|
{ |
|
"Universal LLM Initialization": { |
|
"prefix": "ud-init", |
|
"body": [ |
|
"from universal_developer import UniversalLLM", |
|
"", |
|
"llm = UniversalLLM(", |
|
" provider=\"${1|anthropic,openai,qwen,gemini,ollama|}\",", |
|
" api_key=\"${2:your_api_key}\"", |
|
")" |
|
], |
|
"description": "Initialize a Universal Developer LLM instance" |
|
}, |
|
"Thinking Mode Generator": { |
|
"prefix": "ud-think", |
|
"body": [ |
|
"response = llm.generate(", |
|
" ${1:system_prompt=\"${2:You are a helpful assistant.}\",}", |
|
" prompt=\"/think ${3:What are the implications of ${4:technology} on ${5:domain}?}\"", |
|
")" |
|
], |
|
"description": "Generate response using thinking mode" |
|
}, |
|
"Fast Mode Generator": { |
|
"prefix": "ud-fast", |
|
"body": [ |
|
"response = llm.generate(", |
|
" ${1:system_prompt=\"${2:You are a helpful assistant.}\",}", |
|
" prompt=\"/fast ${3:${4:Summarize} ${5:this information}}\"", |
|
")" |
|
], |
|
"description": "Generate concise response using fast mode" |
|
}, |
|
"Loop Mode Generator": { |
|
"prefix": "ud-loop", |
|
"body": [ |
|
"response = llm.generate(", |
|
" ${1:system_prompt=\"${2:You are a helpful assistant.}\",}", |
|
" prompt=\"/loop --iterations=${3:3} ${4:Improve this ${5:text}: ${6:content}}\"", |
|
")" |
|
], |
|
"description": "Generate iteratively refined response using loop mode" |
|
}, |
|
"Reflection Mode Generator": { |
|
"prefix": "ud-reflect", |
|
"body": [ |
|
"response = llm.generate(", |
|
" ${1:system_prompt=\"${2:You are a helpful assistant.}\",}", |
|
" prompt=\"/reflect ${3:${4:Analyze} the ${5:implications} of ${6:topic}}\"", |
|
")" |
|
], |
|
"description": "Generate self-reflective response using reflection mode" |
|
}, |
|
"Fork Mode Generator": { |
|
"prefix": "ud-fork", |
|
"body": [ |
|
"response = llm.generate(", |
|
" ${1:system_prompt=\"${2:You are a helpful assistant.}\",}", |
|
" prompt=\"/fork --count=${3:2} ${4:Generate different ${5:approaches} to ${6:problem}}\"", |
|
")" |
|
], |
|
"description": "Generate multiple alternative responses using fork mode" |
|
}, |
|
"Chain Commands": { |
|
"prefix": "ud-chain", |
|
"body": [ |
|
"response = llm.generate(", |
|
" ${1:system_prompt=\"${2:You are a helpful assistant.}\",}", |
|
" prompt=\"/${3|think,loop,reflect,fork|} /${4|think,loop,reflect,fork|} ${5:Prompt text}\"", |
|
")" |
|
], |
|
"description": "Generate response using chained symbolic commands" |
|
}, |
|
"Custom Command Registration": { |
|
"prefix": "ud-custom", |
|
"body": [ |
|
"def transform_custom_command(prompt, options):", |
|
" \"\"\"Custom command transformation function\"\"\"", |
|
" system_prompt = options.get('system_prompt', '') + \"\"\"", |
|
"${1:Custom system prompt instructions}", |
|
"\"\"\"", |
|
" ", |
|
" return {", |
|
" \"system_prompt\": system_prompt,", |
|
" \"user_prompt\": prompt,", |
|
" \"model_parameters\": {", |
|
" \"${2:temperature}\": ${3:0.7}", |
|
" }", |
|
" }", |
|
"", |
|
"llm.register_command(", |
|
" \"${4:command_name}\",", |
|
" description=\"${5:Command description}\",", |
|
" parameters=[", |
|
" {", |
|
" \"name\": \"${6:param_name}\",", |
|
" \"description\": \"${7:Parameter description}\",", |
|
" \"required\": ${8:False},", |
|
" \"default\": ${9:\"default_value\"}", |
|
" }", |
|
" ],", |
|
" transform=transform_custom_command", |
|
")" |
|
], |
|
"description": "Register a custom symbolic command" |
|
}, |
|
"Flask API Integration": { |
|
"prefix": "ud-flask", |
|
"body": [ |
|
"from flask import Flask, request, jsonify", |
|
"from universal_developer import UniversalLLM", |
|
"import os", |
|
"", |
|
"app = Flask(__name__)", |
