Spaces:
Running
on
Zero
Running
on
Zero
File size: 29,887 Bytes
ae231bc d76bf3e ae231bc 02fd900 ae231bc bbabb73 ae231bc d76bf3e ae231bc 2e87c77 d76bf3e 2e87c77 ae231bc 7779abb ae231bc d76bf3e ae231bc ed0198d ae231bc 68e06f3 3d65633 ae231bc 3d65633 ae231bc 7779abb ae231bc 7779abb 40b9211 7779abb ae231bc 73c138b ae231bc 7779abb ae231bc 3d65633 ae231bc 3d65633 ae231bc 3d65633 ae231bc 3d65633 ae231bc 7e0577a ae231bc 7779abb ae231bc 7779abb ae231bc 7779abb ae231bc ec0268d ae231bc 7779abb ae231bc d76bf3e ae231bc ed0198d ae231bc 7779abb ae231bc 2a83e65 ae231bc 7779abb ae231bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 |
"""
Mirel Harmony Inference – HF Space (Gradio)
ZeroGPU-ready, Harmony formatting, optional Rose-guided decoding
Chain-of-thought model with proper channel extraction using openai_harmony
Single file: app.py
"""
from __future__ import annotations
import os, gc, json, threading, torch
from dataclasses import dataclass
from typing import List, Dict, Optional, Any
from datetime import datetime
import gradio as gr
import spaces # required for ZeroGPU
from transformers import AutoTokenizer, AutoModelForCausalLM, StoppingCriteria, StoppingCriteriaList
# Import Harmony components
try:
from openai_harmony import (
Author,
Conversation,
HarmonyEncodingName,
Message,
Role,
SystemContent,
DeveloperContent,
load_harmony_encoding,
ReasoningEffort
)
HARMONY_AVAILABLE = True
except ImportError:
print("[WARNING] openai_harmony not installed. Install with: pip install openai-harmony")
HARMONY_AVAILABLE = False
# -----------------------
# Config & runtime modes
# -----------------------
DTYPE_MAP = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}
MODEL_ID = os.getenv("MODEL_ID", "openai/gpt-oss-20b")
ADAPTER_ID = os.getenv("ADAPTER_ID") or None
ADAPTER_SUBFOLDER = os.getenv("ADAPTER_SUBFOLDER") or None
ATTN_IMPL = os.getenv("ATTN_IMPL", "eager")
DTYPE = DTYPE_MAP.get(os.getenv("DTYPE", "bf16").lower(), torch.bfloat16)
SYSTEM_DEF = os.getenv("SYSTEM_PROMPT", "You are Mirel, a memory-stable symbolic assistant.")
MAX_DEF = int(os.getenv("MAX_NEW_TOKENS", "256"))
ZEROGPU = os.getenv("ZEROGPU", os.getenv("ZERO_GPU", "0")) == "1"
LOAD_4BIT = os.getenv("LOAD_4BIT", "0") == "1"
# Harmony channels for CoT
REQUIRED_CHANNELS = ["analysis", "final"]
# HF Auth - properly handle multiple token env var names
HF_TOKEN: Optional[str] = (
os.getenv("HF_TOKEN")
or os.getenv("HUGGING_FACE_HUB_TOKEN")
or os.getenv("HUGGINGFACEHUB_API_TOKEN")
or os.getenv("HF_ACCESS_TOKEN")
)
def _hf_login() -> None:
"""Login to HF Hub using common env secret names."""
