File size: 15,636 Bytes
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
b556388
e17d3f5
1433a8a
 
ce94dd5
 
1433a8a
ce94dd5
 
 
 
 
 
 
 
 
1433a8a
ce94dd5
 
 
 
 
 
 
 
1433a8a
ce94dd5
 
 
 
 
 
 
 
 
1433a8a
ce94dd5
 
 
 
 
 
 
 
1433a8a
ce94dd5
 
 
 
 
 
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54c0816
1433a8a
 
54c0816
1433a8a
 
54c0816
1433a8a
 
54c0816
1433a8a
 
54c0816
1433a8a
 
54c0816
1433a8a
 
54c0816
1433a8a
 
54c0816
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce94dd5
 
 
1433a8a
 
 
 
 
 
 
 
ce94dd5
 
 
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b556388
1433a8a
 
b556388
 
54c0816
 
 
 
 
 
 
 
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce94dd5
b556388
1433a8a
ce94dd5
 
 
 
1433a8a
ce94dd5
 
 
 
 
e17d3f5
1433a8a
 
 
e17d3f5
 
1433a8a
 
 
 
 
 
 
 
ce94dd5
b556388
1433a8a
ce94dd5
 
 
 
1433a8a
ce94dd5
 
 
 
 
e17d3f5
1433a8a
 
 
e17d3f5
 
1433a8a
 
 
 
b556388
 
54c0816
1433a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
---
language:
- en
license: apache-2.0
tags:
- biencoder
- sentence-transformers
- text-classification
- sentence-pair-classification
- semantic-similarity
- semantic-search
- retrieval
- reranking
- generated_from_trainer
- dataset_size:483820
- loss:MultipleNegativesSymmetricRankingLoss
base_model: Alibaba-NLP/gte-modernbert-base
widget:
- source_sentence: 'See Precambrian time scale # Proposed Geologic timeline for another
    set of periods 4600 -- 541 MYA .'
  sentences:
  - In 2014 election , Biju Janata Dal candidate Tathagat Satapathy Bharatiya Janata
    party candidate Rudra Narayan Pany defeated with a margin of 1.37,340 votes .
  - In Scotland , the Strathclyde Partnership for Transport , formerly known as Strathclyde
    Passenger Transport Executive , comprises the former Strathclyde region , which
    includes the urban area around Glasgow .
  - 'See Precambrian Time Scale # Proposed Geological Timeline for another set of
    periods of 4600 -- 541 MYA .'
- source_sentence: It is also 5 kilometers northeast of Tamaqua , 27 miles south of
    Allentown and 9 miles northwest of Hazleton .
  sentences:
  - In 1948 he moved to Massachusetts , and eventually settled in Vermont .
  - Suddenly I remembered that I was a New Zealander , I caught the first plane home
    and came back .
  - It is also 5 miles northeast of Tamaqua , 27 miles south of Allentown , and 9
    miles northwest of Hazleton .
- source_sentence: The party has a Member of Parliament , a member of the House of
    Lords , three members of the London Assembly and two Members of the European Parliament
    .
  sentences:
  - The party has one Member of Parliament , one member of the House of Lords , three
    Members of the London Assembly and two Members of the European Parliament .
  - Grapsid crabs dominate in Australia , Malaysia and Panama , while gastropods Cerithidea
    scalariformis and Melampus coeffeus are important seed predators in Florida mangroves
    .
  - Music Story is a music service website and international music data provider that
    curates , aggregates and analyses metadata for digital music services .
- source_sentence: 'The play received two 1969 Tony Award nominations : Best Actress
    in a Play ( Michael Annals ) and Best Costume Design ( Charlotte Rae ) .'
  sentences:
  - Ravishanker is a fellow of the International Statistical Institute and an elected
    member of the American Statistical Association .
  - 'In 1969 , the play received two Tony - Award nominations : Best Actress in a
    Theatre Play ( Michael Annals ) and Best Costume Design ( Charlotte Rae ) .'
  - AMD and Nvidia both have proprietary methods of scaling , CrossFireX for AMD ,
    and SLI for Nvidia .
- source_sentence: He was a close friend of Ángel Cabrera and is a cousin of golfer
    Tony Croatto .
  sentences:
  - He was a close friend of Ángel Cabrera , and is a cousin of golfer Tony Croatto
    .
  - Eugenijus Bartulis ( born December 7 , 1949 in Kaunas ) is a Lithuanian Roman
    Catholic priest , and Bishop of Šiauliai .
  - UWIRE also distributes its members content to professional media outlets , including
    Yahoo , CNN and CBS News .
datasets:
- redis/langcache-sentencepairs-v1
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
model-index:
- name: Redis fine-tuned BiEncoder model for semantic caching on LangCache
  results:
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: test
      type: test
    metrics:
    - type: cosine_accuracy
      value: 0.7035681462730365
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.8473721742630005
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.712274188436637
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.8116312026977539
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 0.5987668417446905
      name: Cosine Precision
    - type: cosine_recall
      value: 0.8788826815642458
      name: Cosine Recall
    - type: cosine_ap
      value: 0.6473811496690576
      name: Cosine Ap
    - type: cosine_mcc
      value: 0.4419218320172892
      name: Cosine Mcc
---

