable': bundle, 'cert': bundle.main_cert_key, 'vote': bundle_vote_futures[i].get_result(), }) events_with_context.append(context_dict) return events_with_context class EventQueryHandler(handler_utils.UserFacingQueryHandler): """Handler for querying events.""" MODEL_CLASS = event_models.Event @property def RequestCounter(self): return monitoring.event_requests @handler_utils.RecordRequest def get(self): # Determine whether Event should be returned with context. with_context = self.request.get('withContext').lower() == 'true' context_callback = _GetEventContext if with_context else None self._Query(context_callback) def _QueryModel(self, search_dict): # Add search keys provided as query params. urlsafe_key = self.request.get('blockableKey') if urlsafe_key: search_dict['blockableKey'] = urlsafe_key host_id = self.request.get('hostId') if host_id: search_dict['hostId'] = host_id # Determine scope of query and enforce ACL if queried as admin. if self.request.get('asAdmin').lower() == 'true': logging.info('Getting all events as Admin.') self.RequirePermission(constants.PERMISSIONS.VIEW_OTHER_EVENTS) ancestor = None else: logging.info('Getting events for user: %s', self.user.nickname) ancestor = self.user.key query = super(EventQueryHandler, self)._QueryModel( search_dict, ancestor=ancestor) return query.order(-self.MODEL_CLASS.last_blocked_dt) class Bit9EventQueryHandler(EventQueryHandler): MODEL_CLASS = event_models.Bit9Event class SantaEventQueryHandler(EventQueryHandler): MODEL_CLASS = event_models.SantaEvent class EventHandler(handler_utils.UserFacingHandler): """Handler for interacting with individual events.""" def get(self, event_key): # pylint: disable=g-bad-name try: key = ndb.Key(urlsafe=event_key) # NOTE: There is an open bug related to the inconsistent errors # raised by the ndb.Key urlsafe constructor. # See https://github.com/googlecloudplatform/datastore-ndb-python/issues/143 except: # pylint: disable=bare-except self.abort( httplib.BAD_REQUEST, explanation='Event key %s could not be parsed' % event_key) else: event = key.get() if event: with_context = (self.request.get('withContext').lower() == 'true') response_data = _GetEventContext([event])[0] if with_context else event if event.executing_user != self.user.nickname: self.RequirePermission(constants.PERMISSIONS.VIEW_OTHER_EVENTS) self.respond_json(response_data) else: self.abort(httplib.NOT_FOUND, explanation='Event not found') class RecentEventHandler(handler_utils.UserFacingHandler): """Handler for getting the most recent Event for a blockable, for a user.""" def get(self, blockable_id): # pylint: disable=g-bad-name blockable = binary_models.Blockable.get_by_id(blockable_id) if not blockable: self.abort(httplib.NOT_FOUND, explanation='Blockable not found') username = self.request.get('asUser') if username: self.RequirePermission(constants.PERMISSIONS.VIEW_OTHER_EVENTS) user = user_models.User.GetById( user_utils.UsernameToEmail(username)) else: user = self.user # If the blockable is a bundle, search by the 'bundle_key' property instead # of 'blockable_key'. blockable_filter = ( event_models.SantaEvent.bundle_key == blockable.key if isinstance(blockable, package_models.SantaBundle) else event_models.Event.blockable_key == blockable.key) event_query = (event_models.Event .query(ancestor=user.key) .filter(blockable_filter) .order(-event_models.Event.last_blocked_dt)) event = event_query.get() response_data = event if event: with_context = (self.request.get('withContext').lower() == 'true') response_data = _GetEventContext([event])[0] if with_context else event self.respond_json(response_data) # The Webapp2 routes defined for these handlers. ROUTES = routes.PathPrefixRoute('/events', [ webapp2.Route( '/most-recent/<blockable_id>', handler=RecentEventHandler), webapp2.Route( '/query/bit9', handler=Bit9EventQueryHandler), webapp2.Route( '/query/santa', handler=SantaEventQueryHandler), webapp2.Route( '/query', handler=EventQueryHandler), webapp2.Route( '/<event_key>', handler=EventHandler), ])
meter/connector/master.py
anbo225/docklet
273
123606
<reponame>anbo225/docklet<gh_stars>100-1000 #!/usr/bin/python3 import socket, select, errno, threading, os class master_connector: tcp_port = 1727 max_minions = 256 conn = {} epoll_fd = select.epoll() def establish_vswitch(ovsname): os.system('ovs-vsctl del-br ovs-%s >/dev/null 2>&1' % ovsname) os.system('ovs-vsctl add-br ovs-%s' % ovsname) os.system('brctl addif ovs-bridge ovs-%s >/dev/null 2>&1' % ovsname) os.system('ip link set ovs-system up') os.system('ip link set ovs-%s up' % ovsname) def build_gre_conn(ovsname, ipaddr): name = ipaddr.replace('.','_') os.system('ovs-vsctl add-port ovs-%s gre-%s -- set interface gre-%s type=gre options:remote_ip=%s 2>/dev/null' % (ovsname, name, name, ipaddr)) def break_gre_conn(ovsname, ipaddr): name = ipaddr.replace('.','_') os.system('ovs-vsctl del-port ovs-%s gre-%s 2>/dev/null' % (ovsname, name)) def close_connection(fd): master_connector.epoll_fd.unregister(fd) master_connector.conn[fd][0].close() addr = master_connector.conn[fd][1] master_connector.conn.pop(fd) master_connector.break_gre_conn('master', addr) def do_message_response(input_buffer): assert(input_buffer == b'ack') return b'ack' def start(): thread = threading.Thread(target = master_connector.run_forever, args = []) thread.setDaemon(True) thread.start() return thread def run_forever(): listen_fd = socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0) listen_fd.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) listen_fd.bind(('', master_connector.tcp_port)) listen_fd.listen(master_connector.max_minions) master_connector.epoll_fd.register(listen_fd.fileno(), select.EPOLLIN) datalist = {} master_connector.establish_vswitch('master') try: while True: epoll_list = master_connector.epoll_fd.poll() for fd, events in epoll_list: if fd == listen_fd.fileno(): fileno, addr = listen_fd.accept() fileno.setblocking(0) master_connector.epoll_fd.register(fileno.fileno(), select.EPOLLIN | select.EPOLLET) master_connector.conn[fileno.fileno()] = (fileno, addr[0]) master_connector.build_gre_conn('master', addr[0]) elif select.EPOLLIN & events: datas = b'' while True: try: data = master_connector.conn[fd][0].recv(10) if not data and not datas: master_connector.close_connection(fd) break else: datas += data except socket.error as msg: if msg.errno == errno.EAGAIN: try: datalist[fd] = master_connector.do_message_response(datas) master_connector.epoll_fd.modify(fd, select.EPOLLET | select.EPOLLOUT) except: master_connector.close_connection(fd) else: master_connector.close_connection(fd) break elif select.EPOLLOUT & events: sendLen = 0 while True: sendLen += master_connector.conn[fd][0].send(datalist[fd][sendLen:]) if sendLen == len(datalist[fd]): break master_connector.epoll_fd.modify(fd, select.EPOLLIN | select.EPOLLET) elif select.EPOLLHUP & events: master_connector.close_connection(fd) else: continue finally: os.system('ovs-vsctl del-br ovs-master >/dev/null 2>&1')
Python/CanWeSort/Code.py
cs-mshah/AlgoCode
151
123651
<filename>Python/CanWeSort/Code.py # Function for finding if it possible # to obtain sorted array or not def fun(arr, n, k): v = [] # Iterate over all elements until K for i in range(k): # Store elements as multiples of K for j in range(i, n, k): v.append(arr[j]); # Sort the elements v.sort(); x = 0 # Put elements in their required position for j in range(i, n, k): arr[j] = v[x]; x += 1 v = [] # Check if the array becomes sorted or not for i in range(n - 1): if (arr[i] > arr[i + 1]): return False return True # Driver code nk= input().split() K = int(nk[1]) n = int(nk[0]) arr= list(map(int,input().split())) if (fun(arr, n, K)): print("True") else: print("False")
pil_pillow__examples/gray/main.py
DazEB2/SimplePyScripts
117
123661
<reponame>DazEB2/SimplePyScripts #!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' # pip install Pillow from PIL import Image, ImageOps image_file = "input.jpg" image = Image.open(image_file) image_gray = ImageOps.grayscale(image) image_gray.save('image_gray.png') image_gray.show()
setup.py
mitsuhiko/snaek
272
123681
<gh_stars>100-1000 from setuptools import setup from setuptools.dist import Distribution # Dogfood ourselves here. Since however we at this point might not be # installed yet we cannot use snaek_rust_modules directly. Additionally # we might not be able to import outselves yet because the setup # requirements are not installed yet. In that case do nothing. extra = {} try: from snaek import setuptools_ext except ImportError: pass else: class SneakDistribution(Distribution): def __init__(self, *args, **kwargs): Distribution.__init__(self, *args, **kwargs) setuptools_ext.snaek_rust_modules(self, 'snaek_rust_modules', [ ('snaek._bindgen', 'rust/'), ]) extra['distclass'] = SneakDistribution setup( name='snaek', version='0.2.0', author='<NAME>', author_email='<EMAIL>', packages=['snaek'], package_data={ 'snaek': ['empty.c'], }, description='A python library for distributing Rust modules.', zip_safe=False, platforms='any', install_requires=[ 'cffi>=1.6.0', ], setup_requires=[ 'cffi>=1.6.0', ], entry_points={ 'distutils.setup_keywords': [ 'snaek_rust_modules = snaek.setuptools_ext:snaek_rust_modules', 'snaek_universal = snaek.setuptools_ext:snaek_universal', ], }, classifiers=[ 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python', ], **extra )
native/libcst/tests/fixtures/global_nonlocal.py
jschavesr/LibCST
880
123709
<reponame>jschavesr/LibCST global a global b , c, d nonlocal a nonlocal a , b
test/unit/agent/common/context.py
dp92987/nginx-amplify-agent
308
123716
<gh_stars>100-1000 # -*- coding: utf-8 -*- from hamcrest import * from amplify.agent.common.context import context from test.base import BaseTestCase from test.fixtures.defaults import * __author__ = "<NAME>" __copyright__ = "Copyright (C) Nginx, Inc. All rights reserved." __license__ = "" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" class ContextTestCase(BaseTestCase): def test_freeze_api_url(self): # check that if api_url is not set it will not prevent agent from setting api_url from cloud context.app_config['cloud']['api_url'] = '' context.setup(app='test', app_config=context.app_config.default) assert_that(context.freeze_api_url, equal_to(False)) # check that an api_url from our receiver's domain will not prevent agent from setting api_url from cloud context.app_config['cloud']['api_url'] = 'https://receiver.amplify.nginx.com:443/1.1' context.setup(app='test', app_config=context.app_config.default) assert_that(context.freeze_api_url, equal_to(False)) # check that a custom api_url will prevent agent from setting api_url from cloud context.app_config['cloud']['api_url'] = 'http://some.other.domain/endpoint/' context.setup(app='test', app_config=context.app_config.default) assert_that(context.freeze_api_url, equal_to(True)) def test_uuid(self): assert_that(context.app_config['credentials'], has_entry('imagename', '')) assert_that(context.app_config['credentials'], has_entry('hostname', DEFAULT_HOST)) assert_that(context.app_config['credentials'], has_entry('api_key', DEFAULT_API_KEY)) assert_that(context.app_config['credentials'], has_entry('uuid', DEFAULT_UUID)) assert_that(context.uuid, equal_to(DEFAULT_UUID)) class ContextContainerTestCase(BaseTestCase): def setup_method(self, method): super(ContextContainerTestCase, self).setup_method(method) context.app_config['credentials']['imagename'] = 'DockerTest' context.setup(app='test', app_config=context.app_config.default) def teardown_method(self, method): context.app_config['credentials']['imagename'] = None context.app_config['credentials']['uuid'] = DEFAULT_UUID context.setup(app='test', app_config=context.app_config.default) def test_uuid(self): assert_that(context.app_config['credentials'], has_entry('imagename', 'DockerTest')) assert_that(context.app_config['credentials'], has_entry('api_key', DEFAULT_API_KEY)) assert_that(context.app_config['credentials'], has_entry('uuid', 'container-DockerTest')) assert_that(context.uuid, equal_to('container-DockerTest'))
fcos_core/layers/mask_prob.py
Davidnet/EmbedMask
181
123724
<reponame>Davidnet/EmbedMask # import torch # from torch import nn # from torch.autograd import Function from fcos_core import _C mask_prob_cuda = _C.maskprob_forward
t/umash.py
warmchang/umash
108
123761
<gh_stars>100-1000 import cffi import faulthandler import os import sys from cffi_util import read_stripped_header SELF_DIR = os.path.dirname(os.path.abspath(__file__)) TOPLEVEL = os.path.abspath(SELF_DIR + "/../") + "/" # The reference implementation is at the top level. sys.path.append(TOPLEVEL) HEADERS = [ "umash.h", "t/umash_test_only.h", ] FFI = cffi.FFI() for header in HEADERS: FFI.cdef( read_stripped_header(TOPLEVEL + header, {r'^extern "C" {\n': "", r"}\n": ""}) ) C = FFI.dlopen(os.getenv("UMASH_TEST_LIB", TOPLEVEL + "umash_test_only.so")) # Pass in a copy of stderr in case anyone plays redirection tricks. faulthandler.enable(os.dup(2))
differential_privacy/run_stackoverflow_with_secrets_test.py
garyxcheng/federated
330
123807
<filename>differential_privacy/run_stackoverflow_with_secrets_test.py # Copyright 2021, Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for secret_sharer.""" import string from absl import flags from absl.testing import absltest from differential_privacy import run_stackoverflow_with_secrets FLAGS = flags.FLAGS class RunStackoverflowWithSecretsTest(absltest.TestCase): def test_permute_and_batch(self): def to_histogram(l): hist = {} for i in l: c = hist.get(i, 0) hist[i] = c + 1 return hist num_values = 8 batch_size = 3 for seed in range(10): values = list(string.ascii_lowercase)[:num_values] permute_and_batch = run_stackoverflow_with_secrets.PermuteAndBatch( values, seed, batch_size) data_so_far = [] for i in range(10): batch = permute_and_batch(i) self.assertLen(batch, batch_size) data_so_far.extend(batch) hist = to_histogram(data_so_far) hist_hist = to_histogram(hist.values()) data_len = len(data_so_far) if data_len < num_values or data_len % num_values == 0: self.assertLen(hist_hist, 1) else: self.assertLen(hist_hist, 2) hist_count = sum(k * v for k, v in hist_hist.items()) self.assertEqual(hist_count, data_len) if i > 0: recomputed_last_batch = permute_and_batch(i - 1) self.assertSequenceEqual(recomputed_last_batch, last_batch) last_batch = batch if __name__ == '__main__': absltest.main()
dialogue-engine/test/programytest/parser/template/graph_tests/test_rand.py
cotobadesign/cotoba-agent-oss
104
123825
<gh_stars>100-1000 """ Copyright (c) 2020 COTOBA DESIGN, Inc. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import xml.etree.ElementTree as ET from programy.parser.exceptions import ParserException from programy.parser.template.nodes.base import TemplateNode from programy.parser.template.nodes.rand import TemplateRandomNode from programytest.parser.template.graph_tests.graph_test_client import TemplateGraphTestClient class TemplateGraphRandomTests(TemplateGraphTestClient): def test_random_template_no_li(self): template = ET.fromstring(""" <template> <random> </random> </template> """) with self.assertRaises(ParserException): self._graph.parse_template_expression(template) def test_random_template_none_li(self): template = ET.fromstring(""" <template> <random> <lowercase>FAIL</lowercase> </random> </template> """) with self.assertRaises(ParserException): self._graph.parse_template_expression(template) def test_random_template(self): template = ET.fromstring(""" <template> <random> <li>1</li> <li>2</li> <li>3</li> </random> </template> """) ast = self._graph.parse_template_expression(template) self.assertIsNotNone(ast) self.assertIsInstance(ast, TemplateNode) self.assertIsNotNone(ast.children) self.assertIsNotNone(ast.children[0]) self.assertIsInstance(ast.children[0], TemplateRandomNode) self.assertEqual(3, len(ast.children[0].children)) self.assertIsInstance(ast.children[0].children[0], TemplateNode) self.assertIsInstance(ast.children[0].children[1], TemplateNode) self.assertIsInstance(ast.children[0].children[2], TemplateNode) selection = ast.children[0].resolve(self._client_context) self.assertIsNotNone(selection) self.assertIn(selection, ['1', '2', '3']) def test_random_nested_template(self): template = ET.fromstring(""" <template> <random> <li> <random> <li>Say something</li> <li>Say the other</li> </random> </li> <li> <random> <li>Hello world!</li> <li>Goodbye cruel world</li> </random> </li> </random> </template> """) ast = self._graph.parse_template_expression(template) self.assertIsNotNone(ast) self.assertIsInstance(ast, TemplateNode) self.assertIsNotNone(ast.children) self.assertIsNotNone(ast.children[0]) self.assertIsInstance(ast.children[0], TemplateRandomNode) self.assertEqual(2, len(ast.children[0].children)) self.assertIsInstance(ast.children[0].children[0], TemplateNode) self.assertEqual(1, len(ast.children[0].children[0].children)) self.assertIsInstance(ast.children[0].children[0].children[0], TemplateRandomNode) self.assertEqual(2, len(ast.children[0].children[0].children[0].children)) self.assertIsInstance(ast.children[0].children[1], TemplateNode) self.assertEqual(1, len(ast.children[0].children[1].children)) self.assertIsInstance(ast.children[0].children[1].children[0], TemplateRandomNode) self.assertEqual(2, len(ast.children[0].children[1].children[0].children)) selection = ast.children[0].resolve(self._client_context) self.assertIsNotNone(selection) self.assertIn(selection, ['Say something', 'Say the other', 'Hello world!', 'Goodbye cruel world'])
fixit/common/tests/test_comments.py
sk-/Fixit
313
123826
<filename>fixit/common/tests/test_comments.py # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import tokenize from io import BytesIO from libcst.testing.utils import UnitTest from fixit.common.comments import CommentInfo from fixit.common.utils import dedent_with_lstrip class CommentInfoTest(UnitTest): def test_comment_info(self) -> None: # A comment on a line with no other leading tokens is a "comment on own line". # In contrast, trailing comments come after other tokens on the same line. code = dedent_with_lstrip( """ # comment on own line # this is a # multiline comment def fn(): # comment on own line fn2() fn3() # trailing comment fn4() # comment on own line """ ) tokens = tokenize.tokenize(BytesIO(code.encode("utf-8")).readline) result = CommentInfo.compute(tokens=tokens) # The set of all comments includes both comments on their own line and trailing # comments. self.assertEqual([tok.start[0] for tok in result.comments], [1, 2, 3, 5, 7, 9]) # `comments_on_own_line` is a subset of all comments self.assertEqual( [tok.start[0] for tok in result.comments_on_own_line], [1, 2, 3, 5, 9] )
koalixcrm/crm/migrations/0049_auto_20181014_2258.py
Cataldir/koalixcrm
290
123873
<reponame>Cataldir/koalixcrm<gh_stars>100-1000 # -*- coding: utf-8 -*- # Generated by Django 1.11.4 on 2018-10-12 20:56 from __future__ import unicode_literals from django.db import migrations def reverse_func(apps, schema_editor): return 1 def backup_identifiers(apps, schema_editor): Position = apps.get_model("crm", "Position") CustomerGroupTransform = apps.get_model("crm", "CustomerGroupTransform") Price = apps.get_model("crm", "Price") UnitTransform = apps.get_model("crm", "UnitTransform") db_alias = schema_editor.connection.alias all_positions = Position.objects.using(db_alias).all() for position in all_positions: position.product_backup = position.product.id position.save() all_customer_group_transforms = CustomerGroupTransform.objects.using(db_alias).all() for customer_group_transform in all_customer_group_transforms: customer_group_transform.product_backup = customer_group_transform.product.id customer_group_transform.save() all_prices = Price.objects.using(db_alias).all() for price in all_prices: price.product_backup = price.product.id price.save() all_unit_transforms = UnitTransform.objects.using(db_alias).all() for unit_transform in all_unit_transforms: unit_transform.product_backup = unit_transform.product.id unit_transform.save() class Migration(migrations.Migration): dependencies = [ ('crm', '0048_auto_20181012_2056'), ] operations = [ migrations.RunPython(backup_identifiers, reverse_func), ]
verisure/__init__.py
gablin/python-verisure
131
123877
<reponame>gablin/python-verisure """ A python module for reading and changing status of verisure devices through verisure app API. """ __all__ = [ 'Error', 'LoginError', 'ResponseError', 'Session' ] from .session import ( # NOQA Error, LoginError, ResponseError, Session ) ALARM_ARMED_HOME = 'ARMED_HOME' ALARM_ARMED_AWAY = 'ARMED_AWAY' ALARM_DISARMED = 'DISARMED' LOCK_LOCKED = 'LOCKED' LOCK_UNLOCKED = 'UNLOCKED' SMARTPLUG_ON = 'on' SMARTPLUG_OFF = 'off'
pyjswidgets/pyjamas/ui/GlassWidget.ie6.py
takipsizad/pyjs
739
123953
# Copyright 2006 <NAME> and contributors # Copyright (C) 2009 <NAME> <<EMAIL>> # Copyright (C) 2010 <NAME> <<EMAIL>> # Copyright (C) 2010 <NAME> (IE override) <<EMAIL>> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This IE-specific override is required because IE doesn't allow # empty element to generate events. Therefore, when the mouse moves # (or clicks) happen over *only* the GlassWidget (which is empty) # they stop flowing. however, IE does provide setCapture/releaseCapture # methods on elements which can be used to same effect as a regular # GlassWidget. # This file implements the IE version of GlassWidget simply by mapping # the GlassWidget API to the use of setCapture/releaseCapture # we re-use the global 'mousecapturer' to prevent GlassWidget.hide() # from releasing someone else's capture def show(mousetarget, **kwargs): global mousecapturer # get the element that wants events target_element = mousetarget.getElement() # insure element can capture events if hasattr(target_element,"setCapture"): # remember it mousecapturer = target_element # start capturing DOM.setCapture(target_element) def hide(): global mousecapturer if hasattr(mousecapturer,"releaseCapture"): DOM.releaseCapture(mousecapturer) mousecapturer = None
examples/test_ns.py
q0w/snug
123
123962
import json from pathlib import Path import aiohttp import pytest from gentools import sendreturn import ns import snug live = pytest.config.getoption('--live') CRED_PATH = Path('~/.snug/ns.json').expanduser() auth = json.loads(CRED_PATH.read_bytes()) @pytest.fixture(scope='module') async def exec(): async with aiohttp.ClientSession() as client: yield ns.async_executor(auth=auth, client=client) @pytest.mark.asyncio async def test_all_stations(exec): all_stations = ns.stations() if live: stations = await exec(all_stations) assert isinstance(stations, list) amsterdam_stations = [s for s in stations if s.full_name.startswith('Amsterdam')] assert len(amsterdam_stations) == 11 den_bosch = stations[0] assert den_bosch.synonyms == ["Hertogenbosch ('s)", 'Den Bosch'] # offline test query = iter(all_stations) assert next(query).url.endswith('stations-v2') result = sendreturn(query, snug.Response(200, content=STATIONS_SAMPLE)) assert len(result) == 4 assert result[3].full_name == '<NAME>' @pytest.mark.asyncio async def test_departures(exec): departures = ns.departures(station='Amsterdam') if live: deps = await exec(departures) assert len(deps) >= 10 departure = deps[0] assert isinstance(departure, ns.Departure) # offline test query = iter(departures) req = next(query) assert req.url.endswith('avt') assert req.params == {'station': 'Amsterdam'} result = sendreturn(query, snug.Response(200, content=DEPARTURES_SAMPLE)) assert len(result) assert result[1].platform_changed @pytest.mark.asyncio async def test_journey_options(exec): travel_options = ns.journey_options(origin='Breda', destination='Amsterdam') travel_options_no_hsl = travel_options.replace(hsl='false') if live: options = await exec(travel_options) assert len(options) >= 10 assert isinstance(options[0], ns.Journey) # offline test query = iter(travel_options) assert next(query).params == {'fromStation': 'Breda', 'toStation': 'Amsterdam'} result = sendreturn(query, snug.Response(200, content=JOURNEYS_SAMPLE)) assert len(result) == 3 assert result[0].components[1].stops[-1].platform == '8a' assert next(iter(travel_options_no_hsl)).params == { 'fromStation': 'Breda', 'toStation': 'Amsterdam', 'hslAllowed': 'false'} STATIONS_SAMPLE = b'''\ <Stations> <Station> <Code>HT</Code> <Type>knooppuntIntercitystation</Type> <Namen> <Kort>Den Bosch</Kort> <Middel>'s-Hertogenbosch</Middel> <Lang>'s-Hertogenbosch</Lang> </Namen> <Land>NL</Land> <UICCode>8400319</UICCode> <Lat>51.69048</Lat> <Lon>5.29362</Lon> <Synoniemen> <Synoniem>Hertogenbosch ('s)</Synoniem> <Synoniem>Den Bosch</Synoniem> </Synoniemen> </Station> <Station> <Code>HTO</Code> <Type>stoptreinstation</Type> <Namen> <Kort>Dn Bosch O</Kort> <Middel>Hertogenb. Oost</Middel> <Lang>'s-Hertogenbosch Oost</Lang> </Namen> <Land>NL</Land> <UICCode>8400320</UICCode> <Lat>51.700553894043</Lat> <Lon>5.3183331489563</Lon> <Synoniemen> <Synoniem>Hertogenbosch Oost ('s)</Synoniem> <Synoniem>Den Bosch Oost</Synoniem> </Synoniemen> </Station> <Station> <Code>HDE</Code> <Type>stoptreinstation</Type> <Namen> <Kort>'t Harde</Kort> <Middel>'t Harde</Middel> <Lang>'t Harde</Lang> </Namen> <Land>NL</Land> <UICCode>8400388</UICCode> <Lat>52.4091682</Lat> <Lon>5.893611</Lon> <Synoniemen> <Synoniem>Harde ('t)</Synoniem> </Synoniemen> </Station> <Station> <Code>AHBF</Code> <Type>knooppuntIntercitystation</Type> <Namen> <Kort>Aachen</Kort> <Middel>Aachen Hbf</Middel> <Lang>Aachen Hbf</Lang> </Namen> <Land>D</Land> <UICCode>8015345</UICCode> <Lat>50.7678</Lat> <Lon>6.091499</Lon> <Synoniemen> </Synoniemen> </Station> </Stations> ''' DEPARTURES_SAMPLE = b'''\ <ActueleVertrekTijden> <VertrekkendeTrein> <RitNummer>2187</RitNummer> <VertrekTijd>2018-01-22T21:49:00+0100</VertrekTijd> <EindBestemming>Den Haag Centraal</EindBestemming> <TreinSoort>Intercity</TreinSoort> <RouteTekst>A'dam Sloterdijk, Haarlem, Leiden C.</RouteTekst> <Vervoerder>NS</Vervoerder> <VertrekSpoor wijziging="false">2a</VertrekSpoor> </VertrekkendeTrein> <VertrekkendeTrein> <RitNummer>4083</RitNummer> <VertrekTijd>2018-01-22T21:49:00+0100</VertrekTijd> <EindBestemming>Rotterdam Centraal</EindBestemming> <TreinSoort>Sprinter</TreinSoort> <RouteTekst>Duivendrecht, Bijlmer ArenA, Breukelen</RouteTekst> <Vervoerder>NS</Vervoerder> <VertrekSpoor wijziging="true">4b</VertrekSpoor> </VertrekkendeTrein> <VertrekkendeTrein> <RitNummer>2974</RitNummer> <VertrekTijd>2018-01-22T21:53:00+0100</VertrekTijd> <EindBestemming>Enkhuizen</EindBestemming> <TreinSoort>Intercity</TreinSoort> <RouteTekst>A'dam Sloterdijk, Hoorn</RouteTekst> <Vervoerder>NS</Vervoerder> <VertrekSpoor wijziging="false">8a</VertrekSpoor> </VertrekkendeTrein> <VertrekkendeTrein> <RitNummer>14681</RitNummer> <VertrekTijd>2018-01-22T21:53:00+0100</VertrekTijd> <EindBestemming>Zwolle</EindBestemming> <TreinSoort>Sprinter</TreinSoort> <RouteTekst>Weesp, Lelystad C.</RouteTekst> <Vervoerder>NS</Vervoerder> <VertrekSpoor wijziging="false">10b</VertrekSpoor> </VertrekkendeTrein> </ActueleVertrekTijden> ''' JOURNEYS_SAMPLE = b'''\ <ReisMogelijkheden> <ReisMogelijkheid> <AantalOverstappen>1</AantalOverstappen> <GeplandeReisTijd>1:29</GeplandeReisTijd> <ActueleReisTijd>1:29</ActueleReisTijd> <GeplandeVertrekTijd>2018-01-22T20:20:00+0100</GeplandeVertrekTijd> <ActueleVertrekTijd>2018-01-22T20:20:00+0100</ActueleVertrekTijd> <GeplandeAankomstTijd>2018-01-22T21:49:00+0100</GeplandeAankomstTijd> <ActueleAankomstTijd>2018-01-22T21:49:00+0100</ActueleAankomstTijd> <Status>NIEUW</Status> <ReisDeel reisSoort="TRAIN"> <Vervoerder>NS</Vervoerder> <VervoerType>Intercity</VervoerType> <RitNummer>3674</RitNummer> <Status>VOLGENS-PLAN</Status> <ReisStop> <Naam>Breda</Naam> <Tijd>2018-01-22T20:20:00+0100</Tijd> <Spoor wijziging="false">3</Spoor> </ReisStop> <ReisStop> <Naam>Tilburg</Naam> <Tijd>2018-01-22T20:34:00+0100</Tijd> </ReisStop> <ReisStop> <Naam>'s-Hertogenbosch</Naam> <Tijd>2018-01-22T20:49:00+0100</Tijd> <Spoor wijziging="false">1</Spoor> </ReisStop> </ReisDeel> <ReisDeel reisSoort="TRAIN"> <Vervoerder>NS</Vervoerder> <VervoerType>Intercity</VervoerType> <RitNummer>2974</RitNummer> <Status>VOLGENS-PLAN</Status> <ReisStop> <Naam>'s-Hertogenbosch</Naam> <Tijd>2018-01-22T20:54:00+0100</Tijd> <Spoor wijziging="false">3</Spoor> </ReisStop> <ReisStop> <Naam>Utrecht Centraal</Naam> <Tijd>2018-01-22T21:23:00+0100</Tijd> </ReisStop> <ReisStop> <Naam>Amsterdam Amstel</Naam> <Tijd>2018-01-22T21:41:00+0100</Tijd> </ReisStop> <ReisStop> <Naam>Amsterdam Centraal</Naam> <Tijd>2018-01-22T21:49:00+0100</Tijd> <Spoor wijziging="false">8a</Spoor> </ReisStop> </ReisDeel> </ReisMogelijkheid> <ReisMogelijkheid> <Melding> <Id></Id> <Ernstig>true</Ernstig> <Text>Dit reisadvies vervalt</Text> </Melding> <AantalOverstappen>1</AantalOverstappen> <GeplandeReisTijd>1:14</GeplandeReisTijd> <ActueleReisTijd>1:14</ActueleReisTijd> <Optimaal>false</Optimaal> <GeplandeVertrekTijd>2018-01-22T20:23:00+0100</GeplandeVertrekTijd> <ActueleVertrekTijd>2018-01-22T20:23:00+0100</ActueleVertrekTijd> <GeplandeAankomstTijd>2018-01-22T21:37:00+0100</GeplandeAankomstTijd> <ActueleAankomstTijd>2018-01-22T21:37:00+0100</ActueleAankomstTijd> <Status>NIET-MOGELIJK</Status> <ReisDeel reisSoort="TRAIN"> <Vervoerder>NS</Vervoerder> <VervoerType>Intercity</VervoerType> <RitNummer>1170</RitNummer> <Status>VOLGENS-PLAN</Status> <ReisStop> <Naam>Breda</Naam> <Tijd>2018-01-22T20:23:00+0100</Tijd> <Spoor wijziging="false">7</Spoor> </ReisStop> <ReisStop> <Naam>Rotterdam Centraal</Naam> <Tijd>2018-01-22T20:47:00+0100</Tijd> <Spoor wijziging="false">9</Spoor> </ReisStop> </ReisDeel> <ReisDeel reisSoort="TRAIN"> <Vervoerder>NS</Vervoerder> <VervoerType>Intercity direct</VervoerType> <RitNummer>1061</RitNummer> <Status>GEANNULEERD</Status> <Reisdetails> <Reisdetail>Toeslag Schiphol-Rotterdam vv</Reisdetail> </Reisdetails> <ReisStop> <Naam>Rotterdam Centraal</Naam> <Tijd>2018-01-22T20:57:00+0100</Tijd> <Spoor wijziging="false">12</Spoor> </ReisStop> <ReisStop> <Naam>Schiphol Airport</Naam> <Tijd>2018-01-22T21:23:00+0100</Tijd> </ReisStop> <ReisStop> <Naam>Amsterdam Centraal</Naam> <Tijd>2018-01-22T21:37:00+0100</Tijd> <Spoor wijziging="false">14a</Spoor> </ReisStop> </ReisDeel> </ReisMogelijkheid> <ReisMogelijkheid> <Melding> <Id></Id> <Ernstig>false</Ernstig> <Text>Dit is een aangepast reisadvies</Text> </Melding> <AantalOverstappen>1</AantalOverstappen> <GeplandeReisTijd>1:47</GeplandeReisTijd> <ActueleReisTijd>1:47</ActueleReisTijd> <Optimaal>false</Optimaal> <GeplandeVertrekTijd>2018-01-22T20:23:00+0100</GeplandeVertrekTijd> <ActueleVertrekTijd>2018-01-22T20:23:00+0100</ActueleVertrekTijd> <GeplandeAankomstTijd>2018-01-22T22:10:00+0100</GeplandeAankomstTijd> <ActueleAankomstTijd>2018-01-22T22:10:00+0100</ActueleAankomstTijd> <Status>GEWIJZIGD</Status> <ReisDeel reisSoort="TRAIN"> <Vervoerder>NS</Vervoerder> <VervoerType>Intercity</VervoerType> <RitNummer>1170</RitNummer> <Status>VOLGENS-PLAN</Status> <ReisStop> <Naam>Breda</Naam> <Tijd>2018-01-22T20:23:00+0100</Tijd> <Spoor wijziging="false">7</Spoor> </ReisStop> <ReisStop> <Naam>Rotterdam Centraal</Naam> <Tijd>2018-01-22T20:48:00+0100</Tijd> </ReisStop> <ReisStop> <Naam>Delft</Naam> <Tijd>2018-01-22T21:00:00+0100</Tijd> </ReisStop> <ReisStop> <Naam><NAME> HS</Naam> <Tijd>2018-01-22T21:08:00+0100</Tijd> </ReisStop> <ReisStop> <Naam>Den Haag Centraal</Naam> <Tijd>2018-01-22T21:12:00+0100</Tijd> <Spoor wijziging="false">1</Spoor> </ReisStop> </ReisDeel> <ReisDeel reisSoort="TRAIN"> <Vervoerder>NS</Vervoerder> <VervoerType>Intercity</VervoerType> <RitNummer>2170</RitNummer> <Status>VOLGENS-PLAN</Status> <ReisStop> <Naam>Den Haag Centraal</Naam> <Tijd>2018-01-22T21:18:00+0100</Tijd> <Spoor wijziging="false">10</Spoor> </ReisStop> <ReisStop> <Naam>Leiden Centraal</Naam> <Tijd>2018-01-22T21:35:00+0100</Tijd> </ReisStop> <ReisStop> <Naam>Heemstede-Aerdenhout</Naam> <Tijd>2018-01-22T21:49:00+0100</Tijd> </ReisStop> <ReisStop> <Naam>Haarlem</Naam> <Tijd>2018-01-22T21:55:00+0100</Tijd> </ReisStop> <ReisStop> <Naam><NAME></Naam> <Tijd>2018-01-22T22:04:00+0100</Tijd> </ReisStop> <ReisStop> <Naam>Amsterdam Centraal</Naam> <Tijd>2018-01-22T22:10:00+0100</Tijd> <Spoor wijziging="false">7a</Spoor> </ReisStop> </ReisDeel> </ReisMogelijkheid> </ReisMogelijkheden> '''
