File size: 982 Bytes
c1cb360
 
 
fe371ad
 
1aeb34c
c1cb360
b47e2d8
c1cb360
b47e2d8
7e91a22
b47e2d8
 
c1cb360
 
b3aebd1
c1cb360
1aeb34c
 
b3aebd1
1aeb34c
 
c1cb360
b3aebd1
c1cb360
1aeb34c
b47e2d8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
from typing import Dict, List, Any
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline


class EndpointHandler:
    def __init__(self, path=""):
        # load the model
        tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-1.5B-Instruct")
        model = AutoModelForCausalLM.from_pretrained(
            "Qwen/Qwen2-1.5B-Instruct",
            torch_dtype="auto",
            device_map="auto"
        )
        # create inference pipeline
        self.pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)

    def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
        inputs = data.pop("inputs", data)
        parameters = data.pop("parameters", None)

        # pass inputs with all kwargs in data
        if parameters is not None:
            prediction = self.pipeline(inputs, **parameters)
        else:
            prediction = self.pipeline(inputs)
        # postprocess the prediction
        return prediction