if HF_TOKEN:
try:
from huggingface_hub import login, whoami
login(token=HF_TOKEN, add_to_git_credential=True)
try:
who = whoami(token=HF_TOKEN)
print(f"[HF Auth] Logged in as: {who.get('name') or who.get('fullname') or who.get('id', 'unknown')}")
except Exception:
print("[HF Auth] Login successful but couldn't get user info")
except Exception as e:
print(f"[HF Auth] Login failed: {e}")
else:
print("[HF Auth] No token found in environment variables")
# Login before loading any models
_hf_login()
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Load Harmony encoding if available
if HARMONY_AVAILABLE:
harmony_encoding = load_harmony_encoding(HarmonyEncodingName.HARMONY_GPT_OSS)
else:
harmony_encoding = None
# Stop tokens per Harmony spec: <|return|> (200002), <|call|> (200012)
HARMONY_STOP_IDS = harmony_encoding.stop_tokens_for_assistant_actions() if HARMONY_AVAILABLE else []
# Tokenizer is lightweight; load once
try:
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True, token=HF_TOKEN)
print(f"[Model] Successfully loaded tokenizer from {MODEL_ID}")
except Exception as e:
print(f"[Model] Failed to load tokenizer: {e}")
raise
# -----------------------
# Model loading
# -----------------------
try:
from peft import PeftModel
_HAS_PEFT = True
except Exception:
_HAS_PEFT = False
def _build_model_kwargs(device_map: Optional[str]) -> Dict[str, Any]:
kw: Dict[str, Any] = dict(
torch_dtype=DTYPE,
device_map=device_map,
attn_implementation=ATTN_IMPL if device_map != "cpu" else "eager",
trust_remote_code=True,
low_cpu_mem_usage=True,
token=HF_TOKEN,
)
if LOAD_4BIT and device_map != "cpu":
try:
import bitsandbytes as _bnb
kw.update(load_in_4bit=True)
if kw["device_map"] is None:
kw["device_map"] = "auto"
except Exception:
pass
return kw
def _load_model_on(device_map: Optional[str]) -> AutoModelForCausalLM:
print(f"[Model] Loading base model from {MODEL_ID}...")
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, **_build_model_kwargs(device_map))
#if ADAPTER_ID:
# if not _HAS_PEFT:
# raise RuntimeError("peft is required when ADAPTER_ID is set.")
# print(f"[Model] Loading adapter from {ADAPTER_ID}...")
# peft_kwargs: Dict[str, Any] = {"token": HF_TOKEN}
# if ADAPTER_SUBFOLDER:
# peft_kwargs["subfolder"] = ADAPTER_SUBFOLDER
# model = PeftModel.from_pretrained(model, ADAPTER_ID, is_trainable=False, **peft_kwargs)
model.eval()
# Ensure a valid pad_token_id is set; some OSS checkpoints reuse eos as pad
if getattr(model.config, "pad_token_id", None) is None:
model.config.pad_token_id = tokenizer.pad_token_id or tokenizer.eos_token_id
model.config.use_cache = True
print("[Model] Model loaded successfully")
return model
# -----------------------
# Harmony formatting
# -----------------------
def create_harmony_prompt(messages: List[Dict[str, str]], reasoning_effort: str = "high") -> Any:
"""Build a Harmony-formatted prompt. If Harmony is available, return **token IDs**
rendered by `openai_harmony` (authoritative). Otherwise fall back to the
tokenizer's chat template and return a string.
"""
if HARMONY_AVAILABLE and harmony_encoding is not None:
effort_map = {"low": ReasoningEffort.LOW, "medium": ReasoningEffort.MEDIUM, "high": ReasoningEffort.HIGH}
effort = effort_map.get(str(reasoning_effort).lower(), ReasoningEffort.HIGH)
system_content = (
SystemContent.new()
.with_model_identity("You are ChatGPT, a large language model trained by OpenAI.")
