File size: 9,773 Bytes
10e9b7d eccf8e4 182cf83 3c4371f 182cf83 10e9b7d 182cf83 3db6293 182cf83 e80aab9 182cf83 31243f4 182cf83 31243f4 182cf83 e85b640 182cf83 e85b640 182cf83 4021bf3 182cf83 3c4371f 7e4a06b 182cf83 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 e85b640 31243f4 182cf83 31243f4 3c4371f 31243f4 182cf83 3c4371f 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 182cf83 31243f4 e80aab9 31243f4 3c4371f 182cf83 7d65c66 31243f4 e80aab9 b177367 7d65c66 3c4371f 31243f4 7d65c66 31243f4 182cf83 31243f4 3c4371f 31243f4 b177367 182cf83 3c4371f 31243f4 e80aab9 7d65c66 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 182cf83 e80aab9 31243f4 7d65c66 31243f4 e80aab9 182cf83 e80aab9 182cf83 0ee0419 e514fd7 182cf83 e23ab90 182cf83 e514fd7 e80aab9 182cf83 7e4a06b 182cf83 31243f4 182cf83 9088b99 7d65c66 e80aab9 e23ab90 182cf83 e23ab90 e80aab9 182cf83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
DEFAULT_HF_MODEL = "mistralai/Mistral-7B-Instruct-v0.1" # Free model on Hugging Face
# --- Basic Agent Definition ---
class BasicAgent:
def __init__(self, hf_token=None, model_name=DEFAULT_HF_MODEL):
print("Initializing BasicAgent with LLM...")
self.hf_token = hf_token
self.model_name = model_name
self.llm = None
self.tokenizer = None
if hf_token:
try:
print(f"Loading model: {model_name}")
self.tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
self.model = AutoModelForCausalLM.from_pretrained(model_name, token=hf_token)
self.llm = pipeline(
"text-generation",
model=self.model,
tokenizer=self.tokenizer,
device_map="auto"
)
print("Model loaded successfully")
except Exception as e:
print(f"Error loading model: {e}")
raise Exception(f"Could not load model: {e}")
else:
print("No HF token provided - agent will use default answers")
def __call__(self, question: str) -> str:
if not self.llm:
return "This is a default answer (no LLM initialized)"
try:
print(f"Generating answer for question: {question[:50]}...")
response = self.llm(
question,
max_new_tokens=150,
do_sample=True,
temperature=0.7,
top_p=0.9
)
return response[0]['generated_text']
except Exception as e:
print(f"Error generating answer: {e}")
return f"Error generating answer: {e}"
def run_and_submit_all(profile: gr.OAuthProfile | None, hf_token: str):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent = BasicAgent(hf_token=hf_token)
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# LLM Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Get your Hugging Face API token from [your settings](https://huggingface.co/settings/tokens)
2. Enter your token below (it will be used only during this session)
3. Log in to your Hugging Face account
4. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Note:** The first run will take longer as it downloads the model.
"""
)
with gr.Row():
hf_token_input = gr.Textbox(
label="Hugging Face API Token",
type="password",
placeholder="Enter your HF API token here (required for LLM)",
info="Get your token from https://huggingface.co/settings/tokens"
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
inputs=[gr.OAuthProfile(), hf_token_input],
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for LLM Agent Evaluation...")
demo.launch(debug=True, share=False) |