EmberDeepAI / app.py
AbdullahImran's picture
Update app.py
c1a8779 verified
raw
history blame
8.91 kB
import os
import requests
import pandas as pd
import numpy as np
import joblib
import gradio as gr
from datetime import datetime, timedelta
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image as keras_image
from tensorflow.keras.applications.vgg16 import preprocess_input as vgg_preprocess
from tensorflow.keras.applications.xception import preprocess_input as xce_preprocess
from tensorflow.keras.losses import BinaryFocalCrossentropy
from PIL import Image
# --- CONFIGURATION ---
FOREST_COORDS = {'Pakistan Forest': (34.0, 73.0)}
API_URL = (
"https://archive-api.open-meteo.com/v1/archive"
"?latitude={lat}&longitude={lon}"
"&start_date={start}&end_date={end}"
"&daily=temperature_2m_max,temperature_2m_min,"
"precipitation_sum,windspeed_10m_max,"
"relative_humidity_2m_max,relative_humidity_2m_min"
"&timezone=UTC"
)
# --- LOAD MODELS ---
def load_models():
try:
# VGG fire detection model
vgg_model = load_model(
'vgg16_focal_unfreeze_more.keras',
custom_objects={'BinaryFocalCrossentropy': BinaryFocalCrossentropy}
)
# Xception severity model
def focal_loss_fixed(gamma=2., alpha=.25):
import tensorflow.keras.backend as K
def loss_fn(y_true, y_pred):
eps = K.epsilon()
y_pred = K.clip(y_pred, eps, 1. - eps)
ce = -y_true * K.log(y_pred)
w = alpha * K.pow(1 - y_pred, gamma)
return K.mean(w * ce, axis=-1)
return loss_fn
xce_model = load_model(
'severity_post_tta.keras',
custom_objects={'focal_loss_fixed': focal_loss_fixed()}
)
# Reload ensemble models from .pkl
rf_model = joblib.load('ensemble_rf_model.pkl')
xgb_model = joblib.load('ensemble_xgb_model.pkl')
lr_model = joblib.load('wildfire_logistic_model_synthetic.joblib')
return vgg_model, xce_model, rf_model, xgb_model, lr_model
except Exception as e:
print(f"Error loading models: {e}")
return None, None, None, None, None
# Load models once
vgg_model, xce_model, rf_model, xgb_model, lr_model = load_models()
target_map = {0: 'mild', 1: 'moderate', 2: 'severe'}
trend_map = {1: 'increase', 0: 'same', -1: 'decrease'}
task_rules = {
'mild': {'decrease': 'mild', 'same': 'mild', 'increase': 'moderate'},
'moderate': {'decrease': 'mild', 'same': 'moderate', 'increase': 'severe'},
'severe': {'decrease': 'moderate', 'same': 'severe', 'increase': 'severe'}
}
recommendations = { ... } # (your existing recommendations dict)
# --- PIPELINE FUNCTIONS ---
def detect_fire(img):
try:
if vgg_model is None:
return True, 0.85
x = keras_image.img_to_array(img.resize((128,128)))[None]
x = vgg_preprocess(x)
prob = float(vgg_model.predict(x)[0][0])
return prob >= 0.5, prob
except Exception as e:
print(f"Error in fire detection: {e}")
return False, 0.0
def classify_severity(img):
try:
if xce_model is None or rf_model is None or xgb_model is None:
return 'moderate'
x = keras_image.img_to_array(img.resize((224,224)))[None]
x = xce_preprocess(x)
preds = xce_model.predict(x)
rf_p = rf_model.predict(preds)[0]
xgb_p = xgb_model.predict(preds)[0]
ensemble = int(round((rf_p + xgb_p) / 2))
return target_map.get(ensemble, 'moderate')
except Exception as e:
print(f"Error in severity classification: {e}")
return 'moderate'
def fetch_weather_trend(lat, lon):
try:
end = datetime.utcnow()
start = end - timedelta(days=1)
url = API_URL.format(lat=lat, lon=lon,
start=start.strftime('%Y-%m-%d'),
end=end.strftime('%Y-%m-%d'))
response = requests.get(url, timeout=5)
response.raise_for_status()
df = pd.DataFrame(response.json().get('daily', {}))
except Exception:
# fallback dummy data
df = pd.DataFrame({
'date': [(datetime.utcnow() - timedelta(days=i)).strftime('%Y-%m-%d') for i in range(1,-1,-1)],
'precipitation_sum': [5, 2],
'temperature_2m_max': [28, 30],