.with_reasoning_effort(effort)
.with_conversation_start_date(datetime.now().strftime("%Y-%m-%d"))
.with_knowledge_cutoff("2024-06")
.with_required_channels(REQUIRED_CHANNELS)
)
# Use first system message as developer instructions if present, else SYSTEM_DEF
sys_text = SYSTEM_DEF
rest: List[Dict[str, str]] = messages or []
if rest and rest[0].get("role") == "system":
sys_text = rest[0].get("content") or SYSTEM_DEF
rest = rest[1:]
harmony_messages = [Message.from_role_and_content(Role.SYSTEM, system_content)]
dev = DeveloperContent.new().with_instructions(sys_text)
harmony_messages.append(Message.from_role_and_content(Role.DEVELOPER, dev))
for m in rest:
role = m.get("role"); content = m.get("content", "")
if role == "user":
harmony_messages.append(Message.from_role_and_content(Role.USER, content))
elif role == "assistant":
harmony_messages.append(
Message.from_role_and_content(Role.ASSISTANT, content).with_channel("final")
)
convo = Conversation.from_messages(harmony_messages)
rendered = harmony_encoding.render_conversation_for_completion(convo, Role.ASSISTANT)
# Ensure assistant header includes a final channel + message start to avoid 'assistantassistant...' loops
try:
_tail = tokenizer.decode(list(rendered)[-64:], skip_special_tokens=False)
if '<|channel|>final<|message|>' not in _tail:
rendered = list(rendered) + tokenizer.encode('<|channel|>final<|message|>', add_special_tokens=False)
except Exception:
rendered = list(rendered)
return rendered
# Fallback: tokenizer chat template -> string prompt
if not messages or messages[0].get("role") != "system":
messages = [{"role": "system", "content": SYSTEM_DEF}] + (messages or [])
return tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
def parse_harmony_response(tokens: List[int]) -> Dict[str, str]:
"""Parse response tokens using Harmony format to extract channels."""
if not HARMONY_AVAILABLE:
# Fallback: just decode and extract final channel manually
text = tokenizer.decode(tokens, skip_special_tokens=False)
return {"final": extract_final_channel_fallback(text), "raw": text}
# Parse messages from completion tokens
parsed_messages = harmony_encoding.parse_messages_from_completion_tokens(tokens, Role.ASSISTANT)
# Extract content by channel
channels = {}
for msg in parsed_messages:
channel = msg.channel if hasattr(msg, 'channel') else "final"
if channel not in channels:
channels[channel] = ""
channels[channel] += "".join([getattr(part, "text", str(part)) for part in (msg.content if isinstance(msg.content, list) else [msg.content])])
# Ensure we have a final channel
if "final" not in channels:
channels["final"] = " ".join(channels.values())
return channels
def extract_final_channel_fallback(text: str) -> str:
"""Robustly extract the <final> channel from decoded Harmony text.
Works even if parsing fails or the model emits extra headers.
"""
try:
chunks: Dict[str, str] = {}
pieces = text.split("<|channel|>")
for seg in pieces[1:]:
name_end = seg.find("<|message|>")
if name_end <= 0:
continue
ch = seg[:name_end].strip()
body_start = name_end + len("<|message|>")
# end at next channel/end/return marker
next_pos = len(seg)
for delim in ("<|channel|>", "<|end|>", "<|return|>"):
p = seg.find(delim, body_start)
if p != -1:
next_pos = min(next_pos, p)
body = seg[body_start:next_pos]
chunks[ch] = chunks.get(ch, "") + body
final_txt = (chunks.get("final", "").strip())
if final_txt:
return final_txt
# Fallback: everything after last final marker up to a terminator
if "<|channel|>final<|message|>" in text:
tail = text.split("<|channel|>final<|message|>")[-1]
for delim in ("<|return|>", "<|end|>", "<|channel|>"):
idx = tail.find(delim)
if idx != -1:
tail = tail[:idx]
break
return tail.strip()
except Exception:
pass
return text.strip()
# -----------------------
# Rose guidance
# -----------------------
def build_bias_from_tokens(tokenizer, mapping: Dict[str, float]) -> torch.Tensor:
"""Create vocab bias from {token: weight}."""
