|
--- |
|
license: apache-2.0 |
|
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 |
|
tags: |
|
- tinyllama |
|
- lora |
|
- peft |
|
- python |
|
- code |
|
- fine-tuning |
|
model_type: causal-lm |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
# π TinyLLaMA LoRA - Fine-tuned on Python Code |
|
|
|
This is a **LoRA fine-tuned version** of [`TinyLlama/TinyLlama-1.1B-Chat-v1.0`](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) using a subset of Python code from the `codeparrot` dataset. It is trained to generate Python functions and code snippets based on natural language or code-based prompts. |
|
|
|
## π§ Training Details |
|
|
|
- **Base model**: `TinyLlama/TinyLlama-1.1B-Chat-v1.0` |
|
- **Adapter type**: LoRA (PEFT) |
|
- **Dataset**: `codeparrot/codeparrot-clean-valid[:1000]` |
|
- **Tokenized max length**: 512 |
|
- **Trained on**: Apple M3 Pro (MPS backend) |
|
- **Epochs**: 1 |
|
- **Batch size**: 1 (with gradient accumulation) |
|
|
|
## π‘ Example Usage |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from peft import PeftModel |
|
|
|
base_model = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" |
|
adapter_model = "your-username/tinyllama-python-lora" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(base_model) |
|
model = AutoModelForCausalLM.from_pretrained(base_model) |
|
model = PeftModel.from_pretrained(model, adapter_model) |
|
|
|
prompt = "<|python|>\ndef fibonacci(n):" |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
outputs = model.generate(**inputs, max_new_tokens=100) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
``` |
|
|
|
## π§ Intended Use |
|
Code completion for Python |
|
|
|
Teaching LLMs Python function structure |
|
|
|
Experimentation with LoRA on small code datasets |
|
|
|
##β οΈ Limitations |
|
Trained on a small subset of data (1,000 samples) |
|
|
|
May hallucinate or generate syntactically incorrect code |
|
|
|
Not suitable for production use without further fine-tuning and evaluation |
|
|
|
## π License |
|
Apache 2.0 β same as the base model. |