flows/transitions.py
sergioisidoro/django-flows
104
123986
# -*- coding: UTF-8 -*- import random from flows.components import COMPLETE class Linear(object): """ The `Linear` transition assumes that once an `Action` has completed, the flow should transition to the next `Action` in the relevant `Scaffold`'s `action_set`. If there are no more actions left, then `FlowComponent.COMPLETE` is returned and it is assumed that the next `Scaffold` up the tree will deal with where to go next. """ def choose_next(self, scaffold): # first figure out where we are in the current position # so that we know which of our action_set is in the current # path position = scaffold._flow_position_instance._position idx = -1 for idx, ffc in enumerate(position.flow_component_classes): if scaffold.__class__ == ffc: # we have found where we are break # idx == -1 implies we didn't find ourselves, which should be # impossible if idx == -1: raise ValueError # now work out which of our children is in the active path if idx+1 >= len(position.flow_component_classes): # this means that we are trying to choose the next item # from an action, which is impossible as they don't have # action sets! raise ValueError active_child = position.flow_component_classes[idx+1] action_set = scaffold.action_set child_idx = action_set.index(active_child) # so, we know where we are in our action set, and we are linear, # so next is simply the next one in our action set, or COMPLETE # if there are no more options if child_idx+1 >= len(action_set): return COMPLETE return action_set[child_idx+1] class Chaos(object): """ Don't use this transition. """ def choose_next(self, scaffold): return random.choice(scaffold.action_set)
node_launcher/node_set/bitcoind/bitcoind_rpc_client.py
ryan-lingle/node-launcher
249
123988
import base64 import binascii import decimal import json import os import platform import sys import urllib.parse as urlparse from http.client import HTTP_PORT, HTTPConnection DEFAULT_USER_AGENT = "AuthServiceProxy/0.1" DEFAULT_HTTP_TIMEOUT = 30 # (un)hexlify to/from unicode, needed for Python3 unhexlify = binascii.unhexlify hexlify = binascii.hexlify if sys.version > '3': unhexlify = lambda h: binascii.unhexlify(h.encode('utf8')) hexlify = lambda b: binascii.hexlify(b).decode('utf8') class JSONRPCError(Exception): """JSON-RPC protocol error base class Subclasses of this class also exist for specific types of errors; the set of all subclasses is by no means complete. """ SUBCLS_BY_CODE = {} @classmethod def _register_subcls(cls, subcls): cls.SUBCLS_BY_CODE[subcls.RPC_ERROR_CODE] = subcls return subcls def __new__(cls, rpc_error): assert cls is JSONRPCError cls = JSONRPCError.SUBCLS_BY_CODE.get(rpc_error['code'], cls) self = Exception.__new__(cls) super(JSONRPCError, self).__init__( 'msg: %r code: %r' % (rpc_error['message'], rpc_error['code'])) self.error = rpc_error return self class BaseProxy(object): """Base JSON-RPC proxy class. Contains only private methods; do not use directly.""" def __init__(self, service_url=None, service_port=None, btc_conf_file=None, timeout=DEFAULT_HTTP_TIMEOUT): # Create a dummy connection early on so if __init__() fails prior to # __conn being created __del__() can detect the condition and handle it # correctly. self.__conn = None if service_url is None: # Figure out the path to the bitcoin.conf file if btc_conf_file is None: if platform.system() == 'Darwin': btc_conf_file = os.path.expanduser('~/Library/Application Support/Bitcoin/') elif platform.system() == 'Windows': btc_conf_file = os.path.join(os.environ['APPDATA'], 'Bitcoin') else: btc_conf_file = os.path.expanduser('~/.bitcoin') btc_conf_file = os.path.join(btc_conf_file, 'bitcoin.conf') # Bitcoin Core accepts empty rpcuser, not specified in btc_conf_file conf = {'rpcuser': ""} # Extract contents of bitcoin.conf to build service_url try: with open(btc_conf_file, 'r') as fd: for line in fd.readlines(): if '#' in line: line = line[:line.index('#')] if '=' not in line: continue k, v = line.split('=', 1) conf[k.strip()] = v.strip() # Treat a missing bitcoin.conf as though it were empty except FileNotFoundError: pass conf['rpcport'] = int(conf.get('rpcport', service_port)) conf['rpchost'] = conf.get('rpcconnect', 'localhost') service_url = ('%s://%s:%d' % ('http', conf['rpchost'], conf['rpcport'])) cookie_dir = conf.get('datadir', os.path.dirname(btc_conf_file)) cookie_file = os.path.join(cookie_dir, ".cookie") try: with open(cookie_file, 'r') as fd: authpair = fd.read() except IOError as err: if 'rpcpassword' in conf: authpair = "%s:%s" % (conf['rpcuser'], conf['rpcpassword']) else: raise ValueError( 'Cookie file unusable (%s) and rpcpassword not specified in the configuration file: %r' % ( err, btc_conf_file)) else: url = urlparse.urlparse(service_url) authpair = "%s:%s" % (url.username, url.password) self.__service_url = service_url self.__url = urlparse.urlparse(service_url) if self.__url.scheme not in ('http',): raise ValueError('Unsupported URL scheme %r' % self.__url.scheme) if self.__url.port is None: port = HTTP_PORT else: port = self.__url.port self.__id_count = 0 if authpair is None: self.__auth_header = None else: authpair = authpair.encode('utf8') self.__auth_header = b"Basic " + base64.b64encode(authpair) self.__conn = HTTPConnection(self.__url.hostname, port=port, timeout=timeout) def _call(self, service_name, *args): self.__id_count += 1 postdata = json.dumps({'version': '1.1', 'method': service_name, 'params': args, 'id': self.__id_count}) headers = { 'Host': self.__url.hostname, 'User-Agent': DEFAULT_USER_AGENT, 'Content-type': 'application/json', } if self.__auth_header is not None: headers['Authorization'] = self.__auth_header self.__conn.request('POST', self.__url.path, postdata, headers) response = self._get_response() if response['error'] is not None: raise JSONRPCError(response['error']) elif 'result' not in response: raise JSONRPCError({ 'code': -343, 'message': 'missing JSON-RPC result'}) else: return response['result'] def _batch(self, rpc_call_list): postdata = json.dumps(list(rpc_call_list)) headers = { 'Host': self.__url.hostname, 'User-Agent': DEFAULT_USER_AGENT, 'Content-type': 'application/json', } if self.__auth_header is not None: headers['Authorization'] = self.__auth_header self.__conn.request('POST', self.__url.path, postdata, headers) return self._get_response() def _get_response(self): http_response = self.__conn.getresponse() if http_response is None: raise JSONRPCError({ 'code': -342, 'message': 'missing HTTP response from server'}) return json.loads(http_response.read().decode('utf8'), parse_float=decimal.Decimal) def close(self): if self.__conn is not None: self.__conn.close() def __del__(self): if self.__conn is not None: self.__conn.close() class RawProxy(BaseProxy): """Low-level proxy to a bitcoin JSON-RPC service Unlike ``Proxy``, no conversion is done besides parsing JSON. As far as Python is concerned, you can call any method; ``JSONRPCError`` will be raised if the server does not recognize it. """ def __init__(self, service_url=None, service_port=None, btc_conf_file=None, timeout=DEFAULT_HTTP_TIMEOUT): super(RawProxy, self).__init__(service_url=service_url, service_port=service_port, btc_conf_file=btc_conf_file, timeout=timeout) def __getattr__(self, name): if name.startswith('__') and name.endswith('__'): # Python internal stuff raise AttributeError # Create a callable to do the actual call f = lambda *args: self._call(name, *args) # Make debuggers show <function bitcoin.rpc.name> rather than <function # bitcoin.rpc.<lambda>> f.__name__ = name return f class Proxy(BaseProxy): """Proxy to a bitcoin RPC service Unlike ``RawProxy``, data is passed as ``bitcoin.core`` objects or packed bytes, rather than JSON or hex strings. Not all methods are implemented yet; you can use ``call`` to access missing ones in a forward-compatible way. Assumes Bitcoin Core version >= v0.16.0; older versions mostly work, but there are a few incompatibilities. """ def __init__(self, service_url=None, service_port=None, btc_conf_file=None, timeout=DEFAULT_HTTP_TIMEOUT): """Create a proxy object If ``service_url`` is not specified, the username and password are read out of the file ``btc_conf_file``. If ``btc_conf_file`` is not specified, ``~/.bitcoin/bitcoin.conf`` or equivalent is used by default. The default port is set according to the chain parameters in use: mainnet, testnet, or regtest. Usually no arguments to ``Proxy()`` are needed; the local bitcoind will be used. ``timeout`` - timeout in seconds before the HTTP interface times out """ super(Proxy, self).__init__(service_url=service_url, service_port=service_port, btc_conf_file=btc_conf_file, timeout=timeout) def call(self, service_name, *args): """Call an RPC method by name and raw (JSON encodable) arguments""" return self._call(service_name, *args) def get_raw_mempool(self): results = self.call('getrawmempool', True) new_results = [] for result_key in results: del results[result_key]['fees'] del results[result_key]['depends'] del results[result_key]['spentby'] results[result_key]['txid'] = result_key new_results.append(results[result_key]) return new_results
chapter6/name_mangling.py
sharad16j/Expert-Python-Programming-Third-Edition
112
124022
class Base(object): def __secret(self): print("don't tell") def public(self): self.__secret() class Derived(Base): def __secret(self): print("never ever") if __name__ == "__main__": print("Base class members:", dir(Base)) print("Derived class members:", dir(Derived)) print("Base.public() result:") Base().public() print("Derived.public() result:") Derived().public()
protos/gen/python/protos/public/modeldb/versioning/Enums_pb2.py
stefan-petrov-toptal/modeldb
835
124023
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: modeldb/versioning/Enums.proto from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='modeldb/versioning/Enums.proto', package='ai.verta.modeldb.versioning', syntax='proto3', serialized_options=b'P\001ZIgithub.com/VertaAI/modeldb/protos/gen/go/protos/public/modeldb/versioning', serialized_pb=b'\n\x1emodeldb/versioning/Enums.proto\x12\x1b\x61i.verta.modeldb.versioning\"a\n\x0e\x44iffStatusEnum\"O\n\nDiffStatus\x12\x0b\n\x07UNKNOWN\x10\x00\x12\t\n\x05\x41\x44\x44\x45\x44\x10\x01\x12\x0b\n\x07\x44\x45LETED\x10\x02\x12\x0c\n\x08MODIFIED\x10\x03\x12\x0e\n\nCONFLICTED\x10\x04\x42MP\x01ZIgithub.com/VertaAI/modeldb/protos/gen/go/protos/public/modeldb/versioningb\x06proto3' ) _DIFFSTATUSENUM_DIFFSTATUS = _descriptor.EnumDescriptor( name='DiffStatus', full_name='ai.verta.modeldb.versioning.DiffStatusEnum.DiffStatus', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='UNKNOWN', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='ADDED', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DELETED', index=2, number=2, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MODIFIED', index=3, number=3, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CONFLICTED', index=4, number=4, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=81, serialized_end=160, ) _sym_db.RegisterEnumDescriptor(_DIFFSTATUSENUM_DIFFSTATUS) _DIFFSTATUSENUM = _descriptor.Descriptor( name='DiffStatusEnum', full_name='ai.verta.modeldb.versioning.DiffStatusEnum', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ _DIFFSTATUSENUM_DIFFSTATUS, ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=63, serialized_end=160, ) _DIFFSTATUSENUM_DIFFSTATUS.containing_type = _DIFFSTATUSENUM DESCRIPTOR.message_types_by_name['DiffStatusEnum'] = _DIFFSTATUSENUM _sym_db.RegisterFileDescriptor(DESCRIPTOR) DiffStatusEnum = _reflection.GeneratedProtocolMessageType('DiffStatusEnum', (_message.Message,), { 'DESCRIPTOR' : _DIFFSTATUSENUM, '__module__' : 'modeldb.versioning.Enums_pb2' # @@protoc_insertion_point(class_scope:ai.verta.modeldb.versioning.DiffStatusEnum) }) _sym_db.RegisterMessage(DiffStatusEnum) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
saleor/shipping/migrations/0026_shippingzone_description.py
fairhopeweb/saleor
15,337
124051
# Generated by Django 3.1.4 on 2020-12-29 12:49 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("shipping", "0025_auto_20201130_1122"), ] operations = [ migrations.AddField( model_name="shippingzone", name="description", field=models.TextField(blank=True), ), ]
mmgen/models/translation_models/pix2pix.py
plutoyuxie/mmgeneration
718
124100
# Copyright (c) OpenMMLab. All rights reserved. import torch from torch.nn.parallel.distributed import _find_tensors from mmgen.models.builder import MODELS from ..common import set_requires_grad from .static_translation_gan import StaticTranslationGAN @MODELS.register_module() class Pix2Pix(StaticTranslationGAN): """Pix2Pix model for paired image-to-image translation. Ref: Image-to-Image Translation with Conditional Adversarial Networks """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.use_ema = False def forward_test(self, img, target_domain, **kwargs): """Forward function for testing. Args: img (tensor): Input image tensor. target_domain (str): Target domain of output image. kwargs (dict): Other arguments. Returns: dict: Forward results. """ # This is a trick for Pix2Pix # ref: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/e1bdf46198662b0f4d0b318e24568205ec4d7aee/test.py#L54 # noqa self.train() target = self.translation(img, target_domain=target_domain, **kwargs) results = dict(source=img.cpu(), target=target.cpu()) return results def _get_disc_loss(self, outputs): # GAN loss for the discriminator losses = dict() discriminators = self.get_module(self.discriminators) target_domain = self._default_domain source_domain = self.get_other_domains(target_domain)[0] fake_ab = torch.cat((outputs[f'real_{source_domain}'], outputs[f'fake_{target_domain}']), 1) fake_pred = discriminators[target_domain](fake_ab.detach()) losses['loss_gan_d_fake'] = self.gan_loss( fake_pred, target_is_real=False, is_disc=True) real_ab = torch.cat((outputs[f'real_{source_domain}'], outputs[f'real_{target_domain}']), 1) real_pred = discriminators[target_domain](real_ab) losses['loss_gan_d_real'] = self.gan_loss( real_pred, target_is_real=True, is_disc=True) loss_d, log_vars_d = self._parse_losses(losses) loss_d *= 0.5 return loss_d, log_vars_d def _get_gen_loss(self, outputs): target_domain = self._default_domain source_domain = self.get_other_domains(target_domain)[0] losses = dict() discriminators = self.get_module(self.discriminators) # GAN loss for the generator fake_ab = torch.cat((outputs[f'real_{source_domain}'], outputs[f'fake_{target_domain}']), 1) fake_pred = discriminators[target_domain](fake_ab) losses['loss_gan_g'] = self.gan_loss( fake_pred, target_is_real=True, is_disc=False) # gen auxiliary loss if self.with_gen_auxiliary_loss: for loss_module in self.gen_auxiliary_losses: loss_ = loss_module(outputs) if loss_ is None: continue # the `loss_name()` function return name as 'loss_xxx' if loss_module.loss_name() in losses: losses[loss_module.loss_name( )] = losses[loss_module.loss_name()] + loss_ else: losses[loss_module.loss_name()] = loss_ loss_g, log_vars_g = self._parse_losses(losses) return loss_g, log_vars_g def train_step(self, data_batch, optimizer, ddp_reducer=None, running_status=None): """Training step function. Args: data_batch (dict): Dict of the input data batch. optimizer (dict[torch.optim.Optimizer]): Dict of optimizers for the generator and discriminator. ddp_reducer (:obj:`Reducer` | None, optional): Reducer from ddp. It is used to prepare for ``backward()`` in ddp. Defaults to None. running_status (dict | None, optional): Contains necessary basic information for training, e.g., iteration number. Defaults to None. Returns: dict: Dict of loss, information for logger, the number of samples\ and results for visualization. """ # data target_domain = self._default_domain source_domain = self.get_other_domains(self._default_domain)[0] source_image = data_batch[f'img_{source_domain}'] target_image = data_batch[f'img_{target_domain}'] # get running status if running_status is not None: curr_iter = running_status['iteration'] else: # dirty walkround for not providing running status if not hasattr(self, 'iteration'): self.iteration = 0 curr_iter = self.iteration # forward generator outputs = dict() results = self( source_image, target_domain=self._default_domain, test_mode=False) outputs[f'real_{source_domain}'] = results['source'] outputs[f'fake_{target_domain}'] = results['target'] outputs[f'real_{target_domain}'] = target_image log_vars = dict() # discriminator set_requires_grad(self.discriminators, True) # optimize optimizer['discriminators'].zero_grad() loss_d, log_vars_d = self._get_disc_loss(outputs) log_vars.update(log_vars_d) # prepare for backward in ddp. If you do not call this function before # back propagation, the ddp will not dynamically find the used params # in current computation. if ddp_reducer is not None: ddp_reducer.prepare_for_backward(_find_tensors(loss_d)) loss_d.backward() optimizer['discriminators'].step() # generator, no updates to discriminator parameters. if (curr_iter % self.disc_steps == 0 and curr_iter >= self.disc_init_steps): set_requires_grad(self.discriminators, False) # optimize optimizer['generators'].zero_grad() loss_g, log_vars_g = self._get_gen_loss(outputs) log_vars.update(log_vars_g) # prepare for backward in ddp. If you do not call this function # before back propagation, the ddp will not dynamically find the # used params in current computation. if ddp_reducer is not None: ddp_reducer.prepare_for_backward(_find_tensors(loss_g)) loss_g.backward() optimizer['generators'].step() if hasattr(self, 'iteration'): self.iteration += 1 image_results = dict() image_results[f'real_{source_domain}'] = outputs[ f'real_{source_domain}'].cpu() image_results[f'fake_{target_domain}'] = outputs[ f'fake_{target_domain}'].cpu() image_results[f'real_{target_domain}'] = outputs[ f'real_{target_domain}'].cpu() results = dict( log_vars=log_vars, num_samples=len(outputs[f'real_{source_domain}']), results=image_results) return results
querybuilder/tests/__init__.py
wesokes/django-query-builder
110
124112
<gh_stars>100-1000 default_app_config = 'querybuilder.tests.apps.QuerybuilderTestConfig'
scripts/03_glove_build_counts.py
svlandeg/sense2vec
1,140
124120
<reponame>svlandeg/sense2vec<gh_stars>1000+ #!/usr/bin/env python import os from pathlib import Path from wasabi import msg import typer def main( # fmt: off glove_dir: str = typer.Argument(..., help="Directory containing the GloVe build"), in_dir: str = typer.Argument(..., help="Directory with preprocessed .s2v files"), out_dir: str = typer.Argument(..., help="Path to output directory"), min_count: int = typer.Option(5, "--min-count", "-c", help="Minimum count for inclusion in vocab"), memory: float = typer.Option(4.0, "--memory", "-m", help="Soft limit for memory consumption, in GB"), window_size: int = typer.Option(15, "--window-size", "-w", help="Number of context words on either side"), verbose: int = typer.Option(2, "--verbose", "-v", help="Set verbosity: 0, 1, or 2"), # fmt: on ): """ Step 3: Build vocabulary and frequency counts Expects a directory of preprocessed .s2v input files and will use GloVe to collect unigram counts and construct and shuffle cooccurrence data. See here for installation instructions: https://github.com/stanfordnlp/GloVe Note that this script will call into GloVe and expects you to pass in the GloVe build directory (/build if you run the Makefile). The commands will also be printed if you want to run them separately. """ input_path = Path(in_dir) output_path = Path(out_dir) if not Path(glove_dir).exists(): msg.fail("Can't find GloVe build directory", glove_dir, exits=1) if not input_path.exists() or not input_path.is_dir(): msg.fail("Not a valid input directory", in_dir, exits=1) input_files = [str(fp) for fp in input_path.iterdir() if fp.suffix == ".s2v"] if not input_files: msg.fail("No .s2v files found in input directory", in_dir, exits=1) msg.info(f"Using {len(input_files)} input files") if not output_path.exists(): output_path.mkdir(parents=True) msg.good(f"Created output directory {out_dir}") vocab_file = output_path / f"vocab.txt" cooc_file = output_path / f"cooccurrence.bin" cooc_shuffle_file = output_path / f"cooccurrence.shuf.bin" msg.info("Creating vocabulary counts") cmd = ( f"cat {' '.join(input_files)} | {glove_dir}/vocab_count " f"-min-count {min_count} -verbose {verbose} > {vocab_file}" ) print(cmd) vocab_cmd = os.system(cmd) if vocab_cmd != 0 or not Path(vocab_file).exists(): msg.fail("Failed creating vocab counts", exits=1) msg.good("Created vocab counts", vocab_file) msg.info("Creating cooccurrence statistics") cmd = ( f"cat {' '.join(input_files)} | {glove_dir}/cooccur -memory {memory} " f"-vocab-file {vocab_file} -verbose {verbose} " f"-window-size {window_size} > {cooc_file}" ) print(cmd) cooccur_cmd = os.system(cmd) if cooccur_cmd != 0 or not Path(cooc_file).exists(): msg.fail("Failed creating cooccurrence statistics", exits=1) msg.good("Created cooccurrence statistics", cooc_file) msg.info("Shuffling cooccurrence file") cmd = ( f"{glove_dir}/shuffle -memory {memory} -verbose {verbose} " f"< {cooc_file} > {cooc_shuffle_file}" ) print(cmd) shuffle_cmd = os.system(cmd) if shuffle_cmd != 0 or not Path(cooc_shuffle_file).exists(): msg.fail("Failed to shuffle cooccurrence file", exits=1) msg.good("Shuffled cooccurrence file", cooc_shuffle_file) if __name__ == "__main__": typer.run(main)
prerender/cache/disk.py
bosondata/chrome-prerender
169
124122
<filename>prerender/cache/disk.py import os import lzma import asyncio import functools from typing import Optional from aiofiles.os import stat import diskcache from .base import CacheBackend CACHE_ROOT_DIR: str = os.environ.get('CACHE_ROOT_DIR', '/tmp/prerender') class DiskCache(CacheBackend): def __init__(self) -> None: self._cache = diskcache.Cache(CACHE_ROOT_DIR) async def get(self, key: str, format: str = 'html') -> Optional[bytes]: loop = asyncio.get_event_loop() cache_get = self._cache.get data = await loop.run_in_executor(None, cache_get, key + format) if data is not None: res = await loop.run_in_executor(None, lzma.decompress, data) return res def set(self, key: str, payload: bytes, ttl: int = None, format: str = 'html') -> None: compressed = lzma.compress(payload) self._cache.set(key + format, compressed, expire=ttl) async def modified_since(self, key: str, format: str = 'html') -> Optional[float]: loop = asyncio.get_event_loop() cache_read = functools.partial(self._cache.get, read=True) file = await loop.run_in_executor(None, cache_read, key + format) if not file: return filename = file.name file.close() stats = await stat(filename) return stats.st_mtime
EventFilter/RPCRawToDigi/python/rpcUnpacker_cfi.py
ckamtsikis/cmssw
852
124148
import FWCore.ParameterSet.Config as cms import EventFilter.RPCRawToDigi.rpcUnpackingModule_cfi rpcunpacker = EventFilter.RPCRawToDigi.rpcUnpackingModule_cfi.rpcUnpackingModule.clone() rpcunpacker.InputLabel = cms.InputTag("rawDataCollector") rpcunpacker.doSynchro = cms.bool(True)
server/security.py
s-bauer/yang-explorer
437
124153
<filename>server/security.py<gh_stars>100-1000 import logging from django.shortcuts import render_to_response from django.template import RequestContext def policy_handler(request): return render_to_response('crossdomain.xml', {}, RequestContext(request))
anuga/file_conversion/tests/test_2pts.py
samcom12/anuga_core
136
124193