vocab_size = len(tokenizer)
bias = torch.zeros(vocab_size, dtype=torch.float32)
for tok, w in mapping.items():
if tok is None:
continue
tid = tokenizer.convert_tokens_to_ids(tok)
if isinstance(tid, list):
for t in tid:
if isinstance(t, int) and t >= 0:
bias[t] += float(w) / max(1, len(tid))
elif isinstance(tid, int) and t >= 0:
bias[tid] += float(w)
return bias
class RoseGuidedLogits(torch.nn.Module):
def __init__(self, bias_vec: torch.Tensor, alpha: float = 1.0):
super().__init__()
self.bias_vec = bias_vec
self.alpha = float(alpha)
def forward(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
return scores + self.alpha * self.bias_vec.to(scores.device)
class StopOnTokens(StoppingCriteria):
def __init__(self, stop_ids: List[int]):
self.stop_ids = set(int(s) for s in (stop_ids or []))
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs):
return int(input_ids[0, -1]) in self.stop_ids
@spaces.GPU(duration=120)
def zerogpu_generate(full_prompt,
gen_kwargs: Dict[str, Any],
rose_map: Optional[Dict[str, float]],
rose_alpha: float,
rose_score: Optional[float],
seed: Optional[int]) -> Dict[str, str]:
"""Run inference on GPU and return parsed channels."""
try:
if seed is not None:
torch.manual_seed(int(seed))
# Load model
model = _load_model_on("auto")
# Setup logits processor for Rose guidance
logits_processor = None
if rose_map:
bias = build_bias_from_tokens(tokenizer, rose_map).to(next(model.parameters()).device)
eff_alpha = float(rose_alpha) * (float(rose_score) if rose_score is not None else 1.0)
logits_processor = [RoseGuidedLogits(bias, eff_alpha)]
# Tokenize / prepare inputs
device = next(model.parameters()).device
if HARMONY_AVAILABLE and not isinstance(full_prompt, str):
# Accept list/tuple or any iterable of ints from openai_harmony
try:
token_list = list(full_prompt)
except TypeError:
token_list = list(getattr(full_prompt, "ids", getattr(full_prompt, "token_ids", [])))
if not token_list:
raise ValueError("Harmony prompt produced no tokens")
input_ids = torch.tensor([token_list], dtype=torch.long, device=device)
attention_mask = torch.ones_like(input_ids, dtype=torch.long, device=device)
inputs = {"input_ids": input_ids, "attention_mask": attention_mask}
prompt_len = input_ids.shape[1]
else:
enc = tokenizer(full_prompt, return_tensors="pt")
inputs = {k: v.to(device) for k, v in enc.items()}
prompt_len = int(inputs["input_ids"].shape[1])
if "attention_mask" not in inputs:
inputs["attention_mask"] = torch.ones_like(inputs["input_ids"], dtype=torch.long, device=device)
# Prepare stopping
sc = None
if HARMONY_AVAILABLE and HARMONY_STOP_IDS:
sc = StoppingCriteriaList([StopOnTokens(HARMONY_STOP_IDS)])
# Generate
# Disallow degenerate header loops
bad_words_ids = None
try:
_B = []
for s in ("assistantassistant", "assistant", "<|assistant|>"):
ids = tokenizer.encode(s, add_special_tokens=False)
if ids:
_B.append(ids)
bad_words_ids = _B if _B else None
except Exception:
pass
out_ids = model.generate(
**inputs,
do_sample=bool(gen_kwargs.get("do_sample", True)),
temperature=float(gen_kwargs.get("temperature", 0.7)),
top_p=float(gen_kwargs.get("top_p", 0.9)),
top_k=(int(gen_kwargs.get("top_k")) if gen_kwargs.get("top_k") and int(gen_kwargs.get("top_k")) > 0 else None),
max_new_tokens=int(gen_kwargs.get("max_new_tokens", MAX_DEF)),
pad_token_id=model.config.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
bad_words_ids=bad_words_ids,
logits_processor=logits_processor,
repetition_penalty=float(gen_kwargs.get("repetition_penalty", 1.2)),
no_repeat_ngram_size=int(gen_kwargs.get("no_repeat_ngram_size", 8)),
stopping_criteria=sc,
)
# Extract generated tokens only
out_list = out_ids[0].tolist()
gen_ids = out_list[prompt_len:]
