|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: openai/whisper-medium |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: stt |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# stt |
|
|
|
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4300 |
|
- Wer Ortho: 21.3276 |
|
- Wer: 14.7093 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 50 |
|
- training_steps: 8000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:---------:|:-------:| |
|
| 0.4135 | 0.6180 | 500 | 0.4069 | 29.9115 | 21.6319 | |
|
| 0.2036 | 1.2361 | 1000 | 0.3584 | 25.8738 | 18.3552 | |
|
| 0.1899 | 1.8541 | 1500 | 0.3390 | 24.0940 | 16.4814 | |
|
| 0.0978 | 2.4722 | 2000 | 0.3406 | 24.1957 | 16.8982 | |
|
| 0.0584 | 3.0902 | 2500 | 0.3589 | 22.7718 | 15.9189 | |
|
| 0.0457 | 3.7083 | 3000 | 0.3660 | 23.3075 | 15.8580 | |
|
| 0.0203 | 4.3263 | 3500 | 0.3762 | 22.9108 | 15.7394 | |
|
| 0.0193 | 4.9444 | 4000 | 0.3683 | 22.0192 | 15.2616 | |
|
| 0.0073 | 5.5624 | 4500 | 0.3926 | 22.5447 | 15.5801 | |
|
| 0.0022 | 6.1805 | 5000 | 0.4065 | 21.5649 | 14.9092 | |
|
| 0.0022 | 6.7985 | 5500 | 0.4080 | 21.2835 | 14.6313 | |
|
| 0.0009 | 7.4166 | 6000 | 0.4180 | 21.2564 | 14.6415 | |
|
| 0.0007 | 8.0346 | 6500 | 0.4244 | 21.2361 | 14.6551 | |
|
| 0.0006 | 8.6527 | 7000 | 0.4283 | 21.3276 | 14.6957 | |
|
| 0.0006 | 9.2707 | 7500 | 0.4297 | 21.3378 | 14.7059 | |
|
| 0.0006 | 9.8888 | 8000 | 0.4300 | 21.3276 | 14.7093 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.51.3 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.6.0 |
|
- Tokenizers 0.21.1 |
|
|