File size: 4,280 Bytes
28adb60 f2e3176 60ba673 28adb60 f2e3176 60ba673 f2e3176 28adb60 60ba673 f2e3176 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
# Accuracy evaluation of models in OpenCV Zoo
Make sure you have the following packages installed:
```shell
pip install tqdm
pip install scikit-learn
pip install scipy
```
Generally speaking, evaluation can be done with the following command:
```shell
python eval.py -m model_name -d dataset_name -dr dataset_root_dir
```
Supported datasets:
- [ImageNet](#imagenet)
- [WIDERFace](#widerface)
- [LFW](#lfw)
## ImageNet
### Prepare data
Please visit https://image-net.org/ to download the ImageNet dataset and [the labels from caffe](http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz). Organize files as follow:
```shell
$ tree -L 2 /path/to/imagenet
.
βββ caffe_ilsvrc12
βΒ Β βββ det_synset_words.txt
βΒ Β βββ imagenet.bet.pickle
βΒ Β βββ imagenet_mean.binaryproto
βΒ Β βββ synsets.txt
βΒ Β βββ synset_words.txt
βΒ Β βββ test.txt
βΒ Β βββ train.txt
βΒ Β βββ val.txt
βββ caffe_ilsvrc12.tar.gz
βββ ILSVRC
βΒ Β βββ Annotations
βΒ Β βββ Data
βΒ Β βββ ImageSets
βββ imagenet_object_localization_patched2019.tar.gz
βββ LOC_sample_submission.csv
βββ LOC_synset_mapping.txt
βββ LOC_train_solution.csv
βββ LOC_val_solution.csv
```
### Evaluation
Run evaluation with the following command:
```shell
python eval.py -m mobilenet -d imagenet -dr /path/to/imagenet
```
## WIDERFace
The script is modified based on [WiderFace-Evaluation](https://github.com/wondervictor/WiderFace-Evaluation).
### Prepare data
Please visit http://shuoyang1213.me/WIDERFACE to download the WIDERFace dataset [Validation Images](https://huggingface.co/datasets/wider_face/resolve/main/data/WIDER_val.zip), [Face annotations](http://shuoyang1213.me/WIDERFACE/support/bbx_annotation/wider_face_split.zip) and [eval_tools](http://shuoyang1213.me/WIDERFACE/support/eval_script/eval_tools.zip). Organize files as follow:
```shell
$ tree -L 2 /path/to/widerface
.
βββ eval_tools
βΒ Β βββ boxoverlap.m
βΒ Β βββ evaluation.m
βΒ Β βββ ground_truth
βΒ Β βββ nms.m
βΒ Β βββ norm_score.m
βΒ Β βββ plot
βΒ Β βββ read_pred.m
βΒ Β βββ wider_eval.m
βββ wider_face_split
βΒ Β βββ readme.txt
βΒ Β βββ wider_face_test_filelist.txt
βΒ Β βββ wider_face_test.mat
βΒ Β βββ wider_face_train_bbx_gt.txt
βΒ Β βββ wider_face_train.mat
βΒ Β βββ wider_face_val_bbx_gt.txt
βΒ Β βββ wider_face_val.mat
βββ WIDER_val
βββ images
```
### Evaluation
Run evaluation with the following command:
```shell
python eval.py -m yunet -d widerface -dr /path/to/widerface
```
## LFW
The script is modified based on [evaluation of InsightFace](https://github.com/deepinsight/insightface/blob/f92bf1e48470fdd567e003f196f8ff70461f7a20/src/eval/lfw.py).
This evaluation uses [YuNet](../../models/face_detection_yunet) as face detector. The structure of the face bounding boxes saved in [lfw_face_bboxes.npy](../eval/datasets/lfw_face_bboxes.npy) is shown below.
Each row represents the bounding box of the main face that will be used in each image.
```shell
[
[x, y, w, h, x_re, y_re, x_le, y_le, x_nt, y_nt, x_rcm, y_rcm, x_lcm, y_lcm],
...
[x, y, w, h, x_re, y_re, x_le, y_le, x_nt, y_nt, x_rcm, y_rcm, x_lcm, y_lcm]
]
```
`x1, y1, w, h` are the top-left coordinates, width and height of the face bounding box, `{x, y}_{re, le, nt, rcm, lcm}` stands for the coordinates of right eye, left eye, nose tip, the right corner and left corner of the mouth respectively. Data type of this numpy array is `np.float32`.
### Prepare data
Please visit http://vis-www.cs.umass.edu/lfw to download the LFW [all images](http://vis-www.cs.umass.edu/lfw/lfw.tgz)(needs to be decompressed) and [pairs.txt](http://vis-www.cs.umass.edu/lfw/pairs.txt)(needs to be placed in the `view2` folder). Organize files as follow:
```shell
$ tree -L 2 /path/to/lfw
.
βββ lfw
βΒ Β βββ Aaron_Eckhart
βΒ Β βββ ...
βΒ Β βββ Zydrunas_Ilgauskas
βββ view2
Β Β βββ pairs.txt
```
### Evaluation
Run evaluation with the following command:
```shell
python eval.py -m sface -d lfw -dr /path/to/lfw
``` |