# external modules import unittest import tempfile import shutil import numpy as num # ANUGA modules from anuga.shallow_water.shallow_water_domain import Domain from anuga.coordinate_transforms.geo_reference import Geo_reference from anuga.file.sww import Write_sww, SWW_file from anuga.abstract_2d_finite_volumes.generic_boundary_conditions \ import Transmissive_boundary from anuga.config import netcdf_mode_r, netcdf_mode_w, netcdf_mode_a, \ netcdf_float from anuga.geospatial_data.geospatial_data import Geospatial_data # local modules from anuga.file_conversion.sdf2pts import sdf2pts from anuga.file_conversion.sww2pts import sww2pts from pprint import pprint class Test_2Pts(unittest.TestCase): """ Test files that convert to pts format. """ def test_hecras_cross_sections2pts(self): """Test conversion from HECRAS cross sections in ascii format to native NetCDF pts format """ import time, os from anuga.file.netcdf import NetCDFFile #Write test asc file root = 'hecrastest' filename = root+'.sdf' fid = open(filename, 'w') fid.write(""" # RAS export file created on Mon 15Aug2005 11:42 # by HEC-RAS Version 3.1.1 BEGIN HEADER: UNITS: METRIC DTM TYPE: TIN DTM: v:\\1\\cit\\perth_topo\\river_tin STREAM LAYER: c:\\x_local\\hecras\\21_02_03\\up_canning_cent3d.shp CROSS-SECTION LAYER: c:\\x_local\\hecras\\21_02_03\\up_can_xs3d.shp MAP PROJECTION: UTM PROJECTION ZONE: 50 DATUM: AGD66 VERTICAL DATUM: NUMBER OF REACHES: 19 NUMBER OF CROSS-SECTIONS: 2 END HEADER: BEGIN CROSS-SECTIONS: CROSS-SECTION: STREAM ID:Southern-Wungong REACH ID:Southern-Wungong STATION:21410 CUT LINE: 407546.08 , 6437277.542 407329.32 , 6437489.482 407283.11 , 6437541.232 SURFACE LINE: 407546.08, 6437277.54, 52.14 407538.88, 6437284.58, 51.07 407531.68, 6437291.62, 50.56 407524.48, 6437298.66, 49.58 407517.28, 6437305.70, 49.09 407510.08, 6437312.74, 48.76 END: CROSS-SECTION: STREAM ID:Swan River REACH ID:Swan Mouth STATION:840.* CUT LINE: 381178.0855 , 6452559.0685 380485.4755 , 6453169.272 SURFACE LINE: 381178.09, 6452559.07, 4.17 381169.49, 6452566.64, 4.26 381157.78, 6452576.96, 4.34 381155.97, 6452578.56, 4.35 381143.72, 6452589.35, 4.43 381136.69, 6452595.54, 4.58 381114.74, 6452614.88, 4.41 381075.53, 6452649.43, 4.17 381071.47, 6452653.00, 3.99 381063.46, 6452660.06, 3.67 381054.41, 6452668.03, 3.67 END: END CROSS-SECTIONS: """) fid.close() #Convert to NetCDF pts sdf2pts(root+'.sdf') #Check contents #Get NetCDF fid = NetCDFFile(root+'.pts', netcdf_mode_r) # Get the variables #print fid.variables.keys() points = fid.variables['points'] elevation = fid.variables['elevation'] #Check values ref_points = [[407546.08, 6437277.54], [407538.88, 6437284.58], [407531.68, 6437291.62], [407524.48, 6437298.66], [407517.28, 6437305.70], [407510.08, 6437312.74]] ref_points += [[381178.09, 6452559.07], [381169.49, 6452566.64], [381157.78, 6452576.96], [381155.97, 6452578.56], [381143.72, 6452589.35], [381136.69, 6452595.54], [381114.74, 6452614.88], [381075.53, 6452649.43], [381071.47, 6452653.00], [381063.46, 6452660.06], [381054.41, 6452668.03]] ref_elevation = [52.14, 51.07, 50.56, 49.58, 49.09, 48.76] ref_elevation += [4.17, 4.26, 4.34, 4.35, 4.43, 4.58, 4.41, 4.17, 3.99, 3.67, 3.67] #print points[:] #print ref_points assert num.allclose(points, ref_points) #print attributes[:] #print ref_elevation assert num.allclose(elevation, ref_elevation) #Cleanup fid.close() os.remove(root + '.sdf') os.remove(root + '.pts') def test_sww2pts_centroids_1_5(self): """Test that sww information can be converted correctly to pts data at specified coordinates - in this case, the centroids. """ import time, os from anuga.file.netcdf import NetCDFFile # Used for points that lie outside mesh NODATA_value = 1758323 # Setup from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular # Create shallow water domain domain = Domain(*rectangular(2, 2)) domain.set_flow_algorithm('1_5') B = Transmissive_boundary(domain) domain.set_boundary( {'left': B, 'right': B, 'top': B, 'bottom': B}) domain.set_name('datatest_1_5') ptsfile = domain.get_name() + '_elevation.pts' swwfile = domain.get_name() + '.sww' domain.set_datadir('.') domain.format = 'sww' domain.set_quantity('elevation', lambda x,y: -x-y) domain.geo_reference = Geo_reference(56,308500,6189000) sww = SWW_file(domain) sww.store_connectivity() sww.store_timestep() #self.domain.tight_slope_limiters = 1 domain.evolve_to_end(finaltime = 0.01) sww.store_timestep() # Check contents in NetCDF fid = NetCDFFile(sww.filename, netcdf_mode_r) # Get the variables x = fid.variables['x'][:] y = fid.variables['y'][:] elevation = fid.variables['elevation'][:] time = fid.variables['time'][:] stage = fid.variables['stage'][:] volumes = fid.variables['volumes'][:] # Invoke interpolation for vertex points points = num.concatenate( (x[:,num.newaxis],y[:,num.newaxis]), axis=1 ) points = num.ascontiguousarray(points) sww2pts(domain.get_name() + '.sww', quantity = 'elevation', data_points = points, NODATA_value = NODATA_value) ref_point_values = elevation point_values = Geospatial_data(ptsfile).get_attributes() #print 'P', point_values #print 'Ref', ref_point_values assert num.allclose(point_values, ref_point_values) # Invoke interpolation for centroids points = domain.get_centroid_coordinates() #print points sww2pts(domain.get_name() + '.sww', quantity = 'elevation', data_points = points, NODATA_value = NODATA_value) ref_point_values = [-0.5, -0.5, -1, -1, -1, -1, -1.5, -1.5] #At centroids point_values = Geospatial_data(ptsfile).get_attributes() #print 'P', point_values #print 'Ref', ref_point_values assert num.allclose(point_values, ref_point_values) fid.close() #Cleanup os.remove(sww.filename) os.remove(ptsfile) def test_sww2pts_centroids_de0(self): """Test that sww information can be converted correctly to pts data at specified coordinates - in this case, the centroids. """ import time, os from anuga.file.netcdf import NetCDFFile # Used for points that lie outside mesh NODATA_value = 1758323 # Setup from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular # Create shallow water domain domain = Domain(*rectangular(2, 2)) B = Transmissive_boundary(domain) domain.set_boundary( {'left': B, 'right': B, 'top': B, 'bottom': B}) domain.set_name('datatest_de0') ptsfile = domain.get_name() + '_elevation.pts' swwfile = domain.get_name() + '.sww' domain.set_datadir('.') domain.format = 'sww' domain.set_quantity('elevation', lambda x,y: -x-y) domain.geo_reference = Geo_reference(56,308500,6189000) sww = SWW_file(domain) sww.store_connectivity() sww.store_timestep() #self.domain.tight_slope_limiters = 1 domain.evolve_to_end(finaltime = 0.01) sww.store_timestep() # Check contents in NetCDF fid = NetCDFFile(sww.filename, netcdf_mode_r) # Get the variables x = fid.variables['x'][:] y = fid.variables['y'][:] elevation = fid.variables['elevation'][:] time = fid.variables['time'][:] stage = fid.variables['stage'][:] volumes = fid.variables['volumes'][:] # Invoke interpolation for vertex points points = num.concatenate( (x[:,num.newaxis],y[:,num.newaxis]), axis=1 ) points = num.ascontiguousarray(points) sww2pts(domain.get_name() + '.sww', quantity = 'elevation', data_points = points, NODATA_value = NODATA_value) ref_point_values = elevation point_values = Geospatial_data(ptsfile).get_attributes() #print 'P', point_values #print 'Ref', ref_point_values assert num.allclose(point_values, ref_point_values) # Invoke interpolation for centroids points = domain.get_centroid_coordinates() #print points sww2pts(domain.get_name() + '.sww', quantity = 'elevation', data_points = points, NODATA_value = NODATA_value) #ref_point_values = [-0.5, -0.5, -1, -1, -1, -1, -1.5, -1.5] #At centroids ref_point_values = [-0.77777777, -0.77777777, -0.99999998, -0.99999998, -0.99999998, -0.99999998, -1.22222221, -1.22222221] point_values = Geospatial_data(ptsfile).get_attributes() #print 'P', point_values #print 'Ref', ref_point_values assert num.allclose(point_values, ref_point_values) fid.close() #Cleanup os.remove(sww.filename) os.remove(ptsfile) #------------------------------------------------------------- if __name__ == "__main__": suite = unittest.makeSuite(Test_2Pts, 'test_') runner = unittest.TextTestRunner() #verbosity=2) runner.run(suite)
core/preprocess_utils.py
saramsv/wss
116
124241
# Lint as: python2, python3 # Copyright 2020 Google LLC # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # https://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utility functions related to preprocessing inputs.""" import numpy as np from six.moves import range from six.moves import zip import tensorflow as tf def flip_dim(tensor_list, prob=0.5, dim=1): """Randomly flips a dimension of the given tensor. The decision to randomly flip the `Tensors` is made together. In other words, all or none of the images pass in are flipped. Note that tf.random_flip_left_right and tf.random_flip_up_down isn't used so that we can control for the probability as well as ensure the same decision is applied across the images. Args: tensor_list: A list of `Tensors` with the same number of dimensions. prob: The probability of a left-right flip. dim: The dimension to flip, 0, 1, .. Returns: outputs: A list of the possibly flipped `Tensors` as well as an indicator `Tensor` at the end whose value is `True` if the inputs were flipped and `False` otherwise. Raises: ValueError: If dim is negative or greater than the dimension of a `Tensor`. """ random_value = tf.random.uniform([]) def flip(): flipped = [] for tensor in tensor_list: if dim < 0 or dim >= len(tensor.get_shape().as_list()): raise ValueError('dim must represent a valid dimension.') flipped.append(tf.compat.v1.reverse_v2(tensor, [dim])) return flipped is_flipped = tf.less_equal(random_value, prob) outputs = tf.cond(is_flipped, flip, lambda: tensor_list) if not isinstance(outputs, (list, tuple)): outputs = [outputs] outputs.append(is_flipped) return outputs def _image_dimensions(image, rank): """Returns the dimensions of an image tensor. Args: image: A rank-D Tensor. For 3-D of shape: `[height, width, channels]`. rank: The expected rank of the image Returns: A list of corresponding to the dimensions of the input image. Dimensions that are statically known are python integers, otherwise they are integer scalar tensors. """ if image.get_shape().is_fully_defined(): return image.get_shape().as_list() else: static_shape = image.get_shape().with_rank(rank).as_list() dynamic_shape = tf.unstack(tf.shape(image), rank) return [ s if s is not None else d for s, d in zip(static_shape, dynamic_shape) ] def get_label_resize_method(label): """Returns the resize method of labels depending on label dtype. Args: label: Groundtruth label tensor. Returns: tf.image.ResizeMethod.BILINEAR, if label dtype is floating. tf.image.ResizeMethod.NEAREST_NEIGHBOR, if label dtype is integer. Raises: ValueError: If label is neither floating nor integer. """ if label.dtype.is_floating: return tf.image.ResizeMethod.BILINEAR elif label.dtype.is_integer: return tf.image.ResizeMethod.NEAREST_NEIGHBOR else: raise ValueError('Label type must be either floating or integer.') def pad_to_bounding_box(image, offset_height, offset_width, target_height, target_width, pad_value): """Pads the given image with the given pad_value. Works like tf.image.pad_to_bounding_box, except it can pad the image with any given arbitrary pad value and also handle images whose sizes are not known during graph construction. Args: image: 3-D tensor with shape [height, width, channels] offset_height: Number of rows of zeros to add on top. offset_width: Number of columns of zeros to add on the left. target_height: Height of output image. target_width: Width of output image. pad_value: Value to pad the image tensor with. Returns: 3-D tensor of shape [target_height, target_width, channels]. Raises: ValueError: If the shape of image is incompatible with the offset_* or target_* arguments. """ with tf.compat.v1.name_scope(None, 'pad_to_bounding_box', [image]): image = tf.convert_to_tensor(image, name='image') original_dtype = image.dtype if original_dtype != tf.float32 and original_dtype != tf.float64: # If image dtype is not float, we convert it to int32 to avoid overflow. image = tf.cast(image, tf.int32) image_rank_assert = tf.Assert( tf.logical_or( tf.equal(tf.rank(image), 3), tf.equal(tf.rank(image), 4)), ['Wrong image tensor rank.']) with tf.control_dependencies([image_rank_assert]): image -= pad_value image_shape = image.get_shape() is_batch = True if image_shape.ndims == 3: is_batch = False image = tf.expand_dims(image, 0) elif image_shape.ndims is None: is_batch = False image = tf.expand_dims(image, 0) image.set_shape([None] * 4) elif image.get_shape().ndims != 4: raise ValueError('Input image must have either 3 or 4 dimensions.') _, height, width, _ = _image_dimensions(image, rank=4) target_width_assert = tf.Assert( tf.greater_equal( target_width, width), ['target_width must be >= width']) target_height_assert = tf.Assert( tf.greater_equal(target_height, height), ['target_height must be >= height']) with tf.control_dependencies([target_width_assert]): after_padding_width = target_width - offset_width - width with tf.control_dependencies([target_height_assert]): after_padding_height = target_height - offset_height - height offset_assert = tf.Assert( tf.logical_and( tf.greater_equal(after_padding_width, 0), tf.greater_equal(after_padding_height, 0)), ['target size not possible with the given target offsets']) batch_params = tf.stack([0, 0]) height_params = tf.stack([offset_height, after_padding_height]) width_params = tf.stack([offset_width, after_padding_width]) channel_params = tf.stack([0, 0]) with tf.control_dependencies([offset_assert]): paddings = tf.stack([batch_params, height_params, width_params, channel_params]) padded = tf.pad(image, paddings) if not is_batch: padded = tf.squeeze(padded, axis=[0]) outputs = padded + pad_value if outputs.dtype != original_dtype: outputs = tf.cast(outputs, original_dtype) return outputs def _crop(image, offset_height, offset_width, crop_height, crop_width): """Crops the given image using the provided offsets and sizes. Note that the method doesn't assume we know the input image size but it does assume we know the input image rank. Args: image: an image of shape [height, width, channels]. offset_height: a scalar tensor indicating the height offset. offset_width: a scalar tensor indicating the width offset. crop_height: the height of the cropped image. crop_width: the width of the cropped image. Returns: The cropped (and resized) image. Raises: ValueError: if `image` doesn't have rank of 3. InvalidArgumentError: if the rank is not 3 or if the image dimensions are less than the crop size. """ original_shape = tf.shape(image) if len(image.get_shape().as_list()) != 3: raise ValueError('input must have rank of 3') original_channels = image.get_shape().as_list()[2] rank_assertion = tf.Assert( tf.equal(tf.rank(image), 3), ['Rank of image must be equal to 3.']) with tf.control_dependencies([rank_assertion]): cropped_shape = tf.stack([crop_height, crop_width, original_shape[2]]) size_assertion = tf.Assert( tf.logical_and( tf.greater_equal(original_shape[0], crop_height), tf.greater_equal(original_shape[1], crop_width)), ['Crop size greater than the image size.']) offsets = tf.cast(tf.stack([offset_height, offset_width, 0]), tf.int32) # Use tf.slice instead of crop_to_bounding box as it accepts tensors to # define the crop size. with tf.control_dependencies([size_assertion]): image = tf.slice(image, offsets, cropped_shape) image = tf.reshape(image, cropped_shape) image.set_shape([crop_height, crop_width, original_channels]) return image def random_crop(image_list, crop_height, crop_width): """Crops the given list of images. The function applies the same crop to each image in the list. This can be effectively applied when there are multiple image inputs of the same dimension such as: image, depths, normals = random_crop([image, depths, normals], 120, 150) Args: image_list: a list of image tensors of the same dimension but possibly varying channel. crop_height: the new height. crop_width: the new width. Returns: the image_list with cropped images. Raises: ValueError: if there are multiple image inputs provided with different size or the images are smaller than the crop dimensions. """ if not image_list: raise ValueError('Empty image_list.') # Compute the rank assertions. rank_assertions = [] for i in range(len(image_list)): image_rank = tf.rank(image_list[i]) rank_assert = tf.Assert( tf.equal(image_rank, 3), [ 'Wrong rank for tensor %d in image_list [expected] [actual]', i, 3, image_rank ]) rank_assertions.append(rank_assert) with tf.control_dependencies([rank_assertions[0]]): image_shape = tf.shape(image_list[0]) image_height = image_shape[0] image_width = image_shape[1] crop_size_assert = tf.Assert( tf.logical_and( tf.greater_equal(image_height, crop_height), tf.greater_equal(image_width, crop_width)), ['Crop size greater than the image size.']) asserts = [rank_assertions[0], crop_size_assert] for i in range(1, len(image_list)): image = image_list[i] asserts.append(rank_assertions[i]) with tf.control_dependencies([rank_assertions[i]]): shape = tf.shape(image) height = shape[0] width = shape[1] height_assert = tf.Assert( tf.equal(height, image_height), [ 'Wrong height for tensor %d in image_list [expected][actual]', i, height, image_height ]) width_assert = tf.Assert( tf.equal(width, image_width), [ 'Wrong width for tensor %d in image_list [expected][actual]', i, width, image_width ]) asserts.extend([height_assert, width_assert]) # Create a random bounding box. # # Use tf.random.uniform and not numpy.random.rand as doing the former would # generate random numbers at graph eval time, unlike the latter which # generates random numbers at graph definition time. with tf.control_dependencies(asserts): max_offset_height = tf.reshape(image_height - crop_height + 1, []) max_offset_width = tf.reshape(image_width - crop_width + 1, []) offset_height = tf.random.uniform([], maxval=max_offset_height, dtype=tf.int32) offset_width = tf.random.uniform([], maxval=max_offset_width, dtype=tf.int32) return [_crop(image, offset_height, offset_width, crop_height, crop_width) for image in image_list] def get_random_scale(min_scale_factor, max_scale_factor, step_size): """Gets a random scale value. Args: min_scale_factor: Minimum scale value. max_scale_factor: Maximum scale value. step_size: The step size from minimum to maximum value. Returns: A tensor with random scale value selected between minimum and maximum value. If `min_scale_factor` and `max_scale_factor` are the same, a number is returned instead. Raises: ValueError: min_scale_factor has unexpected value. """ if min_scale_factor < 0 or min_scale_factor > max_scale_factor: raise ValueError('Unexpected value of min_scale_factor.') if min_scale_factor == max_scale_factor: return np.float32(min_scale_factor) # When step_size = 0, we sample the value uniformly from [min, max). if step_size == 0: return tf.random.uniform([1], minval=min_scale_factor, maxval=max_scale_factor) # When step_size != 0, we randomly select one discrete value from [min, max]. num_steps = int((max_scale_factor - min_scale_factor) / step_size + 1) scale_factors = tf.lin_space(min_scale_factor, max_scale_factor, num_steps) shuffled_scale_factors = tf.compat.v1.random_shuffle(scale_factors) return shuffled_scale_factors[0] def randomly_scale_image_and_label(image, label=None, scale=1.0): """Randomly scales image and label. Args: image: Image with shape [height, width, 3]. label: Label with shape [height, width, 1]. scale: The value to scale image and label. Returns: Scaled image and label. """ # No random scaling if scale == 1. if scale == 1.0: return image, label image_shape = tf.shape(image) new_dim = tf.cast( tf.cast([image_shape[0], image_shape[1]], tf.float32) * scale, tf.int32) # Need squeeze and expand_dims because image interpolation takes # 4D tensors as input. ## tf1 op without anti-aliasing # image = tf.squeeze( # tf.compat.v1.image.resize_bilinear( # tf.expand_dims(image, 0), new_dim, align_corners=True), [0]) ## tf2 op with anti-aliasing image = tf.compat.v2.image.resize( image, new_dim, method='bilinear', antialias=True) if label is not None: label = tf.compat.v1.image.resize( label, new_dim, method=get_label_resize_method(label), align_corners=True) return image, label def resolve_shape(tensor, rank=None, scope=None): """Fully resolves the shape of a Tensor. Use as much as possible the shape components already known during graph creation and resolve the remaining ones during runtime. Args: tensor: Input tensor whose shape we query. rank: The rank of the tensor, provided that we know it. scope: Optional name scope. Returns: shape: The full shape of the tensor. """ with tf.compat.v1.name_scope(scope, 'resolve_shape', [tensor]): if rank is not None: shape = tensor.get_shape().with_rank(rank).as_list() else: shape = tensor.get_shape().as_list() if None in shape: shape_dynamic = tf.shape(tensor) for i in range(len(shape)): if shape[i] is None: shape[i] = shape_dynamic[i] return shape def resize_to_range_helper(input_shape, min_size, max_size=None, factor=None, keep_aspect_ratio=True): """Determines output size in specified range. Adapted from //image/understanding/object_detection/core/preprocessor.py The output size can be described by two cases: 1. If the image can be rescaled so its minimum size is equal to min_size without the other side exceeding max_size, then do so. 2. Otherwise, resize so the largest side is equal to max_size. An integer in `range(factor)` is added to the computed sides so that the final dimensions are multiples of `factor` plus one. Args: input_shape: A 2-element list with the [height, width] of the input image. min_size: (scalar) desired size of the smaller image side. max_size: (optional) (scalar) maximum allowed size of the larger image side. factor: Make output size multiple of factor plus one. keep_aspect_ratio: Boolean, keep aspect ratio or not. If True, the input will be resized while keeping the original aspect ratio. If False, the input will be resized to [max_resize_value, max_resize_value] without keeping the original aspect ratio. Returns: A 1-D tensor containing the [new_height, new_width]. """ input_height, input_width = input_shape input_height = tf.cast(input_height, tf.float32) input_width = tf.cast(input_width, tf.float32) input_min_size = tf.minimum(input_height, input_width) # Calculate the larger of the possible sizes min_size = tf.cast(min_size, tf.float32) large_scale_factor = min_size / input_min_size large_height = tf.cast(tf.floor(input_height * large_scale_factor), tf.int32) large_width = tf.cast(tf.floor(input_width * large_scale_factor), tf.int32) large_size = tf.stack([large_height, large_width]) if max_size is not None: # Calculate the smaller of the possible sizes, use that if the larger # is too big. input_max_size = tf.maximum(input_height, input_width) max_size = tf.cast(max_size, tf.float32) small_scale_factor = max_size / input_max_size small_height = tf.cast( tf.floor(input_height * small_scale_factor), tf.int32) small_width = tf.cast(tf.floor(input_width * small_scale_factor), tf.int32) small_size = tf.stack([small_height, small_width]) output_shape = tf.cond( tf.cast(tf.reduce_max(large_size), tf.float32) > max_size, lambda: small_size, lambda: large_size) else: output_shape = large_size # Ensure that both output sides are multiples of factor plus one. if factor is not None: output_shape += (factor - (output_shape - 1) % factor) % factor if not keep_aspect_ratio: # If not keep the aspect ratio, we resize everything to max_size, allowing # us to do pre-processing without extra padding. output_shape = [tf.reduce_max(output_shape), tf.reduce_max(output_shape)] return output_shape def resize_to_range(image, label=None, min_size=None, max_size=None, factor=None, keep_aspect_ratio=True, align_corners=True, label_layout_is_chw=False, scope=None, method=tf.image.ResizeMethod.BILINEAR): """Resizes image or label so their sides are within the provided range. The output size can be described by two cases: 1. If the image can be rescaled so its minimum size is equal to min_size without the other side exceeding max_size, then do so. 2. Otherwise, resize so the largest side is equal to max_size. An integer in `range(factor)` is added to the computed sides so that the final dimensions are multiples of `factor` plus one. Args: image: A 3D tensor of shape [height, width, channels]. label: (optional) A 3D tensor of shape [height, width, channels] (default) or [channels, height, width] when label_layout_is_chw = True. min_size: (scalar) desired size of the smaller image side. max_size: (scalar) maximum allowed size of the larger image side. Note that the output dimension is no larger than max_size and may be slightly smaller than max_size when factor is not None. factor: Make output size multiple of factor plus one. keep_aspect_ratio: Boolean, keep aspect ratio or not. If True, the input will be resized while keeping the original aspect ratio. If False, the input will be resized to [max_resize_value, max_resize_value] without keeping the original aspect ratio. align_corners: If True, exactly align all 4 corners of input and output. label_layout_is_chw: If true, the label has shape [channel, height, width]. We support this case because for some instance segmentation dataset, the instance segmentation is saved as [num_instances, height, width]. scope: Optional name scope. method: Image resize method. Defaults to tf.image.ResizeMethod.BILINEAR. Returns: A 3-D tensor of shape [new_height, new_width, channels], where the image has been resized (with the specified method) so that min(new_height, new_width) == ceil(min_size) or max(new_height, new_width) == ceil(max_size). Raises: ValueError: If the image is not a 3D tensor. """ with tf.compat.v1.name_scope(scope, 'resize_to_range', [image]): new_tensor_list = [] min_size = tf.cast(min_size, tf.float32) if max_size is not None: max_size = tf.cast(max_size, tf.float32) # Modify the max_size to be a multiple of factor plus 1 and make sure the # max dimension after resizing is no larger than max_size. if factor is not None: max_size = (max_size - (max_size - 1) % factor) [orig_height, orig_width, _] = resolve_shape(image, rank=3) new_size = resize_to_range_helper(input_shape=[orig_height, orig_width], min_size=min_size, max_size=max_size, factor=factor, keep_aspect_ratio=keep_aspect_ratio) new_tensor_list.append(tf.image.resize( image, new_size, method=method, align_corners=align_corners)) if label is not None: if label_layout_is_chw: # Input label has shape [channel, height, width]. resized_label = tf.expand_dims(label, 3) resized_label = tf.image.resize( resized_label, new_size, method=get_label_resize_method(label), align_corners=align_corners) resized_label = tf.squeeze(resized_label, 3) else: # Input label has shape [height, width, channel]. resized_label = tf.image.resize( label, new_size, method=get_label_resize_method(label), align_corners=align_corners) new_tensor_list.append(resized_label) else: new_tensor_list.append(None) return new_tensor_list def gaussian_blur(image, kernel_size, sigma, padding='SAME'): """Blurs the image with separable convolution. Args: image: Tensor of shape [height, width, channels], dtype float kernel_size: kernel size of the filter sigma: Sigma value for the Gaussian (std) padding: Padding mode for the convolution. 'SAME' or 'VALID' Returns: outputs: A list of the possibly flipped `Tensors` as well as an indicator `Tensor` at the end whose value is `True` if the inputs were flipped and `False` otherwise. """ radius = tf.to_int32(kernel_size / 2) kernel_size = radius * 2 + 1 x = tf.to_float(tf.range(-radius, radius + 1)) blur_filter = tf.exp( -tf.pow(x, 2.0) / (2.0 * tf.pow(tf.to_float(sigma), 2.0))) blur_filter /= tf.reduce_sum(blur_filter) # One vertical and one horizontal filter. blur_v = tf.reshape(blur_filter, [kernel_size, 1, 1, 1]) blur_h = tf.reshape(blur_filter, [1, kernel_size, 1, 1]) num_channels = tf.shape(image)[-1] blur_h = tf.tile(blur_h, [1, 1, num_channels, 1]) blur_v = tf.tile(blur_v, [1, 1, num_channels, 1]) expand_batch_dim = image.shape.ndims == 3 if expand_batch_dim: # Tensorflow requires batched input to convolutions, which we can fake with # an extra dimension. image = tf.expand_dims(image, axis=0) blurred = tf.nn.depthwise_conv2d( image, blur_h, strides=[1, 1, 1, 1], padding=padding) blurred = tf.nn.depthwise_conv2d( blurred, blur_v, strides=[1, 1, 1, 1], padding=padding) if expand_batch_dim: blurred = tf.squeeze(blurred, axis=0) return blurred def random_gaussian_blur(image, prob=0.5): """Randomly blur an image. Args: image: Tensor prob: probability to apply Gaussian blur Returns: output: blurred image """ random_value = tf.random.uniform([]) is_blurred = tf.less_equal(random_value, prob) ## EfficientSeg style sigma = tf.random.uniform([]) * 1.15 + 0.15 radius = tf.cast(sigma * 4.0 + 0.5, tf.int32) kernel_size = radius * 2 + 1 blurred = gaussian_blur(image, kernel_size, sigma) output = tf.cond(is_blurred, lambda: blurred, lambda: image) return output def color_jitter(image, brightness=0, contrast=0, saturation=0, hue=0): """Distorts the color of the image (jittering order is random). Args: image: The input image tensor. Must be in [0, 1]! brightness: A float, specifying the brightness for color jitter. contrast: A float, specifying the contrast for color jitter. saturation: A float, specifying the saturation for color jitter. hue: A float, specifying the hue for color jitter. Returns: The distorted image tensor. """ with tf.name_scope('distort_color'): def apply_transform(i, x): """Apply the i-th transformation.""" def brightness_foo(): if brightness == 0: return x else: return tf.image.random_brightness(x, max_delta=brightness) def contrast_foo(): if contrast == 0: return x else: return tf.image.random_contrast(x, lower=1-contrast, upper=1+contrast) def saturation_foo(): if saturation == 0: return x else: return tf.image.random_saturation( x, lower=1-saturation, upper=1+saturation) def hue_foo(): if hue == 0: return x else: return tf.image.random_hue(x, max_delta=hue) x = tf.cond(tf.less(i, 2), lambda: tf.cond(tf.less(i, 1), brightness_foo, contrast_foo), lambda: tf.cond(tf.less(i, 3), saturation_foo, hue_foo)) return x perm = tf.random_shuffle(tf.range(4)) for i in range(4): image = apply_transform(perm[i], image) image = tf.clip_by_value(image, 0., 1.) return image def to_grayscale(image, keep_channels=True): image = tf.image.rgb_to_grayscale(image) if keep_channels: image = tf.tile(image, [1, 1, 3]) return image def random_color_jitter(image, prob=1.0): """Randomly do color jittering on the given image. Args: image: Tensor prob: probability to apply color jittering Returns: output: blurred image """ brightness = 0.5 contrast = 0.5 saturation = 0.5 hue = 0.25 random_value = tf.random.uniform([]) is_jittered = tf.less_equal(random_value, prob) jittered = color_jitter(image, brightness, contrast, saturation, hue) output = tf.cond(is_jittered, lambda: jittered, lambda: image) return output def cutout_with_mask(image, label, pad_size, mean_pixel, ignore_label=255, valid=None): """Apply cutout (https://arxiv.org/abs/1708.04552) to image. This operation applies a (2*pad_size x 2*pad_size) mask of zeros to a random location within `img`. The pixel values filled in will be of the value `replace`. The located where the mask will be applied is randomly chosen uniformly over the whole image. Args: image: An image Tensor of type float32. label: An image Tensor of type int32. pad_size: Specifies how big the zero mask that will be generated is that is applied to the image. The mask will be of size (2*pad_size x 2*pad_size). mean_pixel: What pixel value to fill in the image in the area that has the cutout mask applied to it. ignore_label: What value to fill in the label in the area that has the cutout mask applied to it. Returns: An image Tensor that is of type float32. """ image_height = tf.shape(image)[0] image_width = tf.shape(image)[1] # Sample the center location in the image where the zero mask will be applied. cutout_center_height = tf.random_uniform( shape=[], minval=0, maxval=image_height, dtype=tf.int32) cutout_center_width = tf.random_uniform( shape=[], minval=0, maxval=image_width, dtype=tf.int32) lower_pad = tf.maximum(0, cutout_center_height - pad_size) upper_pad = tf.maximum(0, image_height - cutout_center_height - pad_size) left_pad = tf.maximum(0, cutout_center_width - pad_size) right_pad = tf.maximum(0, image_width - cutout_center_width - pad_size) cutout_shape = [image_height - (lower_pad + upper_pad), image_width - (left_pad + right_pad)] padding_dims = [[lower_pad, upper_pad], [left_pad, right_pad]] mask = tf.pad( tf.zeros(cutout_shape, dtype=image.dtype), padding_dims, constant_values=1) mask = tf.expand_dims(mask, -1) label = tf.where( tf.equal(mask, 0), tf.ones_like(label, dtype=label.dtype) * ignore_label, label) im_mask = tf.tile(mask, [1, 1, 3]) image = tf.where( tf.equal(im_mask, 0), tf.ones_like(image, dtype=image.dtype) * mean_pixel, image) if valid is not None: valid = tf.where( tf.equal(mask, 0), tf.zeros_like(valid, dtype=valid.dtype), valid) return image, label, valid return image, label
bookwyrm/views/interaction.py
