|
|
|
|
|
|
|
|
|
|
|
|
|
import sys |
|
import argparse |
|
|
|
import numpy as np |
|
import cv2 as cv |
|
|
|
from crnn import CRNN |
|
|
|
sys.path.append('../text_detection_db') |
|
from db import DB |
|
|
|
def str2bool(v): |
|
if v.lower() in ['on', 'yes', 'true', 'y', 't']: |
|
return True |
|
elif v.lower() in ['off', 'no', 'false', 'n', 'f']: |
|
return False |
|
else: |
|
raise NotImplementedError |
|
|
|
backends = [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_BACKEND_CUDA] |
|
targets = [cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16] |
|
help_msg_backends = "Choose one of the computation backends: {:d}: OpenCV implementation (default); {:d}: CUDA" |
|
help_msg_targets = "Chose one of the target computation devices: {:d}: CPU (default); {:d}: CUDA; {:d}: CUDA fp16" |
|
try: |
|
backends += [cv.dnn.DNN_BACKEND_TIMVX] |
|
targets += [cv.dnn.DNN_TARGET_NPU] |
|
help_msg_backends += "; {:d}: TIMVX" |
|
help_msg_targets += "; {:d}: NPU" |
|
except: |
|
print('This version of OpenCV does not support TIM-VX and NPU. Visit https://gist.github.com/fengyuentau/5a7a5ba36328f2b763aea026c43fa45f for more information.') |
|
|
|
parser = argparse.ArgumentParser( |
|
description="An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition (https://arxiv.org/abs/1507.05717)") |
|
parser.add_argument('--input', '-i', type=str, help='Path to the input image. Omit for using default camera.') |
|
parser.add_argument('--model', '-m', type=str, default='text_recognition_CRNN_EN_2021sep.onnx', help='Path to the model.') |
|
parser.add_argument('--backend', '-b', type=int, default=backends[0], help=help_msg_backends.format(*backends)) |
|
parser.add_argument('--target', '-t', type=int, default=targets[0], help=help_msg_targets.format(*targets)) |
|
parser.add_argument('--charset', '-c', type=str, default='charset_36_EN.txt', help='Path to the charset file corresponding to the selected model.') |
|
parser.add_argument('--save', '-s', type=str, default=False, help='Set true to save results. This flag is invalid when using camera.') |
|
parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.') |
|
args = parser.parse_args() |
|
|
|
def visualize(image, boxes, texts, color=(0, 255, 0), isClosed=True, thickness=2): |
|
output = image.copy() |
|
|
|
pts = np.array(boxes[0]) |
|
output = cv.polylines(output, pts, isClosed, color, thickness) |
|
for box, text in zip(boxes[0], texts): |
|
cv.putText(output, text, (box[1].astype(np.int32)), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255)) |
|
return output |
|
|
|
if __name__ == '__main__': |
|
|
|
recognizer = CRNN(modelPath=args.model, charsetPath=args.charset) |
|
|
|
detector = DB(modelPath='../text_detection_db/text_detection_DB_IC15_resnet18_2021sep.onnx', |
|
inputSize=[736, 736], |
|
binaryThreshold=0.3, |
|
polygonThreshold=0.5, |
|
maxCandidates=200, |
|
unclipRatio=2.0, |
|
backendId=args.backend, |
|
targetId=args.target |
|
) |
|
|
|
|
|
if args.input is not None: |
|
image = cv.imread(args.input) |
|
image = cv.resize(image, [args.width, args.height]) |
|
|
|
|
|
results = detector.infer(image) |
|
texts = [] |
|
for box, score in zip(results[0], results[1]): |
|
texts.append( |
|
recognizer.infer(image, box.reshape(8)) |
|
) |
|
|
|
|
|
image = visualize(image, results, texts) |
|
|
|
|
|
if args.save: |
|
print('Resutls saved to result.jpg\n') |
|
cv.imwrite('result.jpg', image) |
|
|
|
|
|
if args.vis: |
|
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE) |
|
cv.imshow(args.input, image) |
|
cv.waitKey(0) |
|
else: |
|
deviceId = 0 |
|
cap = cv.VideoCapture(deviceId) |
|
|
|
tm = cv.TickMeter() |
|
while cv.waitKey(1) < 0: |
|
hasFrame, frame = cap.read() |
|
if not hasFrame: |
|
print('No frames grabbed!') |
|
break |
|
|
|
frame = cv.resize(frame, [736, 736]) |
|
|
|
tm.start() |
|
results = detector.infer(frame) |
|
tm.stop() |
|
cv.putText(frame, 'Latency - {}: {:.2f}'.format(detector.name, tm.getFPS()), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255)) |
|
tm.reset() |
|
|
|
|
|
if len(results[0]) and len(results[1]): |
|
texts = [] |
|
tm.start() |
|
for box, score in zip(results[0], results[1]): |
|
result = np.hstack( |
|
(box.reshape(8), score) |
|
) |
|
texts.append( |
|
recognizer.infer(frame, box.reshape(8)) |
|
) |
|
tm.stop() |
|
cv.putText(frame, 'Latency - {}: {:.2f}'.format(recognizer.name, tm.getFPS()), (0, 30), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255)) |
|
tm.reset() |
|
|
|
|
|
frame = visualize(frame, results, texts) |
|
print(texts) |
|
|
|
|
|
cv.imshow('{} Demo'.format(recognizer.name), frame) |
|
|
|
|