|
--- |
|
library_name: pytorch |
|
license: other |
|
tags: |
|
- real_time |
|
- android |
|
pipeline_tag: image-segmentation |
|
|
|
--- |
|
|
|
 |
|
|
|
# YOLOv8-Segmentation: Optimized for Mobile Deployment |
|
## Real-time object segmentation optimized for mobile and edge by Ultralytics |
|
|
|
|
|
Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes, segmentation masks and classes of objects in an image. |
|
|
|
This model is an implementation of YOLOv8-Segmentation found [here](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/segment). |
|
|
|
|
|
More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/yolov8_seg). |
|
|
|
### Model Details |
|
|
|
- **Model Type:** Model_use_case.semantic_segmentation |
|
- **Model Stats:** |
|
- Model checkpoint: YOLOv8N-Seg |
|
- Input resolution: 640x640 |
|
- Number of parameters: 3.43M |
|
- Number of output classes: 80 |
|
- Model size (float): 13.2 MB |
|
|
|
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
|
|---|---|---|---|---|---|---|---|---| |
|
| YOLOv8-Segmentation | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 21.56 ms | 4 - 45 MB | NPU | -- | |
|
| YOLOv8-Segmentation | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 17.646 ms | 1 - 10 MB | NPU | -- | |
|
| YOLOv8-Segmentation | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 11.59 ms | 4 - 43 MB | NPU | -- | |
|
| YOLOv8-Segmentation | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN | 10.886 ms | 5 - 45 MB | NPU | -- | |
|
| YOLOv8-Segmentation | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 8.126 ms | 4 - 22 MB | NPU | -- | |
|
| YOLOv8-Segmentation | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 5.051 ms | 5 - 7 MB | NPU | -- | |
|
| YOLOv8-Segmentation | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 10.312 ms | 4 - 46 MB | NPU | -- | |
|
| YOLOv8-Segmentation | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 6.696 ms | 2 - 16 MB | NPU | -- | |
|
| YOLOv8-Segmentation | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 21.56 ms | 4 - 45 MB | NPU | -- | |
|
| YOLOv8-Segmentation | float | SA7255P ADP | Qualcomm® SA7255P | QNN | 17.646 ms | 1 - 10 MB | NPU | -- | |
|
| YOLOv8-Segmentation | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 8.06 ms | 4 - 25 MB | NPU | -- | |
|
| YOLOv8-Segmentation | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN | 4.892 ms | 5 - 8 MB | NPU | -- | |
|
| YOLOv8-Segmentation | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 12.512 ms | 4 - 31 MB | NPU | -- | |
|
| YOLOv8-Segmentation | float | SA8295P ADP | Qualcomm® SA8295P | QNN | 9.075 ms | 0 - 18 MB | NPU | -- | |
|
| YOLOv8-Segmentation | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 8.085 ms | 4 - 22 MB | NPU | -- | |
|
| YOLOv8-Segmentation | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN | 4.936 ms | 5 - 7 MB | NPU | -- | |
|
| YOLOv8-Segmentation | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 10.312 ms | 4 - 46 MB | NPU | -- | |
|
| YOLOv8-Segmentation | float | SA8775P ADP | Qualcomm® SA8775P | QNN | 6.696 ms | 2 - 16 MB | NPU | -- | |
|
| YOLOv8-Segmentation | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 8.206 ms | 4 - 24 MB | NPU | -- | |
|
| YOLOv8-Segmentation | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 4.864 ms | 5 - 22 MB | NPU | -- | |
|
| YOLOv8-Segmentation | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 6.284 ms | 14 - 44 MB | NPU | -- | |
|
| YOLOv8-Segmentation | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 5.95 ms | 2 - 53 MB | NPU | -- | |
|
| YOLOv8-Segmentation | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 3.59 ms | 5 - 61 MB | NPU | -- | |
|
| YOLOv8-Segmentation | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 4.431 ms | 14 - 79 MB | NPU | -- | |
|
| YOLOv8-Segmentation | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 5.538 ms | 3 - 46 MB | NPU | -- | |
|
| YOLOv8-Segmentation | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 3.312 ms | 5 - 56 MB | NPU | -- | |
|
| YOLOv8-Segmentation | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 3.608 ms | 16 - 67 MB | NPU | -- | |