mouse-reeve/fedireads
270
124258
""" boosts and favs """ from django.contrib.auth.decorators import login_required from django.core.cache import cache from django.db import IntegrityError from django.http import HttpResponse, HttpResponseBadRequest, HttpResponseNotFound from django.shortcuts import redirect from django.utils.decorators import method_decorator from django.views import View from bookwyrm import models from .helpers import is_api_request # pylint: disable= no-self-use @method_decorator(login_required, name="dispatch") class Favorite(View): """like a status""" def post(self, request, status_id): """create a like""" cache.delete(f"fav-{request.user.id}-{status_id}") status = models.Status.objects.get(id=status_id) try: models.Favorite.objects.create(status=status, user=request.user) except IntegrityError: # you already fav'ed that return HttpResponseBadRequest() if is_api_request(request): return HttpResponse() return redirect(request.headers.get("Referer", "/")) @method_decorator(login_required, name="dispatch") class Unfavorite(View): """take back a fav""" def post(self, request, status_id): """unlike a status""" cache.delete(f"fav-{request.user.id}-{status_id}") status = models.Status.objects.get(id=status_id) try: favorite = models.Favorite.objects.get(status=status, user=request.user) except models.Favorite.DoesNotExist: # can't find that status, idk return HttpResponseNotFound() favorite.delete() if is_api_request(request): return HttpResponse() return redirect(request.headers.get("Referer", "/")) @method_decorator(login_required, name="dispatch") class Boost(View): """boost a status""" def post(self, request, status_id): """boost a status""" cache.delete(f"boost-{request.user.id}-{status_id}") status = models.Status.objects.get(id=status_id) # is it boostable? if not status.boostable: return HttpResponseBadRequest() if models.Boost.objects.filter( boosted_status=status, user=request.user ).exists(): # you already boosted that. return redirect(request.headers.get("Referer", "/")) models.Boost.objects.create( boosted_status=status, privacy=status.privacy, user=request.user, ) if is_api_request(request): return HttpResponse() return redirect(request.headers.get("Referer", "/")) @method_decorator(login_required, name="dispatch") class Unboost(View): """boost a status""" def post(self, request, status_id): """boost a status""" cache.delete(f"boost-{request.user.id}-{status_id}") status = models.Status.objects.get(id=status_id) boost = models.Boost.objects.filter( boosted_status=status, user=request.user ).first() boost.delete() if is_api_request(request): return HttpResponse() return redirect(request.headers.get("Referer", "/"))
tests/test_setup_dirs.py
flying-sheep/goatools
477
124293
#!/usr/bin/env python3 """Test that all GOATOOLS package dirs are in the setup.py file""" # pylint: disable=wrong-import-position from os import walk from os.path import join from os.path import abspath import sys sys.argv = [abspath(__file__), '--help'] from setup import NAME # goatools from setup import PACKAGES # modules in goatools from tests.utils import REPO def test_setup_dirs(): """Test that all GOATOOLS package dirs are in the setup.py file""" pkgs_setup = set(m for m in PACKAGES if 'test_' not in m) pkgs_dirs = _get_pkgmods() assert pkgs_dirs.issubset(pkgs_setup), _errmsg(pkgs_setup, pkgs_dirs) print('**NOTE: TEST PASSED') def _errmsg(pkgs_setup, pkgs_dirs): """Print the packages which are not found in setup.py""" len_name = len(NAME) + 1 missing = set(m[len_name:] for m in pkgs_dirs.difference(pkgs_setup)) return '**FATAL: MISSING PACKAGES in setup.py:\n NAME + ".{P}",'.format( P='",\n NAME + ".'.join(sorted(missing))) def _get_pkgmods(): """Get the GOATOOLS package modules by walking the package dirs""" pkgs = set() len_repo = len(REPO) + 1 for root, _, _ in walk(join(REPO, NAME)): if root[-11:] != '__pycache__': pkg = root[len_repo:].replace('/', '.') if 'test_' not in pkg: pkgs.add(pkg) return pkgs if __name__ == '__main__': test_setup_dirs()
tests/forte/data/serialization_tests.py
J007X/forte
163
124330
# Copyright 2021 The Forte Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile import unittest from typing import Dict from ddt import data, ddt from forte.data.caster import MultiPackBoxer from forte.data.data_pack import DataPack from forte.data.multi_pack import MultiPack from forte.data.readers import ( OntonotesReader, DirPackReader, MultiPackDirectoryReader, ) from forte.pipeline import Pipeline from forte.processors.base import ( MultiPackProcessor, ) from forte.processors.writers import ( PackIdJsonPackWriter, PackIdMultiPackWriter, AutoNamePackWriter, ) from ft.onto.base_ontology import ( Sentence, EntityMention, CrossDocEntityRelation, ) class CopySentence(MultiPackProcessor): """ Copy the content from existing pack to a new pack. """ def _process(self, input_pack: MultiPack): from_pack: DataPack = input_pack.get_pack(self.configs.copy_from) copy_pack: DataPack = input_pack.add_pack(self.configs.copy_to) copy_pack.set_text(from_pack.text) if from_pack.pack_name is not None: copy_pack.pack_name = from_pack.pack_name + "_copy" else: copy_pack.pack_name = "copy" s: Sentence for s in from_pack.get(Sentence): Sentence(copy_pack, s.begin, s.end) e: EntityMention for e in from_pack.get(EntityMention): EntityMention(copy_pack, e.begin, e.end) @classmethod def default_configs(cls) -> Dict[str, str]: return {"copy_from": "default", "copy_to": "duplicate"} class NaiveCoref(MultiPackProcessor): def _process(self, input_pack: MultiPack): fp = input_pack.get_pack_at(0) sp = input_pack.get_pack_at(1) nes1 = list(fp.get(EntityMention)) nes2 = list(sp.get(EntityMention)) for ne1 in nes1: for ne2 in nes2: if ne1.text == ne2.text: CrossDocEntityRelation(input_pack, ne1, ne2) @ddt class SerializationTest(unittest.TestCase): def setUp(self): file_dir_path = os.path.dirname(__file__) self.data_path = os.path.join( file_dir_path, "../../../", "data_samples", "ontonotes", "00" ) @data( (True, "pickle"), (False, "pickle"), (True, "jsonpickle"), (False, "jsonpickle"), ) def testMultiPackWriting(self, config_data): zip_pack, method = config_data # Use different sub-directory to avoid conflicting. subdir = f"{zip_pack}_{method}" with tempfile.TemporaryDirectory() as main_output: # Prepare input data. prepared_input: str = os.path.join( main_output, subdir, "input_packs" ) data_output: str = os.path.join(main_output, subdir, "output") suffix = ".pickle" if method == "pickle" else ".json" if zip_pack: suffix = suffix + ".gz" nlp = Pipeline[DataPack]() nlp.set_reader(OntonotesReader()) nlp.add( PackIdJsonPackWriter(), { "output_dir": prepared_input, "overwrite": True, "serialize_method": method, "zip_pack": zip_pack, }, ) nlp.run(self.data_path) # Convert to multi pack. coref_pl = Pipeline() coref_pl.set_reader( DirPackReader(), { "serialize_method": method, "zip_pack": zip_pack, "suffix": suffix, }, ) coref_pl.add(MultiPackBoxer()) coref_pl.add(CopySentence()) coref_pl.add(NaiveCoref()) coref_pl.add( PackIdMultiPackWriter(), config={ "output_dir": data_output, "overwrite": True, "serialize_method": method, "zip_pack": zip_pack, }, ) coref_pl.run(prepared_input) self.assertTrue( os.path.exists(os.path.join(data_output, "multi.idx")) ) self.assertTrue( os.path.exists(os.path.join(data_output, "pack.idx")) ) self.assertTrue(os.path.exists(os.path.join(data_output, "packs"))) self.assertTrue(os.path.exists(os.path.join(data_output, "multi"))) # Read the multi pack again. mp_pipeline = Pipeline() mp_pipeline.set_reader( MultiPackDirectoryReader(), config={ "suffix": suffix, "zip_pack": zip_pack, "serialize_method": method, "data_pack_dir": os.path.join(data_output, "packs"), "multi_pack_dir": os.path.join(data_output, "multi"), }, ).initialize() re: CrossDocEntityRelation for mp in mp_pipeline.process_dataset(): for re in mp.get(CrossDocEntityRelation): self.assertEqual(re.get_parent().text, re.get_child().text) @data( (True, "pickle"), (False, "pickle"), (True, "jsonpickle"), (False, "jsonpickle"), ) def testPackWriting(self, config_data): zip_pack, method = config_data with tempfile.TemporaryDirectory() as main_output: write_pipeline = Pipeline[DataPack]() write_pipeline.set_reader(OntonotesReader()) write_pipeline.add( AutoNamePackWriter(), { "output_dir": os.path.join(main_output, "packs"), "overwrite": True, "zip_pack": zip_pack, "serialize_method": method, }, ) write_pipeline.run(self.data_path) read_pipeline = Pipeline[DataPack]() read_pipeline.set_reader(DirPackReader())
Drake-Z/0009/0009.py
saurabh896/python-1
3,976
124383
#!/usr/bin/env python3 # -*- coding: utf-8 -*- '第 0009 题:一个HTML文件,找出里面的链接。' __author__ = 'Drake-Z' import os, re from html.parser import HTMLParser from html.entities import name2codepoint class MyHTMLParser(HTMLParser): def handle_starttag(self, tag, attrs): if tag == 'a': for (variables, value) in attrs: if variables == 'href': if re.match(r'http(.*?)', value): print(value) if __name__ == '__main__': with open('test.html', encoding='utf-8') as html: parser = MyHTMLParser() parser.feed(html.read())
stanford-augmented-image-classification/i_commandline_arguments.py
meghanaravikumar/sigopt-examples
213
124392
from a_resnet_training_common_cli import Hyperparameters from stanford_cars_augmentation_cli import AugmentHyperparameters, AugmentCLI def generate_cli_hpo(parser): """Adding Hyperparameters to CLI arguments""" parser.add_argument("--" + Hyperparameters.SCEDULER_RATE.value, dest=Hyperparameters.SCEDULER_RATE.value, type=float, help="number of epochs to wait before annealing learning rate", required=True) parser.add_argument("--" + Hyperparameters.LEARNING_RATE.value, dest=Hyperparameters.LEARNING_RATE.value, type=float, help="learning rate to use", required=True) parser.add_argument("--" + Hyperparameters.BATCH_SIZE.value, dest=Hyperparameters.BATCH_SIZE.value, type=int, help="batch size to use", required=True) parser.add_argument("--" + Hyperparameters.LEARNING_RATE_SCHEDULER.value, dest=Hyperparameters.LEARNING_RATE_SCHEDULER.value, type=float, help="annealing schedule rate to use. multiplied to learning rate", required=True) parser.add_argument("--" + Hyperparameters.WEIGHT_DECAY.value, dest=Hyperparameters.WEIGHT_DECAY.value, type=float, help="weight decay to use", required=True) parser.add_argument("--" + Hyperparameters.MOMENTUM.value, dest=Hyperparameters.MOMENTUM.value, type=float, help="momentum to use", required=True) parser.add_argument("--" + Hyperparameters.NESTEROV.value, dest=Hyperparameters.NESTEROV.value, action='store_true', help="use Nesterov") parser.add_argument("--" + "no-" + Hyperparameters.NESTEROV.value, dest=Hyperparameters.NESTEROV.value, action='store_false', help="do not use Nesterov") return parser def generate_cli_hpo_augment(parser): parser.add_argument("--" + AugmentHyperparameters.BRIGHTNESS.value, dest=AugmentHyperparameters.BRIGHTNESS.value, type=float, help="brightness factor. recommended range 0 - 9", required=True, default=3.2907) parser.add_argument("--" + AugmentHyperparameters.CONTRAST.value, dest=AugmentHyperparameters.CONTRAST.value, type=float, help="contrast factor. recommended range 0-100", required=True, default=56.793) parser.add_argument("--" + AugmentHyperparameters.HUE.value, dest=AugmentHyperparameters.HUE.value, type=float, help="hue factor. recommend range -0.5 - 0.5", required=True, default=-0.01286) parser.add_argument("--" + AugmentHyperparameters.SATURATION.value, dest=AugmentHyperparameters.SATURATION.value, type=float, help="saturation factor. recommended range 0-100", required=True, default=2.36640) return parser
train_deep_ensemble.py
omegafragger/deterministic-uncertainty-quantification
180
124395
<reponame>omegafragger/deterministic-uncertainty-quantification import argparse import pathlib import torch import torch.nn as nn import torch.nn.functional as F from tqdm import tqdm from utils.datasets import all_datasets from utils.cnn_duq import SoftmaxModel as CNN from torchvision.models import resnet18 class ResNet(nn.Module): def __init__(self, input_size, num_classes): super().__init__() self.resnet = resnet18(pretrained=False, num_classes=num_classes) # Adapted resnet from: # https://github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py self.resnet.conv1 = nn.Conv2d( 3, 64, kernel_size=3, stride=1, padding=1, bias=False ) self.resnet.maxpool = nn.Identity() def forward(self, x): x = self.resnet(x) x = F.log_softmax(x, dim=1) return x def train(model, train_loader, optimizer, epoch, loss_fn): model.train() total_loss = [] for batch_idx, (data, target) in enumerate(tqdm(train_loader)): data = data.cuda() target = target.cuda() optimizer.zero_grad() prediction = model(data) loss = loss_fn(prediction, target) loss.backward() optimizer.step() total_loss.append(loss.item()) avg_loss = torch.tensor(total_loss).mean() print(f"Epoch: {epoch}:") print(f"Train Set: Average Loss: {avg_loss:.2f}") def test(models, test_loader, loss_fn): models.eval() loss = 0 correct = 0 for data, target in test_loader: with torch.no_grad(): data = data.cuda() target = target.cuda() losses = torch.empty(len(models), data.shape[0]) predictions = [] for i, model in enumerate(models): predictions.append(model(data)) losses[i, :] = loss_fn(predictions[i], target, reduction="sum") predictions = torch.stack(predictions) loss += torch.mean(losses) avg_prediction = predictions.exp().mean(0) # get the index of the max log-probability class_prediction = avg_prediction.max(1)[1] correct += ( class_prediction.eq(target.view_as(class_prediction)).sum().item() ) loss /= len(test_loader.dataset) percentage_correct = 100.0 * correct / len(test_loader.dataset) print( "Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)".format( loss, correct, len(test_loader.dataset), percentage_correct ) ) return loss, percentage_correct def main(): parser = argparse.ArgumentParser() parser.add_argument( "--epochs", type=int, default=75, help="number of epochs to train (default: 75)" ) parser.add_argument( "--lr", type=float, default=0.05, help="learning rate (default: 0.05)" ) parser.add_argument( "--ensemble", type=int, default=5, help="Ensemble size (default: 5)" ) parser.add_argument( "--dataset", required=True, choices=["FashionMNIST", "CIFAR10"], help="Select a dataset", ) parser.add_argument("--seed", type=int, default=1, help="random seed (default: 1)") args = parser.parse_args() print(args) torch.manual_seed(args.seed) loss_fn = F.nll_loss ds = all_datasets[args.dataset]() input_size, num_classes, train_dataset, test_dataset = ds kwargs = {"num_workers": 4, "pin_memory": True} train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=128, shuffle=True, **kwargs ) test_loader = torch.utils.data.DataLoader( test_dataset, batch_size=5000, shuffle=False, **kwargs ) if args.dataset == "FashionMNIST": milestones = [10, 20] ensemble = [CNN(input_size, num_classes).cuda() for _ in range(args.ensemble)] else: # CIFAR-10 milestones = [25, 50] ensemble = [ ResNet(input_size, num_classes).cuda() for _ in range(args.ensemble) ] ensemble = torch.nn.ModuleList(ensemble) optimizers = [] schedulers = [] for model in ensemble: # Need different optimisers to apply weight decay and momentum properly # when only optimising one element of the ensemble optimizers.append( torch.optim.SGD( model.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4 ) ) schedulers.append( torch.optim.lr_scheduler.MultiStepLR( optimizers[-1], milestones=milestones, gamma=0.1 ) ) for epoch in range(1, args.epochs + 1): for i, model in enumerate(ensemble): train(model, train_loader, optimizers[i], epoch, loss_fn) schedulers[i].step() test(ensemble, test_loader, loss_fn) pathlib.Path("saved_models").mkdir(exist_ok=True) path = f"saved_models/{args.dataset}_{len(ensemble)}" torch.save(ensemble.state_dict(), path + "_ensemble.pt") if __name__ == "__main__": main()
pennylane/gradients/general_shift_rules.py
therooler/pennylane
539
124400
<reponame>therooler/pennylane # Copyright 2018-2021 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains a function for generating generalized parameter shift rules and helper methods for processing shift rules as well as for creating tapes with shifted parameters.""" import functools import itertools import warnings import numpy as np import pennylane as qml def process_shifts(rule, tol=1e-10, batch_duplicates=True): """Utility function to process gradient rules. Args: rule (array): a ``(M, N)`` array corresponding to ``M`` terms with parameter shifts. ``N`` has to be either ``2`` or ``3``. The first column corresponds to the linear combination coefficients; the last column contains the shift values. If ``N=3``, the middle column contains the multipliers. tol (float): floating point tolerance used when comparing shifts/coefficients Terms with coefficients below ``tol`` will be removed. batch_duplicates (bool): whether to check the input ``rule`` for duplicate shift values in its second column. Returns: array: The processed shift rule with small entries rounded to 0, sorted with respect to the absolute value of the shifts, and groups of shift terms with identical (multiplier and) shift fused into one term each, if ``batch_duplicates=True``. This utility function accepts coefficients and shift values as well as optionally multipliers, and performs the following processing: - Set all small (within absolute tolerance ``tol``) coefficients and shifts to 0 - Remove terms where the coefficients are 0 (including the ones set to 0 in the previous step) - Terms with the same shift value (and multiplier) are combined into a single term. - Finally, the terms are sorted according to the absolute value of ``shift``, This ensures that a zero-shift term, if it exists, is returned first. """ # set all small coefficients, multipliers if present, and shifts to zero. rule[np.abs(rule) < tol] = 0 # remove columns where the coefficients are 0 rule = rule[~(rule[:, 0] == 0)] if batch_duplicates: round_decimals = int(-np.log10(tol)) rounded_rule = np.round(rule[:, 1:], round_decimals) # determine unique shifts or (multiplier, shift) combinations unique_mods = np.unique(rounded_rule, axis=0) if rule.shape[0] != unique_mods.shape[0]: matches = np.all(rounded_rule[:, np.newaxis] == unique_mods[np.newaxis, :], axis=-1) # TODO: The following line probably can be done in numpy coeffs = [np.sum(rule[slc, 0]) for slc in matches.T] rule = np.hstack([np.stack(coeffs)[:, np.newaxis], unique_mods]) # sort columns according to abs(shift) return rule[np.argsort(np.abs(rule[:, -1]))] @functools.lru_cache(maxsize=None) def eigvals_to_frequencies(eigvals): r"""Convert an eigenvalue spectrum to frequency values, defined as the the set of positive, unique differences of the eigenvalues in the spectrum. Args: eigvals (tuple[int, float]): eigenvalue spectra Returns: tuple[int, float]: frequencies **Example** >>> eigvals = (-0.5, 0, 0, 0.5) >>> eigvals_to_frequencies(eigvals) (0.5, 1.0) """ unique_eigvals = sorted(set(eigvals)) return tuple({j - i for i, j in itertools.combinations(unique_eigvals, 2)}) @functools.lru_cache(maxsize=None) def frequencies_to_period(frequencies, decimals=5): r"""Returns the period of a Fourier series as defined by a set of frequencies. The period is simply :math:`2\pi/gcd(frequencies)`, where :math:`\text{gcd}` is the greatest common divisor. Args: spectra (tuple[int, float]): frequency spectra decimals (int): Number of decimal places to round to if there are non-integral frequencies. Returns: tuple[int, float]: frequencies **Example** >>> frequencies = (0.5, 1.0) >>> frequencies_to_period(frequencies) 12.566370614359172 """ try: gcd = np.gcd.reduce(frequencies) except TypeError: # np.gcd only support integer frequencies exponent = 10**decimals frequencies = np.round(frequencies, decimals) * exponent gcd = np.gcd.reduce(np.int64(frequencies)) / exponent return 2 * np.pi / gcd @functools.lru_cache(maxsize=None) def _get_shift_rule(frequencies, shifts=None): n_freqs = len(frequencies) frequencies = qml.math.sort(qml.math.stack(frequencies)) freq_min = frequencies[0] if len(set(frequencies)) != n_freqs or freq_min <= 0: raise ValueError( f"Expected frequencies to be a list of unique positive values, instead got {frequencies}." ) mu = np.arange(1, n_freqs + 1) if shifts is None: # assume equidistant shifts shifts = (2 * mu - 1) * np.pi / (2 * n_freqs * freq_min) equ_shifts = True else: shifts = qml.math.sort(qml.math.stack(shifts)) if len(shifts) != n_freqs: raise ValueError( f"Expected number of shifts to equal the number of frequencies ({n_freqs}), instead got {shifts}." ) if len(set(shifts)) != n_freqs: raise ValueError(f"Shift values must be unique, instead got {shifts}") equ_shifts = np.allclose(shifts, (2 * mu - 1) * np.pi / (2 * n_freqs * freq_min)) if len(set(np.round(np.diff(frequencies), 10))) <= 1 and equ_shifts: # equidistant case coeffs = ( freq_min * (-1) ** (mu - 1) / (4 * n_freqs * np.sin(np.pi * (2 * mu - 1) / (4 * n_freqs)) ** 2) ) else: # non-equidistant case sin_matrix = -4 * np.sin(np.outer(shifts, frequencies)) det_sin_matrix = np.linalg.det(sin_matrix) if abs(det_sin_matrix) < 1e-6: warnings.warn( f"Solving linear problem with near zero determinant ({det_sin_matrix}) " "may give unstable results for the parameter shift rules." ) coeffs = -2 * np.linalg.solve(sin_matrix.T, frequencies) coeffs = np.concatenate((coeffs, -coeffs)) shifts = np.concatenate((shifts, -shifts)) # pylint: disable=invalid-unary-operand-type return np.stack([coeffs, shifts]).T def _iterate_shift_rule_with_multipliers(rule, order, period): r"""Helper method to repeat a shift rule that includes multipliers multiple times along the same parameter axis for higher-order derivatives.""" combined_rules = [] for partial_rules in itertools.product(rule, repeat=order): c, m, s = np.stack(partial_rules).T cumul_shift = 0.0 for _m, _s in zip(m, s): cumul_shift *= _m cumul_shift += _s if period is not None: cumul_shift = np.mod(cumul_shift + 0.5 * period, period) - 0.5 * period combined_rules.append(np.stack([np.prod(c), np.prod(m), cumul_shift])) # combine all terms in the linear combination into a single # array, with column order (coefficients, multipliers, shifts) return qml.math.stack(combined_rules) def _iterate_shift_rule(rule, order, period=None): r"""Helper method to repeat a shift rule multiple times along the same parameter axis for higher-order derivatives.""" if len(rule[0]) == 3: return _iterate_shift_rule_with_multipliers(rule, order, period) # TODO: optimization: Without multipliers, the order of shifts does not matter, # so that we can only iterate over the symmetric part of the combined_rules tensor. # This requires the corresponding multinomial prefactors to be included in the coeffs. combined_rules = np.array(list(itertools.product(rule, repeat=order))) # multiply the coefficients of each rule coeffs = np.prod(combined_rules[..., 0], axis=1) # sum the shifts of each rule shifts = np.sum(combined_rules[..., 1], axis=1) if period is not None: # if a period is provided, make sure the shift value is within [-period/2, period/2) shifts = np.mod(shifts + 0.5 * period, period) - 0.5 * period return qml.math.stack([coeffs, shifts]).T def _combine_shift_rules(rules): r"""Helper method to combine shift rules for multiple parameters into simultaneous multivariate shift rules.""" combined_rules = [] for partial_rules in itertools.product(*rules): c, *m, s = np.stack(partial_rules).T combined = np.concatenate([[np.prod(c)], *m, s]) combined_rules.append(np.stack(combined)) return np.stack(combined_rules) @functools.lru_cache() def generate_shift_rule(frequencies, shifts=None, order=1): r"""Computes the parameter shift rule for a unitary based on its generator's eigenvalue frequency spectrum. To compute gradients of circuit parameters in variational quantum algorithms, expressions for cost function first derivatives with respect to the variational parameters can be cast into linear combinations of expectation values at shifted parameter values. The coefficients and shifts defining the linear combination can be obtained from the unitary generator's eigenvalue frequency spectrum. Details can be found in `Wierichs et al. (2022) <https://doi.org/10.22331/q-2022-03-30-677>`__. Args: frequencies (tuple[int or float]): The tuple of eigenvalue frequencies. Eigenvalue frequencies are defined as the unique positive differences obtained from a set of eigenvalues. shifts (tuple[int or float]): the tuple of shift values. If unspecified, equidistant shifts are assumed. If supplied, the length of this tuple should match the number of given frequencies. order (int): the order of differentiation to compute the shift rule for Returns: tuple: a tuple of coefficients and shifts describing the gradient rule for the parameter-shift method. For parameter :math:`\phi`, the coefficients :math:`c_i` and the shifts :math:`s_i` combine to give a gradient rule of the following form: .. math:: \frac{\partial}{\partial\phi}f = \sum_{i} c_i f(\phi + s_i). where :math:`f(\phi) = \langle 0|U(\phi)^\dagger \hat{O} U(\phi)|0\rangle` for some observable :math:`\hat{O}` and the unitary :math:`U(\phi)=e^{iH\phi}`. Raises: ValueError: if ``frequencies`` is not a list of unique positive values, or if ``shifts`` (if specified) is not a list of unique values the same length as ``frequencies``. **Examples** An example of obtaining the frequencies from generator eigenvalues, and obtaining the parameter shift rule: >>> eigvals = (-0.5, 0, 0, 0.5) >>> frequencies = eigvals_to_frequencies(eigvals) >>> generate_shift_rule(frequencies) array([[ 0.4267767 , 1.57079633], [-0.4267767 , -1.57079633], [-0.0732233 , 4.71238898], [ 0.0732233 , -4.71238898]]) An example with explicitly specified shift values: >>> frequencies = (1, 2, 4) >>> shifts = (np.pi / 3, 2 * np.pi / 3, np.pi / 4) >>> generate_shift_rule(frequencies, shifts) array([[ 3. , 0.78539816], [-3. , -0.78539816], [-2.09077028, 1.04719755], [ 2.09077028, -1.04719755], [ 0.2186308 , 2.0943951 ], [-0.2186308 , -2.0943951 ]]) Higher order shift rules (corresponding to the :math:`n`-th derivative of the parameter) can be requested via the ``order`` argument. For example, to extract the second order shift rule for a gate with generator :math:`X/2`: >>> eigvals = (0.5, -0.5) >>> frequencies = eigvals_to_frequencies(eigvals) >>> generate_shift_rule(frequencies, order=2) array([[-0.5 , 0. ], [ 0.5 , -3.14159265]]) This corresponds to the shift rule :math:`\frac{\partial^2 f}{\partial phi^2} = \frac{1}{2} \left[f(\phi) - f(\phi-\pi)\right]`. """ frequencies = tuple(f for f in frequencies if f > 0) rule = _get_shift_rule(frequencies, shifts=shifts) if order > 1: T = frequencies_to_period(frequencies) rule = _iterate_shift_rule(rule, order, period=T) return process_shifts(rule, tol=1e-10) def generate_multi_shift_rule(frequencies, shifts=None, orders=None): r"""Computes the parameter shift rule with respect to two parametrized unitaries, given their generator's eigenvalue frequency spectrum. This corresponds to a shift rule that computes off-diagonal elements of higher order derivative tensors. For the second order, this corresponds to the Hessian. Args: frequencies (list[tuple[int or float]]): List of eigenvalue frequencies corresponding to the each parametrized unitary. shifts (list[tuple[int or float]]): List of shift values corresponding to each parametrized unitary. If unspecified, equidistant shifts are assumed. If supplied, the length of each tuple in the list must be