# Truncate at first Harmony stop token if present
if HARMONY_AVAILABLE:
for sid in HARMONY_STOP_IDS:
if sid in gen_ids:
gen_ids = gen_ids[:gen_ids.index(sid)]
break
# Parse response with Harmony
if HARMONY_AVAILABLE:
try:
channels = parse_harmony_response(gen_ids)
except Exception:
# Fallback to text parsing if Harmony parser fails
decoded = tokenizer.decode(gen_ids, skip_special_tokens=False)
channels = {
"final": extract_final_channel_fallback(decoded),
"raw": decoded
}
else:
# Fallback decode + channels
decoded = tokenizer.decode(gen_ids, skip_special_tokens=False)
channels = {
"final": extract_final_channel_fallback(decoded),
"raw": decoded
}
return channels
except Exception as e:
return {"final": f"[Error] {type(e).__name__}: {str(e)}", "raw": str(e)}
finally:
# Cleanup
try:
del model
except:
pass
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
# -----------------------
# GPU Debug: Harmony Inspector
# -----------------------
@spaces.GPU(duration=120)
def zerogpu_generate_debug(full_prompt, gen_kwargs: Dict[str, Any]) -> Dict[str, Any]:
"""Minimal GPU path to run a single prompt and return Harmony-parsed output
along with short token previews for debugging. Does not use Rose for clarity."""
model = None
try:
model = _load_model_on("auto")
device = next(model.parameters()).device
# Prepare inputs (tokens if Harmony renderer used, else string -> encode)
if HARMONY_AVAILABLE and not isinstance(full_prompt, str):
token_list = list(full_prompt)
if not token_list:
raise ValueError("Harmony prompt produced no tokens")
input_ids = torch.tensor([token_list], dtype=torch.long, device=device)
attention_mask = torch.ones_like(input_ids, dtype=torch.long, device=device)
inputs = {"input_ids": input_ids, "attention_mask": attention_mask}
prompt_len = input_ids.shape[1]
else:
enc = tokenizer(full_prompt, return_tensors="pt")
inputs = {k: v.to(device) for k, v in enc.items()}
if "attention_mask" not in inputs:
inputs["attention_mask"] = torch.ones_like(inputs["input_ids"], dtype=torch.long, device=device)
prompt_len = int(inputs["input_ids"].shape[1])
# Harmony stop via stopping criteria
sc = StoppingCriteriaList([StopOnTokens(HARMONY_STOP_IDS)]) if (HARMONY_AVAILABLE and HARMONY_STOP_IDS) else None
out_ids = model.generate(
**inputs,
do_sample=bool(gen_kwargs.get("do_sample", True)),
temperature=float(gen_kwargs.get("temperature", 0.7)),
top_p=float(gen_kwargs.get("top_p", 0.9)),
top_k=(int(gen_kwargs.get("top_k")) if gen_kwargs.get("top_k") and int(gen_kwargs.get("top_k")) > 0 else None),
max_new_tokens=int(gen_kwargs.get("max_new_tokens", MAX_DEF)),
pad_token_id=model.config.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
bad_words_ids=bad_words_ids,
stopping_criteria=sc,
repetition_penalty=float(gen_kwargs.get("repetition_penalty", 1.15)),
no_repeat_ngram_size=int(gen_kwargs.get("no_repeat_ngram_size", 6)),
)
out_list = out_ids[0].tolist()
gen_ids = out_list[prompt_len:]
# Truncate at first Harmony stop token if present
if HARMONY_AVAILABLE and HARMONY_STOP_IDS:
for sid in HARMONY_STOP_IDS:
if sid in gen_ids:
gen_ids = gen_ids[:gen_ids.index(sid)]
break
# Parse channels
if HARMONY_AVAILABLE:
try:
channels = parse_harmony_response(gen_ids)
except Exception:
decoded = tokenizer.decode(gen_ids, skip_special_tokens=False)
channels = {"final": extract_final_channel_fallback(decoded), "raw": decoded}
else:
decoded = tokenizer.decode(gen_ids, skip_special_tokens=False)
channels = {"final": extract_final_channel_fallback(decoded), "raw": decoded}
# Small previews (avoid flooding logs/UI)
preview = {
"prompt_len": int(prompt_len),
"stop_ids": list(HARMONY_STOP_IDS) if HARMONY_AVAILABLE else [],
"gen_len": int(len(gen_ids)),
