File size: 7,305 Bytes
42310ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec17a5b
 
 
 
 
 
 
 
 
 
e7d94f5
ec17a5b
42310ef
 
e7d94f5
 
ec17a5b
 
e7d94f5
 
0367d6a
 
 
 
42310ef
 
 
 
 
 
 
 
 
 
 
 
 
39d77a4
42310ef
9e1d36f
0367d6a
42310ef
 
 
ec17a5b
 
 
42310ef
 
 
 
b81d9fd
 
 
 
 
 
42310ef
 
 
 
 
 
 
 
 
b81d9fd
 
 
 
 
 
 
42310ef
b81d9fd
42310ef
 
 
 
b81d9fd
42310ef
 
 
 
b81d9fd
42310ef
 
 
 
 
 
 
b81d9fd
42310ef
 
 
 
b81d9fd
 
 
 
 
 
42310ef
 
 
 
8b13820
42310ef
 
8b13820
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b81d9fd
 
 
 
 
 
 
8b13820
b81d9fd
8b13820
42310ef
 
b81d9fd
ec17a5b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# This file is part of OpenCV Zoo project.
# It is subject to the license terms in the LICENSE file found in the same directory.
#
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
# Third party copyrights are property of their respective owners.

import sys
import argparse

import numpy as np
import cv2 as cv

from crnn import CRNN

sys.path.append('../text_detection_db')
from db import DB

def str2bool(v):
    if v.lower() in ['on', 'yes', 'true', 'y', 't']:
        return True
    elif v.lower() in ['off', 'no', 'false', 'n', 'f']:
        return False
    else:
        raise NotImplementedError

backends = [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_BACKEND_CUDA]
targets = [cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16]
help_msg_backends = "Choose one of the computation backends: {:d}: OpenCV implementation (default); {:d}: CUDA"
help_msg_targets = "Chose one of the target computation devices: {:d}: CPU (default); {:d}: CUDA; {:d}: CUDA fp16"
try:
    backends += [cv.dnn.DNN_BACKEND_TIMVX]
    targets += [cv.dnn.DNN_TARGET_NPU]
    help_msg_backends += "; {:d}: TIMVX"
    help_msg_targets += "; {:d}: NPU"
except:
    print('This version of OpenCV does not support TIM-VX and NPU. Visit https://github.com/opencv/opencv/wiki/TIM-VX-Backend-For-Running-OpenCV-On-NPU for more information.')

parser = argparse.ArgumentParser(
    description="An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition (https://arxiv.org/abs/1507.05717)")
parser.add_argument('--input', '-i', type=str, help='Usage: Set path to the input image. Omit for using default camera.')
parser.add_argument('--model', '-m', type=str, default='text_recognition_CRNN_EN_2021sep.onnx', help='Usage: Set model path, defaults to text_recognition_CRNN_EN_2021sep.onnx.')
parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends))
parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets))
parser.add_argument('--save', '-s', type=str, default=False, help='Usage: Set “True” to save a file with results. Invalid in case of camera input. Default will be set to “False”.')
parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Usage: Default will be set to “True” and will open a new window to show results. Set to “False” to stop visualizations from being shown. Invalid in case of camera input.')
parser.add_argument('--width', type=int, default=736,
                    help='Preprocess input image by resizing to a specific width. It should be multiple by 32.')
parser.add_argument('--height', type=int, default=736,
                    help='Preprocess input image by resizing to a specific height. It should be multiple by 32.')
args = parser.parse_args()

def visualize(image, boxes, texts, color=(0, 255, 0), isClosed=True, thickness=2):
    output = image.copy()

    pts = np.array(boxes[0])
    output = cv.polylines(output, pts, isClosed, color, thickness)
    for box, text in zip(boxes[0], texts):
        cv.putText(output, text, (box[1].astype(np.int32)), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
    return output

if __name__ == '__main__':
    # Instantiate CRNN for text recognition
    recognizer = CRNN(modelPath=args.model)
    # Instantiate DB for text detection
    detector = DB(modelPath='../text_detection_db/text_detection_DB_IC15_resnet18_2021sep.onnx',
                  inputSize=[args.width, args.height],
                  binaryThreshold=0.3,
                  polygonThreshold=0.5,
                  maxCandidates=200,
                  unclipRatio=2.0,
                  backendId=args.backend,
                  targetId=args.target
    )

    # If input is an image
    if args.input is not None:
        original_image = cv.imread(args.input)
        original_w = original_image.shape[1]
        original_h = original_image.shape[0]
        scaleHeight = original_h / args.height
        scaleWidth = original_w / args.width
        image = cv.resize(original_image, [args.width, args.height])

        # Inference
        results = detector.infer(image)
        texts = []
        for box, score in zip(results[0], results[1]):
            texts.append(
                recognizer.infer(image, box.reshape(8))
            )

        # Scale the results bounding box
        for i in range(len(results[0])):
            for j in range(4):
                box = results[0][i][j]
                results[0][i][j][0] = box[0] * scaleWidth
                results[0][i][j][1] = box[1] * scaleHeight

        # Draw results on the input image
        original_image = visualize(original_image, results, texts)

        # Save results if save is true
        if args.save:
            print('Resutls saved to result.jpg\n')
            cv.imwrite('result.jpg', original_image)

        # Visualize results in a new window
        if args.vis:
            cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
            cv.imshow(args.input, original_image)
            cv.waitKey(0)
    else: # Omit input to call default camera
        deviceId = 0
        cap = cv.VideoCapture(deviceId)

        tm = cv.TickMeter()
        while cv.waitKey(1) < 0:
            hasFrame, original_image = cap.read()
            if not hasFrame:
                print('No frames grabbed!')
                break

            original_w = original_image.shape[1]
            original_h = original_image.shape[0]
            scaleHeight = original_h / args.height
            scaleWidth = original_w / args.width

            frame = cv.resize(original_image, [args.width, args.height])
            # Inference of text detector
            tm.start()
            results = detector.infer(frame)
            tm.stop()
            cv.putText(frame, 'Latency - {}: {:.2f}'.format(detector.name, tm.getFPS()), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
            tm.reset()

            # Inference of text recognizer
            if len(results[0]) and len(results[1]):
                texts = []
                tm.start()
                for box, score in zip(results[0], results[1]):
                    result = np.hstack(
                        (box.reshape(8), score)
                    )
                    texts.append(
                        recognizer.infer(frame, box.reshape(8))
                    )
                tm.stop()
                cv.putText(frame, 'Latency - {}: {:.2f}'.format(recognizer.name, tm.getFPS()), (0, 30), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
                tm.reset()

                # Scale the results bounding box
                for i in range(len(results[0])):
                    for j in range(4):
                        box = results[0][i][j]
                        results[0][i][j][0] = box[0] * scaleWidth
                        results[0][i][j][1] = box[1] * scaleHeight

                # Draw results on the input image
                original_image = visualize(original_image, results, texts)
                print(texts)

            # Visualize results in a new Window
            cv.imshow('{} Demo'.format(recognizer.name), original_image)