the same as the length of the corresponding tuple in ``frequencies``. orders (list[int]): the order of differentiation for each parametrized unitary. If unspecified, the first order derivative shift rule is computed for each parametrized unitary. Returns: tuple: a tuple of coefficients, shifts for the first parameter, and shifts for the second parameter, describing the gradient rule for the parameter-shift method. For parameters :math:`\phi_a` and :math:`\phi_b`, the coefficients :math:`c_i` and the shifts :math:`s^{(a)}_i`, :math:`s^{(b)}_i`, combine to give a gradient rule of the following form: .. math:: \frac{\partial^2}{\partial\phi_a \partial\phi_b}f = \sum_{i} c_i f(\phi_a + s^{(a)}_i, \phi_b + s^{(b)}_i). where :math:`f(\phi_a, \phi_b) = \langle 0|U(\phi_a)^\dagger V(\phi_b)^\dagger \hat{O} V(\phi_b) U(\phi_a)|0\rangle` for some observable :math:`\hat{O}` and unitaries :math:`U(\phi_a)=e^{iH_a\phi_a}` and :math:`V(\phi_b)=e^{iH_b\phi_b}`. **Example** >>> generate_multi_shift_rule([(1,), (1,)]) array([[ 0.25 , 1.57079633, 1.57079633], [-0.25 , 1.57079633, -1.57079633], [-0.25 , -1.57079633, 1.57079633], [ 0.25 , -1.57079633, -1.57079633]]) This corresponds to the gradient rule .. math:: \frac{\partial^2 f}{\partial x\partial y} &= \frac{1}{4} \left[f(x+\pi/2, y+\pi/2) - f(x+\pi/2, y-\pi/2)\\ &~~~- f(x-\pi/2, y+\pi/2) + f(x-\pi/2, y-\pi/2) \right]. """ rules = [] shifts = shifts or [None] * len(frequencies) orders = orders or [1] * len(frequencies) for f, s, o in zip(frequencies, shifts, orders): rule = generate_shift_rule(f, shifts=s, order=o) rules.append(process_shifts(rule)) return _combine_shift_rules(rules) def generate_shifted_tapes(tape, index, shifts, multipliers=None): r"""Generate a list of tapes where one marked trainable parameter has been shifted by the provided shift values. Args: tape (.QuantumTape): input quantum tape index (int): index of the trainable parameter to shift shifts (Sequence[float or int]): sequence of shift values. The length determines how many parameter-shifted tapes are created. multipliers (Sequence[float or int]): sequence of multiplier values. The length should match the one of ``shifts``. Each multiplier scales the corresponding gate parameter before the shift is applied. If not provided, the parameters will not be scaled. Returns: list[QuantumTape]: List of quantum tapes. In each tape the parameter indicated by ``index`` has been shifted by the values in ``shifts``. The number of tapes matches the lenth of ``shifts`` and ``multipliers`` (if provided). """ params = list(tape.get_parameters()) if multipliers is None: multipliers = np.ones_like(shifts) tapes = [] for shift, multiplier in zip(shifts, multipliers): new_params = params.copy() shifted_tape = tape.copy(copy_operations=True) new_params[index] = new_params[index] * qml.math.convert_like(multiplier, new_params[index]) new_params[index] = new_params[index] + qml.math.convert_like(shift, new_params[index]) shifted_tape.set_parameters(new_params) tapes.append(shifted_tape) return tapes def generate_multishifted_tapes(tape, indices, shifts, multipliers=None): r"""Generate a list of tapes where multiple marked trainable parameters have been shifted by the provided shift values. Args: tape (.QuantumTape): input quantum tape indices (Sequence[int]): indices of the trainable parameters to shift shifts (Sequence[Sequence[float or int]]): Nested sequence of shift values. The length of the outer Sequence determines how many parameter-shifted tapes are created. The lengths of the inner sequences should match and have the same length as ``indices``. multipliers (Sequence[Sequence[float or int]]): Nested sequence of multiplier values of the same format as `shifts``. Each multiplier scales the corresponding gate parameter before the shift is applied. If not provided, the parameters will not be scaled. Returns: list[QuantumTape]: List of quantum tapes. Each tape has the marked parameters indicated by ``indices`` shifted by the values of ``shifts``. The number of tapes will match the summed lengths of all inner sequences in ``shifts`` and ``multipliers`` (if provided). """ params = list(tape.get_parameters()) if multipliers is None: multipliers = np.ones_like(shifts) tapes = [] for _shifts, _multipliers in zip(shifts, multipliers): new_params = params.copy() shifted_tape = tape.copy(copy_operations=True) for idx, shift, multiplier in zip(indices, _shifts, _multipliers): dtype = getattr(new_params[idx], "dtype", float) new_params[idx] = new_params[idx] * qml.math.convert_like(multiplier, new_params[idx]) new_params[idx] = new_params[idx] + qml.math.convert_like(shift, new_params[idx]) new_params[idx] = qml.math.cast(new_params[idx], dtype) shifted_tape.set_parameters(new_params) tapes.append(shifted_tape) return tapes
test/issues/160/main.py
InsertAReallyCreativeNameHere/tinyexr
479
124406
<gh_stars>100-1000 import OpenEXR import Imath import numpy as np import simpleimageio as sio width = 420 height = 32 border_left = 0 border_right = 420 - 80 num_splats = 10000 red = np.zeros((height, width), dtype=np.float32) green = np.zeros((height, width), dtype=np.float32) blue = np.zeros((height, width), dtype=np.float32) # splat random color values rng = np.random.default_rng() row = rng.integers(low=0, high=height, size=num_splats) col = rng.integers(low=border_left, high=border_right, size=num_splats) # if any of the three channels has a fixed value, the problem goes away! red[row, col] = rng.random(num_splats) green[row, col] = rng.random(num_splats) blue[row, col] = rng.random(num_splats) # add a bunch of test pixels red[-8, -10] = 1 green[-8, -10] = 1 blue[-8, -10] = 1 red[-4, -8] = 1 green[-4, -8] = 1 blue[-4, -8] = 1 red[-4, -2] = 1 green[-4, -2] = 1 blue[-4, -2] = 1 red[-2, -3] = 0 # setting this to anything other than 0 fixes the problem green[-2, -3] = 1 blue[-2, -3] = 1 # fill in all of the black region with 0-red color # red[:,border_right:] = 0 # green[:,border_right:] = 1 # blue[:,border_right:] = 1 # write PIZ compressed via OpenEXR header = OpenEXR.Header(width, height) header['compression'] = Imath.Compression(Imath.Compression.PIZ_COMPRESSION) exr = OpenEXR.OutputFile("gen.exr", header) exr.writePixels({'R': red.tobytes(), 'G': green.tobytes(), 'B': blue.tobytes()}) exr.close() # read back in via tinyexr (used internally by simpleimageio) tinyresult = sio.read("gen.exr") sio.write("test2.exr", tinyresult)
facility/test/facility_grader_test.py
mike715/assignment
101
124420
<reponame>mike715/assignment import sys, os, pytest sys.path.append(os.getcwd()) from do_grader_lib import PartQuality from facility import grader with open('facility/data/fl_3_1', 'r') as input_data_file: input_data = input_data_file.read() quality = PartQuality('test', 4052, 2546) greedy_submission = '2550.013 0\n1 1 0 2\n123\n' opt_submission = '2545.771 0\n0 0 1 2\n123\n' # Score Test def test_full_credit(): result = grader.grade(input_data, quality, opt_submission) assert(result['score'] == 1.0) def test_full_credit_opt(): result = grader.grade(input_data, quality, '2545.771 1\n0 0 1 2\n123\n') assert(result['score'] == 1.0) def test_full_credit_opt_big(): result = grader.grade(input_data, quality, '2545.771 99\n0 0 1 2\n123\n') assert(result['score'] == 1.0) def test_full_credit_opt_neg(): result = grader.grade(input_data, quality, '2545.771 -99\n0 0 1 2\n123\n') assert(result['score'] == 1.0) def test_partial_credit(): result = grader.grade(input_data, quality, greedy_submission) assert(result['score'] == 0.7) def test_feasible_credit(): result = grader.grade(input_data, quality, '6859.940 0\n2 2 2 2\n123\n') assert(result['score'] == 0.3) def test_partial_credit_timelimit(): result = grader.grade(input_data, quality, '2545.771 0\n0 0 1 2\n99999\n') assert(result['score'] == 0.7) assert('runtime exceeded' in result['feedback']) def test_objective_value_warning(): result = grader.grade(input_data, quality, '2000 0\n0 0 1 2\n123\n') assert(result['score'] == 1.0) assert('Warning' in result['feedback']) # Not implementable without the leader board # passed += testGrade(grade, metadata, db, 'Opt Flag Warning (7/10): ' , '2545.771 1\n1 1 0 2\n123\n', 7) # Constraint Tests def test_capacity_one_violated(): result = grader.grade(input_data, quality, '4.0 0\n0 0 0 0\n123\n') assert(result['score'] == 0.0) def test_capacity_two_violated(): result = grader.grade(input_data, quality, '4.0 0\n0 1 0 1\n123\n') assert(result['score'] == 0.0) # I/O Tests def test_objective_line_long(): result = grader.grade(input_data, quality, '2545.771 0 0\n0 0 1 2\n123\n') assert(result['score'] == 0.0) def test_objective_line_short(): result = grader.grade(input_data, quality, '0\n0 0 1 2\n123\n') assert(result['score'] == 0.0) def test_solution_line_long(): result = grader.grade(input_data, quality, '2545.771 0\n0 0 1 2 2\n123\n') assert(result['score'] == 0.0) def test_solution_line_short(): result = grader.grade(input_data, quality, '2545.771 0\n0 0 1 2 2\n123\n') assert(result['score'] == 0.0) def test_line_count_long(): result = grader.grade(input_data, quality, '0\n702.788 0\n0 0 1 2\n123\n') assert(result['score'] == 0.0) def test_line_count_short(): result = grader.grade(input_data, quality, '0 0 1 2\n123\n') assert(result['score'] == 0.0) # Type Tests def test_nan_objective(): result = grader.grade(input_data, quality, 'NaN 0\n0 0 1 2\n123\n') assert(result['score'] == 0.0) def test_inf_objective(): result = grader.grade(input_data, quality, 'Inf 0\n0 0 1 2\n123\n') assert(result['score'] == 0.0) def test_alpha_objective(): result = grader.grade(input_data, quality, 'a 0\n0 0 1 2\n123\n') assert(result['score'] == 0.0) def test_alpha_optflag(): result = grader.grade(input_data, quality, '2545.771 b\n0 0 1 2\n123\n') assert(result['score'] == 0.0) def test_alpha_solution(): result = grader.grade(input_data, quality, '2545.771 0\n0 c 1 2\n123\n') assert(result['score'] == 0.0) def test_alpha_time(): result = grader.grade(input_data, quality, '19 0\n0 0 1 1\n123d\n') assert(result['score'] == 0.0) def test_range_solution(): result = grader.grade(input_data, quality, '2545.771 0\n0 0 1 4\n123d\n') assert(result['score'] == 0.0)
coding_interviews/cracking_the_coding_interview/string/001.05.py
LeandroTk/Algorithms
205
124427
''' One Away: There are three types of edits that can be performed on strings: insert a character, remove a character, or replace a character. Given two strings, write a function to check if they are one edit (or zero edits) away. Example: pale, ple -> true pales, pale -> true pale, bale -> true pale, bake -> false bla, bleble -> false ''' def is_two_chars_away(str1, str2): return (len(str1) - len(str2) >= 2) or (len(str2) - len(str1) >= 2) def number_of_needed_changes(bigger_str, smaller_str): str_counter = {} for char in bigger_str: if char in str_counter: str_counter[char] += 1 else: str_counter[char] = 1 for char in smaller_str: if char in str_counter: str_counter[char] -= 1 needed_changes = 0 for char, counter in str_counter.items(): needed_changes += counter return needed_changes def one_away(str1, str2): if is_two_chars_away(str1, str2): return False needed_changes = 0 if len(str1) >= len(str2): needed_changes = number_of_needed_changes(str1, str2) else: needed_changes = number_of_needed_changes(str2, str1) return needed_changes <= 1 data = [ ('pale', 'ple', True), ('pales', 'pale', True), ('pale', 'bale', True), ('paleabc', 'pleabc', True), ('pale', 'ble', False), ('a', 'b', True), ('', 'd', True), ('d', 'de', True), ('pale', 'pale', True), ('pale', 'ple', True), ('ple', 'pale', True), ('pale', 'bale', True), ('pale', 'bake', False), ('pale', 'pse', False), ('ples', 'pales', True), ('pale', 'pas', False), ('pas', 'pale', False), ('pale', 'pkle', True), ('pkle', 'pable', False), ('pal', 'palks', False), ('palks', 'pal', False), ('bla', 'bleble', False) ] for [test_s1, test_s2, expected] in data: actual = one_away(test_s1, test_s2) print(actual == expected)
apps/accounts/social_auth_pipeline.py
goztrk/django-htk
206
124450
<reponame>goztrk/django-htk<filename>apps/accounts/social_auth_pipeline.py<gh_stars>100-1000 # Third Party / PIP Imports # Django Imports from django.shortcuts import redirect # Django Extensions Imports from social_core.pipeline.partial import partial # HTK Imports from htk.apps.accounts.emails import welcome_email from htk.apps.accounts.session_keys import * from htk.apps.accounts.utils import associate_user_email from htk.apps.accounts.utils import get_incomplete_signup_user_by_email from htk.apps.accounts.utils import get_user_by_email from htk.apps.accounts.view_helpers import redirect_to_social_auth_complete from htk.utils import htk_setting # Custom Pipeline Functions # https://django-social-auth.readthedocs.org/en/v0.7.22/pipeline.html # # available in kwargs # # backend - current social authentication backend (`backend.name`) # uid - given by authentication provider # details - user details given by authentication provider # user - already logged in user or newly created user # is_new - if `user` is newly created # 1. If there is no email, have the user enter an email # 2. Check association. If there is an account with that email: # a. "An account with this email address already exists. Please log in to link your {{ SOCIAL }} account." # b. "An account with this email address is already linked to {{ SOCIAL }}. Please create a new account using a different email address." # 3. Create the account with the username and email def python_social_auth_shim(pipeline_func): """Shim layer decorator for django-social-auth to python-social auth migration pipeline complete wasn't passing the request object, but the strategy object instead """ def wrapped(strategy, *args, **kwargs): if not kwargs.get('request'): request = strategy.request kwargs['request'] = request return pipeline_func(*args, **kwargs) return wrapped def reset_session_keys(strategy, *args, **kwargs): """Reset a bunch of keys used as part of the social auth flow This is to prevent partially-completed values from a previous flow from affecting a new social auth flow """ for key in SOCIAL_AUTH_FLOW_KEYS: if strategy.request.session.get(key): del strategy.request.session[key] return None @partial def check_email(strategy, details, user=None, *args, **kwargs): """Ask the user to enter the email if we don't have one yet The pipeline process was cut prior to this custom pipeline function, and will resume to this same function after completing """ response = None if user is None: strategy.request.session['backend'] = kwargs.get('current_partial').backend social_email = details.get('email') collected_email = strategy.request.session.get(SOCIAL_REGISTRATION_SETTING_EMAIL) if social_email: # email available from social auth user = get_user_by_email(social_email) if user and user.is_active: # a user is already associated with this email # TODO: there is an error with linking accounts... strategy.request.session[SOCIAL_REGISTRATION_SETTING_EMAIL] = social_email if user.has_usable_password(): # user should log into the existing account with a password url_name = htk_setting('HTK_ACCOUNTS_REGISTER_SOCIAL_LOGIN_URL_NAME') else: # no password was set, so user must log in with another social auth account url_name = htk_setting('HTK_ACCOUNTS_REGISTER_SOCIAL_ALREADY_LINKED_URL_NAME') response = redirect(url_name) elif collected_email: # email provided by user details['email'] = collected_email response = { 'details' : details } else: # no email provided from social auth strategy.request.session[SOCIAL_REGISTRATION_SETTING_MISSING_EMAIL] = True url_name = htk_setting('HTK_ACCOUNTS_REGISTER_SOCIAL_EMAIL_URL_NAME') response = redirect(url_name) return response @partial def check_terms_agreement(strategy, details, user=None, *args, **kwargs): """ Ask the user to agree to Privacy Policy and Terms of Service """ response = None if user is None: agreed_to_terms = strategy.request.session.get(SOCIAL_REGISTRATION_SETTING_AGREED_TO_TERMS, False) if not agreed_to_terms: email = details.get('email') strategy.request.session[SOCIAL_REGISTRATION_SETTING_EMAIL] = email url_name = htk_setting('HTK_ACCOUNTS_REGISTER_SOCIAL_EMAIL_AND_TERMS_URL_NAME') response = redirect(url_name) else: pass else: pass return response def check_incomplete_signup(strategy, details, user=None, *args, **kwargs): """Checks for an incomplete signup, and sets that User instead """ response = None if user is None: social_email = details.get('email') user = get_incomplete_signup_user_by_email(social_email) response = { 'user' : user, 'is_new' : user is None, } return response def set_username(strategy, details, user, social, *args, **kwargs): """This pipeline function can be used to set UserProfile.has_username_set = True Normally not used if the auto-generated username is ugly """ if not user: return None response = None if hasattr(user, 'profile'): user_profile = user.profile if hasattr(user_profile, 'has_username_set'): user_profile.has_username_set = True user_profile.save() return response def associate_email(strategy, details, user, social, *args, **kwargs): """Associate email with the user """ if not user or not social: return None response = None email = details.get('email') domain = strategy.request.get_host() # Should confirm if the email was provided by the social auth provider, not the user # i.e. SOCIAL_REGISTRATION_SETTING_MISSING_EMAIL was False confirmed = not(strategy.request.session.get(SOCIAL_REGISTRATION_SETTING_MISSING_EMAIL, False)) user_email = associate_user_email(user, email, domain=domain, confirmed=confirmed) if user_email: # need to update the User with the activated one, so that it doesn't get overwritten later on response = { 'user': user_email.user, } return response def handle_new_user(user, is_new, *args, **kwargs): """Do stuff if the account was newly created """ if not user: return None if is_new: # send a welcome email to the user, regardless of email confirmation status welcome_email(user) def post_connect(user, social, *args, **kwargs): response = None return response
src/api/views/bp_api_v1.py
LeslieLeung/2c
236
124458
<filename>src/api/views/bp_api_v1.py #!/usr/bin/env python """ Created by howie.hu at 2021/4/10. Description:v1 接口函数 Changelog: all notable changes to this file will be documented """ from flask import Blueprint, current_app, request bp_api = Blueprint("v1", __name__, url_prefix="/v1") @bp_api.route("/ping", methods=["GET"], strict_slashes=False) def ping(): """ 示例接口 :return: """ # 获取基本配置 return "pong"
setup.py
TomKingsfordUoA/ResidualMaskingNetwork
242
124463
<gh_stars>100-1000 import os from setuptools import find_packages, setup version = None with open("README.md") as ref: data = ref.readlines()[2] version = data[data.find("version-v")+9:data.find("-blue")] assert version is not None, data cwd = os.path.dirname(os.path.abspath(__file__)) def write_version_file(): version_path = os.path.join(cwd, "rmn", "version.py") with open(version_path, "w") as f: f.write(f"__version__ = '{version}'\n") write_version_file() with open("README.md", encoding="utf-8") as f: long_description = f.read() setup( name="rmn", description="Facial Expression Recognition using Residual Masking Network", long_description=long_description, long_description_content_type='text/markdown', version=version, author="<NAME>", author_email="<EMAIL>", packages=find_packages( exclude=["docs", "tests", "env", "script", "trainers", "utils", "pretrained_ckpt"] ), include_package_data=True, install_requires=[ "numpy", "opencv-python", "torch", "torchvision", "requests", "pytorchcv", "tqdm", ], )
src/0054.spiral-matrix/spiral-matrix.py
lyphui/Just-Code
782
124465
<reponame>lyphui/Just-Code class Solution: def spiralOrder(self, matrix: List[List[int]]) -> List[int]: res = [] if not matrix: return res x = y = i = 0 delta = ((0, 1), (1, 0), (0, -1), (-1, 0)) pos = [0, 0, len(matrix[0])-1, len(matrix)-1] # 左、上、右、下。后面懒得判断推出来的。 while pos[0] <= pos[2] and pos[1] <= pos[3]: while pos[0] <= y <= pos[2] and pos[1] <= x <= pos[3]: res.append(matrix[x][y]) x, y = x+delta[i][0], y+delta[i][1] x, y = x-delta[i][0], y-delta[i][1] i = (i+1) % 4 pos[i] += sum(delta[i]) x, y = x+delta[i][0], y+delta[i][1] return res
causalml/inference/tf/__init__.py
rainfireliang/causalml
2,919
124483
from .dragonnet import DragonNet
scripts/visualization.py
hehefan/PointRNN
136
124490
""" 3D Point Cloud Visualization Original Author: https://github.com/argoai/argoverse-api Modified by <NAME> Date October 2019 """ import os import numpy as np import argparse import matplotlib import matplotlib.pyplot as plt from PIL import Image from mpl_toolkits.mplot3d import Axes3D from mayavi import mlab from typing import Any, Iterable, List, Optional, Tuple, Union, cast #: A stub representing mayavi_wrapper.mlab figure types Figure = Any #: A 3D Point Point = np.ndarray #: An array of 3D points PointCloud = np.ndarray #: Any numeric type Number = Union[int, float] #: RGB color created from 0.0 to 1.0 values Color = Tuple[float, float, float] FigSize = Tuple[float, float] Coordinate = Tuple[float, float, float] def plot_points_3D_mayavi( points: np.ndarray, bird: bool, fig: Figure, per_pt_color_strengths: np.ndarray = None, fixed_color: Optional[Color] = (1, 0, 0), colormap: str = "spectral", ) -> Figure: """Visualize points with Mayavi. Scale factor has no influence on point size rendering when calling `points3d()` with the mode="point" argument, so we ignore it altogether. The parameter "line_width" also has no effect on points, so we ignore it also. Args: points: The points to visualize fig: A Mayavi figure per_pt_color_strengths: An array of scalar values the same size as `points` fixed_color: Use a fixed color instead of a colormap colormap: different green to red jet for 'spectral' or 'gnuplot' Returns: Updated Mayavi figure """ if len(points) == 0: return None if per_pt_color_strengths is None or len(per_pt_color_strengths) != len(points): # Height data used for shading if bird: per_pt_color_strengths = points[:, 2] else: per_pt_color_strengths = points[:, 0] mlab.points3d( points[:, 0], # x points[:, 1], # y points[:, 2], # z per_pt_color_strengths, mode="point", # Render each point as a 'point', not as a 'sphere' or 'cube' colormap=colormap, color=fixed_color, # Used a fixed (r,g,b) color instead of colormap figure=fig, ) return fig def draw_coordinate_frame_at_origin(fig: Figure) -> Figure: """ Draw the origin and 3 vectors representing standard basis vectors to express a coordinate reference frame. Args: fig: Mayavi figure Returns: Updated Mayavi figure Based on -------- https://github.com/hengck23/didi-udacity-2017/blob/master/baseline-04/kitti_data/draw.py https://github.com/charlesq34/frustum-pointnets/blob/master/mayavi/viz_util.py """ # draw origin mlab.points3d(0, 0, 0, color=(1, 1, 1), mode="sphere", scale_factor=0.2) # Form standard basis vectors e_1, e_2, e_3 axes = np.array([[2.0, 0.0, 0.0], [0.0, 2.0, 0.0], [0.0, 0.0, 2.0]], dtype=np.float64) # e_1 in red mlab.plot3d( [0, axes[0, 0]], [0, axes[0, 1]], [0, axes[0, 2]], color=(1, 0, 0), tube_radius=None, figure=fig ) # e_2 in green mlab.plot3d( [0, axes[1, 0]], [0, axes[1, 1]], [0, axes[1, 2]], color=(0, 1, 0), tube_radius=None, figure=fig ) # e_3 in blue mlab.plot3d( [0, axes[2, 0]], [0, axes[2, 1]], [0, axes[2, 2]], color=(0, 0, 1), tube_radius=None, figure=fig ) return fig def draw_lidar( point_cloud: np.ndarray, bird: bool = True, colormap: str = "jet", fig: Optional[Figure] = None, bgcolor: Color = (0, 0, 0), fig_size: FigSize = (200, 200), focalpoint: Coordinate = (0, 0, 0), elevation: int = 0, distance: float = 62.0 ) -> Figure: """Render a :ref:`PointCloud` with a 45 degree viewing frustum from worm-vehicle. Creates a Mayavi figure, draws a point cloud. Since the majority of interesting objects and scenarios are found closeby to the ground, we want to see the objects near the ground expressed in the full range of the colormap. Since returns on power lines, trees, and buildings will dominate and dilute the colormap otherwise, we clip the colors so that all points beyond a certain z-elevation (height) share the same color at the edge of the colormap. We choose anything beyond the 90th percentile as a height outlier. Args: point_cloud: The pointcloud to render fig: A pre-existing Mayavi figure to render to bgcolor: The background color colormap: "spectral" or "gnuplot" or "jet" are best Returns: Updated or created Mayavi figure """ if fig is None: fig = mlab.figure(figure=None, bgcolor=bgcolor, fgcolor=None, engine=None, size=fig_size) ''' z_thresh = np.percentile(point_cloud[:, 2], 90) thresholded_heights = point_cloud[:, 2].copy() # Colors of highest points will be clipped to all lie at edge of colormap thresholded_heights[thresholded_heights > z_thresh] = 5 ''' tmp = [point_cloud] for i in range(1,201): tmp.append(point_cloud+0.0001*i) tmp.append(point_cloud-0.0001*i) point_cloud = np.concatenate(tmp, 0) # draw points fig = plot_points_3D_mayavi( #points=point_cloud, fig=fig, per_pt_color_strengths=thresholded_heights, fixed_color=None, colormap=colormap points=point_cloud, bird=bird, fig=fig, per_pt_color_strengths=None, fixed_color=None, colormap=colormap ) fig = draw_coordinate_frame_at_origin(fig) mlab.view( azimuth=180, elevation=elevation, focalpoint=focalpoint, distance=distance, figure=fig ) return fig def mkdirs(name): if not os.path.exists(name): os.makedirs(name) if __name__ == '__main__': R = 5 gths = np.load('test-argo-5m-1024point-10step.npy') frames = np.load('test-predicted-frames.npy') bird_dir = 'bird' worm_dir = 'worm' mkdirs(bird_dir) mkdirs(worm_dir) distance = 2*np.sqrt(3*R*R) point_size = 5 axes_limits = [[-R, R], [-R, R], [-R, R]] # X axis range # Y axis range # Z axis range axes_str = ["X", "Y", "Z"] axes = [1, 0, 2] for i in range(gths.shape[0]): gth = gths[i] flow = flows[i] frame = frames[i] # bird’s-eye view curr_bird = os.path.join(bird_dir, '%04d'%(i+1)) mkdirs(curr_bird) for j in range(5): fig = draw_lidar(gth[j], bird=True, focalpoint=(0, 0, 0), elevation=0, distance=distance) mlab.savefig(os.path.join(curr_bird, 'ctx-%02d.png'%(j+1))) mlab.close() fig = draw_lidar(gth[j+5], bird=True, focalpoint=(0, 0, 0), elevation=0, distance=distance) mlab.savefig(os.path.join(curr_bird, 'gth-%02d.png'%(j+1))) mlab.close() fig = draw_lidar(frame[j], bird=True, focalpoint=(0, 0, 0), elevation=0, distance=distance) mlab.savefig(os.path.join(curr_bird, 'prd-%02d.png'%(j+1))) mlab.close() os.system('convert -delay 20 -loop 0 %s/ctx-*.png %s/ctx.gif'%(curr_bird, curr_bird)) os.system('convert -delay 20 -loop 0 %s/gth-*.png %s/gth.gif'%(curr_bird, curr_bird)) os.system('convert -delay 20 -loop 0 %s/prd-*.png %s/prd.gif'%(curr_bird, curr_bird)) # worm’s-eye view curr_worm = os.path.join(worm_dir, '%04d'%(i+1)) mkdirs(curr_worm) for j in range(5): fig = draw_lidar(gth[j], bird=False, focalpoint=(0, 0, 0), elevation=90, distance=distance) mlab.savefig(os.path.join(curr_worm, 'ctx-%02d.png'%(j+1))) mlab.close() fig = draw_lidar(gth[j+5], bird=False, focalpoint=(0, 0, 0), elevation=90, distance=distance) mlab.savefig(os.path.join(curr_worm, 'gth-%02d.png'%(j+1))) mlab.close() fig = draw_lidar(frame[j], bird=False, focalpoint=(0, 0, 0), elevation=90, distance=distance) mlab.savefig(os.path.join(curr_worm, 'prd-%02d.png'%(j+1))) mlab.close() os.system('convert -delay 20 -loop 0 %s/ctx-*.png %s/ctx.gif'%(curr_worm, curr_worm)) os.system('convert -delay 20 -loop 0 %s/gth-*.png %s/gth.gif'%(curr_worm, curr_worm)) os.system('convert -delay 20 -loop 0 %s/prd-*.png %s/prd.gif'%(curr_worm, curr_worm))
notebook/numpy_block.py
vhn0912/python-snippets
174
124505
import numpy as np a1 = np.ones((2, 3), int) print(a1) # [[1 1 1] # [1 1 1]] a2 = np.full((2, 3), 2) print(a2) # [[2 2 2] # [2 2 2]] print(np.block([a1, a2])) # [[1 1 1 2 2 2] # [1 1 1 2 2 2]] print(np.block([[a1], [a2]])) # [[1 1 1] # [1 1 1] # [2 2 2] # [2 2 2]] print(np.block([[a1, a2], [a2, a1]])) # [[1 1 1 2 2 2] # [1 1 1 2 2 2] # [2 2 2 1 1 1] # [2 2 2 1 1 1]] print(np.block([[[a1]], [[a2]]])) # [[[1 1 1] # [1 1 1]] # # [[2 2 2] # [2 2 2]]] print(np.block([[[a1]], [[a2]]]).shape) # (2, 2, 3) a3 = np.full(6, 3) print(a3) # [3 3 3 3 3 3] print(np.block([[a1, a2], [a3]])) # [[1 1 1 2 2 2] # [1 1 1 2 2 2] # [3 3 3 3 3 3]] # print(np.block([[a1, a2], a3])) # ValueError: List depths are mismatched. First element was at depth 2, but there is an element at depth 1 (arrays[1]) # print(np.block([[a1, a2, a3]])) # ValueError: all the input array dimensions except for the concatenation axis must match exactly
splink/iterate.py
riddhi150390/splink
176
124514
