File size: 6,275 Bytes
d34bdca
af1afb3
 
 
42310ef
e7d94f5
584bcfa
 
 
 
 
 
d34bdca
e7d94f5
 
 
 
 
 
d34bdca
 
 
 
a9286c4
2ef6bc9
ed7f07e
e7d94f5
43ce9de
 
 
 
 
 
d6f4836
43ce9de
 
 
 
ed7f07e
 
e7d94f5
d34bdca
d2b2b68
ed7f07e
d34bdca
ed7f07e
 
237ca2e
 
 
e7d94f5
237ca2e
 
69ad792
237ca2e
ebeb80f
596a24b
69ad792
596a24b
237ca2e
 
69ad792
237ca2e
e6640a8
 
69ad792
e6640a8
bbe6825
 
69ad792
bbe6825
69ad792
bbe6825
237ca2e
 
69ad792
237ca2e
e6640a8
 
69ad792
57699b7
 
 
69ad792
e6640a8
af3dd88
 
69ad792
af3dd88
ab8d410
 
69ad792
ab8d410
e6640a8
 
69ad792
e6640a8
265aa2c
 
69ad792
265aa2c
 
 
69ad792
265aa2c
5301781
 
69ad792
5301781
af1afb3
 
42310ef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# OpenCV Zoo and Benchmark

A zoo for models tuned for OpenCV DNN with benchmarks on different platforms.

Guidelines:

- Install latest `opencv-python`:
  ```shell
  python3 -m pip install opencv-python
  # Or upgrade to latest version
  python3 -m pip install --upgrade opencv-python
  ```
- Clone this repo to download all models and demo scripts:
  ```shell
  # Install git-lfs from https://git-lfs.github.com/
  git clone https://github.com/opencv/opencv_zoo && cd opencv_zoo
  git lfs install
  git lfs pull
  ```
- To run benchmarks on your hardware settings, please refer to [benchmark/README](./benchmark/README.md).

## Models & Benchmark Results

![](benchmark/color_table.svg?raw=true)

Hardware Setup:

- [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html): 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads.
- [Raspberry Pi 4B](https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/): Broadcom BCM2711 SoC with a Quad core Cortex-A72 (ARM v8) 64-bit @ 1.5 GHz.
- [Toybrick RV1126](https://t.rock-chips.com/en/portal.php?mod=view&aid=26): Rockchip RV1126 SoC with a quard-core ARM Cortex-A7 CPU and a 2.0 TOPs NPU.
- [Khadas Edge 2](https://www.khadas.com/edge2): Rockchip RK3588S SoC with a CPU of 2.25 GHz Quad Core ARM Cortex-A76 + 1.8 GHz Quad Core Cortex-A55, and a 6 TOPS NPU.
- [Horizon Sunrise X3](https://developer.horizon.ai/sunrise): an SoC from Horizon Robotics with a quad-core ARM Cortex-A53 1.2 GHz CPU and a 5 TOPS BPU (a.k.a NPU).
- [MAIX-III AXera-Pi](https://wiki.sipeed.com/hardware/en/maixIII/ax-pi/axpi.html#Hardware): Axera AX620A SoC with a quad-core ARM Cortex-A7 CPU and a 3.6 TOPS @ int8 NPU.
- [StarFive VisionFive 2](https://doc-en.rvspace.org/VisionFive2/Product_Brief/VisionFive_2/specification_pb.html): `StarFive JH7110` SoC with a RISC-V quad-core CPU, which can turbo up to 1.5GHz, and an GPU of model `IMG BXE-4-32 MC1` from Imagination, which has a work freq up to 600MHz.
- [NVIDIA Jetson Nano B01](https://developer.nvidia.com/embedded/jetson-nano-developer-kit): a Quad-core ARM A57 @ 1.43 GHz CPU, and a 128-core NVIDIA Maxwell GPU.
- [Khadas VIM3](https://www.khadas.com/vim3): Amlogic A311D SoC with a 2.2GHz Quad core ARM Cortex-A73 + 1.8GHz dual core Cortex-A53 ARM CPU, and a 5 TOPS NPU. Benchmarks are done using **per-tensor quantized** models. Follow [this guide](https://github.com/opencv/opencv/wiki/TIM-VX-Backend-For-Running-OpenCV-On-NPU) to build OpenCV with TIM-VX backend enabled.
- [Atlas 200 DK](https://e.huawei.com/en/products/computing/ascend/atlas-200): Ascend 310 NPU with 22 TOPS @ INT8. Follow [this guide](https://github.com/opencv/opencv/wiki/Huawei-CANN-Backend) to build OpenCV with CANN backend enabled.
- [Allwinner Nezha D1](https://d1.docs.aw-ol.com/en): Allwinner D1 SoC with a 1.0 GHz single-core RISC-V [Xuantie C906 CPU](https://www.t-head.cn/product/C906?spm=a2ouz.12986968.0.0.7bfc1384auGNPZ) with RVV 0.7.1 support. YuNet is tested for now. Visit [here](https://github.com/fengyuentau/opencv_zoo_cpp) for more details.

