# OpenCV Zoo Benchmark | |
Benchmarking the speed of OpenCV DNN inferring different models in the zoo. Result of each model includes the time of its preprocessing, inference and postprocessing stages. | |
Data for benchmarking will be downloaded and loaded in [data](./data) based on given config. | |
## Preparation | |
1. Install `python >= 3.6`. | |
2. Install dependencies: `pip install -r requirements.txt`. | |
3. Download data for benchmarking. | |
1. Download all data: `python download_data.py` | |
2. Download one or more specified data: `python download_data.py face text`. Available names can be found in `download_data.py`. | |
3. You can also download all data from https://pan.baidu.com/s/18sV8D4vXUb2xC9EG45k7bg (code: pvrw). Please place and extract data packages under [./data](./data). | |
## Benchmarking | |
**Linux**: | |
```shell | |
export PYTHONPATH=$PYTHONPATH:.. | |
python benchmark.py --cfg ./config/face_detection_yunet.yaml | |
``` | |
**Windows**: | |
- CMD | |
```shell | |
set PYTHONPATH=%PYTHONPATH%;.. | |
python benchmark.py --cfg ./config/face_detection_yunet.yaml | |
``` | |
- PowerShell | |
```shell | |
$env:PYTHONPATH=$env:PYTHONPATH+";.." | |
python benchmark.py --cfg ./config/face_detection_yunet.yaml | |
``` | |
<!-- | |
Omit `--cfg` if you want to benchmark all included models: | |
```shell | |
PYTHONPATH=.. python benchmark.py | |
``` | |
--> |