<reponame>riddhi150390/splink from typing import Callable from pyspark.sql.dataframe import DataFrame from pyspark.sql.session import SparkSession from .expectation_step import run_expectation_step from .maximisation_step import run_maximisation_step from .model import Model from typeguard import typechecked import logging logger = logging.getLogger(__name__) @typechecked def iterate( df_gammas: DataFrame, model: Model, spark: SparkSession, compute_ll: bool = False, save_state_fn: Callable = None, ): """Repeatedly run expectation and maximisation step until convergence or max itations is reached. Args: df_gammas (DataFrame): Spark dataframe including gamma columns (i.e. after blocking and add_gammas has been applied) model (Model): The `splink` model object spark (SparkSession): The SparkSession object log_iteration (bool, optional): Whether to write a message to the log after each iteration. Defaults to False. num_iterations (int, optional): The number of iterations to run. Defaults to 10. compute_ll (bool, optional): Whether to compute the log likelihood. This is not necessary and significantly degrades performance. Defaults to False. save_state_fn (function, optional): A function provided by the user that takes one arguments, params, and is executed each iteration. This is a hook that allows the user to save the state between iterations, which is mostly useful for very large jobs which may need to be restarted from where they left off if they fail. Returns: DataFrame: A spark dataframe including a match probability column """ settings = model.current_settings_obj.settings_dict num_iterations = settings["max_iterations"] for i in range(num_iterations): df_e = run_expectation_step(df_gammas, model, spark, compute_ll=compute_ll) run_maximisation_step(df_e, model, spark) logger.info(f"Iteration {i} complete") if save_state_fn: save_state_fn(model) if model.is_converged(): logger.info("EM algorithm has converged") break # The final version of df_e should align to the current parameters - i.e. those computed in the last max step df_e = run_expectation_step(df_gammas, model, spark, compute_ll=compute_ll) # The expectation step adds the current params to history, so this is needed to output a final # version of charts/params. if save_state_fn: save_state_fn(model) return df_e
tools/Sikuli/OpenDialogClickFolderSelect.sikuli/OpenDialogClickFolderSelect.py
marmyshev/vanessa-automation
296
124538
<gh_stars>100-1000 click("Bb60pnanxm.png") exit(0)
petridish/data/openml.py
Bhaskers-Blu-Org2/petridishnn
121
124543
<reponame>Bhaskers-Blu-Org2/petridishnn # Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import numpy as np import scipy.io.arff as arff import bisect import json import os, sys import subprocess import tensorflow as tf from tensorpack.dataflow import RNGDataFlow, BatchData, PrefetchData from tensorpack.callbacks import Inferencer from tensorpack.dataflow import DataFlow, PrefetchDataZMQ, \ PrefetchData, \ MapDataComponent, AugmentImageComponent, BatchData from tensorpack.dataflow import imgaug from tensorpack.utils import logger def maybe_download_dataset(dataset_idx, json_dir=None, data_dir=None, force_download=False, disable_download=True): json_fn = os.path.join(json_dir, str(dataset_idx) + '.json') data_fn = os.path.join(data_dir, str(dataset_idx) + '.arff') if os.path.exists(json_fn) and not force_download: print("Json info and data already exists.") else: if disable_download: raise ValueError("{} should exist but not".format(json_fn)) import wget, glob url = "https://www.openml.org/d/{dataset_idx}/json".format(dataset_idx=dataset_idx) print("Downloading JSON file from url {}".format(url)) json_fn = wget.download(url, json_fn) fns = glob.glob('{}*tmp'.format(json_fn)) for fn in fns: cmd = 'rm {}'.format(fn) print("remove tmp file with cmd : {}".format(cmd)) subprocess.call(cmd, shell=True) with open(json_fn, 'rt') as json_in: lines = [] for line in json_in: lines.append(line.strip()) ss = ''.join(lines) data_info = json.loads(ss) #target_attr = data_info.get('default_target_attribute', None) target_attr = None if target_attr is None: n_targets = 0 for feat_info in data_info['features']: if int(feat_info.get('target', 0)) > 0: target_attr = feat_info['name'] n_targets += 1 if n_targets != 1: raise Exception("current logic only support 1d prediction at dataset_idx {}".format(dataset_idx)) if os.path.exists(data_fn) and not force_download: print("data arff already exists") else: if disable_download: raise ValueError("{} should exist but not".format(data_fn)) import wget import glob # dataset url url = data_info['url'] print("Downloading dataset {} from url {}".format(dataset_idx, url)) data_fn = wget.download(url, out=data_fn) fns = glob.glob('{}*tmp'.format(data_fn)) for fn in fns: cmd = 'rm {}'.format(fn) print("remove tmp file with cmd : {}".format(cmd)) subprocess.call(cmd, shell=True) return data_fn, target_attr def get_arff_data(fn, target_attr='class', check_size_only=False): file_stat = os.stat(fn) if check_size_only: print("{} has size {}MB".format(fn, file_stat.st_size * 1e-6)) return None data, meta = arff.loadarff(fn) if not target_attr in meta.names(): raise Exception("Dataset {} is broken: target_attr {} not in meta".format(fn, target_attr)) # problem type regression/classification if meta[target_attr][0] == 'numeric': num_classes = 0 pred_type = tf.float32 else: num_classes = len(meta[target_attr][1]) pred_type = tf.int32 pred_val2idx = dict() for vi, val in enumerate(meta[target_attr][1]): pred_val2idx[val] = vi # feature names, types and ranges feat_names = list(filter(lambda x : x != target_attr, meta.names())) n_feats = len(feat_names) feat_types = [tf.float32 for _ in range(n_feats)] feat_dims = [None for _ in range(n_feats)] feat_val2idx = [None for _ in range(n_feats)] for i, name in enumerate(feat_names): if meta[name][0] == 'numeric': continue feat_types[i] = tf.int32 feat_dims[i] = len(meta[name][1]) feat_val2idx[i] = dict() for vi, val in enumerate(meta[name][1]): feat_val2idx[i][val] = vi n_data = len(data) dps = [[None] * n_data for _ in range(n_feats + 1) ] feat_means = [ 0. for _ in range(n_feats)] feat_vars = [ 0. for _ in range(n_feats)] for xi, x in enumerate(data): for di, dname in enumerate(feat_names): val = x[dname] if feat_types[di] == tf.float32: val = float(val) dps[di][xi] = val feat_means[di] += val feat_vars[di] += val * val else: val = val.decode("utf-8") dps[di][xi] = int(feat_val2idx[di][val]) if num_classes == 0: dps[-1][xi] = float(x[target_attr]) else: val = x[target_attr].decode("utf-8") dps[-1][xi] = int(pred_val2idx[val]) feat_types.append(pred_type) feat_dims.append(None) feat_means = [ z / float(n_data) for z in feat_means ] feat_stds = [ np.sqrt((sq / float(n_data) - m * m)) for sq, m in zip(feat_vars, feat_means)] return dps, feat_types, feat_dims, n_data, num_classes, feat_means, feat_stds class LoadedArffDataFlow(RNGDataFlow): def __init__(self, dps_ys, split, shuffle=True, do_validation=False): super(LoadedArffDataFlow, self).__init__() self.shuffle = shuffle self.dps = dps_ys # this should be a list of n x d_i mat, the last one is pred ys n_samples = len(dps_ys[-1]) self.init_indices = list(range(n_samples)) np.random.seed(180451613) np.random.shuffle(self.init_indices) if split == 'all': self._offset = 0 self._size = n_samples elif split == 'train': self._offset = 0 if do_validation: self._size = n_samples * 8 // 10 else: self._size = n_samples * 9 // 10 elif split == 'val' or split == 'validation': if do_validation: self._offset = n_samples * 8 // 10 self._size = n_samples * 9 // 10 - self._offset else: self._offset = n_samples * 9 // 10 self._size = n_samples - self._offset elif do_validation and split == 'test': self._offset = n_samples * 9 // 10 self._size = n_samples - self._offset def size(self): return self._size def get_data(self): idxs = [ i for i in self.init_indices[self._offset:(self._offset + self._size)]] if self.shuffle: np.random.shuffle(idxs) for k in idxs: yield [dp[k] for dp in self.dps] def get_dataset_by_id(idx, data_dir_root, check_size_only=False, disable_download=True): data_dir = os.path.join(data_dir_root, 'openml') json_dir = os.path.join(data_dir_root, 'openml', 'json_dir') fn, target_attr = maybe_download_dataset(idx, json_dir=json_dir, data_dir=data_dir, disable_download=disable_download) return get_arff_data(fn, target_attr, check_size_only) def get_openml_dataflow(idx, data_root, splits=[], do_validation=False): (dps_ys, types, dims, n_data, num_classes, feat_means, feat_stds) = get_dataset_by_id(idx, data_root) l_ds = dict() for split in splits: l_ds[split] = LoadedArffDataFlow( dps_ys, split, shuffle=True, do_validation=do_validation) return l_ds, types, dims, n_data, num_classes, feat_means, feat_stds # copy paste from the paper: https://arxiv.org/pdf/1802.04064.pdf cbb_openml_indices = [ 3, 6, 8, 10, 11, 12, 14, 16, 18, 20, 21, 22, 23, 26, 28, 30, 31, 32, 36, 37, 39, 40, 41, 43, 44, 46, 48, 50, 53, 54, 59, 60, 61, 62, 150, 151, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 180, 181, 182, 183, 184, 187, 189, 197, 209, 223, 227, 273, 275, 276, 277, 278, 279, 285, 287, 292, 293, 294, 298, 300, 307, 310, 312, 313, 329, 333, 334, 335, 336, 337, 338, 339, 343, 346, 351, 354, 357, 375, 377, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 444, 446, 448, 450, 457, 458, 459, 461, 462, 463, 464, 465, 467, 468, 469, 472, 475, 476, 477, 478, 479, 480, 554, 679, 682, 683, 685, 694, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 758, 759, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 782, 783, 784, 785, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 799, 800, 801, 803, 804, 805, 806, 807, 808, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 832, 833, 834, 835, 836, 837, 838, 841, 843, 845, 846, 847, 848, 849, 850, 851, 853, 855, 857, 859, 860, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 884, 885, 886, 888, 891, 892, 893, 894, 895, 896, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 931, 932, 933, 934, 935, 936, 937, 938, 941, 942, 943, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 958, 959, 962, 964, 965, 969, 970, 971, 973, 974, 976, 977, 978, 979, 980, 983, 987, 988, 991, 994, 995, 996, 997, 1004, 1005, 1006, 1009, 1011, 1012, 1013, 1014, 1015, 1016, 1019, 1020, 1021, 1022, 1025, 1026, 1036, 1038, 1040, 1041, 1043, 1044, 1045, 1046, 1048, 1049, 1050, 1054, 1055, 1056, 1059, 1060, 1061, 1062, 1063, 1064, 1065, 1066, 1067, 1068, 1069, 1071, 1073, 1075, 1077, 1078, 1079, 1080, 1081, 1082, 1083, 1084, 1085, 1086, 1087, 1088, 1100, 1104, 1106, 1107, 1110, 1113, 1115, 1116, 1117, 1120, 1121, 1122, 1123, 1124, 1125, 1126, 1127, 1128, 1129, 1130, 1131, 1132, 1133, 1135, 1136, 1137, 1138, 1139, 1140, 1141, 1142, 1143, 1144, 1145, 1146, 1147, 1148, 1149, 1150, 1151, 1152, 1153, 1154, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163, 1164, 1165, 1166, 1169, 1216, 1217, 1218, 1233, 1235, 1236, 1237, 1238, 1241, 1242, 1412, 1413, 1441, 1442, 1443, 1444, 1449, 1451, 1453, 1454, 1455, 1457, 1459, 1460, 1464, 1467, 1470, 1471, 1472, 1473, 1475, 1481, 1482, 1483, 1486, 1487, 1488, 1489, 1496, 1498 ] # 21 could not convert sparse str to float; 6 cannot convert sparse nominal of 1/-1 # 2 could not find nominal field ; 1 exception due to target_attr not found # 2 StopIteration cbb_openml_indices_failed = [ 189, 273, 292, 293, 310, 351, 354, 357, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 1048, 1073, 1100, 1169, 1241, 1242 ] def len_cbb_indices(): return len(cbb_openml_indices) if __name__ == '__main__': from urllib.request import HTTPError, ContentTooShortError import time failed_indices = [] data_dir = '/data/data' try: os.makedirs(os.path.join(data_dir, 'openml', 'json_dir')) except: pass for cnt, i in enumerate(cbb_openml_indices): print("{}/{} : urlid={} ... ".format(cnt+1, len(cbb_openml_indices), i)) start = time.time() try: ret = get_dataset_by_id(i, data_dir, check_size_only=True, disable_download=False) except (HTTPError, ContentTooShortError) as e: print("\n wget failed on {} with error {}".format(i, e)) failed_indices.append(i) print("...done {} sec".format(time.time() - start)) print("The indices that failed: {}".format(failed_indices)) #fn = maybe_download_dataset(31) #ret = get_arff_data(fn)
gryphon/lib/exchange/vault_of_satoshi.py
qiquanzhijia/gryphon
1,109
124569
# -*- coding: utf-8 -*- import time import os import datetime import requests import hmac import urllib import hashlib import base64 import json import math from cdecimal import * from delorean import Delorean from collections import OrderedDict from gryphon.lib.money import Money from gryphon.lib.models.datum import DatumRecorder from exchange_order import Order from gryphon.lib.exchange.consts import Consts from base import * from exceptions import * from gryphon.lib.models.exchange import Balance from gryphon.lib.logger import get_logger logger = get_logger(__name__) class VaultOfSatoshiExchange(Exchange): def __init__(self, session=None, currency=u"CAD", use_cached_orderbook=False): super(VaultOfSatoshiExchange, self).__init__(session) self.name = u'VAULTOFSATOSHI' self.friendly_name = u'Vault of Satoshi' self.base_url = 'https://api.vaultofsatoshi.com' self.currency = currency self.fee = Decimal("0") # assuming $99 unlimited account self.withdrawal_fee = Money("0.0005", "BTC") self.bid_string = "bid" self.ask_string = "ask" self.use_cached_orderbook = use_cached_orderbook
tests/conftest.py
Dimche-msk/panoramisk
123
124616
<filename>tests/conftest.py import subprocess import pytest from panoramisk import utils class Asterisk: def __init__(self): self.cwd = 'tests/docker' self.proc = None def start(self): self.stop() self.proc = subprocess.Popen( ['docker-compose', 'up'], stdout=subprocess.PIPE, stderr=subprocess.STDOUT, cwd=self.cwd ) for line in iter(self.proc.stdout.readline, b''): if b'Asterisk Ready.' in line: break def logs(self, tail=20): proc = subprocess.Popen( ['docker-compose', 'logs', '--tail=%s' % tail], stdout=subprocess.PIPE, stderr=subprocess.STDOUT, cwd=self.cwd, encoding='utf8', ) stdout, _ = proc.communicate() print(stdout) return stdout def stop(self): if self.proc is not None: self.proc.kill() subprocess.check_call( ['docker-compose', 'down', '-v'], stdout=subprocess.PIPE, stderr=subprocess.STDOUT, cwd=self.cwd, ) @pytest.fixture def asterisk(request): utils.EOL = '\r\n' server = Asterisk() yield server server.stop()
sourced/ml/tests/test_indexer.py
vmarkovtsev/ml
122
124633
import tempfile import unittest from pyspark import Row from sourced.ml.models import DocumentFrequencies from sourced.ml.tests import create_spark_for_test from sourced.ml.transformers import Indexer class IndexerTests(unittest.TestCase): def setUp(self): data = [Row(to_index="to_index%d" % i, value=i) for i in range(10)] self.data = data self.session = create_spark_for_test() self.data_rdd = self.session.sparkContext \ .parallelize(range(len(data))) \ .map(lambda x: data[x]) def test_call(self): indexer = Indexer("to_index") res = indexer(self.data_rdd) values = indexer.values() data_reverse = res \ .map(lambda x: Row(to_index=values[x.to_index], value=x.value)) \ .collect() self.assertEqual(self.data, data_reverse) def test_save_load(self): indexer = Indexer("to_index") res = indexer(self.data_rdd) with tempfile.NamedTemporaryFile(suffix="-index.asdf") as tmp: cached_index_path = tmp.name indexer.save_index(cached_index_path) docfreq = DocumentFrequencies().load(source=cached_index_path) document_index = {key: int(val) for (key, val) in docfreq} indexer = Indexer("to_index", column2id=document_index) self.assertEqual(res.collect(), indexer(self.data_rdd).collect()) if __name__ == "__main__": unittest.main()
tests/test_doc.py
iver56/julius
256
124669
from doctest import testmod import unittest from julius import resample, fftconv, lowpass, bands, utils class DocStringTest(unittest.TestCase): def test_resample(self): self.assertEqual(testmod(resample).failed, 0) def test_fftconv(self): self.assertEqual(testmod(fftconv).failed, 0) def test_lowpass(self): self.assertEqual(testmod(lowpass).failed, 0) def test_bands(self): self.assertEqual(testmod(bands).failed, 0) def test_utils(self): self.assertEqual(testmod(utils).failed, 0)
rastervision_aws_batch/rastervision/aws_batch/aws_batch_runner.py
theoway/raster-vision
1,577
124675
<filename>rastervision_aws_batch/rastervision/aws_batch/aws_batch_runner.py import logging import os import uuid from typing import List, Optional from rastervision.pipeline import rv_config from rastervision.pipeline.runner import Runner log = logging.getLogger(__name__) AWS_BATCH = 'batch' def submit_job(cmd: List[str], job_name: str, debug: bool = False, profile: str = False, attempts: int = 5, parent_job_ids: List[str] = None, num_array_jobs: Optional[int] = None, use_gpu: bool = False, job_queue: Optional[str] = None, job_def: Optional[str] = None) -> str: """Submit a job to run on AWS Batch. Args: cmd: a command to run in the Docker container for the remote job debug: if True, run the command using a ptvsd wrapper which sets up a remote VS Code Python debugger server profile: if True, run the command using kernprof, a line profiler attempts: the number of times to try running the command which is useful in case of failure. parent_job_ids: optional list of parent Batch job ids. The job created by this will only run after the parent jobs complete successfully. num_array_jobs: if set, make this a Batch array job with size equal to num_array_jobs use_gpu: if True, run the job in a GPU-enabled queue job_queue: if set, use this job queue job_def: if set, use this job definition """ batch_config = rv_config.get_namespace_config(AWS_BATCH) if job_queue is None: if use_gpu: job_queue = batch_config('gpu_job_queue') else: job_queue = batch_config('cpu_job_queue') if job_def is None: if use_gpu: job_def = batch_config('gpu_job_def') else: job_def = batch_config('cpu_job_def') import boto3 client = boto3.client('batch') cmd_list = cmd.split(' ') if debug: cmd_list = [ 'python', '-m', 'ptvsd', '--host', '0.0.0.0', '--port', '6006', '--wait', '-m' ] + cmd_list if profile: cmd_list = ['kernprof', '-v', '-l'] + cmd_list kwargs = { 'jobName': job_name, 'jobQueue': job_queue, 'jobDefinition': job_def, 'containerOverrides': { 'command': cmd_list }, 'retryStrategy': { 'attempts': attempts }, } if parent_job_ids: kwargs['dependsOn'] = [{'jobId': id} for id in parent_job_ids] if num_array_jobs: kwargs['arrayProperties'] = {'size': num_array_jobs} job_id = client.submit_job(**kwargs)['jobId'] msg = 'submitted job with jobName={} and jobId={} w/ parent(s)={}'.format( job_name, job_id, parent_job_ids) log.info(msg) log.info(cmd_list) return job_id class AWSBatchRunner(Runner): """Runs pipelines remotely using AWS Batch. Requires Everett configuration of form: ``` [AWS_BATCH] cpu_job_queue= cpu_job_def= gpu_job_queue= gpu_job_def= attempts= ``` """ def run(self, cfg_json_uri, pipeline, commands, num_splits=1, pipeline_run_name: str = 'raster-vision'): parent_job_ids = [] # pipeline-specific job queue if hasattr(pipeline, 'job_queue'): pipeline_job_queue = pipeline.job_queue else: pipeline_job_queue = None # pipeline-specific job definition if hasattr(pipeline, 'job_def'): pipeline_job_def = pipeline.job_def else: pipeline_job_def = None for command in commands: # command-specific job queue, job definition job_def = pipeline_job_def job_queue = pipeline_job_queue if hasattr(pipeline, command): fn = getattr(pipeline, command) if hasattr(fn, 'job_def'): job_def = fn.job_def if hasattr(fn, 'job_queue'): job_queue = fn.job_queue num_array_jobs = None use_gpu = command in pipeline.gpu_commands job_name = f'{pipeline_run_name}-{command}-{uuid.uuid4()}' cmd = ['python', '-m', 'rastervision.pipeline.cli'] if rv_config.get_verbosity() > 1: cmd.append('-' + 'v' * (rv_config.get_verbosity() - 1)) cmd.extend( ['run_command', cfg_json_uri, command, '--runner', AWS_BATCH]) if command in pipeline.split_commands and num_splits > 1: num_array_jobs = num_splits cmd += ['--num-splits', str(num_splits)] job_id = submit_job( cmd=' '.join(cmd), job_name=job_name, parent_job_ids=parent_job_ids, num_array_jobs=num_array_jobs, use_gpu=use_gpu, job_queue=job_queue, job_def=job_def) parent_job_ids = [job_id] job_queue = None job_def = None def get_split_ind(self): return int(os.environ.get('AWS_BATCH_JOB_ARRAY_INDEX', 0))
CPAC/unet/__init__.py
Lawreros/C-PAC
125
124695
<gh_stars>100-1000 from .function import write_nifti, estimate_dice, extract_large_comp, predict_volumes, MyParser from .model import weigths_init, Conv3dBlock, UpConv3dBlock, Conv2dBlock, UpConv2dBlock, UNet3d, UNet2d, MultiSliceBcUNet, MultiSliceSsUNet, MultiSliceModel from .dataset import VolumeDataset, BlockDataset __all__ = [ 'write_nifti', 'estimate_dice', 'extract_large_comp', 'predict_volumes', 'MyParser', 'weigths_init', 'Conv3dBlock', 'UpConv3dBlock', 'Conv2dBlock', 'UpConv2dBlock', 'UNet3d', 'UNet2d', 'MultiSliceBcUNet', 'MultiSliceSsUNet', 'MultiSliceModel', 'VolumeDataset', 'BlockDataset' ]
selenium/pyvirtualdisplay-download-without-headless/example-chrome-wiht-options.py
whitmans-max/python-examples
140
124701
from selenium import webdriver from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.chrome.options import Options import time start_time = time.time() options = Options() options.add_argument("--headless") options.add_argument("--disable-gpu") options.add_argument("--disable-extensions") #driver = webdriver.Chrome(executable_path=r'/home/chromedriver/chromedriver',options=options) driver = webdriver.Chrome(options=options) params = {'behavior': 'allow', 'downloadPath': '/home/furas/projekty'} driver.execute_cdp_cmd('Page.setDownloadBehavior', params) # downloads are now enabled for this driver instance driver.get('https://www.macrotrends.net/1476/copper-prices-historical-chart-data') print('[INFO] loaded', time.time() - start_time) time.sleep(5) iframe = driver.find_element_by_xpath("//iframe[@id='chart_iframe']") driver.switch_to.frame(iframe) print('[INFO] switched', time.time() - start_time) xpath = "//a[text()='All Years']" driver.find_element_by_xpath(xpath).click() xpath = "//button[@id='dataDownload']" driver.find_element_by_xpath(xpath).click() print('[INFO] clicked', time.time() - start_time) time.sleep(10) print('[INFO] closing', time.time() - start_time) driver.close()
tests/scipy/solve_triangular.py
RoboticExplorationLab/micropython-ulab
232
124719
import math try: from ulab import scipy, numpy as np except ImportError: import scipy import numpy as np A = np.array([[3, 0, 2, 6], [2, 1, 0, 1], [1, 0, 1, 4], [1, 2, 1, 8]]) b = np.array([4, 2, 4, 2]) # forward substitution result = scipy.linalg.solve_triangular(A, b, lower=True) ref_result = np.array([1.333333333, -0.666666666, 2.666666666, -0.083333333]) for i in range(4): print(math.isclose(result[i], ref_result[i], rel_tol=1E-6, abs_tol=1E-6)) # backward substitution result = scipy.linalg.solve_triangular(A, b, lower=False) ref_result = np.array([-1.166666666, 1.75, 3.0, 0.25]) for i in range(4): print(math.isclose(result[i], ref_result[i], rel_tol=1E-6, abs_tol=1E-6))
src/binding/pyct_icp/__init__.py
xiang-1208/ct_icp
123
124720
from .pyct_icp import *
marathon/__init__.py
missingcharacter/marathon-python
202
124721
from .client import MarathonClient from .models import MarathonResource, MarathonApp, MarathonTask, MarathonConstraint from .exceptions import MarathonError, MarathonHttpError, NotFoundError, InvalidChoiceError from .util import get_log log = get_log()
examples/supernova/in_code_demo.py
hase1128/dragonfly
675
124759
""" In code demo for supernova experiment. -- <EMAIL> """ from dragonfly import load_config, maximise_function, maximise_multifidelity_function # From current directory from snls import objective as snls_objective from snls_mf import objective as snls_mf_objective from snls_mf import cost as snls_mf_cost def main(): """ Main function. """ domain_vars = [{'name': 'hubble_constant', 'type': 'float', 'min': 60, 'max': 80}, {'name': 'omega_m', 'type': 'float', 'min': 0, 'max': 1}, {'name': 'omega_l', 'type': 'float', 'min': 0, 'max': 1}] fidel_vars = [{'name': 'log10_resolution', 'type': 'float', 'min': 2, 'max': 5}, {'name': 'num_obs_to_use', 'type': 'int', 'min': 50, 'max': 192}] fidel_to_opt = [5, 192] max_capital = 2 * 60 * 60 # Optimisation budget in seconds # A parallel set up where we will evaluate the function in three different threads. num_workers = 3 # Optimise without multi-fidelity config_params = {'domain': domain_vars} config = load_config(config_params) opt_val, opt_pt, history = maximise_function(snls_objective, config.domain, max_capital, num_workers=num_workers, capital_type='realtime', config=config) print(opt_pt, opt_val) # Optimise with multi-fidelity config_params = {'domain': domain_vars, 'fidel_space': fidel_vars, 'fidel_to_opt': fidel_to_opt} config = load_config(config_params) # Optimise mf_opt_val, mf_opt_pt, history = maximise_multifidelity_function(snls_mf_objective, config.fidel_space, config.domain, config.fidel_to_opt, snls_mf_cost, max_capital, config=config) print(mf_opt_pt, mf_opt_val) if __name__ == '__main__': main()
resource/lib/python2.7/site-packages/pyasn1/type/char.py
claudiopastorini/geofire-python
1,346
124773
# # This file is part of pyasn1 software. # # Copyright (c) 2005-2017, <NAME> <<EMAIL>> # License: http://pyasn1.sf.net/license.html # from pyasn1.type import univ, tag class NumericString(univ.OctetString): tagSet = univ.OctetString.tagSet.tagImplicitly( tag.Tag(tag.tagClassUniversal, tag.tagFormatSimple, 18) ) class PrintableString(univ.OctetString): tagSet = univ.OctetString.tagSet.tagImplicitly( tag.Tag(tag.tagClassUniversal, tag.tagFormatSimple, 19) ) class TeletexString(univ.OctetString): tagSet = univ.OctetString.tagSet.tagImplicitly( tag.Tag(tag.tagClassUniversal, tag.tagFormatSimple, 20) ) class T61String(TeletexString): pass class VideotexString(univ.OctetString): tagSet = univ.OctetString.tagSet.tagImplicitly( tag.Tag(tag.tagClassUniversal, tag.tagFormatSimple, 21) ) class IA5String(univ.OctetString): tagSet = univ.OctetString.tagSet.tagImplicitly( tag.Tag(tag.tagClassUniversal, tag.tagFormatSimple, 22) ) class GraphicString(univ.OctetString): tagSet = univ.OctetString.tagSet.tagImplicitly( tag.Tag(tag.tagClassUniversal, tag.tagFormatSimple, 25) ) class VisibleString(univ.OctetString): tagSet = univ.OctetString.tagSet.tagImplicitly( tag.Tag(tag.tagClassUniversal, tag.tagFormatSimple, 26) ) class ISO646String(VisibleString): pass class GeneralString(univ.OctetString): tagSet = univ.OctetString.tagSet.tagImplicitly( tag.Tag(tag.tagClassUniversal, tag.tagFormatSimple, 27) ) class UniversalString(univ.OctetString): tagSet = univ.OctetString.tagSet.tagImplicitly( tag.Tag(tag.tagClassUniversal, tag.tagFormatSimple, 28) ) encoding = "utf-32-be" class BMPString(univ.OctetString): tagSet = univ.OctetString.tagSet.tagImplicitly( tag.Tag(tag.tagClassUniversal, tag.tagFormatSimple, 30) ) encoding = "utf-16-be" class UTF8String(univ.OctetString): tagSet = univ.OctetString.tagSet.tagImplicitly( tag.Tag(tag.tagClassUniversal, tag.tagFormatSimple, 12) ) encoding = "utf-8"
stevedore/tests/test_cache.py
jaraco/stevedore
133
124792
<gh_stars>100-1000 # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Tests for stevedore._cache """ import sys from unittest import mock from stevedore import _cache from stevedore.tests import utils class TestCache(utils.TestCase): def test_disable_caching_executable(self): """Test caching is disabled if python interpreter is located under /tmp directory (Ansible) """ with mock.patch.object(sys, 'executable', '/tmp/fake'): sot = _cache.Cache() self.assertTrue(sot._disable_caching) def test_disable_caching_file(self): """Test caching is disabled if .disable file is present in target dir """ cache_dir = _cache._get_cache_dir() with mock.patch('os.path.isfile') as mock_path: mock_path.return_value = True sot = _cache.Cache() mock_path.assert_called_with('%s/.disable' % cache_dir) self.assertTrue(sot._disable_caching) mock_path.return_value = False sot = _cache.Cache() self.assertFalse(sot._disable_caching) @mock.patch('os.makedirs') @mock.patch('builtins.open') def test__get_data_for_path_no_write(self, mock_open, mock_mkdir): sot = _cache.Cache() sot._disable_caching = True mock_open.side_effect = IOError sot._get_data_for_path('fake') mock_mkdir.assert_not_called()
app/master/build_store.py
rsennewald/ClusterRunner
164
124800
from collections import OrderedDict from itertools import islice from typing import List from app.master.build import Build from app.util.exceptions import ItemNotFoundError class BuildStore: """ Build storage service that stores and handles all builds. """ _all_builds_by_id = OrderedDict() @classmethod def get(cls, build_id: int) -> Build: """ Returns a build by id :param build_id: The id for the build whose status we are getting """ build = cls._all_builds_by_id.get(build_id) if build is None: raise ItemNotFoundError('Invalid build id: {}.'.format(build_id)) return build @classmethod def get_range(cls, start: int, end: int) -> List[Build]: """ Returns a list of all builds. :param start: The starting index of the requested build :param end: 1 + the index of the last requested element, although if this is greater than the total number of builds available the length of the returned list may be smaller than (end - start) """ requested_builds = islice(cls._all_builds_by_id, start, end) return [cls._all_builds_by_id[key] for key in requested_builds] @classmethod def add(cls, build: Build): """ Add new build to collection :param build: The build to add to the store """ cls._all_builds_by_id[build.build_id()] = build @classmethod def size(cls) -> int: """ Return the amount of builds within the store """ return len(cls._all_builds_by_id)