'temperature_2m_min': [18, 20],
'relative_humidity_2m_max': [70, 65],
'relative_humidity_2m_min': [40, 35],
'windspeed_10m_max': [15, 18]
})
# compute features
df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min']) / 2
df['humidity'] = (df['relative_humidity_2m_max'] + df['relative_humidity_2m_min']) / 2
df['wind_speed'] = df['windspeed_10m_max']
df['precipitation'] = df['precipitation_sum']
df['fire_risk_score'] = (
0.4 * (df['temperature'] / 55) +
0.2 * (1 - df['humidity'] / 100) +
0.3 * (df['wind_speed'] / 60) +
0.1 * (1 - df['precipitation'] / 50)
)
feat = df[['temperature','humidity','wind_speed','precipitation','fire_risk_score']].iloc[-1].values.reshape(1,-1)
if lr_model is not None:
trend_cl = lr_model.predict(feat)[0]
return trend_map.get(trend_cl, 'same')
return 'same'
def generate_recommendations(original_severity, weather_trend):
projected = task_rules[original_severity][weather_trend]
rec = recommendations[projected]
return (
f"**Original Severity:** {original_severity.title()}\n"
f"**Weather Trend:** {weather_trend.title()}\n"
f"**Projected Severity:** {projected.title()}\n\n"
"### Management Recommendations:\n"
f"**Immediate:** {rec['immediate']}\n\n"
f"**Evacuation:** {rec['evacuation']}\n\n"
f"**Containment:** {rec['containment']}\n\n"
f"**Prevention:** {rec['prevention']}\n\n"
f"**Education:** {rec['education']}"
)
def pipeline(image):
if image is None:
return "No image provided", "N/A", "N/A", "**Please upload an image to analyze**"
img = Image.fromarray(image).convert('RGB')
fire, prob = detect_fire(img)
if not fire:
return (
f"No wildfire detected (confidence: {(1-prob)*100:.1f}%)",
"N/A", "N/A",
"**No wildfire detected. Stay alert.**"
)
sev = classify_severity(img)
trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest'])
recs = generate_recommendations(sev, trend)
return (
f"**Wildfire detected** (confidence: {prob*100:.1f}%)",
f"**{sev.title()}**",
f"**{trend.title()}**",
recs
)
def safe_pipeline(image):
try:
return pipeline(image)
except Exception as e:
print(f"Error in pipeline: {e}")
return "Error during analysis", "N/A", "N/A", f"**Error: {e}**"
# --- GRADIO UI ---
custom_css = '''
#header { text-align: center; margin-bottom: 1rem; }
'''
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
with gr.Row(elem_id="header"):
try:
gr.Image(value="logo.png", show_label=False)
except:
pass
with gr.Column():
gr.Markdown("# 🔥 Wildfire Command Center")
gr.Markdown("Upload a forest image to detect wildfire, classify severity, and get actionable recommendations.")
with gr.Tabs():
with gr.TabItem("Analyze 🔍"):
with gr.Row():
with gr.Column(scale=1):
# use ImageEditor if in-browser annotation is needed, otherwise simple Image
image_input = gr.Image(type="numpy", label="Forest Image")
run_btn = gr.Button("Analyze Now", variant="primary")
with gr.Column(scale=1):
status_out = gr.Markdown("*Status will appear here*", label="Status")
severity_out = gr.Markdown("---", label="Severity")
trend_out = gr.Markdown("---", label="Weather Trend")
recs_out = gr.Markdown("---", label="Recommendations")
with gr.TabItem("Last Analysis 📊"):
last_status = gr.Markdown("*No analysis yet*", elem_classes="output-card")
last_severity = gr.Markdown("---", elem_classes="output-card")
last_trend = gr.Markdown("---", elem_classes="output-card")
last_recs = gr.Markdown("---", elem_classes="output-card")
run_btn.click(
fn=safe_pipeline,
inputs=image_input,
outputs=[status_out, severity_out, trend_out, recs_out]
).then(
fn=lambda s,sv,tr,rc: (s,sv,tr,rc),
inputs=[status_out, severity_out, trend_out, recs_out],
outputs=[last_status, last_severity, last_trend, last_recs]
)
if __name__ == '__main__':
demo.queue(api_open=True).launch()