Spaces:
Running
Running
File size: 11,583 Bytes
43aea39 19caa3e 43aea39 19caa3e e03b792 19caa3e 70e6432 19caa3e 70e6432 19caa3e 7e83ea9 19caa3e 7e83ea9 19caa3e a247bc0 19caa3e a247bc0 19caa3e a247bc0 19caa3e a247bc0 6479cb3 32eba23 24748af 32eba23 a247bc0 19caa3e dfd8346 a247bc0 19caa3e ab5b556 b1c528e 19caa3e 70e6432 19caa3e 70e6432 19caa3e 70e6432 a4770bd 70e6432 19caa3e 70e6432 19caa3e 70e6432 19caa3e 70e6432 19caa3e 70e6432 19caa3e 70e6432 19caa3e 70e6432 a4770bd 70e6432 a4770bd 70e6432 7e83ea9 70e6432 19caa3e a247bc0 7e83ea9 a247bc0 70e6432 7e83ea9 70e6432 a247bc0 70e6432 e03b792 19caa3e 70e6432 19caa3e 70e6432 19caa3e 70e6432 32eba23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import os
os.environ['HF_HOME'] = '/tmp'
import time
import streamlit as st
import pandas as pd
import io
import plotly.express as px
import zipfile
from streamlit_extras.stylable_container import stylable_container
from transformers import pipeline
from comet_ml import Experiment
# --- App Configuration and Styling ---
st.set_page_config(
layout="wide",
page_title="English Keyphrase"
)
st.markdown(
"""
<style>
.stApp {
background-color: #f0f8ff; /* A single, solid color */
color: #000000;
font-family: 'Inter', sans-serif;
}
.stButton > button {
background-color: #FF69B4;
color: #FFFFFF;
font-weight: bold;
border-radius: 12px;
transition: all 0.2s ease-in-out;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.stButton > button:hover {
background-color: #FFB6C1;
box-shadow: 0 6px 8px rgba(0, 0, 0, 0.15);
transform: translateY(-2px);
}
/* Text Area background and text color */
.stTextArea textarea {
background-color: #FFC0CB; /* A nice pink color */
color: #000000;
border: 1px solid #FF69B4; /* A pink border to match the button */
}
</style>
""",
unsafe_allow_html=True
)
# --- Comet ML Setup ---
COMET_API_KEY = os.environ.get("COMET_API_KEY")
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME)
if not comet_initialized:
st.warning("Comet ML not initialized. Check environment variables.")
# --- UI Header and Notes ---
st.subheader("AcademiaMiner", divider="rainbow")
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
expander = st.expander("**Important notes**")
expander.write('''**Entities:** This AcademiaMiner extracts keyphrases from English academic and scientific papers.
Results are presented in easy-to-read tables, visualized in an interactive tree map and a bar chart, and are available for download along with a Glossary of tags.
**How to Use:** Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data.
**Usage Limits:** You can request results unlimited times for one (1) month.
**Supported Languages:** English
**Technical issues:** If your connection times out, please refresh the page or reopen the app's URL.
For any errors or inquiries, please contact us at [email protected]''')
with st.sidebar:
st.write("Use the following code to embed the AcademiaMiner web app on your website. Feel free to adjust the width and height values to fit your page.")
code = '''
<iframe
src="https://aiecosystem-academiaminer.hf.space"
frameborder="0"
width="850"
height="450"
></iframe>
'''
st.code(code, language="html")
st.text("")
st.text("")
st.divider()
st.subheader("π Ready to build your own AI Web App?", divider="rainbow")
st.link_button("AI Web App Builder", "https://nlpblogs.com/custom-web-app-development/", type="primary")
# --- Model Loading ---
@st.cache_resource
def load_ner_model():
"""Loads the keyphrase extraction model and caches it."""
try:
return pipeline(
"token-classification",
model="ml6team/keyphrase-extraction-kbir-inspec",
aggregation_strategy="max", stride=128, ignore_labels=["O"]
)
except Exception as e:
st.error(f"Failed to load NER model: {e}")
st.stop()
model = load_ner_model()
# --- Main App Logic ---
text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", height=250, key='my_text_area')
def clear_text():
"""Clears the text area."""
st.session_state['my_text_area'] = ""
st.session_state.text_processed = False
st.button("Clear text", on_click=clear_text)
if st.button("Results"):
if not text.strip():
st.warning("Please enter some text to extract keyphrases.")