shenfun/forms/__init__.py
spectralDNS/shenfun
138
124870
<reponame>spectralDNS/shenfun<gh_stars>100-1000 #pylint: disable=missing-docstring from .project import * from .inner import * from .operators import * from .arguments import *
src/ralph/lib/polymorphic/tests/migrations/0001_initial.py
DoNnMyTh/ralph
1,668
124905
<gh_stars>1000+ # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('contenttypes', '0002_remove_content_type_name'), ] operations = [ migrations.CreateModel( name='PolymorphicModelBaseTest', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='ID', auto_created=True)), ('name', models.CharField(max_length=50, null=True, blank=True)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='SomethingRelated', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='ID', auto_created=True)), ('name', models.CharField(max_length=50, null=True, blank=True)), ], ), migrations.CreateModel( name='PolymorphicModelTest', fields=[ ('polymorphicmodelbasetest_ptr', models.OneToOneField(auto_created=True, to='polymorphic_tests.PolymorphicModelBaseTest', serialize=False, parent_link=True, primary_key=True)), ], options={ 'abstract': False, }, bases=('polymorphic_tests.polymorphicmodelbasetest', models.Model), ), migrations.CreateModel( name='PolymorphicModelTest2', fields=[ ('polymorphicmodelbasetest_ptr', models.OneToOneField(auto_created=True, to='polymorphic_tests.PolymorphicModelBaseTest', serialize=False, parent_link=True, primary_key=True)), ('another_related', models.ForeignKey(to='polymorphic_tests.SomethingRelated', null=True, blank=True, related_name='+')), ], options={ 'abstract': False, }, bases=('polymorphic_tests.polymorphicmodelbasetest', models.Model), ), migrations.AddField( model_name='polymorphicmodelbasetest', name='content_type', field=models.ForeignKey(to='contenttypes.ContentType', null=True, blank=True), ), migrations.AddField( model_name='polymorphicmodelbasetest', name='sth_related', field=models.ForeignKey(to='polymorphic_tests.SomethingRelated', null=True, blank=True), ), ]
MicroTokenizer/tokenizers/unicode_script/generate_script_data.py
howl-anderson/MicroTokenizer
136
124953
<filename>MicroTokenizer/tokenizers/unicode_script/generate_script_data.py def main(): # build indexes from 'scripts.txt' idx = [] names = [] cats = [] import urllib.request import re import textwrap url = "http://www.unicode.org/Public/UNIDATA/Scripts.txt" f = urllib.request.urlopen(url) for ln in f: ln = ln.decode() p = re.findall(r"([0-9A-F]+)(?:\.\.([0-9A-F]+))?\W+(\w+)\s*#\s*(\w+)", ln) if p: a, b, name, cat = p[0] if name not in names: names.append(name) if cat not in cats: cats.append(cat) idx.append( (int(a, 16), int(b or a, 16), names.index(name), cats.index(cat)) ) idx.sort() print( 'script_data = {\n"names":%s,\n"cats":%s,\n"idx":[\n%s\n]}' % ( "\n".join(textwrap.wrap(repr(names), 80)), "\n".join(textwrap.wrap(repr(cats), 80)), "\n".join( textwrap.wrap(", ".join("(0x%x,0x%x,%d,%d)" % c for c in idx), 80) ), ) ) if __name__ == "__main__": main()
tests/dev/test_checksite.py
mskymoore/yoda
747
125030
# coding=utf-8 from unittest import TestCase from click.testing import CliRunner import mock import yoda from requests.models import Response class TestChecksite(TestCase): """ Test for the following commands: | Module: dev | command: checksite """ def __init__(self, methodName="runTest"): super(TestChecksite, self).__init__() self.runner = CliRunner() def runTest(self): mocked_response = Response() mocked_response.status_code = 400 def test_with_working_url(): result = self.runner.invoke(yoda.cli, ['dev', 'checksite', 'https://google.com']) output_string = str(result.output.encode('ascii', 'ignore').decode('utf-8')).strip() self.assertTrue("running" in output_string) def test_with_invalid_url(): result = self.runner.invoke(yoda.cli, ['dev', 'checksite', 'https://google']) self.assertEqual(result.exit_code, -1) @mock.patch('requests.get', return_value=mocked_response) def test_with_mocked_response_code(_self): result = self.runner.invoke(yoda.cli, ['dev', 'checksite', 'https://google.com']) self.assertEqual(result.exit_code, 1) test_with_working_url() test_with_invalid_url() test_with_mocked_response_code()
gramex/handlers/functionhandler.py
NAnnamalai/gramex
130
125031
<reponame>NAnnamalai/gramex<filename>gramex/handlers/functionhandler.py<gh_stars>100-1000 import json import tornado.web import tornado.gen from types import GeneratorType from gramex.transforms import build_transform from gramex.config import app_log, CustomJSONEncoder from .basehandler import BaseHandler class FunctionHandler(BaseHandler): ''' Renders the output of a function when the URL is called via GET or POST. It accepts these parameters when initialized: :arg string function: a string that resolves into any Python function or method (e.g. ``str.lower``). By default, it is called as ``function(handler)`` where handler is this RequestHandler, but you can override ``args`` and ``kwargs`` below to replace it with other parameters. The result is rendered as-is (and hence must be a string, or a Future that resolves to a string.) You can also yield one or more results. These are written immediately, in order. :arg list args: positional arguments to be passed to the function. :arg dict kwargs: keyword arguments to be passed to the function. :arg dict headers: HTTP headers to set on the response. :arg string redirect: URL to redirect to when the result is done. Used to trigger calculations without displaying any output. ''' @classmethod def setup(cls, headers={}, **kwargs): super(FunctionHandler, cls).setup(**kwargs) # Don't use cls.info.function = build_transform(...) -- Python treats it as a method cls.info = {} cls.info['function'] = build_transform(kwargs, vars={'handler': None}, filename='url: %s' % cls.name) cls.headers = headers cls.post = cls.put = cls.delete = cls.patch = cls.options = cls.get @tornado.gen.coroutine def get(self, *path_args): if self.redirects: self.save_redirect_page() if 'function' not in self.info: raise ValueError('Invalid function definition in url:%s' % self.name) result = self.info['function'](handler=self) for header_name, header_value in self.headers.items(): self.set_header(header_name, header_value) # Use multipart to check if the respose has multiple parts. Don't # flush unless it's multipart. Flushing disables Etag multipart = isinstance(result, GeneratorType) or len(result) > 1 # build_transform results are iterable. Loop through each item for item in result: # Resolve futures and write the result immediately if tornado.concurrent.is_future(item): item = yield item # To check if item is a numpy object, avoid isinstance(numpy.int8), etc. # Importing numpy is slow. Instead, check the class name. # Strip trailing numbers (e.g. int8, int16, int32) # Strip trailing underscore (e.g. str_, bytes_) # Strip leading 'u' (e.g. uint, ulong) cls = type(item).__name__.rstrip('0123456789_').lstrip('u') if isinstance(item, (bytes, str)): self.write(item) if multipart: self.flush() # Ignore None as a return type elif item is None: pass # Allow ANY type that can be converted by CustomJSONEncoder. # This includes JSON types, detected by isinstance(item, ...)) # and numpy types, detected by cls in (...) # and anything with a to_dict, e.g. DataFrames elif (isinstance(item, (int, float, bool, list, tuple, dict)) or cls in ('datetime', 'int', 'intc', 'float', 'bool', 'ndarray', 'bytes', 'str') or hasattr(item, 'to_dict')): self.write(json.dumps(item, separators=(',', ':'), ensure_ascii=True, cls=CustomJSONEncoder)) if multipart: self.flush() else: app_log.warning('url:%s: FunctionHandler can write scalars/list/dict, not %s: %s', self.name, type(item), repr(item)) if self.redirects: self.redirect_next()
libsortvis/algos/cyclesort.py
tknuth/sortvis
117
125044
def cyclesort(lst): for i in range(len(lst)): if i != lst[i]: n = i while 1: tmp = lst[int(n)] if n != i: lst[int(n)] = last_value lst.log() else: lst[int(n)] = None lst.log() last_value = tmp n = last_value if n == i: lst[int(n)] = last_value lst.log() break
admin/test/test_merge_pr.py
stackriot/flocker
2,690
125055
# Copyright ClusterHQ Inc. See LICENSE file for details. """ Tests for :module:`admin.merge_pr`. """ import os import subprocess from hypothesis import given from hypothesis.strategies import ( booleans, dictionaries, fixed_dictionaries, just, lists, one_of, sampled_from, text, ) from hypothesis.extra.datetime import datetimes from pyrsistent import pmap, plist from flocker.testtools import TestCase from admin import merge_pr SCRIPT_FILENAME = 'merge-pr' SCRIPT_FILE = os.path.join(os.path.dirname(os.path.dirname(__file__)), SCRIPT_FILENAME) def run_script(args): return subprocess.check_output([SCRIPT_FILE] + args) class SmokeTests(TestCase): """ Basic tests of running the script. """ def test_help(self): output = run_script(['--help']) self.assertIn("Merge a branch when all the tests pass.", output) class URLTests(TestCase): """ Test for URL manipulation. """ def test_url_path(self): """ Correct path from a full URL. """ path = '/ClusterHQ/flocker/pull/1717' self.assertEqual(path, merge_pr.url_path('https://github.com' + path)) def test_url_path_no_hostname(self): """ Correct path from a URL path. """ path = '/ClusterHQ/flocker/pull/1717' self.assertEqual(path, merge_pr.url_path(path)) def test_url_path_parts(self): """ Correct segments from a full URL. """ path_parts = ['ClusterHQ', 'flocker', 'pull', '1717'] self.assertEqual( [''] + path_parts, merge_pr.url_path_parts( 'https://github.com/' + '/'.join(path_parts))) def test_url_path_parts_no_hostname(self): """ Correct segments from a URL path. """ path_parts = ['ClusterHQ', 'flocker', 'pull', '1717'] self.assertEqual( [''] + path_parts, merge_pr.url_path_parts('/' + '/'.join(path_parts))) def test_pr_api_url(self): """ Correct API URL for a full URL. """ self.assertEqual( 'https://api.github.com/repos/ClusterHQ/flocker/pulls/1717', merge_pr.pr_api_url_from_web_url( 'https://github.com/ClusterHQ/flocker/pull/1717')) def commit_statuses(**kwargs): """ Create a strategy for GitHub commit status dicts. :param **kwargs: alter the strategy for a particular key of the status dict, e.g. state=just(u'success') will fix the state key of the dict to that string. :return strategy: a strategy. """ base = {'updated_at': datetimes(timezones=['UTC']), 'state': text(), 'context': text(average_size=2), 'target_url': text(average_size=2), } base.update(**kwargs) return fixed_dictionaries(base) jenkins_results = sampled_from(merge_pr.JenkinsResults.iterconstants()) """Strategy for generating JenkinsResults values.""" class StatusesTests(TestCase): """ Tests for interpretation of commit statuses. https://developer.github.com/v3/repos/statuses/ """ @given(commit_statuses()) def test_final_status_one(self, status): """ Final status of one status is itself. """ self.assertEqual(status, merge_pr.final_status([status])) @given(commit_statuses(), commit_statuses()) def test_final_status_many(self, status1, status2): """ Final status of a list is the latest. """ target = status1 if status2['updated_at'] > status1['updated_at']: target = status2 self.assertEqual(target, merge_pr.final_status([status2, status1])) @given(commit_statuses(state=text().filter(lambda x: x != u'success'))) def test_not_success(self, status): """ Always `not_success` for anything except 'success'. """ self.assertEqual(True, merge_pr.not_success(status)) @given(commit_statuses(state=just(u'success'))) def test_not_success_success(self, status): """ `not_success` False for 'success'. """ self.assertEqual(False, merge_pr.not_success(status)) @given(commit_statuses(), jenkins_results) def test_format_status(self, status, jenkins): """ `format_status` produces unicode that mentions the context and url. """ formatted = merge_pr.format_status((status, jenkins)) self.assertIsInstance(formatted, unicode) self.assertIn(status['context'], formatted) self.assertIn(status['target_url'], formatted) # These strategies are far from complete coverage of the possible # Jenkins API responses. jenkins_builds = fixed_dictionaries(dict( result=sampled_from([None, 'FAILURE', 'ABORTED', 'SUCCESS']))) """Strategy for generating records of individual builds of a Jenkins job.""" NO_BUILDS = object() """ Sentinel to say that `jenkins_build_results` should not include the builds key. """ def jenkins_build_results(inQueue=None, builds=None): """Create a strategy for generating Jenkins API information for a job. :param strategy inQueue: strategy for the inQueue key, or None to use the default. :param strategy builds: strategy for populating the builds key, or None for the default. The special value `NO_BUILDS` will mean that the builds key is not in the resulting dict at all. :return strategy: a strategy. """ strats = [] if inQueue is None: inQueue = booleans() strats.append(just(pmap())) without_builds = fixed_dictionaries(dict( inQueue=inQueue)) if builds is None or builds is NO_BUILDS: strats.append(without_builds) if builds is None: builds = lists(jenkins_builds, average_size=1) if builds is not NO_BUILDS: with_builds = fixed_dictionaries(dict( inQueue=inQueue, builds=builds, property=dictionaries( text(max_size=2), text(max_size=2), average_size=1, max_size=2))) strats.append(with_builds) return one_of(*strats) class JenkinsResultsTests(TestCase): """ Tests for interpretation of build results from Jenkins. """ @given(jenkins_build_results()) def test_result_types(self, info): """ Result always a tuple (`JenkinsResults`, Maybe[dict]) """ result, params = merge_pr.jenkins_info_from_response(info) self.assertIn(result, list(merge_pr.JenkinsResults.iterconstants())) if params is not None: self.assertIsInstance(params, dict) @given(jenkins_build_results(inQueue=just(True))) def test_in_queue(self, info): """ Job with inQueue = True is `RUNNING`. """ result, params = merge_pr.jenkins_info_from_response(info) self.assertEqual(merge_pr.JenkinsResults.RUNNING, result) self.assertEqual({}, params) @given(jenkins_build_results(inQueue=just(False), builds=NO_BUILDS)) def test_builds_not_present(self, info): """ Job without a builds list is `UNKNOWN`. """ result, params = merge_pr.jenkins_info_from_response(info) self.assertEqual(merge_pr.JenkinsResults.UNKNOWN, result) self.assertEqual({}, params) @given(jenkins_build_results(inQueue=just(False), builds=just(plist()))) def test_no_builds(self, info): """ Job with empty builds list is `NOTRUN`. """ result, params = merge_pr.jenkins_info_from_response(info) self.assertEqual(merge_pr.JenkinsResults.NOTRUN, result) self.assertEqual({}, params)
raspberryturk/embedded/raspberryturkd.py
Dzhuks/raspberryturk
169
125114
<reponame>Dzhuks/raspberryturk import logging import signal import time from daemon import runner import raspberryturk from raspberryturk.embedded.agent import Agent class RaspberryTurkDaemon(object): def __init__(self): self.stdin_path = '/dev/null' self.stdout_path = raspberryturk.log_path('raspberryturk.out') self.stderr_path = raspberryturk.log_path('raspberryturk.err') self.pidfile_path = raspberryturk.run_path('raspberryturkd.pid') self.pidfile_timeout = 5 self._interrupt_signum = None def run(self): raspberryturk.setup_file_logging() self.logger = logging.getLogger(__name__) self.logger.info("Starting RaspberryTurkDaemon.") time.sleep(1) with Agent() as a: while self._interrupt_signum is None: a.perception_action_sequence() self.logger.warn("Received signal {}.".format(self._interrupt_signum)) self.logger.info("Stopping RaspberryTurkDaemon.") def interrupt_handler(self, signum, frame): self._interrupt_signum = signum def main(): rtd = RaspberryTurkDaemon() daemon_runner = runner.DaemonRunner(rtd) daemon_runner.daemon_context.signal_map = { signal.SIGINT: rtd.interrupt_handler, signal.SIGTERM: rtd.interrupt_handler, signal.SIGHUP: 'terminate', } daemon_runner.do_action() if __name__ == '__main__': main()
vimfiles/bundle/vim-python/submodules/pylint/tests/functional/i/invalid/invalid_hash_returned.py
ciskoinch8/vimrc
463
125201
"""Check invalid value returned by __hash__ """ # pylint: disable=too-few-public-methods,missing-docstring,no-self-use,import-error, useless-object-inheritance import six from missing import Missing class FirstGoodHash(object): """__hash__ returns <type 'int'>""" def __hash__(self): return 1 class SecondGoodHash(object): """__hash__ returns <type 'int'>""" def __hash__(self): return 0 class HashMetaclass(type): def __hash__(cls): return 1 @six.add_metaclass(HashMetaclass) class ThirdGoodHash(object): """Hash through the metaclass.""" class FirstBadHash(object): """ __hash__ returns a dict """ def __hash__(self): # [invalid-hash-returned] return {} class SecondBadHash(object): """ __hash__ returns str """ def __hash__(self): # [invalid-hash-returned] return "True" class ThirdBadHash(object): """ __hash__ returns a float""" def __hash__(self): # [invalid-hash-returned] return 1.11 class FourthBadHash(object): """ __hash__ returns node which does not have 'value' in AST """ def __hash__(self): # [invalid-hash-returned] return lambda: 3 class AmbigousHash(object): """ Uninferable return value """ __hash__ = lambda self: Missing class AnotherAmbiguousHash(object): """Potential uninferable return value""" def __hash__(self): return hash(Missing)
pubnub/endpoints/file_operations/download_file.py
natekspencer/pubnub-python
146
125215
from pubnub.endpoints.file_operations.file_based_endpoint import FileOperationEndpoint from pubnub.enums import HttpMethod, PNOperationType from pubnub.crypto import PubNubFileCrypto from pubnub.models.consumer.file import PNDownloadFileResult from pubnub.request_handlers.requests_handler import RequestsRequestHandler from pubnub.endpoints.file_operations.get_file_url import GetFileDownloadUrl class DownloadFileNative(FileOperationEndpoint): def __init__(self, pubnub): FileOperationEndpoint.__init__(self, pubnub) self._file_id = None self._file_name = None self._pubnub = pubnub self._download_data = None self._cipher_key = None def cipher_key(self, cipher_key): self._cipher_key = cipher_key return self def build_path(self): return self._download_data.result.file_url def http_method(self): return HttpMethod.GET def is_auth_required(self): return False def custom_params(self): return {} def file_id(self, file_id): self._file_id = file_id return self def file_name(self, file_name): self._file_name = file_name return self def decrypt_payload(self, data): return PubNubFileCrypto(self._pubnub.config).decrypt( self._cipher_key or self._pubnub.config.cipher_key, data ) def validate_params(self): self.validate_subscribe_key() self.validate_channel() self.validate_file_name() self.validate_file_id() def create_response(self, envelope): if self._cipher_key or self._pubnub.config.cipher_key: return PNDownloadFileResult(self.decrypt_payload(envelope.content)) else: return PNDownloadFileResult(envelope.content) def non_json_response(self): return True def operation_type(self): return PNOperationType.PNDownloadFileAction def use_base_path(self): return False def build_params_callback(self): return lambda a: {} def name(self): return "Downloading file" def sync(self): self._download_data = GetFileDownloadUrl(self._pubnub)\ .channel(self._channel)\ .file_name(self._file_name)\ .file_id(self._file_id)\ .sync() return super(DownloadFileNative, self).sync() def pn_async(self, callback): return RequestsRequestHandler(self._pubnub).async_file_based_operation(self.sync, callback, "File Download")
valentyusb/usbcore/rx/shifter.py
rjeschmi/valentyusb
105
125258
#!/usr/bin/env python3 from migen import * from migen.fhdl.decorators import ResetInserter from ..test.common import BaseUsbTestCase import unittest @ResetInserter() class RxShifter(Module): """RX Shifter A shifter is responsible for shifting in serial bits and presenting them as parallel data. The shifter knows how many bits to shift and has controls for resetting the shifter. Clock Domain ------------ usb_12 : 12MHz Parameters ---------- Parameters are passed in via the constructor. width : int Number of bits to shift in. Input Ports ----------- i_valid : Signal(1) Qualifier for all of the input signals. Indicates one bit of valid data is present on the inputs. i_data : Signal(1) Serial input data. Qualified by valid. Output Ports ------------ o_data : Signal(width) Shifted in data. o_put : Signal(1) Asserted for one clock once the register is full. """ def __init__(self, width): self.i_valid = Signal() self.i_data = Signal() self.o_data = Signal(width) self.o_put = Signal() # Instead of using a counter, we will use a sentinel bit in the shift # register to indicate when it is full. shift_reg = Signal(width+1, reset=0b1) self.comb += self.o_data.eq(shift_reg[0:width]) self.sync += [ self.o_put.eq(shift_reg[width-1] & ~shift_reg[width] & self.i_valid), If(self.i_valid, If(shift_reg[width], shift_reg.eq(Cat(self.i_data, shift_reg.reset[0:width])), ).Else( shift_reg.eq(Cat(self.i_data, shift_reg[0:width])), ), ), ]
test/ext/mypy/plugin_files/mixin_not_mapped.py
petit87/sqlalchemy
5,383
125265
from sqlalchemy import Column from sqlalchemy import Integer from sqlalchemy import String from sqlalchemy.orm import declarative_base from sqlalchemy.orm import registry reg: registry = registry() Base = declarative_base() class SomeAbstract(Base): __abstract__ = True class HasUpdatedAt: updated_at = Column(Integer) @reg.mapped class Foo(SomeAbstract): __tablename__ = "foo" id: int = Column(Integer(), primary_key=True) name: str = Column(String) class Bar(HasUpdatedAt, Base): __tablename__ = "bar" id = Column(Integer(), primary_key=True) num = Column(Integer) Bar.__mapper__ # EXPECTED_MYPY: "Type[HasUpdatedAt]" has no attribute "__mapper__" HasUpdatedAt.__mapper__ # EXPECTED_MYPY: "Type[SomeAbstract]" has no attribute "__mapper__" SomeAbstract.__mapper__
vimfiles/bundle/vim-python/submodules/pylint/tests/regrtest_data/absimp/string.py
ciskoinch8/vimrc
463
125287
""" https://www.logilab.org/ticket/70495 https://www.logilab.org/ticket/70565 """ from __future__ import absolute_import, print_function import string print(string)
running_modes/configurations/transfer_learning/adaptive_learning_rate_configuration.py
lilleswing/Reinvent-1
183
125302
<reponame>lilleswing/Reinvent-1 from dataclasses import dataclass @dataclass class AdaptiveLearningRateConfiguration: mode: str = "constant" gamma: float = 0.8 step: int = 1 start: float = 5E-4 min: float = 1E-5 threshold: float = 1E-4 average_steps: int = 4 patience: int = 8 restart_value: float = 1E-5 sample_size: int = 100 restart_times: int = 0
main.py
matthew-z/pytorch_rnet
227
125313
<reponame>matthew-z/pytorch_rnet import argparse import datetime from pathlib import Path from allennlp.commands import main, Subcommand from allennlp.commands.train import train_model from allennlp.common import Params from allennlp.common.util import import_submodules from allennlp.models import Model class MyTrain(Subcommand): def add_subparser(self, name: str, parser: argparse._SubParsersAction) -> argparse.ArgumentParser: # pylint: disable=protected-access description = '''Train the specified model on the specified dataset.''' subparser = parser.add_parser(name, description=description, help='Train a model') subparser.add_argument('param_path', type=str, help='path to parameter file describing the model to be trained') subparser.add_argument('-s', '--serialization-dir', required=False, default="", type=str, help='directory in which to save the model and its logs') subparser.add_argument('-r', '--recover', action='store_true', default=False, help='recover training from the state in serialization_dir') subparser.add_argument('-f', '--force', action='store_true', required=False, help='overwrite the output directory if it exists') subparser.add_argument('-o', '--overrides', type=str, default="", help='a JSON structure used to override the experiment configuration') subparser.add_argument('-e', '--ext-vars', type=str, default=None, help='Used to provide ext variable to jsonnet') subparser.add_argument('--fp16', action='store_true', required=False, help='use fp 16 training') subparser.add_argument('--file-friendly-logging', action='store_true', default=False, help='outputs tqdm status on separate lines and slows tqdm refresh rate') subparser.set_defaults(func=train_model_from_args) return subparser def train_model_from_args(args: argparse.Namespace): """ Just converts from an ``argparse.Namespace`` object to string paths. """ start_time = datetime.datetime.now().strftime('%b-%d_%H-%M') if args.serialization_dir: serialization_dir = args.serialization_dir else: path = Path(args.param_path.replace("configs/", "results/")).resolve() serialization_dir = path.with_name(path.stem) / start_time train_model_from_file(args.param_path, serialization_dir, args.overrides, args.file_friendly_logging, args.recover, args.force, args.ext_vars) def train_model_from_file(parameter_filename: str, serialization_dir: str, overrides: str = "", file_friendly_logging: bool = False, recover: bool = False, force: bool = False, ext_vars=None) -> Model: """ A wrapper around :func:`train_model` which loads the params from a file. Parameters ---------- param_path : ``str`` A json parameter file specifying an AllenNLP experiment. serialization_dir : ``str`` The directory in which to save results and logs. We just pass this along to :func:`train_model`. overrides : ``str`` A JSON string that we will use to override values in the input parameter file. file_friendly_logging : ``bool``, optional (default=False) If ``True``, we make our output more friendly to saved model files. We just pass this along to :func:`train_model`. recover : ``bool`, optional (default=False) If ``True``, we will try to recover a training run from an existing serialization directory. This is only intended for use when something actually crashed during the middle of a run. For continuing training a model on new data, see the ``fine-tune`` command. """ # Load the experiment config from a file and pass it to ``train_model``. params = Params.from_file(parameter_filename, overrides, ext_vars=ext_vars) return train_model(params, serialization_dir, file_friendly_logging, recover, force) if __name__ == "__main__": import_submodules("qa") import_submodules("modules") main(prog="ReadingZoo",subcommand_overrides={"train": MyTrain()})
research/long_block_sequencer/long_block_encoder.py
legacyai/tf-transformers
116
125356
<reponame>legacyai/tf-transformers<gh_stars>100-1000 # coding=utf-8 # Copyright 2021 TF-Transformers Authors. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A Long Block Encoder in Tensorflow 2.0""" import tensorflow as tf from tf_transformers.activations import get_activation from tf_transformers.core import LegacyLayer, LegacyModel class Long_Block_Encoder(LegacyLayer): def __init__( self, model_layer, num_splits, dense_dimension=None, gru_units=None, activation='gelu', is_training=False, use_dropout=False, use_gru_layer=True, **kwargs, ): super(Long_Block_Encoder, self).__init__( is_training=is_training, use_dropout=use_dropout, name=model_layer.name, **kwargs ) self.model_layer = model_layer self.num_splits = num_splits self.use_gru_layer = use_gru_layer if self.use_gru_layer: if gru_units is None: raise ValueError("When using GRU layer, set `gru_units`") self.projection_layer = tf.keras.layers.Bidirectional( tf.keras.layers.GRU(gru_units, return_sequences=True, name='gru_for_long_block') ) else: if dense_dimension is None: raise ValueError("When using dense projection, set `dense_dimension`") activation = get_activation("gelu") self.projection_layer = tf.keras.layers.Dense( dense_dimension, activation=activation, kernel_initializer='glorot_uniform', name="gelu_for_long_block" ) self._config_dict = model_layer._config_dict self._mask_mode = model_layer._mask_mode self._sequence_length = model_layer._sequence_length self.model_inputs, self.model_outputs = self.get_model(initialize_only=True) def call(self, inputs): all_outputs_token_embeddings = [] inputs_splitted = {} input_names = [] for k, v in inputs.items(): inputs_splitted[k] = tf.split(v, self.num_splits, axis=1) input_names.append(k) for i in range(self.num_splits): inputs_main = {} for name in input_names: inputs_main[name] = inputs_splitted[name][i] model_outputs = self.model_layer(inputs_main) all_outputs_token_embeddings.append(model_outputs['token_embeddings']) token_embeddings_concatanted = tf.concat(all_outputs_token_embeddings, axis=1) # over sequence length token_embeddings_concatanted = self.projection_layer(token_embeddings_concatanted) return {'token_embeddings': token_embeddings_concatanted} def get_model(self, initialize_only=False): inputs = {} for k, v in self.model_layer.model_inputs.items(): shape = v.shape inputs[k] = tf.keras.layers.Input(shape[1:], batch_size=shape[0], name=k, dtype=v.dtype) layer_output = self(inputs) if initialize_only: return inputs, layer_output model = LegacyModel(inputs=inputs, outputs=layer_output, name="long_span_selection") model.model_config = self.model_layer._config_dict return model