"gen_ids_head": gen_ids[:48],
"decoded_head": tokenizer.decode(gen_ids[:256], skip_special_tokens=False),
"channels": channels,
}
return preview
except Exception as e:
return {"error": f"{type(e).__name__}: {e}"}
finally:
try:
del model
except Exception:
pass
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
# -----------------------
# Gradio handlers
# -----------------------
def generate_response(message: str, history: List[List[str]], system_prompt: str,
temperature: float, top_p: float, top_k: int, max_new_tokens: int,
do_sample: bool, seed: Optional[int],
rose_enable: bool, rose_alpha: float, rose_score: Optional[float],
rose_tokens: str, rose_json: str,
show_thinking: bool = False,
reasoning_effort: str = "high") -> str:
"""
Generate response with proper CoT handling using Harmony format.
"""
try:
# Build message list
messages = [{"role": "system", "content": system_prompt or SYSTEM_DEF}]
# Add history
if history:
for turn in history:
if isinstance(turn, (list, tuple)) and len(turn) >= 2:
user_msg, assistant_msg = turn[0], turn[1]
if user_msg:
messages.append({"role": "user", "content": str(user_msg)})
if assistant_msg:
messages.append({"role": "assistant", "content": str(assistant_msg)})
# Add current message
messages.append({"role": "user", "content": str(message)})
# Create Harmony-formatted prompt
if HARMONY_AVAILABLE:
prompt = create_harmony_prompt(messages, reasoning_effort) # returns token IDs
else:
# Fallback to tokenizer template (string)
prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
# Build Rose map if enabled
rose_map: Optional[Dict[str, float]] = None
if rose_enable:
rose_map = {}
tok_str = (rose_tokens or "").strip()
if tok_str:
for p in [p.strip() for p in tok_str.split(",") if p.strip()]:
if ":" in p:
k, v = p.split(":", 1)
try:
rose_map[k.strip()] = float(v)
except:
pass
if rose_json:
try:
j = json.loads(rose_json)
if isinstance(j, dict):
for k, v in j.items():
try:
rose_map[str(k)] = float(v)
except:
pass
except:
pass
if not rose_map:
rose_map = None
# Generate with model
channels = zerogpu_generate(
prompt,
{
"do_sample": bool(do_sample),
"temperature": float(temperature),
"top_p": float(top_p),
"top_k": int(top_k) if top_k > 0 else None,
"max_new_tokens": int(max_new_tokens),
},
rose_map,
float(rose_alpha),
float(rose_score) if rose_score is not None else None,
int(seed) if seed is not None else None,
)
# Format response
if show_thinking:
# Show all channels
response = "## Chain of Thought:\n\n"
for channel, content in channels.items():
if channel != "final" and content:
response += f"### {channel.capitalize()} Channel:\n{content}\n\n"
response += f"### Final Response:\n{channels.get('final', 'No final response generated')}"
return response
else:
# Just show the final response
return channels.get("final", "No final response generated")
except Exception as e:
return f"[Error] {type(e).__name__}: {str(e)}"
# -----------------------
# Extra handler: Harmony Inspector wrapper
# -----------------------
def harmony_inspect_handler(user_prompt: str, system_prompt: str, reasoning_effort: str):
try:
msgs = [{"role": "system", "content": system_prompt or SYSTEM_DEF}, {"role": "user", "content": user_prompt or "What is 2+2?"}]
prompt = create_harmony_prompt(msgs, reasoning_effort)
return zerogpu_generate_debug(
prompt,
{"do_sample": True, "temperature": 0.7, "top_p": 0.9, "top_k": 0, "max_new_tokens": MAX_DEF}
)
except Exception as e:
return {"error": f"{type(e).__name__}: {e}"}
# -----------------------
# UI
# -----------------------
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# Mirel – Harmony Chain-of-Thought Inference
OSS-20B model using Harmony format with thinking channels.
