File size: 8,905 Bytes
04fa07a
 
 
2d71661
d4e30d8
04fa07a
 
 
 
 
 
 
8c9a116
04fa07a
 
 
 
 
 
 
c347529
 
04fa07a
 
2d71661
 
04fa07a
 
bb48649
c1a8779
bb48649
 
 
 
c1a8779
bb48649
 
 
ec1da24
 
bb48649
ec1da24
bb48649
 
 
 
 
 
c1a8779
 
 
 
bb48649
 
 
 
04fa07a
c347529
 
 
7681b94
c1a8779
b7608ef
c1a8779
 
 
7681b94
c1a8779
04fa07a
ec1da24
7681b94
 
ec1da24
 
7681b94
 
 
 
ec1da24
 
7681b94
 
 
 
ec1da24
 
7681b94
 
ec1da24
c1a8779
7681b94
ec1da24
 
 
 
7681b94
 
c1a8779
7681b94
 
ec1da24
 
 
 
 
 
 
 
3fc634d
c1a8779
ec1da24
 
 
 
 
 
 
 
 
c1a8779
ec1da24
c1a8779
 
c347529
ec1da24
 
 
 
 
 
daf8395
ec1da24
 
 
 
7681b94
c1a8779
ec1da24
 
 
bde892e
 
 
 
 
 
 
 
 
 
 
ec1da24
c1a8779
ec1da24
 
c1a8779
ec1da24
 
 
 
 
c1a8779
ec1da24
 
c1a8779
ec1da24
c1a8779
ec1da24
 
 
 
 
 
bb48649
c1a8779
3fc634d
 
 
 
ec1da24
c1a8779
bb48649
c347529
ec1da24
c347529
ec1da24
7681b94
ec1da24
 
 
 
 
 
c347529
 
c1a8779
ec1da24
 
 
 
c1a8779
 
 
ec1da24
c1a8779
c347529
 
 
ec1da24
 
 
 
 
c1a8779
ec1da24
 
 
 
 
 
 
 
 
c1a8779
ec1da24
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import os
import requests
import pandas as pd
import numpy as np
import joblib
import gradio as gr
from datetime import datetime, timedelta
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image as keras_image
from tensorflow.keras.applications.vgg16 import preprocess_input as vgg_preprocess
from tensorflow.keras.applications.xception import preprocess_input as xce_preprocess
from tensorflow.keras.losses import BinaryFocalCrossentropy
from PIL import Image

# --- CONFIGURATION ---
FOREST_COORDS = {'Pakistan Forest': (34.0, 73.0)}
API_URL = (
    "https://archive-api.open-meteo.com/v1/archive"
    "?latitude={lat}&longitude={lon}"
    "&start_date={start}&end_date={end}"
    "&daily=temperature_2m_max,temperature_2m_min,"
    "precipitation_sum,windspeed_10m_max,"
    "relative_humidity_2m_max,relative_humidity_2m_min"
    "&timezone=UTC"
)

# --- LOAD MODELS ---
def load_models():
    try:
        # VGG fire detection model
        vgg_model = load_model(
            'vgg16_focal_unfreeze_more.keras',
            custom_objects={'BinaryFocalCrossentropy': BinaryFocalCrossentropy}
        )
        # Xception severity model
        def focal_loss_fixed(gamma=2., alpha=.25):
            import tensorflow.keras.backend as K
            def loss_fn(y_true, y_pred):
                eps = K.epsilon()
                y_pred = K.clip(y_pred, eps, 1. - eps)
                ce = -y_true * K.log(y_pred)
                w = alpha * K.pow(1 - y_pred, gamma)
                return K.mean(w * ce, axis=-1)
            return loss_fn
        xce_model = load_model(
            'severity_post_tta.keras',
            custom_objects={'focal_loss_fixed': focal_loss_fixed()}
        )
        # Reload ensemble models from .pkl
        rf_model  = joblib.load('ensemble_rf_model.pkl')
        xgb_model = joblib.load('ensemble_xgb_model.pkl')
        lr_model  = joblib.load('wildfire_logistic_model_synthetic.joblib')
        return vgg_model, xce_model, rf_model, xgb_model, lr_model
    except Exception as e:
        print(f"Error loading models: {e}")
        return None, None, None, None, None

# Load models once
vgg_model, xce_model, rf_model, xgb_model, lr_model = load_models()

target_map = {0: 'mild', 1: 'moderate', 2: 'severe'}
trend_map  = {1: 'increase', 0: 'same', -1: 'decrease'}
task_rules = {
    'mild':     {'decrease': 'mild',     'same': 'mild',     'increase': 'moderate'},
    'moderate': {'decrease': 'mild',     'same': 'moderate', 'increase': 'severe'},
    'severe':   {'decrease': 'moderate', 'same': 'severe',   'increase': 'severe'}
}
recommendations = { ... }  # (your existing recommendations dict)