else:
start_time_overall = time.time()
# Initialize Comet ML experiment at the start
experiment = None
if comet_initialized:
try:
experiment = Experiment(
api_key=COMET_API_KEY,
workspace=COMET_WORKSPACE,
project_name=COMET_PROJECT_NAME,
)
except Exception as e:
st.warning(f"Could not initialize Comet ML experiment: {e}")
experiment = None
try:
with st.spinner("Analyzing text...", ):
# The pipeline model returns a list of dictionaries.
entities = model(text)
data = []
for entity in entities:
# 'ml6team/keyphrase-extraction-kbir-inspec' model doesn't have 'entity_group'
# It just uses 'label'
data.append({
'word': entity['word'],
'label': entity['entity_group'], # This is the correct key
'score': entity['score'],
'start': entity['start'],
'end': entity['end']
})
if not data:
st.warning("No keyphrases found in the text.")
st.stop()
df = pd.DataFrame(data)
# --- Data Cleaning and Processing ---
pattern = r'[^\w\s]'
df['word'] = df['word'].replace(pattern, '', regex=True)
df = df.replace('', 'Unknown')
# --- All Extracted Keyphrases ---
st.subheader("All Extracted Keyphrases", divider="rainbow")
st.dataframe(df, use_container_width=True)
with st.expander("See Glossary of tags"):
st.write('''
**word**: ['keyphrase extracted from your text data']
**score**: ['accuracy score; how accurately a tag has been assigned']
**label**: ['label (tag) assigned to a given extracted keyphrase']
**start**: ['index of the start of the corresponding entity']
**end**: ['index of the end of the corresponding entity']
''')
# --- Most Frequent Keyphrases ---
st.subheader("Most Frequent Keyphrases", divider="rainbow")
word_counts = df['word'].value_counts().reset_index()
word_counts.columns = ['word', 'count']
df_frequent = word_counts.sort_values(by='count', ascending=False).head(15)
if not df_frequent.empty:
tab1, tab2 = st.tabs(["Table", "Chart"])
with tab1:
st.dataframe(df_frequent, use_container_width=True)
with tab2:
fig_frequent_bar = px.bar(
df_frequent,
x='count',
y='word',
orientation='h',
title='Top Frequent Keyphrases by Count',
color='count',
color_continuous_scale=px.colors.sequential.Viridis
)
fig_frequent_bar.update_layout(
yaxis={'categoryorder': 'total ascending'},
paper_bgcolor='#f0f8ff', # Sets the background color of the entire figure
plot_bgcolor='#f0f8ff' # Sets the background color of the plotting area
)
st.plotly_chart(fig_frequent_bar, use_container_width=True)
if experiment:
experiment.log_figure(figure=fig_frequent_bar, figure_name="frequent_keyphrases_bar_chart")
else:
st.info("No keyphrases found with more than one occurrence.")
# --- Treemap of All Keyphrases ---
st.subheader("Treemap of All Keyphrases", divider="rainbow")
# Use 'label' instead of 'entity_group'
fig_treemap = px.treemap(
df,
path=[px.Constant("all"), 'label', 'word'],
values='score',
color='word',
color_continuous_scale=px.colors.sequential.Plasma
)
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25), paper_bgcolor='#f0f8ff', plot_bgcolor='#f0f8ff')
st.plotly_chart(fig_treemap, use_container_width=True)
if experiment:
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap")
# --- Download Section ---
dfa = pd.DataFrame(
data={
'Column Name': ['word', 'label', 'score', 'start', 'end'],
'Description': [
'keyphrase extracted from your text data',
'label (tag) assigned to a given keyphrase',
'accuracy score; how accurately a tag has been assigned',
'index of the start of the corresponding entity',
'index of the end of the corresponding entity'
]
}
)
buf = io.BytesIO()
with zipfile.ZipFile(buf, "w") as myzip:
myzip.writestr("Summary_of_results.csv", df.to_csv(index=False))
myzip.writestr("Most_frequent_keyphrases.csv", df_frequent.to_csv(index=False))
myzip.writestr("Glossary_of_tags.csv", dfa.to_csv(index=False))
with stylable_container(
key="download_button",
css_styles="""button { background-color: red; border: 1px solid black; padding: 5px; color: white; }""",
):
st.download_button(
label="Download zip file",
data=buf.getvalue(),
file_name="nlpblogs_ner_results.zip",
mime="application/zip",
)
st.divider()
except Exception as e:
st.error(f"An unexpected error occurred during processing: {e}")
finally:
if experiment:
try:
# Log parameters and tables before ending the experiment
experiment.log_parameter("input_source_type", "text_area")
experiment.log_parameter("input_content_length", len(text))
experiment.log_table("predicted_entities", df)
experiment.end()
except Exception as comet_e:
st.warning(f"Comet ML experiment.end() failed: {comet_e}")
# Show elapsed time
end_time_overall = time.time()
elapsed_time_overall = end_time_overall - start_time_overall
st.info(f"Results processed in **{elapsed_time_overall:.2f} seconds**.")
|