|
| YOLOv8-Segmentation | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 5.387 ms | 5 - 5 MB | NPU | -- | |
|
| YOLOv8-Segmentation | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 7.308 ms | 17 - 17 MB | NPU | -- | |
|
| YOLOv8-Segmentation | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 8.953 ms | 0 - 10 MB | NPU | -- | |
|
| YOLOv8-Segmentation | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN | 6.491 ms | 2 - 47 MB | NPU | -- | |
|
| YOLOv8-Segmentation | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 4.659 ms | 2 - 5 MB | NPU | -- | |
|
| YOLOv8-Segmentation | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 5.36 ms | 0 - 15 MB | NPU | -- | |
|
| YOLOv8-Segmentation | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN | 20.493 ms | 2 - 14 MB | NPU | -- | |
|
| YOLOv8-Segmentation | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN | 8.953 ms | 0 - 10 MB | NPU | -- | |
|
| YOLOv8-Segmentation | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN | 4.655 ms | 2 - 5 MB | NPU | -- | |
|
| YOLOv8-Segmentation | w8a16 | SA8295P ADP | Qualcomm® SA8295P | QNN | 5.936 ms | 0 - 18 MB | NPU | -- | |
|
| YOLOv8-Segmentation | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN | 4.723 ms | 2 - 5 MB | NPU | -- | |
|
| YOLOv8-Segmentation | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN | 5.36 ms | 0 - 15 MB | NPU | -- | |
|
| YOLOv8-Segmentation | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 4.662 ms | 2 - 15 MB | NPU | -- | |
|
| YOLOv8-Segmentation | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 7.507 ms | 6 - 29 MB | NPU | -- | |
|
| YOLOv8-Segmentation | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 3.057 ms | 2 - 43 MB | NPU | -- | |
|
| YOLOv8-Segmentation | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 4.935 ms | 0 - 55 MB | NPU | -- | |
|
| YOLOv8-Segmentation | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 2.726 ms | 2 - 44 MB | NPU | -- | |
|
| YOLOv8-Segmentation | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 4.709 ms | 7 - 57 MB | NPU | -- | |
|
| YOLOv8-Segmentation | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 5.089 ms | 2 - 2 MB | NPU | -- | |
|
| YOLOv8-Segmentation | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 8.454 ms | 15 - 15 MB | NPU | -- | |
|
|
|
|
|
|
|
|
|
## License |
|
* The license for the original implementation of YOLOv8-Segmentation can be found |
|
[here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE). |
|
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) |
|
|
|
|
|
|
|
## References |
|
* [Ultralytics YOLOv8 Docs: Instance Segmentation](https://docs.ultralytics.com/tasks/segment/) |
|
* [Source Model Implementation](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/segment) |
|
|
|
|
|
|
|
## Community |
|
* Join [our AI Hub Slack community](https://qualcomm-ai-hub.slack.com/join/shared_invite/zt-2d5zsmas3-Sj0Q9TzslueCjS31eXG2UA#/shared-invite/email) to collaborate, post questions and learn more about on-device AI. |
|
* For questions or feedback please [reach out to us](mailto:[email protected]). |
|
|
|
## Usage and Limitations |
|
|
|
Model may not be used for or in connection with any of the following applications: |
|
|
|
- Accessing essential private and public services and benefits; |
|
- Administration of justice and democratic processes; |
|
- Assessing or recognizing the emotional state of a person; |
|
- Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics; |
|
- Education and vocational training; |
|
- Employment and workers management; |
|
- Exploitation of the vulnerabilities of persons resulting in harmful behavior; |
|
- General purpose social scoring; |
|
- Law enforcement; |
|
- Management and operation of critical infrastructure; |
|
- Migration, asylum and border control management; |
|
- Predictive policing; |
|
- Real-time remote biometric identification in public spaces; |
|
- Recommender systems of social media platforms; |
|
- Scraping of facial images (from the internet or otherwise); and/or |
|
- Subliminal manipulation |
|
|