***Important Notes***:

- The data under each column of hardware setups on the above table represents the elapsed time of an inference (preprocess, forward and postprocess).
- The time data is the mean of 10 runs after some warmup runs. Different metrics may be applied to some specific models.
- Batch size is 1 for all benchmark results.
- `---` represents the model is not availble to run on the device.
- View [benchmark/config](./benchmark/config) for more details on benchmarking different models.

## Some Examples

Some examples are listed below. You can find more in the directory of each model!

### Face Detection with [YuNet](./models/face_detection_yunet/)

![largest selfie](./models/face_detection_yunet/example_outputs/largest_selfie.jpg)

### Facial Expression Recognition with [Progressive Teacher](./models/facial_expression_recognition/)

![fer demo](./models/facial_expression_recognition/example_outputs/selfie.jpg)

### Human Segmentation with [PP-HumanSeg](./models/human_segmentation_pphumanseg/)

![messi](./models/human_segmentation_pphumanseg/example_outputs/messi.jpg)

### License Plate Detection with [LPD_YuNet](./models/license_plate_detection_yunet/)

![license plate detection](./models/license_plate_detection_yunet/example_outputs/lpd_yunet_demo.gif)

### Object Detection with [NanoDet](./models/object_detection_nanodet/) & [YOLOX](./models/object_detection_yolox/)

![nanodet demo](./models/object_detection_nanodet/example_outputs/1_res.jpg)

![yolox demo](./models/object_detection_yolox/example_outputs/3_res.jpg)

### Object Tracking with [DaSiamRPN](./models/object_tracking_dasiamrpn/)

![webcam demo](./models/object_tracking_dasiamrpn/example_outputs/dasiamrpn_demo.gif)

### Palm Detection with [MP-PalmDet](./models/palm_detection_mediapipe/)

![palm det](./models/palm_detection_mediapipe/example_outputs/mppalmdet_demo.gif)

### Hand Pose Estimation with [MP-HandPose](models/handpose_estimation_mediapipe/)

![handpose estimation](models/handpose_estimation_mediapipe/example_outputs/mphandpose_demo.webp)

### Person Detection with [MP-PersonDet](./models/person_detection_mediapipe)

![person det](./models/person_detection_mediapipe/example_outputs/mppersondet_demo.webp)

### Pose Estimation with [MP-Pose](models/pose_estimation_mediapipe)

![pose_estimation](models/pose_estimation_mediapipe/example_outputs/mpposeest_demo.webp)

### QR Code Detection and Parsing with [WeChatQRCode](./models/qrcode_wechatqrcode/)

![qrcode](./models/qrcode_wechatqrcode/example_outputs/wechat_qrcode_demo.gif)

### Chinese Text detection [DB](./models/text_detection_db/)

![mask](./models/text_detection_db/example_outputs/mask.jpg)

### English Text detection [DB](./models/text_detection_db/)

![gsoc](./models/text_detection_db/example_outputs/gsoc.jpg)

### Text Detection with [CRNN](./models/text_recognition_crnn/)

![crnn_demo](./models/text_recognition_crnn/example_outputs/CRNNCTC.gif)

## License

OpenCV Zoo is licensed under the [Apache 2.0 license](./LICENSE). Please refer to licenses of different models.