File size: 4,280 Bytes
28adb60
 
 
 
 
 
f2e3176
60ba673
28adb60
 
 
 
 
 
 
 
 
f2e3176
60ba673
 
f2e3176
28adb60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60ba673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2e3176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Accuracy evaluation of models in OpenCV Zoo

Make sure you have the following packages installed:

```shell
pip install tqdm
pip install scikit-learn
pip install scipy
```

Generally speaking, evaluation can be done with the following command:

```shell
python eval.py -m model_name -d dataset_name -dr dataset_root_dir
```

Supported datasets:

- [ImageNet](#imagenet)
- [WIDERFace](#widerface)
- [LFW](#lfw)

## ImageNet

### Prepare data

Please visit https://image-net.org/ to download the ImageNet dataset and [the labels from caffe](http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz). Organize files as follow:

```shell
$ tree -L 2 /path/to/imagenet
.
β”œβ”€β”€ caffe_ilsvrc12
β”‚Β Β  β”œβ”€β”€ det_synset_words.txt
β”‚Β Β  β”œβ”€β”€ imagenet.bet.pickle
β”‚Β Β  β”œβ”€β”€ imagenet_mean.binaryproto
β”‚Β Β  β”œβ”€β”€ synsets.txt
β”‚Β Β  β”œβ”€β”€ synset_words.txt
β”‚Β Β  β”œβ”€β”€ test.txt
β”‚Β Β  β”œβ”€β”€ train.txt
β”‚Β Β  └── val.txt
β”œβ”€β”€ caffe_ilsvrc12.tar.gz
β”œβ”€β”€ ILSVRC
β”‚Β Β  β”œβ”€β”€ Annotations
β”‚Β Β  β”œβ”€β”€ Data
β”‚Β Β  └── ImageSets
β”œβ”€β”€ imagenet_object_localization_patched2019.tar.gz
β”œβ”€β”€ LOC_sample_submission.csv
β”œβ”€β”€ LOC_synset_mapping.txt
β”œβ”€β”€ LOC_train_solution.csv
└── LOC_val_solution.csv
```

### Evaluation

Run evaluation with the following command:

```shell
python eval.py -m mobilenet -d imagenet -dr /path/to/imagenet
```

## WIDERFace

The script is modified based on [WiderFace-Evaluation](https://github.com/wondervictor/WiderFace-Evaluation).

### Prepare data

Please visit http://shuoyang1213.me/WIDERFACE to download the WIDERFace dataset [Validation Images](https://huggingface.co/datasets/wider_face/resolve/main/data/WIDER_val.zip), [Face annotations](http://shuoyang1213.me/WIDERFACE/support/bbx_annotation/wider_face_split.zip) and [eval_tools](http://shuoyang1213.me/WIDERFACE/support/eval_script/eval_tools.zip). Organize files as follow:

```shell
$ tree -L 2 /path/to/widerface
.
β”œβ”€β”€ eval_tools
β”‚Β Β  β”œβ”€β”€ boxoverlap.m
β”‚Β Β  β”œβ”€β”€ evaluation.m
β”‚Β Β  β”œβ”€β”€ ground_truth
β”‚Β Β  β”œβ”€β”€ nms.m
β”‚Β Β  β”œβ”€β”€ norm_score.m
β”‚Β Β  β”œβ”€β”€ plot
β”‚Β Β  β”œβ”€β”€ read_pred.m
β”‚Β Β  └── wider_eval.m
β”œβ”€β”€ wider_face_split
β”‚Β Β  β”œβ”€β”€ readme.txt
β”‚Β Β  β”œβ”€β”€ wider_face_test_filelist.txt
β”‚Β Β  β”œβ”€β”€ wider_face_test.mat
β”‚Β Β  β”œβ”€β”€ wider_face_train_bbx_gt.txt
β”‚Β Β  β”œβ”€β”€ wider_face_train.mat
β”‚Β Β  β”œβ”€β”€ wider_face_val_bbx_gt.txt
β”‚Β Β  └── wider_face_val.mat
└── WIDER_val
    └── images
```

### Evaluation

Run evaluation with the following command:

```shell
python eval.py -m yunet -d widerface -dr /path/to/widerface
```

## LFW

The script is modified based on [evaluation of InsightFace](https://github.com/deepinsight/insightface/blob/f92bf1e48470fdd567e003f196f8ff70461f7a20/src/eval/lfw.py).

This evaluation uses [YuNet](../../models/face_detection_yunet) as face detector. The structure of the face bounding boxes saved in [lfw_face_bboxes.npy](../eval/datasets/lfw_face_bboxes.npy) is shown below.
Each row represents the bounding box of the main face that will be used in each image.

```shell
[
  [x, y, w, h, x_re, y_re, x_le, y_le, x_nt, y_nt, x_rcm, y_rcm, x_lcm, y_lcm],
  ...
  [x, y, w, h, x_re, y_re, x_le, y_le, x_nt, y_nt, x_rcm, y_rcm, x_lcm, y_lcm]
]
```

`x1, y1, w, h` are the top-left coordinates, width and height of the face bounding box, `{x, y}_{re, le, nt, rcm, lcm}` stands for the coordinates of right eye, left eye, nose tip, the right corner and left corner of the mouth respectively. Data type of this numpy array is `np.float32`.


### Prepare data

Please visit http://vis-www.cs.umass.edu/lfw to download the LFW [all images](http://vis-www.cs.umass.edu/lfw/lfw.tgz)(needs to be decompressed) and [pairs.txt](http://vis-www.cs.umass.edu/lfw/pairs.txt)(needs to be placed in the `view2` folder). Organize files as follow:

```shell
$ tree -L 2 /path/to/lfw
.
β”œβ”€β”€ lfw
β”‚Β Β  β”œβ”€β”€ Aaron_Eckhart
β”‚Β Β  β”œβ”€β”€ ...
β”‚Β Β  └── Zydrunas_Ilgauskas
└── view2
 Β Β  └── pairs.txt
```

### Evaluation

Run evaluation with the following command:

```shell
python eval.py -m sface -d lfw -dr /path/to/lfw
```