opencv_zoo / benchmark /benchmark.py
ytfeng's picture
Add model file collector, fix some bugs and add some features (#123)
39d77a4
raw
history blame
5.53 kB
import os
import argparse
import yaml
import numpy as np
import cv2 as cv
from models import MODELS
from utils import METRICS, DATALOADERS
parser = argparse.ArgumentParser("Benchmarks for OpenCV Zoo.")
parser.add_argument('--cfg', '-c', type=str,
help='Benchmarking on the given config.')
parser.add_argument("--fp32", action="store_true", help="Runs models of float32 precision only.")
parser.add_argument("--fp16", action="store_true", help="Runs models of float16 precision only.")
parser.add_argument("--int8", action="store_true", help="Runs models of int8 precision only.")
args = parser.parse_args()
def build_from_cfg(cfg, registery, key=None, name=None):
if key is not None:
obj_name = cfg.pop(key)
obj = registery.get(obj_name)
return obj(**cfg)
elif name is not None:
obj = registery.get(name)
return obj(**cfg)
else:
raise NotImplementedError()
class Benchmark:
def __init__(self, **kwargs):
self._type = kwargs.pop('type', None)
if self._type is None:
self._type = 'Base'
print('Benchmark[\'type\'] is omitted, set to \'Base\' by default.')
self._data_dict = kwargs.pop('data', None)
assert self._data_dict, 'Benchmark[\'data\'] cannot be empty and must have path and files.'
if 'type' in self._data_dict:
self._dataloader = build_from_cfg(self._data_dict, registery=DATALOADERS, key='type')
else:
self._dataloader = build_from_cfg(self._data_dict, registery=DATALOADERS, name=self._type)
self._metric_dict = kwargs.pop('metric', None)
assert self._metric_dict, 'Benchmark[\'metric\'] cannot be empty.'
if 'type' in self._metric_dict:
self._metric = build_from_cfg(self._metric_dict, registery=METRICS, key='type')
else:
self._metric = build_from_cfg(self._metric_dict, registery=METRICS, name=self._type)
backend_id = kwargs.pop('backend', 'default')
available_backends = dict(
default=cv.dnn.DNN_BACKEND_DEFAULT,
# halide=cv.dnn.DNN_BACKEND_HALIDE,
# inference_engine=cv.dnn.DNN_BACKEND_INFERENCE_ENGINE,
opencv=cv.dnn.DNN_BACKEND_OPENCV,
# vkcom=cv.dnn.DNN_BACKEND_VKCOM,
cuda=cv.dnn.DNN_BACKEND_CUDA,
)
target_id = kwargs.pop('target', 'cpu')
available_targets = dict(
cpu=cv.dnn.DNN_TARGET_CPU,
# opencl=cv.dnn.DNN_TARGET_OPENCL,
# opencl_fp16=cv.dnn.DNN_TARGET_OPENCL_FP16,
# myriad=cv.dnn.DNN_TARGET_MYRIAD,
# vulkan=cv.dnn.DNN_TARGET_VULKAN,
# fpga=cv.dnn.DNN_TARGET_FPGA,
cuda=cv.dnn.DNN_TARGET_CUDA,
cuda_fp16=cv.dnn.DNN_TARGET_CUDA_FP16,
# hddl=cv.dnn.DNN_TARGET_HDDL,
)
# add extra backends & targets
try:
available_backends['timvx'] = cv.dnn.DNN_BACKEND_TIMVX
available_targets['npu'] = cv.dnn.DNN_TARGET_NPU
except:
print('OpenCV is not compiled with TIM-VX backend enbaled. See https://github.com/opencv/opencv/wiki/TIM-VX-Backend-For-Running-OpenCV-On-NPU for more details on how to enable TIM-VX backend.')
self._backend = available_backends[backend_id]
self._target = available_targets[target_id]
self._benchmark_results = dict()
def run(self, model):
model.setBackend(self._backend)
model.setTarget(self._target)
for idx, data in enumerate(self._dataloader):
filename, input_data = data[:2]
if filename not in self._benchmark_results:
self._benchmark_results[filename] = dict()
if isinstance(input_data, np.ndarray):
size = [input_data.shape[1], input_data.shape[0]]
else:
size = input_data.getFrameSize()
self._benchmark_results[filename][str(size)] = self._metric.forward(model, *data[1:])
def printResults(self):
for imgName, results in self._benchmark_results.items():
print(' image: {}'.format(imgName))
total_latency = 0
for key, latency in results.items():
total_latency += latency
print(' {}, latency ({}): {:.4f} ms'.format(key, self._metric.getReduction(), latency))
if __name__ == '__main__':
assert args.cfg.endswith('yaml'), 'Currently support configs of yaml format only.'
with open(args.cfg, 'r') as f:
cfg = yaml.safe_load(f)
# Instantiate benchmark
benchmark = Benchmark(**cfg['Benchmark'])
# Instantiate model
model_config = cfg['Model']
model_handler, model_paths = MODELS.get(model_config.pop('name'))
_model_paths = []
if args.fp32 or args.fp16 or args.int8:
if args.fp32:
_model_paths += model_paths['fp32']
if args.fp16:
_model_paths += model_paths['fp16']
if args.int8:
_model_paths += model_paths['int8']
else:
_model_paths = model_paths['fp32'] + model_paths['fp16'] + model_paths['int8']
for model_path in _model_paths:
model = model_handler(*model_path, **model_config)
# Format model_path
for i in range(len(model_path)):
model_path[i] = model_path[i].split('/')[-1]
print('Benchmarking {} with {}'.format(model.name, model_path))
# Run benchmark
benchmark.run(model)
benchmark.printResults()