|
--- |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
- rouge |
|
model-index: |
|
- name: bert-small-codesearchnet-python |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-small-codesearchnet-python |
|
|
|
This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0582 |
|
- Bleu: 0.0347 |
|
- Rouge1: 0.6428 |
|
- Rouge2: 0.6252 |
|
- Avg Length: 17.891 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 10 |
|
- total_train_batch_size: 80 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge1 | Rouge2 | Avg Length | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:----------:| |
|
| No log | 1.0 | 375 | 1.2151 | 0.0 | 0.0928 | 0.0083 | 10.684 | |
|
| 1.9359 | 2.0 | 750 | 1.0291 | 0.0032 | 0.1752 | 0.0338 | 15.0624 | |
|
| 0.9422 | 3.0 | 1125 | 0.9173 | 0.0061 | 0.2506 | 0.0711 | 17.9358 | |
|
| 0.776 | 4.0 | 1500 | 0.8058 | 0.0088 | 0.3321 | 0.1409 | 18.3724 | |
|
| 0.776 | 5.0 | 1875 | 0.6915 | 0.0123 | 0.4044 | 0.2267 | 18.564 | |
|
| 0.6218 | 6.0 | 2250 | 0.5281 | 0.0193 | 0.5382 | 0.4097 | 17.5586 | |
|
| 0.4363 | 7.0 | 2625 | 0.1897 | 0.0333 | 0.6311 | 0.6002 | 17.8768 | |
|
| 0.1518 | 8.0 | 3000 | 0.0834 | 0.0346 | 0.6413 | 0.621 | 17.879 | |
|
| 0.1518 | 9.0 | 3375 | 0.0587 | 0.0349 | 0.6439 | 0.6268 | 17.8886 | |
|
| 0.0579 | 10.0 | 3750 | 0.0547 | 0.0348 | 0.6443 | 0.6276 | 17.885 | |
|
| 0.0437 | 11.0 | 4125 | 0.0525 | 0.0348 | 0.6442 | 0.6278 | 17.8766 | |
|
| 0.0365 | 12.0 | 4500 | 0.0550 | 0.0347 | 0.6436 | 0.6266 | 17.8876 | |
|
| 0.0365 | 13.0 | 4875 | 0.0545 | 0.0347 | 0.6439 | 0.627 | 17.876 | |
|
| 0.032 | 14.0 | 5250 | 0.0539 | 0.0347 | 0.644 | 0.6268 | 17.8822 | |
|
| 0.0288 | 15.0 | 5625 | 0.0582 | 0.0347 | 0.6428 | 0.6252 | 17.891 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.1 |
|
- Pytorch 2.0.0+cu118 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|