# Redis fine-tuned BiEncoder model for semantic caching on LangCache

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) on the [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for sentence pair similarity.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) <!-- at revision e7f32e3c00f91d699e8c43b53106206bcc72bb22 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("redis/langcache-embed-v3")
# Run inference
sentences = [
    'He was a close friend of Ángel Cabrera and is a cousin of golfer Tony Croatto .',
    'He was a close friend of Ángel Cabrera , and is a cousin of golfer Tony Croatto .',
    'UWIRE also distributes its members content to professional media outlets , including Yahoo , CNN and CBS News .',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[0.9922, 0.9922, 0.5352],
#         [0.9922, 0.9961, 0.5391],
#         [0.5352, 0.5391, 1.0000]], dtype=torch.bfloat16)
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Binary Classification

* Dataset: `test`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)

| Metric                    | Value      |
|:--------------------------|:-----------|
| cosine_accuracy           | 0.7036     |
| cosine_accuracy_threshold | 0.8474     |
| cosine_f1                 | 0.7123     |
| cosine_f1_threshold       | 0.8116     |
| cosine_precision          | 0.5988     |
| cosine_recall             | 0.8789     |
| **cosine_ap**             | **0.6474** |
| cosine_mcc                | 0.4419     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### LangCache Sentence Pairs (all)

* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
* Size: 26,850 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         | label                        |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------|
  | type    | string                                                                            | string                                                                            | int                          |
  | details | <ul><li>min: 8 tokens</li><li>mean: 27.35 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 27.27 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> |
* Samples:
  | sentence1                                                                                                             | sentence2                                                                                                                      | label          |
  |:----------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code>  | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code>            | <code>1</code> |
  | <code>After losing his second election , he resigned as opposition leader and was replaced by Geoff Pearsall .</code> | <code>Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .</code> | <code>1</code> |
  | <code>The 12F was officially homologated on August 21 , 1929 and exhibited at the Paris Salon in 1930 .</code>        | <code>The 12F was officially homologated on 21 August 1929 and displayed at the 1930 Paris Salon .</code>                      | <code>1</code> |
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "gather_across_devices": false
  }
  ```

### Evaluation Dataset

#### LangCache Sentence Pairs (all)

* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
* Size: 26,850 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         | label                        |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------|
  | type    | string                                                                            | string                                                                            | int                          |
  | details | <ul><li>min: 8 tokens</li><li>mean: 27.35 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 27.27 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> |
* Samples:
  | sentence1                                                                                                             | sentence2                                                                                                                      | label          |
  |:----------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code>  | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code>            | <code>1</code> |
  | <code>After losing his second election , he resigned as opposition leader and was replaced by Geoff Pearsall .</code> | <code>Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .</code> | <code>1</code> |
  | <code>The 12F was officially homologated on August 21 , 1929 and exhibited at the Paris Salon in 1930 .</code>        | <code>The 12F was officially homologated on 21 August 1929 and displayed at the 1930 Paris Salon .</code>                      | <code>1</code> |
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "gather_across_devices": false
  }
  ```

### Training Logs
| Epoch | Step | test_cosine_ap |
|:-----:|:----:|:--------------:|
| -1    | -1   | 0.6474         |


### Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.1.0
- Transformers: 4.56.0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->