# --- PIPELINE FUNCTIONS ---
def detect_fire(img):
    try:
        if vgg_model is None:
            return True, 0.85
        x = keras_image.img_to_array(img.resize((128,128)))[None]
        x = vgg_preprocess(x)
        prob = float(vgg_model.predict(x)[0][0])
        return prob >= 0.5, prob
    except Exception as e:
        print(f"Error in fire detection: {e}")
        return False, 0.0

def classify_severity(img):
    try:
        if xce_model is None or rf_model is None or xgb_model is None:
            return 'moderate'
        x = keras_image.img_to_array(img.resize((224,224)))[None]
        x = xce_preprocess(x)
        preds = xce_model.predict(x)
        rf_p  = rf_model.predict(preds)[0]
        xgb_p = xgb_model.predict(preds)[0]
        ensemble = int(round((rf_p + xgb_p) / 2))
        return target_map.get(ensemble, 'moderate')
    except Exception as e:
        print(f"Error in severity classification: {e}")
        return 'moderate'


def fetch_weather_trend(lat, lon):
    try:
        end = datetime.utcnow()
        start = end - timedelta(days=1)
        url = API_URL.format(lat=lat, lon=lon,
                             start=start.strftime('%Y-%m-%d'),
                             end=end.strftime('%Y-%m-%d'))
        response = requests.get(url, timeout=5)
        response.raise_for_status()
        df = pd.DataFrame(response.json().get('daily', {}))
    except Exception:
        # fallback dummy data
        df = pd.DataFrame({
            'date': [(datetime.utcnow() - timedelta(days=i)).strftime('%Y-%m-%d') for i in range(1,-1,-1)],
            'precipitation_sum': [5, 2],
            'temperature_2m_max': [28, 30],
            'temperature_2m_min': [18, 20],
            'relative_humidity_2m_max': [70, 65],
            'relative_humidity_2m_min': [40, 35],
            'windspeed_10m_max': [15, 18]
        })
    # compute features
    df['temperature'] = (df['temperature_2m_max'] + df['temperature_2m_min']) / 2
    df['humidity']    = (df['relative_humidity_2m_max'] + df['relative_humidity_2m_min']) / 2
    df['wind_speed']  = df['windspeed_10m_max']
    df['precipitation'] = df['precipitation_sum']
    df['fire_risk_score'] = (
        0.4 * (df['temperature'] / 55) +
        0.2 * (1 - df['humidity'] / 100) +
        0.3 * (df['wind_speed'] / 60) +
        0.1 * (1 - df['precipitation'] / 50)
    )
    feat = df[['temperature','humidity','wind_speed','precipitation','fire_risk_score']].iloc[-1].values.reshape(1,-1)
    if lr_model is not None:
        trend_cl = lr_model.predict(feat)[0]
        return trend_map.get(trend_cl, 'same')
    return 'same'


def generate_recommendations(original_severity, weather_trend):
    projected = task_rules[original_severity][weather_trend]
    rec = recommendations[projected]
    return (
        f"**Original Severity:** {original_severity.title()}\n"
        f"**Weather Trend:** {weather_trend.title()}\n"
        f"**Projected Severity:** {projected.title()}\n\n"
        "### Management Recommendations:\n"
        f"**Immediate:** {rec['immediate']}\n\n"
        f"**Evacuation:** {rec['evacuation']}\n\n"
        f"**Containment:** {rec['containment']}\n\n"
        f"**Prevention:** {rec['prevention']}\n\n"
        f"**Education:** {rec['education']}"
    )


def pipeline(image):
    if image is None:
        return "No image provided", "N/A", "N/A", "**Please upload an image to analyze**"
    img = Image.fromarray(image).convert('RGB')
    fire, prob = detect_fire(img)
    if not fire:
        return (
            f"No wildfire detected (confidence: {(1-prob)*100:.1f}%)",
            "N/A", "N/A",
            "**No wildfire detected. Stay alert.**"
        )
    sev   = classify_severity(img)
    trend = fetch_weather_trend(*FOREST_COORDS['Pakistan Forest'])
    recs  = generate_recommendations(sev, trend)
    return (
        f"**Wildfire detected** (confidence: {prob*100:.1f}%)",
        f"**{sev.title()}**",
        f"**{trend.title()}**",
        recs
    )


def safe_pipeline(image):
    try:
        return pipeline(image)
    except Exception as e:
        print(f"Error in pipeline: {e}")
        return "Error during analysis", "N/A", "N/A", f"**Error: {e}**"

# --- GRADIO UI ---
custom_css = '''
#header { text-align: center; margin-bottom: 1rem; }
''' 
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
    with gr.Row(elem_id="header"):
        try:
            gr.Image(value="logo.png", show_label=False)
        except:
            pass
        with gr.Column():
            gr.Markdown("# 🔥 Wildfire Command Center")
            gr.Markdown("Upload a forest image to detect wildfire, classify severity, and get actionable recommendations.")

    with gr.Tabs():
        with gr.TabItem("Analyze 🔍"):
            with gr.Row():
                with gr.Column(scale=1):
                    # use ImageEditor if in-browser annotation is needed, otherwise simple Image
                    image_input = gr.Image(type="numpy", label="Forest Image")
                    run_btn     = gr.Button("Analyze Now", variant="primary")
                with gr.Column(scale=1):
                    status_out   = gr.Markdown("*Status will appear here*", label="Status")
                    severity_out = gr.Markdown("---", label="Severity")
                    trend_out    = gr.Markdown("---", label="Weather Trend")
                    recs_out     = gr.Markdown("---", label="Recommendations")
        with gr.TabItem("Last Analysis 📊"):
            last_status   = gr.Markdown("*No analysis yet*", elem_classes="output-card")
            last_severity = gr.Markdown("---", elem_classes="output-card")
            last_trend    = gr.Markdown("---", elem_classes="output-card")
            last_recs     = gr.Markdown("---", elem_classes="output-card")

    run_btn.click(
        fn=safe_pipeline,
        inputs=image_input,
        outputs=[status_out, severity_out, trend_out, recs_out]
    ).then(
        fn=lambda s,sv,tr,rc: (s,sv,tr,rc),
        inputs=[status_out, severity_out, trend_out, recs_out],
        outputs=[last_status, last_severity, last_trend, last_recs]
    )

if __name__ == '__main__':
    demo.queue(api_open=True).launch()