|
--- |
|
base_model: |
|
- Qwen/Qwen2.5-Coder-7B-Instruct |
|
datasets: |
|
- luzimu/WebGen-Bench |
|
language: |
|
- en |
|
library_name: transformers |
|
license: mit |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-generation |
|
tags: |
|
- code-generation |
|
--- |
|
|
|
# WebGen-LM |
|
|
|
WebGen-LM is trained using the Bolt.diy trajectories generated from a subset of the training set of WebGen-Bench (π€ [luzimu/WebGen-Bench](https://huggingface.co/datasets/luzimu/WebGen-Bench)). It has been introduced in the paper [WebGen-Bench: Evaluating LLMs on Generating Interactive and Functional Websites from Scratch](https://arxiv.org/abs/2505.03733). |
|
|
|
The training data and code can be found at [WebGen-Bench (Github)](https://github.com/mnluzimu/WebGen-Bench). |
|
|
|
The WebGen-LM family of models are as follows: |
|
|
|
|Models | HF Links | |
|
|---|---| |
|
|WebGen-LM-7B | π€ [luzimu/WebGen-LM-7B](https://huggingface.co/luzimu/WebGen-LM-7B) | |
|
|WebGen-LM-14B | π€ [luzimu/WebGen-LM-14B](https://huggingface.co/luzimu/WebGen-LM-14B) | |
|
|WebGen-LM-32B | π€ [luzimu/WebGen-LM-32B](https://huggingface.co/luzimu/WebGen-LM-32B) | |
|
|
|
## Performance on WebGen-Bench |
|
|
|
 |
|
|
|
## Sample Usage |
|
|
|
You can use this model with the Hugging Face `transformers` library. |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
|
|
model_id = "luzimu/WebGen-LM-7B" # This model card refers to WebGen-LM-7B |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto") |
|
|
|
# Example for website generation |
|
user_prompt = "Generate a simple HTML page with a heading 'Hello, World!' and a paragraph of lorem ipsum text." |
|
messages = [ |
|
{"role": "user", "content": user_prompt} |
|
] |
|
|
|
# Apply chat template for instruction-following format |
|
text_input = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
|
|
# Generate output |
|
model_inputs = tokenizer(text_input, return_tensors="pt").to(model.device) |
|
generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=500, do_sample=True, temperature=0.01, top_k=50, top_p=0.95) |
|
|
|
# Decode and print the generated code |
|
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) |
|
print(generated_text) |
|
|
|
# Example using Hugging Face pipeline for simpler inference |
|
generator = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
result = generator(user_prompt, max_new_tokens=500, do_sample=True, temperature=0.01, top_k=50, top_p=0.95) |
|
print(result[0]['generated_text']) |
|
``` |
|
|
|
## Citation |
|
|
|
If you find our project useful, please cite: |
|
|
|
``` |
|
@misc{lu2025webgenbenchevaluatingllmsgenerating, |
|
title={WebGen-Bench: Evaluating LLMs on Generating Interactive and Functional Websites from Scratch}, |
|
author={Zimu Lu and Yunqiao Yang and Houxing Ren and Haotian Hou and Han Xiao and Ke Wang and Weikang Shi and Aojun Zhou and Mingjie Zhan and Hongsheng Li}, |
|
year={2025}, |
|
eprint={2505.03733}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/2505.03733}, |
|
} |
|
``` |