Sentence Similarity
sentence-transformers
Safetensors
English
modernbert
biencoder
text-classification
sentence-pair-classification
semantic-similarity
semantic-search
retrieval
reranking
Generated from Trainer
dataset_size:483820
loss:MultipleNegativesSymmetricRankingLoss
Eval Results
text-embeddings-inference
File size: 15,636 Bytes
1433a8a b556388 e17d3f5 1433a8a ce94dd5 1433a8a ce94dd5 1433a8a ce94dd5 1433a8a ce94dd5 1433a8a ce94dd5 1433a8a ce94dd5 1433a8a 54c0816 1433a8a 54c0816 1433a8a 54c0816 1433a8a 54c0816 1433a8a 54c0816 1433a8a 54c0816 1433a8a 54c0816 1433a8a 54c0816 1433a8a ce94dd5 1433a8a ce94dd5 1433a8a b556388 1433a8a b556388 54c0816 1433a8a ce94dd5 b556388 1433a8a ce94dd5 1433a8a ce94dd5 e17d3f5 1433a8a e17d3f5 1433a8a ce94dd5 b556388 1433a8a ce94dd5 1433a8a ce94dd5 e17d3f5 1433a8a e17d3f5 1433a8a b556388 54c0816 1433a8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
---
language:
- en
license: apache-2.0
tags:
- biencoder
- sentence-transformers
- text-classification
- sentence-pair-classification
- semantic-similarity
- semantic-search
- retrieval
- reranking
- generated_from_trainer
- dataset_size:483820
- loss:MultipleNegativesSymmetricRankingLoss
base_model: Alibaba-NLP/gte-modernbert-base
widget:
- source_sentence: 'See Precambrian time scale # Proposed Geologic timeline for another
set of periods 4600 -- 541 MYA .'
sentences:
- In 2014 election , Biju Janata Dal candidate Tathagat Satapathy Bharatiya Janata
party candidate Rudra Narayan Pany defeated with a margin of 1.37,340 votes .
- In Scotland , the Strathclyde Partnership for Transport , formerly known as Strathclyde
Passenger Transport Executive , comprises the former Strathclyde region , which
includes the urban area around Glasgow .
- 'See Precambrian Time Scale # Proposed Geological Timeline for another set of
periods of 4600 -- 541 MYA .'
- source_sentence: It is also 5 kilometers northeast of Tamaqua , 27 miles south of
Allentown and 9 miles northwest of Hazleton .
sentences:
- In 1948 he moved to Massachusetts , and eventually settled in Vermont .
- Suddenly I remembered that I was a New Zealander , I caught the first plane home
and came back .
- It is also 5 miles northeast of Tamaqua , 27 miles south of Allentown , and 9
miles northwest of Hazleton .
- source_sentence: The party has a Member of Parliament , a member of the House of
Lords , three members of the London Assembly and two Members of the European Parliament
.
sentences:
- The party has one Member of Parliament , one member of the House of Lords , three
Members of the London Assembly and two Members of the European Parliament .
- Grapsid crabs dominate in Australia , Malaysia and Panama , while gastropods Cerithidea
scalariformis and Melampus coeffeus are important seed predators in Florida mangroves
.
- Music Story is a music service website and international music data provider that
curates , aggregates and analyses metadata for digital music services .
- source_sentence: 'The play received two 1969 Tony Award nominations : Best Actress
in a Play ( Michael Annals ) and Best Costume Design ( Charlotte Rae ) .'
sentences:
- Ravishanker is a fellow of the International Statistical Institute and an elected
member of the American Statistical Association .
- 'In 1969 , the play received two Tony - Award nominations : Best Actress in a
Theatre Play ( Michael Annals ) and Best Costume Design ( Charlotte Rae ) .'
- AMD and Nvidia both have proprietary methods of scaling , CrossFireX for AMD ,
and SLI for Nvidia .
