|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- Team-ACE/ToolACE |
|
language: |
|
- en |
|
metrics: |
|
- accuracy |
|
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct |
|
tags: |
|
- code |
|
--- |
|
|
|
|
|
|
|
### Usage |
|
Here we provide a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate function calling with given functions. |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "Team-ACE/ToolACE-2-Llama-3.1-8B" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype='auto', |
|
device_map='auto' |
|
) |
|
|
|
|
|
# You can modify the prompt for your task |
|
system_prompt = """You are an expert in composing functions. You are given a question and a set of possible functions. Based on the question, you will need to make one or more function/tool calls to achieve the purpose. |
|
If none of the function can be used, point it out. If the given question lacks the parameters required by the function, also point it out. |
|
You should only return the function call in tools call sections. |
|
|
|
If you decide to invoke any of the function(s), you MUST put it in the format of [func_name1(params_name1=params_value1, params_name2=params_value2...), func_name2(params)] |
|
You SHOULD NOT include any other text in the response. |
|
Here is a list of functions in JSON format that you can invoke.\n{functions}\n |
|
""" |
|
|
|
# User query |
|
query = "Find me the sales growth rate for company XYZ for the last 3 years and also the interest coverage ratio for the same duration." |
|
|
|
# Availabel tools in JSON format (OpenAI-format) |
|
tools = [ |
|
{ |
|
"name": "financial_ratios.interest_coverage", "description": "Calculate a company's interest coverage ratio given the company name and duration", |
|
"arguments": { |
|
"type": "dict", |
|
"properties": { |
|
"company_name": { |
|
"type": "string", |
|
"description": "The name of the company." |
|
}, |
|
"years": { |
|
"type": "integer", |
|
"description": "Number of past years to calculate the ratio." |
|
} |
|
}, |
|
"required": ["company_name", "years"] |
|
} |
|
}, |
|
{ |
|
"name": "sales_growth.calculate", |
|
"description": "Calculate a company's sales growth rate given the company name and duration", |
|
"arguments": { |
|
"type": "dict", |
|
"properties": { |
|
"company": { |
|
"type": "string", |
|
"description": "The company that you want to get the sales growth rate for." |
|
}, |
|
"years": { |
|
"type": "integer", |
|
"description": "Number of past years for which to calculate the sales growth rate." |
|
} |
|
}, |
|
"required": ["company", "years"] |
|
} |
|
}, |
|
{ |
|
"name": "weather_forecast", |
|
"description": "Retrieve a weather forecast for a specific location and time frame.", |
|
"arguments": { |
|
"type": "dict", |
|
"properties": { |
|
"location": { |
|
"type": "string", |
|
"description": "The city that you want to get the weather for." |
|
}, |
|
"days": { |
|
"type": "integer", |
|
"description": "Number of days for the forecast." |
|
} |
|
}, |
|
"required": ["location", "days"] |
|
} |
|
} |
|
] |
|
|
|
messages = [ |
|
{'role': 'system', 'content': system_prompt.format(functions=tools)}, |
|
{'role': 'user', 'content': query} |
|
] |
|
|
|
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device) |
|
|
|
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id) |
|
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)) |
|
``` |
|
|
|
Then you should be able to see the following output functional calls: |
|
``` |
|
[sales_growth.calculate(company="XYZ", years=3), financial_ratios.interest_coverage(company_name="XYZ", years=3)] |
|
``` |
|
|
|
|
|
|
|
|