File size: 7,034 Bytes
9d96bb5 167c85e 9d96bb5 a07f7bd ec17a5b 9d96bb5 8a1a70c a07f7bd 8a1a70c 9d96bb5 8a1a70c 9d96bb5 a07f7bd 9d96bb5 a07f7bd 9d96bb5 41c69c8 9d96bb5 ec17a5b a07f7bd 9d96bb5 8a1a70c 9d96bb5 8a1a70c 9d96bb5 8a1a70c 9d96bb5 8a1a70c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
# This file is part of OpenCV Zoo project.
# It is subject to the license terms in the LICENSE file found in the same directory.
#
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
# Third party copyrights are property of their respective owners.
import sys
import argparse
import numpy as np
import cv2 as cv
# Check OpenCV version
opencv_python_version = lambda str_version: tuple(map(int, (str_version.split("."))))
assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \
"Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python"
from sface import SFace
sys.path.append('../face_detection_yunet')
from yunet import YuNet
# Valid combinations of backends and targets
backend_target_pairs = [
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA],
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16],
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU],
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU]
]
parser = argparse.ArgumentParser(
description="SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition (https://ieeexplore.ieee.org/document/9318547)")
parser.add_argument('--target', '-t', type=str,
help='Usage: Set path to the input image 1 (target face).')
parser.add_argument('--query', '-q', type=str,
help='Usage: Set path to the input image 2 (query).')
parser.add_argument('--model', '-m', type=str, default='face_recognition_sface_2021dec.onnx',
help='Usage: Set model path, defaults to face_recognition_sface_2021dec.onnx.')
parser.add_argument('--backend_target', '-bt', type=int, default=0,
help='''Choose one of the backend-target pair to run this demo:
{:d}: (default) OpenCV implementation + CPU,
{:d}: CUDA + GPU (CUDA),
{:d}: CUDA + GPU (CUDA FP16),
{:d}: TIM-VX + NPU,
{:d}: CANN + NPU
'''.format(*[x for x in range(len(backend_target_pairs))]))
parser.add_argument('--dis_type', type=int, choices=[0, 1], default=0,
help='Usage: Distance type. \'0\': cosine, \'1\': norm_l1. Defaults to \'0\'')
parser.add_argument('--save', '-s', action='store_true',
help='Usage: Specify to save file with results (i.e. bounding box, confidence level). Invalid in case of camera input.')
parser.add_argument('--vis', '-v', action='store_true',
help='Usage: Specify to open a new window to show results. Invalid in case of camera input.')
args = parser.parse_args()
def visualize(img1, faces1, img2, faces2, matches, scores, target_size=[512, 512]): # target_size: (h, w)
out1 = img1.copy()
out2 = img2.copy()
matched_box_color = (0, 255, 0) # BGR
mismatched_box_color = (0, 0, 255) # BGR
# Resize to 256x256 with the same aspect ratio
padded_out1 = np.zeros((target_size[0], target_size[1], 3)).astype(np.uint8)
h1, w1, _ = out1.shape
ratio1 = min(target_size[0] / out1.shape[0], target_size[1] / out1.shape[1])
new_h1 = int(h1 * ratio1)
new_w1 = int(w1 * ratio1)
resized_out1 = cv.resize(out1, (new_w1, new_h1), interpolation=cv.INTER_LINEAR).astype(np.float32)
top = max(0, target_size[0] - new_h1) // 2
bottom = top + new_h1
left = max(0, target_size[1] - new_w1) // 2
right = left + new_w1
padded_out1[top : bottom, left : right] = resized_out1
# Draw bbox
bbox1 = faces1[0][:4] * ratio1
x, y, w, h = bbox1.astype(np.int32)
cv.rectangle(padded_out1, (x + left, y + top), (x + left + w, y + top + h), matched_box_color, 2)
# Resize to 256x256 with the same aspect ratio
padded_out2 = np.zeros((target_size[0], target_size[1], 3)).astype(np.uint8)
h2, w2, _ = out2.shape
ratio2 = min(target_size[0] / out2.shape[0], target_size[1] / out2.shape[1])
new_h2 = int(h2 * ratio2)
new_w2 = int(w2 * ratio2)
resized_out2 = cv.resize(out2, (new_w2, new_h2), interpolation=cv.INTER_LINEAR).astype(np.float32)
top = max(0, target_size[0] - new_h2) // 2
bottom = top + new_h2
left = max(0, target_size[1] - new_w2) // 2
right = left + new_w2
padded_out2[top : bottom, left : right] = resized_out2
# Draw bbox
assert faces2.shape[0] == len(matches), "number of faces2 needs to match matches"
assert len(matches) == len(scores), "number of matches needs to match number of scores"
for index, match in enumerate(matches):
bbox2 = faces2[index][:4] * ratio2
x, y, w, h = bbox2.astype(np.int32)
box_color = matched_box_color if match else mismatched_box_color
cv.rectangle(padded_out2, (x + left, y + top), (x + left + w, y + top + h), box_color, 2)
score = scores[index]
text_color = matched_box_color if match else mismatched_box_color
cv.putText(padded_out2, "{:.2f}".format(score), (x + left, y + top - 5), cv.FONT_HERSHEY_DUPLEX, 0.4, text_color)
return np.concatenate([padded_out1, padded_out2], axis=1)
if __name__ == '__main__':
backend_id = backend_target_pairs[args.backend_target][0]
target_id = backend_target_pairs[args.backend_target][1]
# Instantiate SFace for face recognition
recognizer = SFace(modelPath=args.model,
disType=args.dis_type,
backendId=backend_id,
targetId=target_id)
# Instantiate YuNet for face detection
detector = YuNet(modelPath='../face_detection_yunet/face_detection_yunet_2023mar.onnx',
inputSize=[320, 320],
confThreshold=0.9,
nmsThreshold=0.3,
topK=5000,
backendId=backend_id,
targetId=target_id)
img1 = cv.imread(args.target)
img2 = cv.imread(args.query)
# Detect faces
detector.setInputSize([img1.shape[1], img1.shape[0]])
faces1 = detector.infer(img1)
assert faces1.shape[0] > 0, 'Cannot find a face in {}'.format(args.target)
detector.setInputSize([img2.shape[1], img2.shape[0]])
faces2 = detector.infer(img2)
assert faces2.shape[0] > 0, 'Cannot find a face in {}'.format(args.query)
# Match
scores = []
matches = []
for face in faces2:
result = recognizer.match(img1, faces1[0][:-1], img2, face[:-1])
scores.append(result[0])
matches.append(result[1])
# Draw results
image = visualize(img1, faces1, img2, faces2, matches, scores)
# Save results if save is true
if args.save:
print('Resutls saved to result.jpg\n')
cv.imwrite('result.jpg', image)
# Visualize results in a new window
if args.vis:
cv.namedWindow("SFace Demo", cv.WINDOW_AUTOSIZE)
cv.imshow("SFace Demo", image)
cv.waitKey(0)
|