- source_sentence: He was a close friend of Ángel Cabrera and is a cousin of golfer
Tony Croatto .
sentences:
- He was a close friend of Ángel Cabrera , and is a cousin of golfer Tony Croatto
.
- Eugenijus Bartulis ( born December 7 , 1949 in Kaunas ) is a Lithuanian Roman
Catholic priest , and Bishop of Šiauliai .
- UWIRE also distributes its members content to professional media outlets , including
Yahoo , CNN and CBS News .
datasets:
- redis/langcache-sentencepairs-v1
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
model-index:
- name: Redis fine-tuned BiEncoder model for semantic caching on LangCache
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: test
type: test
metrics:
- type: cosine_accuracy
value: 0.7035681462730365
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8473721742630005
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.712274188436637
name: Cosine F1
- type: cosine_f1_threshold
value: 0.8116312026977539
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.5987668417446905
name: Cosine Precision
- type: cosine_recall
value: 0.8788826815642458
name: Cosine Recall
- type: cosine_ap
value: 0.6473811496690576
name: Cosine Ap
- type: cosine_mcc
value: 0.4419218320172892
name: Cosine Mcc
---
# Redis fine-tuned BiEncoder model for semantic caching on LangCache
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) on the [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for sentence pair similarity.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) <!-- at revision e7f32e3c00f91d699e8c43b53106206bcc72bb22 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("redis/langcache-embed-v3")
# Run inference
sentences = [
'He was a close friend of Ángel Cabrera and is a cousin of golfer Tony Croatto .',
'He was a close friend of Ángel Cabrera , and is a cousin of golfer Tony Croatto .',
'UWIRE also distributes its members content to professional media outlets , including Yahoo , CNN and CBS News .',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[0.9922, 0.9922, 0.5352],
# [0.9922, 0.9961, 0.5391],
# [0.5352, 0.5391, 1.0000]], dtype=torch.bfloat16)
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Binary Classification
* Dataset: `test`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:--------------------------|:-----------|
| cosine_accuracy | 0.7036 |
| cosine_accuracy_threshold | 0.8474 |
| cosine_f1 | 0.7123 |
| cosine_f1_threshold | 0.8116 |
| cosine_precision | 0.5988 |
| cosine_recall | 0.8789 |
| **cosine_ap** | **0.6474** |
| cosine_mcc | 0.4419 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### LangCache Sentence Pairs (all)
* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
* Size: 26,850 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------|
| type | string | string | int |
| details | <ul><li>min: 8 tokens</li><li>mean: 27.35 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 27.27 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:----------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code> | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code> | <code>1</code> |
| <code>After losing his second election , he resigned as opposition leader and was replaced by Geoff Pearsall .</code> | <code>Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .</code> | <code>1</code> |
| <code>The 12F was officially homologated on August 21 , 1929 and exhibited at the Paris Salon in 1930 .</code> | <code>The 12F was officially homologated on 21 August 1929 and displayed at the 1930 Paris Salon .</code> | <code>1</code> |
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
```
### Evaluation Dataset
#### LangCache Sentence Pairs (all)
* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v1)
* Size: 26,850 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------|
| type | string | string | int |
| details | <ul><li>min: 8 tokens</li><li>mean: 27.35 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 27.27 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:----------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code> | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code> | <code>1</code> |
| <code>After losing his second election , he resigned as opposition leader and was replaced by Geoff Pearsall .</code> | <code>Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .</code> | <code>1</code> |
| <code>The 12F was officially homologated on August 21 , 1929 and exhibited at the Paris Salon in 1930 .</code> | <code>The 12F was officially homologated on 21 August 1929 and displayed at the 1930 Paris Salon .</code> | <code>1</code> |
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
```
### Training Logs
| Epoch | Step | test_cosine_ap |
|:-----:|:----:|:--------------:|
| -1 | -1 | 0.6474 |
### Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.1.0
- Transformers: 4.56.0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |