File size: 5,017 Bytes
d34bdca af1afb3 42310ef e7d94f5 584bcfa d34bdca e7d94f5 d34bdca a9286c4 2ef6bc9 ed7f07e e7d94f5 d2b2b68 ed7f07e e7d94f5 d34bdca d2b2b68 ed7f07e d34bdca ed7f07e 237ca2e e7d94f5 237ca2e ebeb80f 596a24b 237ca2e e6640a8 bbe6825 237ca2e e6640a8 57699b7 50fc340 e6640a8 265aa2c 5301781 af1afb3 42310ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
# OpenCV Zoo and Benchmark
A zoo for models tuned for OpenCV DNN with benchmarks on different platforms.
Guidelines:
- Install latest `opencv-python`:
```shell
python3 -m pip install opencv-python
# Or upgrade to latest version
python3 -m pip install --upgrade opencv-python
```
- Clone this repo to download all models and demo scripts:
```shell
# Install git-lfs from https://git-lfs.github.com/
git clone https://github.com/opencv/opencv_zoo && cd opencv_zoo
git lfs install
git lfs pull
```
- To run benchmarks on your hardware settings, please refer to [benchmark/README](./benchmark/README.md).
## Models & Benchmark Results

Hardware Setup:
- `CPU-INTEL`: [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html), 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads.
- `CPU-RPI`: [Raspberry Pi 4B](https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/), Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5 GHz.
- `GPU-JETSON`: [NVIDIA Jetson Nano B01](https://developer.nvidia.com/embedded/jetson-nano-developer-kit), 128-core NVIDIA Maxwell GPU.
- `NPU-KV3`: [Khadas VIM3](https://www.khadas.com/vim3), 5TOPS Performance. Benchmarks are done using **quantized** models. You will need to compile OpenCV with TIM-VX following [this guide](https://github.com/opencv/opencv/wiki/TIM-VX-Backend-For-Running-OpenCV-On-NPU) to run benchmarks. The test results use the `per-tensor` quantization model by default.
- `NPU-Ascend310`: [Ascend 310](https://e.huawei.com/uk/products/cloud-computing-dc/atlas/atlas-200), 22 TOPS @ INT8. Benchmarks are done on [Atlas 200 DK AI Developer Kit](https://e.huawei.com/in/products/cloud-computing-dc/atlas/atlas-200). Get the latest OpenCV source code and build following [this guide](https://github.com/opencv/opencv/wiki/Huawei-CANN-Backend) to enable CANN backend.
- `CPU-D1`: [Allwinner D1](https://d1.docs.aw-ol.com/en), [Xuantie C906 CPU](https://www.t-head.cn/product/C906?spm=a2ouz.12986968.0.0.7bfc1384auGNPZ) (RISC-V, RVV 0.7.1) @ 1.0 GHz, 1 core. YuNet is supported for now. Visit [here](https://github.com/fengyuentau/opencv_zoo_cpp) for more details.
***Important Notes***:
- The data under each column of hardware setups on the above table represents the elapsed time of an inference (preprocess, forward and postprocess).
- The time data is the mean of 10 runs after some warmup runs. Different metrics may be applied to some specific models.
- Batch size is 1 for all benchmark results.
- `---` represents the model is not availble to run on the device.
- View [benchmark/config](./benchmark/config) for more details on benchmarking different models.
## Some Examples
Some examples are listed below. You can find more in the directory of each model!
### Face Detection with [YuNet](./models/face_detection_yunet/)

### Facial Expression Recognition with [Progressive Teacher](./models/facial_expression_recognition/)

### Human Segmentation with [PP-HumanSeg](./models/human_segmentation_pphumanseg/)

### License Plate Detection with [LPD_YuNet](./models/license_plate_detection_yunet/)

### Object Detection with [NanoDet](./models/object_detection_nanodet/) & [YOLOX](./models/object_detection_yolox/)


### Object Tracking with [DaSiamRPN](./models/object_tracking_dasiamrpn/)

### Palm Detection with [MP-PalmDet](./models/palm_detection_mediapipe/)

### Hand Pose Estimation with [MP-HandPose](models/handpose_estimation_mediapipe/)

### QR Code Detection and Parsing with [WeChatQRCode](./models/qrcode_wechatqrcode/)

### Chinese Text detection [DB](./models/text_detection_db/)

### English Text detection [DB](./models/text_detection_db/)

### Text Detection with [CRNN](./models/text_recognition_crnn/)

## License
OpenCV Zoo is licensed under the [Apache 2.0 license](./LICENSE). Please refer to licenses of different models.
|