File size: 9,773 Bytes
10e9b7d
 
eccf8e4
182cf83
3c4371f
182cf83
10e9b7d
182cf83
3db6293
182cf83
e80aab9
182cf83
31243f4
182cf83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31243f4
182cf83
 
 
e85b640
182cf83
 
 
 
 
 
 
 
 
e85b640
182cf83
 
4021bf3
182cf83
 
 
 
 
 
 
3c4371f
7e4a06b
182cf83
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
e85b640
31243f4
182cf83
31243f4
3c4371f
31243f4
182cf83
 
 
3c4371f
7d65c66
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
182cf83
 
31243f4
e80aab9
31243f4
 
3c4371f
182cf83
 
 
7d65c66
31243f4
 
e80aab9
b177367
7d65c66
 
3c4371f
31243f4
 
 
 
 
 
 
7d65c66
 
 
31243f4
182cf83
 
31243f4
 
3c4371f
31243f4
 
b177367
182cf83
3c4371f
31243f4
e80aab9
7d65c66
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
182cf83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
182cf83
 
e80aab9
182cf83
0ee0419
e514fd7
 
182cf83
 
 
e23ab90
182cf83
 
 
e514fd7
e80aab9
 
182cf83
 
 
 
 
 
 
 
7e4a06b
182cf83
31243f4
182cf83
9088b99
7d65c66
e80aab9
e23ab90
 
182cf83
e23ab90
 
e80aab9
 
182cf83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
DEFAULT_HF_MODEL = "mistralai/Mistral-7B-Instruct-v0.1"  # Free model on Hugging Face

# --- Basic Agent Definition ---
class BasicAgent:
    def __init__(self, hf_token=None, model_name=DEFAULT_HF_MODEL):
        print("Initializing BasicAgent with LLM...")
        self.hf_token = hf_token
        self.model_name = model_name
        self.llm = None
        self.tokenizer = None
        
        if hf_token:
            try:
                print(f"Loading model: {model_name}")
                self.tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
                self.model = AutoModelForCausalLM.from_pretrained(model_name, token=hf_token)
                self.llm = pipeline(
                    "text-generation",
                    model=self.model,
                    tokenizer=self.tokenizer,
                    device_map="auto"
                )
                print("Model loaded successfully")
            except Exception as e:
                print(f"Error loading model: {e}")
                raise Exception(f"Could not load model: {e}")
        else:
            print("No HF token provided - agent will use default answers")
    
    def __call__(self, question: str) -> str:
        if not self.llm:
            return "This is a default answer (no LLM initialized)"
            
        try:
            print(f"Generating answer for question: {question[:50]}...")
            response = self.llm(
                question,
                max_new_tokens=150,
                do_sample=True,
                temperature=0.7,
                top_p=0.9
            )
            return response[0]['generated_text']
        except Exception as e:
            print(f"Error generating answer: {e}")
            return f"Error generating answer: {e}"

def run_and_submit_all(profile: gr.OAuthProfile | None, hf_token: str):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent
    try:
        agent = BasicAgent(hf_token=hf_token)
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# LLM Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1. Get your Hugging Face API token from [your settings](https://huggingface.co/settings/tokens)
        2. Enter your token below (it will be used only during this session)
        3. Log in to your Hugging Face account
        4. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Note:** The first run will take longer as it downloads the model.
        """
    )

    with gr.Row():
        hf_token_input = gr.Textbox(
            label="Hugging Face API Token",
            type="password",
            placeholder="Enter your HF API token here (required for LLM)",
            info="Get your token from https://huggingface.co/settings/tokens"
        )
    
    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        inputs=[gr.OAuthProfile(), hf_token_input],
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup:
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for LLM Agent Evaluation...")
    demo.launch(debug=True, share=False)