The model thinks through problems in internal channels before providing a final response.
**Note:** Install `openai-harmony` for full Harmony support: `pip install openai-harmony`
"""
)
with gr.Row():
system_prompt = gr.Textbox(
label="System Prompt",
value=SYSTEM_DEF,
lines=2
)
with gr.Accordion("Generation Settings", open=False):
with gr.Row():
temperature = gr.Slider(0.0, 2.0, value=0.7, step=0.05, label="Temperature")
top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.01, label="Top-p")
top_k = gr.Slider(0, 200, value=0, step=1, label="Top-k (0=disabled)")
with gr.Row():
max_new = gr.Slider(16, 4096, value=MAX_DEF, step=16, label="Max new tokens")
do_sample = gr.Checkbox(value=True, label="Do sample")
seed = gr.Number(value=None, label="Seed (optional)", precision=0)
with gr.Row():
reasoning_effort = gr.Radio(
choices=["low", "medium", "high"],
value="high",
label="Reasoning Effort",
info="How much thinking the model should do"
)
show_thinking = gr.Checkbox(
value=False,
label="Show thinking channels",
info="Display all internal reasoning channels"
)
with gr.Accordion("Rose Guidance (Optional)", open=False):
gr.Markdown("Fine-tune generation with token biases")
with gr.Row():
rose_enable = gr.Checkbox(value=False, label="Enable Rose bias")
rose_alpha = gr.Slider(0.0, 5.0, value=1.0, step=0.05, label="Alpha (strength)")
rose_score = gr.Slider(0.0, 1.0, value=1.0, step=0.01, label="Score multiplier")
rose_tokens = gr.Textbox(
label="Token:weight pairs",
placeholder="example:1.5, test:-0.5",
value=""
)
rose_json = gr.Textbox(
label="JSON weights",
placeholder='{"token": 1.0, "another": -0.5}',
value=""
)
# --- Harmony Inspector UI ---
with gr.Accordion("Harmony Inspector", open=False):
debug_prompt = gr.Textbox(label="Debug prompt", value="What is 2+2? Reply with just the number.")
run_debug = gr.Button("Run Harmony Inspect")
debug_out = gr.JSON(label="Parsed Harmony output", value={})
run_debug.click(harmony_inspect_handler, inputs=[debug_prompt, system_prompt, reasoning_effort], outputs=[debug_out])
# Chat interface - using only valid parameters
chat = gr.ChatInterface(
fn=generate_response,
type="messages",
additional_inputs=[
system_prompt, temperature, top_p, top_k, max_new,
do_sample, seed, rose_enable, rose_alpha, rose_score,
rose_tokens, rose_json, show_thinking, reasoning_effort
],
title="Chat with Mirel",
description="A chain-of-thought model using Harmony format",
examples=[
["Hello! Can you introduce yourself?"],
["What is the capital of France?"],
["Explain quantum computing in simple terms"],
["Solve: If a train travels 120 miles in 2 hours, what is its average speed?"],
],
cache_examples=False,
)
gr.Markdown(
"""
---
### Configuration:
- **Model**: Set `MODEL_ID` env var (default: openai/gpt-oss-20b)
- **Adapter**: Set `ADAPTER_ID` and optionally `ADAPTER_SUBFOLDER`
- **Auth**: Set `HF_TOKEN` in Space secrets for private model access
- **Harmony**: Install with `pip install openai-harmony` for proper channel support
The model uses Harmony format with thinking channels (`thinking`, `analysis`, `final`).
"""
)
if __name__ == "__main__":
demo.queue(max_size=8 if ZEROGPU else 32).launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)
|