dev02chandan's picture
Upload README.md with huggingface_hub
c8bcd48 verified
metadata
license: apache-2.0
library_name: scikit-learn
tags:
  - tabular-regression
  - sales-forecast
  - gradient-boosting
  - cross-sectional
datasets:
  - dev02chandan/sales-forecast-dataset
metrics:
  - rmse
  - mae
  - mape
  - smape

Sales Forecast Model (GBR)

Task: Predict Product_Store_Sales_Total from product and store attributes.
Data: dev02chandan/sales-forecast-dataset (raw/SuperKart.csv with processed train/test under processed/).
Model: GradientBoostingRegressor selected via GroupKFold CV on Store_Id.

Test Metrics

  • CV RMSE: 1157.1346565946897
  • RMSE: 1600.05837632221
  • MAE: 1405.5687461646362
  • MAPE: 27.069205177956633
  • sMAPE: 32.25248697544593

Usage

from huggingface_hub import hf_hub_download
import joblib, pandas as pd

pkl_path = hf_hub_download(repo_id="dev02chandan/sales-forecast-model", filename="model.pkl", repo_type="model")
model = joblib.load(pkl_path)

# X must contain the same columns used in training (one-hot is inside the pipeline)
# Example:
# X = pd.DataFrame([...])
# y_pred = model.predict(X)