File size: 4,849 Bytes
28adb60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60ba673
 
 
 
 
 
 
 
 
 
 
 
 
f2e3176
 
 
 
 
 
 
 
 
46b1f95
 
 
 
 
28adb60
 
 
 
 
 
 
60ba673
 
f2e3176
 
 
 
 
46b1f95
 
 
 
 
 
28adb60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
import sys
import argparse

import numpy as np
import cv2 as cv

from datasets import DATASETS

if "PYTHONPATH" in os.environ:
    root_dir = os.environ["PYTHONPATH"]
else:
    root_dir = os.path.join("..", "..")
sys.path.append(root_dir)
from models import MODELS

parser = argparse.ArgumentParser("Evaluation with OpenCV on different models in the zoo.")
parser.add_argument("--model", "-m", type=str, required=True, help="model name")
parser.add_argument("--dataset", "-d", type=str, required=True, help="Dataset name")
parser.add_argument("--dataset_root", "-dr", type=str, required=True, help="Root directory of given dataset")
args = parser.parse_args()

models = dict(
        mobilenetv1=dict(
            name="MobileNetV1",
            topic="image_classification",
            modelPath=os.path.join(root_dir, "models/image_classification_mobilenet/image_classification_mobilenetv1_2022apr.onnx"),
            topK=5),
        mobilenetv1_q=dict(
            name="MobileNetV1",
            topic="image_classification",
            modelPath=os.path.join(root_dir, "models/image_classification_mobilenet/image_classification_mobilenetv1_2022apr-int8-quantized.onnx"),
            topK=5),
        mobilenetv2=dict(
            name="MobileNetV2",
            topic="image_classification",
            modelPath=os.path.join(root_dir, "models/image_classification_mobilenet/image_classification_mobilenetv2_2022apr.onnx"),
            topK=5),
        mobilenetv2_q=dict(
            name="MobileNetV2",
            topic="image_classification",
            modelPath=os.path.join(root_dir, "models/image_classification_mobilenet/image_classification_mobilenetv2_2022apr-int8-quantized.onnx"),
            topK=5),
        ppresnet=dict(
            name="PPResNet",
            topic="image_classification",
            modelPath=os.path.join(root_dir, "models/image_classification_ppresnet/image_classification_ppresnet50_2022jan.onnx"),
            topK=5),
        ppresnet_q=dict(
            name="PPResNet",
            topic="image_classification",
            modelPath=os.path.join(root_dir, "models/image_classification_ppresnet/image_classification_ppresnet50_2022jan-act_int8-wt_int8-quantized.onnx"),
            topK=5),
        yunet=dict(
            name="YuNet",
            topic="face_detection",
            modelPath=os.path.join(root_dir, "models/face_detection_yunet/face_detection_yunet_2022mar.onnx"),
            topK=5000,
            confThreshold=0.3,
            nmsThreshold=0.45),
        yunet_q=dict(
            name="YuNet",
            topic="face_detection",
            modelPath=os.path.join(root_dir, "models/face_detection_yunet/face_detection_yunet_2022mar-act_int8-wt_int8-quantized.onnx"),
            topK=5000,
            confThreshold=0.3,
            nmsThreshold=0.45),
        sface=dict(
            name="SFace",
            topic="face_recognition",
            modelPath=os.path.join(root_dir, "models/face_recognition_sface/face_recognition_sface_2021dec.onnx")),
        sface_q=dict(
            name="SFace",
            topic="face_recognition",
            modelPath=os.path.join(root_dir, "models/face_recognition_sface/face_recognition_sface_2021dec-act_int8-wt_int8-quantized.onnx")),
        crnn=dict(
            name="CRNN",
            topic="text_recognition",
            modelPath=os.path.join(root_dir, "models/text_recognition_crnn/text_recognition_CRNN_EN_2021sep.onnx"),
            charsetPath=os.path.join(root_dir, "models/text_recognition_crnn/charset_36_EN.txt")),
)

datasets = dict(
        imagenet=dict(
            name="ImageNet",
            topic="image_classification",
            size=224),
        widerface=dict(
            name="WIDERFace",
            topic="face_detection"),
        lfw=dict(
            name="LFW",
            topic="face_recognition",
            target_size=112),
        icdar=dict(
            name="ICDAR",
            topic="text_recognition"),
        iiit5k=dict(
            name="IIIT5K",
            topic="text_recognition"),
)

def main(args):
    # Instantiate model
    model_key = args.model.lower()
    assert model_key in models

    model_name = models[model_key].pop("name")
    model_topic = models[model_key].pop("topic")
    model = MODELS.get(model_name)(**models[model_key])

    # Instantiate dataset
    dataset_key = args.dataset.lower()
    assert dataset_key in datasets

    dataset_name = datasets[dataset_key].pop("name")
    dataset_topic = datasets[dataset_key].pop("topic")
    dataset = DATASETS.get(dataset_name)(root=args.dataset_root, **datasets[dataset_key])

    # Check if model_topic matches dataset_topic
    assert model_topic == dataset_topic

    # Run evaluation
    dataset.eval(model)
    dataset.print_result()


if __name__ == "__main__":
    main(args)