|
"", |
|
"llm = UniversalLLM(", |
|
" provider=\"${1|anthropic,openai,qwen,gemini,ollama|}\",", |
|
" api_key=os.environ.get(\"${2:${1/(anthropic|openai|qwen|gemini)/${1:/upcase}_API_KEY/}}\")", |
|
")", |
|
"", |
|
"@app.route('/api/generate', methods=['POST'])", |
|
"def generate():", |
|
" data = request.json", |
|
" prompt = data.get('prompt')", |
|
" system_prompt = data.get('system_prompt', '')", |
|
" ", |
|
" # Get command from query param or default to /think", |
|
" command = request.args.get('command', 'think')", |
|
" ", |
|
" try:", |
|
" response = llm.generate(", |
|
" system_prompt=system_prompt,", |
|
" prompt=f\"/{command} {prompt}\"", |
|
" )", |
|
" return jsonify({'response': response})", |
|
" except Exception as e:", |
|
" return jsonify({'error': str(e)}), 500", |
|
"", |
|
"if __name__ == '__main__':", |
|
" app.run(debug=True)" |
|
], |
|
"description": "Flask API integration with Universal Developer" |
|
}, |
|
"FastAPI Integration": { |
|
"prefix": "ud-fastapi", |
|
"body": [ |
|
"from fastapi import FastAPI, HTTPException, Query", |
|
"from pydantic import BaseModel", |
|
"from typing import Optional", |
|
"from universal_developer import UniversalLLM", |
|
"import os", |
|
"", |
|
"app = FastAPI()", |
|
"", |
|
"llm = UniversalLLM(", |
|
" provider=\"${1|anthropic,openai,qwen,gemini,ollama|}\",", |
|
" api_key=os.environ.get(\"${2:${1/(anthropic|openai|qwen|gemini)/${1:/upcase}_API_KEY/}}\")", |
|
")", |
|
"", |
|
"class GenerateRequest(BaseModel):", |
|
" prompt: str", |
|
" system_prompt: Optional[str] = \"\"", |
|
"", |
|
"@app.post(\"/api/generate\")", |
|
"async def generate(", |
|
" request: GenerateRequest,", |
|
" command: str = Query(\"think\", description=\"Symbolic command to use\")", |
|
"):", |
|
" try:", |
|
" response = llm.generate(", |
|
" system_prompt=request.system_prompt,", |
|
" prompt=f\"/{command} {request.prompt}\"", |
|
" )", |
|
" return {\"response\": response}", |
|
" except Exception as e:", |
|
" raise HTTPException(status_code=500, detail=str(e))" |
|
], |
|
"description": "FastAPI integration with Universal Developer" |
|
}, |
|
"Streamlit Integration": { |
|
"prefix": "ud-streamlit", |
|
"body": [ |
|
"import streamlit as st", |
|
"from universal_developer import UniversalLLM", |
|
"import os", |
|
"", |
|
"# Initialize LLM", |
|
"@st.cache_resource", |
|
"def get_llm():", |
|
" return UniversalLLM(", |
|
" provider=\"${1|anthropic,openai,qwen,gemini,ollama|}\",", |
|
" api_key=os.environ.get(\"${2:${1/(anthropic|openai|qwen|gemini)/${1:/upcase}_API_KEY/}}\")", |
|
" )", |
|
"", |
|
"llm = get_llm()", |
|
"", |
|
"st.title(\"Universal Developer Demo\")", |
|
"", |
|
"# Command selection", |
|
"command = st.selectbox(", |
|
" \"Select symbolic command\",", |
|
" [\"think\", \"fast\", \"loop\", \"reflect\", \"fork\", \"collapse\"]", |
|
")", |
|
"", |
|
"# Command parameters", |
|
"if command == \"loop\":", |
|
" iterations = st.slider(\"Iterations\", 1, 5, 3)", |
|
" command_str = f\"/loop --iterations={iterations}\"", |
|
"elif command == \"fork\":", |
|
" count = st.slider(\"Alternative count\", 2, 5, 2)", |
|
" command_str = f\"/fork --count={count}\"", |
|
"else:", |
|
" command_str = f\"/{command}\"", |
|
"", |
|
"# User input", |
|
"prompt = st.text_area(\"Enter your prompt\", \"\")", |
|
"", |
|
"if st.button(\"Generate\") and prompt:", |
|
" with st.spinner(\"Generating response...\"):", |
|
" response = llm.generate(", |
|
" prompt=f\"{command_str} {prompt}\"", |
|
" )", |
|
" st.markdown(response)" |
|
], |
|
"description": "Streamlit integration with Universal Developer" |
|
} |
|
} |
|
|