scripts/external_libs/scapy-2.4.5/scapy/contrib/automotive/gm/gmlanutils.py
dariusgrassi/trex-core
250
125386
<reponame>dariusgrassi/trex-core<filename>scripts/external_libs/scapy-2.4.5/scapy/contrib/automotive/gm/gmlanutils.py<gh_stars>100-1000 #! /usr/bin/env python # This file is part of Scapy # See http://www.secdev.org/projects/scapy for more information # Copyright (C) <NAME> <<EMAIL>> # Copyright (C) <NAME> <<EMAIL>> # This program is published under a GPLv2 license # scapy.contrib.description = GMLAN Utilities # scapy.contrib.status = loads import time from scapy.compat import Optional, cast, Callable from scapy.contrib.automotive.gm.gmlan import GMLAN, GMLAN_SA, GMLAN_RD, \ GMLAN_TD, GMLAN_PM, GMLAN_RMBA from scapy.config import conf from scapy.packet import Packet from scapy.contrib.isotp import ISOTPSocket from scapy.error import warning, log_loading from scapy.utils import PeriodicSenderThread __all__ = ["GMLAN_TesterPresentSender", "GMLAN_InitDiagnostics", "GMLAN_GetSecurityAccess", "GMLAN_RequestDownload", "GMLAN_TransferData", "GMLAN_TransferPayload", "GMLAN_ReadMemoryByAddress", "GMLAN_BroadcastSocket"] log_loading.info("\"conf.contribs['GMLAN']" "['treat-response-pending-as-answer']\" set to True). This " "is required by the GMLAN-Utils module to operate " "correctly.") try: conf.contribs['GMLAN']['treat-response-pending-as-answer'] = False except KeyError: conf.contribs['GMLAN'] = {'treat-response-pending-as-answer': False} # Helper function def _check_response(resp, verbose): # type: (Packet, Optional[bool]) -> bool if resp is None: if verbose: print("Timeout.") return False if verbose: resp.show() return resp.service != 0x7f # NegativeResponse class GMLAN_TesterPresentSender(PeriodicSenderThread): def __init__(self, sock, pkt=GMLAN(service="TesterPresent"), interval=2): # type: (ISOTPSocket, Packet, int) -> None """ Thread to send GMLAN TesterPresent packets periodically :param sock: socket where packet is sent periodically :param pkt: packet to send :param interval: interval between two packets """ PeriodicSenderThread.__init__(self, sock, pkt, interval) def run(self): # type: () -> None while not self._stopped.is_set(): for p in self._pkts: self._socket.sr1(p, verbose=False, timeout=0.1) time.sleep(self._interval) def GMLAN_InitDiagnostics(sock, broadcast_socket=None, timeout=None, verbose=None, retry=0): # noqa: E501 # type: (ISOTPSocket, Optional[ISOTPSocket], Optional[int], Optional[bool], int) -> bool # noqa: E501 """ Send messages to put an ECU into diagnostic/programming state. :param sock: socket for communication. :param broadcast_socket: socket for broadcasting. If provided some message will be sent as broadcast. Recommended when used on a network with several ECUs. :param timeout: timeout for sending, receiving or sniffing packages. :param verbose: set verbosity level :param retry: number of retries in case of failure. :return: True on success else False """ # Helper function def _send_and_check_response(sock, req, timeout, verbose): # type: (ISOTPSocket, Packet, Optional[int], Optional[bool]) -> bool if verbose: print("Sending %s" % repr(req)) resp = sock.sr1(req, timeout=timeout, verbose=False) return _check_response(resp, verbose) if verbose is None: verbose = conf.verb > 0 retry = abs(retry) while retry >= 0: retry -= 1 # DisableNormalCommunication p = GMLAN(service="DisableNormalCommunication") if broadcast_socket is None: if not _send_and_check_response(sock, p, timeout, verbose): continue else: if verbose: print("Sending %s as broadcast" % repr(p)) broadcast_socket.send(p) time.sleep(0.05) # ReportProgrammedState p = GMLAN(service="ReportProgrammingState") if not _send_and_check_response(sock, p, timeout, verbose): continue # ProgrammingMode requestProgramming p = GMLAN() / GMLAN_PM(subfunction="requestProgrammingMode") if not _send_and_check_response(sock, p, timeout, verbose): continue time.sleep(0.05) # InitiateProgramming enableProgramming # No response expected p = GMLAN() / GMLAN_PM(subfunction="enableProgrammingMode") if verbose: print("Sending %s" % repr(p)) sock.send(p) time.sleep(0.05) return True return False def GMLAN_GetSecurityAccess(sock, key_function, level=1, timeout=None, verbose=None, retry=0): # noqa: E501 # type: (ISOTPSocket, Callable[[int], int], int, Optional[int], Optional[bool], int) -> bool # noqa: E501 """ Authenticate on ECU. Implements Seey-Key procedure. :param sock: socket to send the message on. :param key_function: function implementing the key algorithm. :param level: level of access :param timeout: timeout for sending, receiving or sniffing packages. :param verbose: set verbosity level :param retry: number of retries in case of failure. :return: True on success. """ if verbose is None: verbose = conf.verb > 0 retry = abs(retry) if key_function is None: return False if level % 2 == 0: warning("Parameter Error: Level must be an odd number.") return False while retry >= 0: retry -= 1 request = GMLAN() / GMLAN_SA(subfunction=level) if verbose: print("Requesting seed..") resp = sock.sr1(request, timeout=timeout, verbose=0) if not _check_response(resp, verbose): if resp is not None and resp.returnCode == 0x37 and retry: if verbose: print("RequiredTimeDelayNotExpired. Wait 10s.") time.sleep(10) if verbose: print("Negative Response.") continue seed = resp.securitySeed if seed == 0: if verbose: print("ECU security already unlocked. (seed is 0x0000)") return True keypkt = GMLAN() / GMLAN_SA(subfunction=level + 1, securityKey=key_function(seed)) if verbose: print("Responding with key..") resp = sock.sr1(keypkt, timeout=timeout, verbose=0) if resp is None: if verbose: print("Timeout.") continue if verbose: resp.show() if resp.sprintf("%GMLAN.service%") == "SecurityAccessPositiveResponse": # noqa: E501 if verbose: print("SecurityAccess granted.") return True # Invalid Key elif resp.sprintf("%GMLAN.service%") == "NegativeResponse" and \ resp.sprintf("%GMLAN.returnCode%") == "InvalidKey": if verbose: print("Key invalid") continue return False def GMLAN_RequestDownload(sock, length, timeout=None, verbose=None, retry=0): # type: (ISOTPSocket, int, Optional[int], Optional[bool], int) -> bool """ Send RequestDownload message. Usually used before calling TransferData. :param sock: socket to send the message on. :param length: value for the message's parameter 'unCompressedMemorySize'. :param timeout: timeout for sending, receiving or sniffing packages. :param verbose: set verbosity level. :param retry: number of retries in case of failure. :return: True on success """ if verbose is None: verbose = conf.verb > 0 retry = abs(retry) while retry >= 0: # RequestDownload pkt = GMLAN() / GMLAN_RD(memorySize=length) resp = sock.sr1(pkt, timeout=timeout, verbose=0) if _check_response(resp, verbose): return True retry -= 1 if retry >= 0 and verbose: print("Retrying..") return False def GMLAN_TransferData(sock, addr, payload, maxmsglen=None, timeout=None, verbose=None, retry=0): # noqa: E501 # type: (ISOTPSocket, int, bytes, Optional[int], Optional[int], Optional[bool], int) -> bool # noqa: E501 """ Send TransferData message. Usually used after calling RequestDownload. :param sock: socket to send the message on. :param addr: destination memory address on the ECU. :param payload: data to be sent. :param maxmsglen: maximum length of a single iso-tp message. default: maximum length :param timeout: timeout for sending, receiving or sniffing packages. :param verbose: set verbosity level. :param retry: number of retries in case of failure. :return: True on success. """ if verbose is None: verbose = conf.verb > 0 retry = abs(retry) startretry = retry scheme = conf.contribs['GMLAN']['GMLAN_ECU_AddressingScheme'] if addr < 0 or addr >= 2**(8 * scheme): warning("Error: Invalid address %s for scheme %s", hex(addr), str(scheme)) return False # max size of dataRecord according to gmlan protocol if maxmsglen is None or maxmsglen <= 0 or maxmsglen > (4093 - scheme): maxmsglen = (4093 - scheme) maxmsglen = cast(int, maxmsglen) for i in range(0, len(payload), maxmsglen): retry = startretry while True: if len(payload[i:]) > maxmsglen: transdata = payload[i:i + maxmsglen] else: transdata = payload[i:] pkt = GMLAN() / GMLAN_TD(startingAddress=addr + i, dataRecord=transdata) resp = sock.sr1(pkt, timeout=timeout, verbose=0) if _check_response(resp, verbose): break retry -= 1 if retry >= 0: if verbose: print("Retrying..") else: return False return True def GMLAN_TransferPayload(sock, addr, payload, maxmsglen=None, timeout=None, verbose=None, retry=0): # type: (ISOTPSocket, int, bytes, Optional[int], Optional[int], Optional[bool], int) -> bool # noqa: E501 """ Send data by using GMLAN services. :param sock: socket to send the data on. :param addr: destination memory address on the ECU. :param payload: data to be sent. :param maxmsglen: maximum length of a single iso-tp message. default: maximum length :param timeout: timeout for sending, receiving or sniffing packages. :param verbose: set verbosity level. :param retry: number of retries in case of failure. :return: True on success. """ if not GMLAN_RequestDownload(sock, len(payload), timeout=timeout, verbose=verbose, retry=retry): return False if not GMLAN_TransferData(sock, addr, payload, maxmsglen=maxmsglen, timeout=timeout, verbose=verbose, retry=retry): return False return True def GMLAN_ReadMemoryByAddress(sock, addr, length, timeout=None, verbose=None, retry=0): # type: (ISOTPSocket, int, int, Optional[int], Optional[bool], int) -> Optional[bytes] # noqa: E501 """ Read data from ECU memory. :param sock: socket to send the data on. :param addr: source memory address on the ECU. :param length: bytes to read. :param timeout: timeout for sending, receiving or sniffing packages. :param verbose: set verbosity level. :param retry: number of retries in case of failure. :return: bytes red or None """ if verbose is None: verbose = conf.verb > 0 retry = abs(retry) scheme = conf.contribs['GMLAN']['GMLAN_ECU_AddressingScheme'] if addr < 0 or addr >= 2**(8 * scheme): warning("Error: Invalid address %s for scheme %s", hex(addr), str(scheme)) return None # max size of dataRecord according to gmlan protocol if length <= 0 or length > (4094 - scheme): warning("Error: Invalid length %s for scheme %s. " "Choose between 0x1 and %s", hex(length), str(scheme), hex(4094 - scheme)) return None while retry >= 0: # RequestDownload pkt = GMLAN() / GMLAN_RMBA(memoryAddress=addr, memorySize=length) resp = sock.sr1(pkt, timeout=timeout, verbose=0) if _check_response(resp, verbose): return resp.dataRecord retry -= 1 if retry >= 0 and verbose: print("Retrying..") return None def GMLAN_BroadcastSocket(interface): # type: (str) -> ISOTPSocket """ Returns a GMLAN broadcast socket using interface. :param interface: interface name :return: ISOTPSocket configured as GMLAN Broadcast Socket """ return ISOTPSocket(interface, sid=0x101, did=0x0, basecls=GMLAN, extended_addr=0xfe, padding=True)
examples/hacker_news_assets/hacker_news_assets/pipelines/story_recommender.py
rpatil524/dagster
4,606
125409
<gh_stars>1000+ from dagster import fs_io_manager from dagster.core.asset_defs import build_assets_job from hacker_news_assets.assets.comment_stories import comment_stories from hacker_news_assets.assets.download_items import comments, stories from hacker_news_assets.assets.recommender_model import component_top_stories, recommender_model from hacker_news_assets.assets.user_story_matrix import user_story_matrix from hacker_news_assets.assets.user_top_recommended_stories import user_top_recommended_stories from hacker_news_assets.resources.fixed_s3_pickle_io_manager import fixed_s3_pickle_io_manager from hacker_news_assets.resources.snowflake_io_manager import ( snowflake_io_manager_dev, snowflake_io_manager_prod, ) DEV_RESOURCES = { "io_manager": fs_io_manager, "warehouse_io_manager": fs_io_manager, "source_warehouse_io_manager": snowflake_io_manager_dev, } PROD_RESOURCES = { "io_manager": fixed_s3_pickle_io_manager.configured({"bucket": "hackernews-elementl-prod"}), "warehouse_io_manager": snowflake_io_manager_prod, "source_warehouse_io_manager": snowflake_io_manager_prod, } assets = [ comment_stories, user_story_matrix, recommender_model, component_top_stories, user_top_recommended_stories, ] source_assets = [comments, stories] story_recommender_dev = build_assets_job( "story_recommender_dev", assets=assets, source_assets=source_assets, resource_defs=DEV_RESOURCES ) story_recommender_prod = build_assets_job( "story_recommender_prod", assets=assets, source_assets=source_assets, resource_defs=PROD_RESOURCES, )
ci/drone/supplier.py
parauliya/osie
108
125427
<gh_stars>100-1000 #!/usr/bin/env python from __future__ import print_function import json import os import packet m = packet.Manager(os.getenv("PACKET_API_TOKEN")) c = m.get_capacity() cap = {} for fac in c: for plan, v in c[fac].items(): p = cap.get(plan, {}) level = v["level"] lvl = p.get(level, []) lvl.append(fac) p[level] = lvl cap[plan] = p print(json.dumps(cap))
vissl/models/__init__.py
blazejdolicki/vissl
2,512
125440
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Here we create all the models required for SSL. The default model is BaseSSLMultiInputOutputModel, however users can create their own model. See #register_model below. """ from pathlib import Path from classy_vision.generic.registry_utils import import_all_modules from vissl.models.model_helpers import ( # noqa convert_sync_bn, is_feature_extractor_model, ) MODEL_REGISTRY = {} MODEL_NAMES = set() def register_model(name): """ Registers Self-Supervision Model. This decorator allows VISSL to add custom models, even if the model itself is not part of VISSL. To use it, apply this decorator to a model class, like this: .. code-block:: python @register_model('my_model_name') class MyModelName(): ... To get a model from a configuration file, see :func:`get_model`. The default model is BaseSSLMultiInputOutputModel. """ def register_model_class(func): if name in MODEL_REGISTRY: raise ValueError("Cannot register duplicate model ({})".format(name)) MODEL_REGISTRY[name] = func MODEL_NAMES.add(func.__name__) return func return register_model_class def get_model(model_name: str): """ Lookup the model_name in the model registry and return. If the model is not implemented, asserts will be thrown and workflow will exit. """ assert model_name in MODEL_REGISTRY, "Unknown model" return MODEL_REGISTRY[model_name] def build_model(model_config, optimizer_config): """ Given the model config and the optimizer config, construct the model. The returned model is not copied to gpu yet (if using gpu) and neither wrapped with DDP yet. This is done later train_task.py .prepare() """ model_name = model_config.BASE_MODEL_NAME model_cls = get_model(model_name) return model_cls(model_config, optimizer_config) # automatically import any Python files in the models/ directory FILE_ROOT = Path(__file__).parent import_all_modules(FILE_ROOT, "vissl.models")
examples/utils/app.py
pichatelli/simple-settings
213
125490
from simple_settings import settings from simple_settings.utils import settings_stub # Stub examples with settings_stub(SOME_SETTING='foo'): assert settings.SOME_SETTING == 'foo' assert settings.SOME_SETTING == 'bar' @settings_stub(SOME_SETTING='foo') def get_some_setting(): return settings.SOME_SETTING assert get_some_setting() == 'foo' assert settings.SOME_SETTING == 'bar'
Chapter03/3_9a_unix_domain_socket_server.py
shamir456/Python-Network-Programming-Cookbook-Second-Edition
125
125559
#!/usr/bin/env python # Python Network Programming Cookbook, Second Edition -- Chapter - 3 # This program is optimized for Python 2.7.12 and Python 3.5.2. # It may run on any other version with/without modifications. import socket import os import time SERVER_PATH = "/tmp/python_unix_socket_server" def run_unix_domain_socket_server(): if os.path.exists(SERVER_PATH): os.remove( SERVER_PATH ) print ("starting unix domain socket server.") server = socket.socket( socket.AF_UNIX, socket.SOCK_DGRAM ) server.bind(SERVER_PATH) print ("Listening on path: %s" %SERVER_PATH) while True: datagram = server.recv( 1024 ) if not datagram: break else: print ("-" * 20) print (datagram) if "DONE" == datagram: break print ("-" * 20) print ("Server is shutting down now...") server.close() os.remove(SERVER_PATH) print ("Server shutdown and path removed.") if __name__ == '__main__': run_unix_domain_socket_server()
LeetCode/python3/704.py
ZintrulCre/LeetCode_Archiver
279
125570
class Solution: def search(self, nums, target): """ :type nums: List[int] :type target: int :rtype: int """ start, end = 0, len(nums)- 1 while start <= end: mid = start + (end - start) // 2 if nums[mid] < target: start = mid + 1 elif nums[mid] > target: end = mid - 1 else: return mid return -1
tools/npy_2_aud.py
KeigoTakamura/Waveglow_Inference_in_CUDA
135
125578
<gh_stars>100-1000 import os, sys import numpy as np from scipy.io.wavfile import write folder = sys.argv[1] for file in os.listdir(folder): if file.endswith(".npy"): print(file, file.split(".")[0]) a = np.load(folder+file) write(folder+file.split(".")[0]+".wav", 22050, a)
oss_src/unity/python/sframe/__init__.py
venkattgg/venkey
493
125616
""" @package graphlab ... GraphLab Create is a machine learning platform that enables data scientists and app developers to easily create intelligent applications at scale. Building an intelligent, predictive application involves iterating over multiple steps: cleaning the data, developing features, training a model, and creating and maintaining a predictive service. GraphLab Create does all of this in one platform. It is easy to use, fast, and powerful. For more details on the GraphLab Create see http://turi.com, including documentation, tutorial, etc. """ ''' Copyright (C) 2016 Turi All rights reserved. This software may be modified and distributed under the terms of the BSD license. See the LICENSE file for details. ''' # Important to call this before everything else from .sys_util import setup_environment_from_config_file \ as _setup_environment_from_config_file _setup_environment_from_config_file() from . import util from .util import set_runtime_config from .util import get_runtime_config from .version_info import __VERSION__, version, build_number from .connect import _get_metric_tracker from . import visualization import os as _os import sys as _sys if _sys.platform != 'win32' or \ (_os.path.exists(_os.path.join(_os.path.dirname(__file__), 'cython', 'libstdc++-6.dll')) and \ _os.path.exists(_os.path.join(_os.path.dirname(__file__), 'cython', 'libgcc_s_seh-1.dll'))): from .data_structures.sgraph import Vertex, Edge from .data_structures.sgraph import SGraph from .data_structures.sframe import SFrame from .data_structures.sarray import SArray from .data_structures.sketch import Sketch from .data_structures.image import Image from .data_structures.sarray_builder import SArrayBuilder from .data_structures.sframe_builder import SFrameBuilder from .data_structures.sgraph import load_sgraph, load_graph from .toolkits._model import Model, CustomModel, load_model from . import aggregate from . import toolkits from .toolkits.image_analysis import image_analysis from .data_structures.sframe import load_sframe, get_spark_integration_jar_path from .data_structures.DBConnection import connect_odbc, get_libodbc_path, set_libodbc_path # internal util from .connect.main import launch as _launch from .connect.main import stop as _stop from .connect import main as glconnect from .util import get_environment_config from .util import get_graphlab_object_type from .util import get_log_location, get_client_log_location, get_server_log_location from .version_info import version from .version_info import __VERSION__ class DeprecationHelper(object): def __init__(self, new_target): self.new_target = new_target def _warn(self): import warnings import logging warnings.warn("Graph has been renamed to SGraph. The Graph class will be removed in the next release.", PendingDeprecationWarning) logging.warning("Graph has been renamed to SGraph. The Graph class will be removed in the next release.") def __call__(self, *args, **kwargs): self._warn() return self.new_target(*args, **kwargs) def __getattr__(self, attr): self._warn() return getattr(self.new_target, attr) Graph = DeprecationHelper(SGraph) from .cython import cy_pylambda_workers ################### Extension Importing ######################## from . import extensions from .extensions import ext_import extensions._add_meta_path() # rewrite the extensions module class _extensions_wrapper(object): def __init__(self, wrapped): self._wrapped = wrapped self.__doc__ = wrapped.__doc__ def __getattr__(self, name): try: return getattr(self._wrapped, name) except: pass from .connect.main import get_unity get_unity() return getattr(self._wrapped, name) from . import _json as json # imports from _json.py in this directory _sys.modules[__name__ + ".extensions"] = _extensions_wrapper(_sys.modules[__name__ + ".extensions"]) # rewrite the import extensions = _sys.modules[__name__ + ".extensions"] else: from dependencies import get_dependencies package_dir = _os.path.dirname(__file__) print(""" ACTION REQUIRED: Dependencies libstdc++-6.dll and libgcc_s_seh-1.dll not found. 1. Ensure user account has write permission to %s 2. Run sframe.get_dependencies() to download and install them. 3. Restart Python and import sframe again. By running the above function, you agree to the following licenses. * libstdc++: https://gcc.gnu.org/onlinedocs/libstdc++/manual/license.html * xz: http://git.tukaani.org/?p=xz.git;a=blob;f=COPYING """ % package_dir)
examples/parallel/run_parallel_sw_merimbula_test.py
GeoscienceAustralia/anuga_core
136
125623
#!/usr/bin/env python ######################################################### # # Main file for parallel mesh testing. # # This is a modification of the run_parallel_advection.py # file. # # # *) The (new) files that have been added to manage the # grid partitioning are # +) pmesh_divide_metis.py: subdivide a pmesh # +) build_submesh.py: build the submeshes on the host # processor. # +) build_local.py: build the GA mesh datastructure # on each processor. # +) build_commun.py: handle the communication between # the host and processors # # *) Things still to do: # +) Overlap the communication and computation: The # communication routines in build_commun.py should be # interdispersed in the build_submesh.py and build_local.py # files. This will overlap the communication and # computation and will be far more efficient. This should # be done after more testing and there more confidence in # the subpartioning. # +) Much more testing especially with large numbers of # processors. # Authors: <NAME>, <NAME> and <NAME>, # June 2005 # # # ######################################################### import sys #import pypar # The Python-MPI interface import time # Numeric arrays import numpy as num #from numpy import array, zeros, float # Print debugging information from print_stats import print_test_stats, build_full_flag # pmesh from anuga.shallow_water import Domain from parallel_shallow_water import Parallel_domain from anuga.abstract_2d_finite_volumes.pmesh2domain\ import pmesh_to_domain_instance # Reuse previous mesh import from anuga.caching import cache # Mesh partition routines from distribute_mesh import pmesh_divide_metis from distribute_mesh import build_submesh from distribute_mesh import build_local_mesh from distribute_mesh import send_submesh, rec_submesh, extract_submesh ############################### # Read in processor information ############################### numprocs = pypar.size() myid = pypar.rank() processor_name = pypar.get_processor_name() ############################ # Set the initial conditions ############################ rect = num.zeros( 4, num.float) # Buffer for results class Set_Stage: """Set an initial condition with constant water height, for x<x0 """ def __init__(self, x0=0.25, x1=0.5, h=1.0): self.x0 = x0 self.x1 = x1 self.h = h def __call__(self, x, y): return self.h*((x>self.x0)&(x<self.x1)) ####################### # Partition the domain ####################### if myid == 0: # Read in the test files # filename = 'test-100.tsh' # filename = 'merimbula_10785_1.tsh' filename = 'merimbula_43200.tsh' # Build the whole domain domain_full = pmesh_to_domain_instance(filename, Domain) # domain_full = cache(pmesh_to_domain_instance, # (filename, Domain), # dependencies = [filename]) rect = num.array(domain_full.get_extent(), num.float) print (rect) # Initialise the wave #domain_full.set_quantity('stage', Set_Stage(200.0,300.0,1.0)) domain_full.set_quantity('stage', Set_Stage(756000.0,756500.0,2.0)) # domain_full.set_quantity('stage', Set_Stage(756000.0,756500.0,0.0)) # Subdivide the domain # Note the different arguments compared with pmesh_divide, # pmesh_divide_steve etc. nodes, triangles, boundary, triangles_per_proc, quantities = \ pmesh_divide_metis(domain_full, numprocs) print (triangles_per_proc) rect = num.array(domain_full.get_extent(), num.float) submesh = build_submesh(nodes, triangles, boundary,\ quantities, triangles_per_proc) # Send the mesh partition to the appropriate processor for p in range(1, numprocs): send_submesh(submesh, triangles_per_proc, p) # Build the local mesh for processor 0 points, vertices, boundary, quantities, ghost_recv_dict, full_send_dict = \ extract_submesh(submesh, triangles_per_proc) # Read in the mesh partition that belongs to this # processor (note that the information is in the # correct form for the GA data structure else: points, vertices, boundary, quantities, ghost_recv_dict, full_send_dict , \ no_full_nodes, no_full_trigs = rec_submesh(0) ########################################### # Start the computations on each subpartion ########################################### #if myid == 0: # print 'ghost' # print ghost_recv_dict #processor_name #if myid == 0: # print 'full' # print full_send_dict # The visualiser needs to know the size of the whole domain pypar.broadcast(rect,0) domain = Parallel_domain(points, vertices, boundary, full_send_dict = full_send_dict, ghost_recv_dict = ghost_recv_dict) # Make a note of which triangles are full and which are ghost tri_full_flag = build_full_flag(domain, ghost_recv_dict) try: #domain.initialise_visualiser(rect=rect) #domain.visualiser.coloring['stage'] = True #domain.visualiser.scale_z['stage'] = 0.2 #domain.visualiser.scale_z['elevation'] = 0.05 pass except: print ('No visualiser') domain.default_order = 1 #Boundaries from anuga.interface import Transmissive_boundary, Reflective_boundary T = Transmissive_boundary(domain) R = Reflective_boundary(domain) domain.set_boundary( {'outflow': R, 'inflow': R, 'inner':R, 'exterior': R, 'open':R, 'ghost':None} ) domain.set_quantity('stage', quantities['stage']) domain.set_quantity('elevation', quantities['elevation']) domain.store = False #--------- # Evolution t0 = time.time() print ('Processor %d on %s: No of elements %d'%(domain.processor,processor_name,domain.number_of_elements)) yieldstep = 50.0 finaltime = 500.0 #yieldstep = 1000 #finaltime = 40000 #yieldstep = 1 #finaltime = 1 #processor_name #for t in domain.evolve(yieldstep = yieldstep, finaltime = finaltime): # if myid == 0: # domain.write_time() #print 'Processor %d, Integral of stage %d'%\ # (domain.processor,domain.quantities['stage'].get_integral()) # print_test_stats(domain, tri_full_flag) # Profiling #import profile #profiler = profile.Profile() #result.dump_stats("profile." + str(numprocs) + "." + str(myid) + ".dat") ## #New hotshot profiling ## import hotshot ## profiler = hotshot.Profile("hotshot." + str(numprocs) + "." + str(myid) + ".prof") ## s = '''for t in domain.evolve(yieldstep = yieldstep, finaltime = finaltime): ## if myid == 0: ## domain.write_time() ## print_test_stats(domain, tri_full_flag) ## ''' ## result = profiler.runctx(s, globals(), locals()) ## profiler.close() #from vtk_realtime_visualiser import Visualiser #V = Visualiser(domain,default_scale_z=100.0) #V.coloring['stage'] = True #V.coloring['elevation'] = False #V.setup['elevation']=True #V.updating['stage']=True #V.qcolor['stage'] = (0.1,0.4,0.99) #V.start() #V.idle.wait() #V.idle.clear() for t in domain.evolve(yieldstep = yieldstep, finaltime = finaltime): if myid == 0: domain.write_time() #print_test_stats(domain, tri_full_flag) # V.redraw_ready.set() # V.idle.wait() # V.idle.clear() # V.unpaused.wait() #print 'P%d: That took %.2f seconds' %(myid, time.time()-t0) #print 'P%d: Communication time %.2f seconds' %(myid, domain.communication_time) #print 'P%d: Reduction Communication time %.2f seconds' %(myid, domain.communication_reduce_time) #print 'P%d: Broadcast time %.2f seconds' %(myid, domain.communication_broadcast_time) if myid == 0: print ('That took %.2f seconds' %(time.time()-t0)) print ('Communication time %.2f seconds'%domain.communication_time) print ('Reduction Communication time %.2f seconds'%domain.communication_reduce_time) print ('Broadcast time %.2f seconds'%domain.communication_broadcast_time) pypar.finalize()