File size: 5,532 Bytes
42310ef
 
 
 
 
 
 
 
0199e9f
42310ef
 
 
 
39d77a4
 
 
42310ef
 
0199e9f
 
 
 
 
 
 
 
 
 
00c0329
42310ef
 
0199e9f
 
 
 
 
00c0329
 
0199e9f
 
 
 
00c0329
 
0199e9f
 
 
 
 
42310ef
 
 
 
 
 
 
 
de9c40f
42310ef
 
 
 
 
 
 
 
 
 
 
 
de9c40f
42310ef
86cd32d
 
 
 
 
 
 
 
 
42310ef
 
00c0329
42310ef
 
 
 
 
23d8387
 
0199e9f
 
23d8387
 
 
 
0199e9f
42310ef
 
 
00c0329
42310ef
 
 
00c0329
42310ef
 
 
 
 
 
39d77a4
42310ef
 
 
39d77a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import os
import argparse

import yaml
import numpy as np
import cv2 as cv

from models import MODELS
from utils import METRICS, DATALOADERS

parser = argparse.ArgumentParser("Benchmarks for OpenCV Zoo.")
parser.add_argument('--cfg', '-c', type=str,
                    help='Benchmarking on the given config.')
parser.add_argument("--fp32", action="store_true", help="Runs models of float32 precision only.")
parser.add_argument("--fp16", action="store_true", help="Runs models of float16 precision only.")
parser.add_argument("--int8", action="store_true", help="Runs models of int8 precision only.")
args = parser.parse_args()

def build_from_cfg(cfg, registery, key=None, name=None):
    if key is not None:
        obj_name = cfg.pop(key)
        obj = registery.get(obj_name)
        return obj(**cfg)
    elif name is not None:
        obj = registery.get(name)
        return obj(**cfg)
    else:
        raise NotImplementedError()

class Benchmark:
    def __init__(self, **kwargs):
        self._type = kwargs.pop('type', None)
        if self._type is None:
            self._type = 'Base'
            print('Benchmark[\'type\'] is omitted, set to \'Base\' by default.')

        self._data_dict = kwargs.pop('data', None)
        assert self._data_dict, 'Benchmark[\'data\'] cannot be empty and must have path and files.'
        if 'type' in self._data_dict:
            self._dataloader = build_from_cfg(self._data_dict, registery=DATALOADERS, key='type')
        else:
            self._dataloader = build_from_cfg(self._data_dict, registery=DATALOADERS, name=self._type)

        self._metric_dict = kwargs.pop('metric', None)
        assert self._metric_dict, 'Benchmark[\'metric\'] cannot be empty.'
        if 'type' in self._metric_dict:
            self._metric = build_from_cfg(self._metric_dict, registery=METRICS, key='type')
        else:
            self._metric = build_from_cfg(self._metric_dict, registery=METRICS, name=self._type)

        backend_id = kwargs.pop('backend', 'default')
        available_backends = dict(
            default=cv.dnn.DNN_BACKEND_DEFAULT,
            # halide=cv.dnn.DNN_BACKEND_HALIDE,
            # inference_engine=cv.dnn.DNN_BACKEND_INFERENCE_ENGINE,
            opencv=cv.dnn.DNN_BACKEND_OPENCV,
            # vkcom=cv.dnn.DNN_BACKEND_VKCOM,
            cuda=cv.dnn.DNN_BACKEND_CUDA,
        )

        target_id = kwargs.pop('target', 'cpu')
        available_targets = dict(
            cpu=cv.dnn.DNN_TARGET_CPU,
            # opencl=cv.dnn.DNN_TARGET_OPENCL,
            # opencl_fp16=cv.dnn.DNN_TARGET_OPENCL_FP16,
            # myriad=cv.dnn.DNN_TARGET_MYRIAD,
            # vulkan=cv.dnn.DNN_TARGET_VULKAN,
            # fpga=cv.dnn.DNN_TARGET_FPGA,
            cuda=cv.dnn.DNN_TARGET_CUDA,
            cuda_fp16=cv.dnn.DNN_TARGET_CUDA_FP16,
            # hddl=cv.dnn.DNN_TARGET_HDDL,
        )

        # add extra backends & targets
        try:
            available_backends['timvx'] = cv.dnn.DNN_BACKEND_TIMVX
            available_targets['npu'] = cv.dnn.DNN_TARGET_NPU
        except:
            print('OpenCV is not compiled with TIM-VX backend enbaled. See https://github.com/opencv/opencv/wiki/TIM-VX-Backend-For-Running-OpenCV-On-NPU for more details on how to enable TIM-VX backend.')

        self._backend = available_backends[backend_id]
        self._target = available_targets[target_id]

        self._benchmark_results = dict()

    def run(self, model):
        model.setBackend(self._backend)
        model.setTarget(self._target)

        for idx, data in enumerate(self._dataloader):
            filename, input_data = data[:2]
            if filename not in self._benchmark_results:
                self._benchmark_results[filename] = dict()
            if isinstance(input_data, np.ndarray):
                size = [input_data.shape[1], input_data.shape[0]]
            else:
                size = input_data.getFrameSize()
            self._benchmark_results[filename][str(size)] = self._metric.forward(model, *data[1:])

    def printResults(self):
        for imgName, results in self._benchmark_results.items():
            print('  image: {}'.format(imgName))
            total_latency = 0
            for key, latency in results.items():
                total_latency += latency
                print('      {}, latency ({}): {:.4f} ms'.format(key, self._metric.getReduction(), latency))

if __name__ == '__main__':
    assert args.cfg.endswith('yaml'), 'Currently support configs of yaml format only.'
    with open(args.cfg, 'r') as f:
        cfg = yaml.safe_load(f)

    # Instantiate benchmark
    benchmark = Benchmark(**cfg['Benchmark'])

    # Instantiate model
    model_config = cfg['Model']
    model_handler, model_paths = MODELS.get(model_config.pop('name'))

    _model_paths = []
    if args.fp32 or args.fp16 or args.int8:
        if args.fp32:
            _model_paths += model_paths['fp32']
        if args.fp16:
            _model_paths += model_paths['fp16']
        if args.int8:
            _model_paths += model_paths['int8']
    else:
        _model_paths = model_paths['fp32'] + model_paths['fp16'] + model_paths['int8']

    for model_path in _model_paths:
        model = model_handler(*model_path, **model_config)
        # Format model_path
        for i in range(len(model_path)):
            model_path[i] = model_path[i].split('/')[-1]
        print('Benchmarking {} with {}'.format(model.name, model_path))
        # Run benchmark
        benchmark.run(model)
        benchmark.printResults()