|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- DamarJati/Face-Mask-Detection |
|
language: |
|
- en |
|
base_model: |
|
- google/siglip2-base-patch16-224 |
|
pipeline_tag: image-classification |
|
library_name: transformers |
|
tags: |
|
- Face-Mask-Detection |
|
- SigLIP2 |
|
--- |
|
|
|
 |
|
|
|
# **Face-Mask-Detection** |
|
|
|
> **Face-Mask-Detection** is a binary image classification model based on `google/siglip2-base-patch16-224`, trained to detect whether a person is **wearing a face mask** or **not**. This model can be used in **public health monitoring**, **access control systems**, and **workplace compliance enforcement**. |
|
|
|
```py |
|
Classification Report: |
|
precision recall f1-score support |
|
|
|
Face_Mask Found 0.9662 0.9561 0.9611 5883 |
|
Face_Mask Not_Found 0.9568 0.9667 0.9617 5909 |
|
|
|
accuracy 0.9614 11792 |
|
macro avg 0.9615 0.9614 0.9614 11792 |
|
weighted avg 0.9615 0.9614 0.9614 11792 |
|
``` |
|
|
|
 |
|
|
|
--- |
|
|
|
## **Label Classes** |
|
|
|
The model distinguishes between the following face mask statuses: |
|
|
|
``` |
|
0: Face_Mask Found |
|
1: Face_Mask Not_Found |
|
``` |
|
|
|
--- |
|
|
|
## **Installation** |
|
|
|
```bash |
|
pip install transformers torch pillow gradio |
|
``` |
|
|
|
--- |
|
|
|
## **Example Inference Code** |
|
|
|
```python |
|
import gradio as gr |
|
from transformers import AutoImageProcessor, SiglipForImageClassification |
|
from PIL import Image |
|
import torch |
|
|
|
# Load model and processor |
|
model_name = "prithivMLmods/Face-Mask-Detection" |
|
model = SiglipForImageClassification.from_pretrained(model_name) |
|
processor = AutoImageProcessor.from_pretrained(model_name) |
|
|
|
# ID to label mapping |
|
id2label = { |
|
"0": "Face_Mask Found", |
|
"1": "Face_Mask Not_Found" |
|
} |
|
|
|
def detect_face_mask(image): |
|
image = Image.fromarray(image).convert("RGB") |
|
inputs = processor(images=image, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() |
|
|
|
prediction = {id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))} |
|
return prediction |
|
|
|
# Gradio Interface |
|
iface = gr.Interface( |
|
fn=detect_face_mask, |
|
inputs=gr.Image(type="numpy"), |
|
outputs=gr.Label(num_top_classes=2, label="Mask Status"), |
|
title="Face-Mask-Detection", |
|
description="Upload an image to check if a person is wearing a face mask or not." |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |
|
``` |
|
|
|
--- |
|
|
|
## **Applications** |
|
|
|
* **COVID-19 Compliance Monitoring** |
|
* **Security and Access Control** |
|
* **Automated Surveillance Systems** |
|
* **Health Safety Enforcement in Public Spaces** |