Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,281 Bytes
0e31052 d08afa7 0e31052 e9b0f2d 0e31052 d08afa7 0e31052 e9b0f2d 99d979b 0e31052 99d979b 0e31052 99d979b 0e31052 99d979b 0e31052 99d979b d741dd0 99d979b d08afa7 99d979b d741dd0 0e31052 e9b0f2d d08afa7 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 99d979b e9b0f2d d741dd0 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d d741dd0 0e31052 e9b0f2d 0e31052 d08afa7 0e31052 d08afa7 0e31052 e9b0f2d 99d979b 0e31052 d08afa7 0e31052 99d979b e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d d08afa7 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 d08afa7 99d979b 0e31052 99d979b d08afa7 0e31052 e9b0f2d 0e31052 e9b0f2d 99d979b 0e31052 99d979b e9b0f2d d08afa7 e9b0f2d d08afa7 e9b0f2d 0e31052 e9b0f2d 0e31052 d08afa7 99d979b d741dd0 0e31052 d08afa7 0e31052 99d979b 0e31052 d08afa7 0e31052 e9b0f2d d08afa7 d741dd0 0e31052 99d979b e9b0f2d d741dd0 e9b0f2d 0e31052 d08afa7 0e31052 e9b0f2d d08afa7 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 d08afa7 e9b0f2d d08afa7 e9b0f2d 0e31052 e9b0f2d d08afa7 e9b0f2d 99d979b e9b0f2d 0e31052 e9b0f2d 99d979b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
# beeper.py
# --------------------------------------------------------------------------------------------------
# Beeper Full Penta Controller — Rose-based tiny GPT (inference module with runtime pentachora influence)
# - Decoder-only GPT with SDPA (FlashAttention path on Ampere/Hopper)
# - Runtime "vertex pull" uses config["runtime_pentachora"] to bias hidden states toward
# pentachora vertices (coarse/topic/mood) exactly like training-time behavior, but non-destructive
# and fully toggleable.
# --------------------------------------------------------------------------------------------------
from __future__ import annotations
import math
import re
import inspect
from contextlib import nullcontext
from typing import Optional, Tuple, Dict, Any
import torch
import torch.nn as nn
import torch.nn.functional as F
# --- Prefer high-throughput matmul where possible (Ampere/Hopper) ---
torch.set_float32_matmul_precision("high")
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# ---- Version-safe SDPA (FlashAttention) selection -------------------------------------------------
try:
# PyTorch 2.3+ modern API
from torch.nn.attention import sdpa_kernel as _sdpa_kernel_modern
from torch.nn.attention import SDPBackend as _SDPBackend
_SDPA_SIG = inspect.signature(_sdpa_kernel_modern)
_sdpa_kernel = _sdpa_kernel_modern
except Exception:
try:
# Legacy API
from torch.backends.cuda import sdp_kernel as _sdpa_kernel_legacy
_SDPA_SIG = inspect.signature(_sdpa_kernel_legacy)
_SDPBackend = None
_sdpa_kernel = _sdpa_kernel_legacy
except Exception:
_SDPA_SIG = None
_SDPBackend = None
_sdpa_kernel = None
def sdpa_ctx_prefer_flash():
"""Bias SDPA toward FlashAttention where possible; otherwise no-op."""
if _sdpa_kernel is None or _SDPA_SIG is None:
return nullcontext()
params = {p.name for p in _SDPA_SIG.parameters.values()}
try:
if "backends" in params and _SDPBackend is not None:
return _sdpa_kernel(backends=[
_SDPBackend.FLASH_ATTENTION,
_SDPBackend.EFFICIENT_ATTENTION,
_SDPBackend.MATH
])
if "backend" in params and _SDPBackend is not None:
return _sdpa_kernel(backend=_SDPBackend.FLASH_ATTENTION)
if {"enable_flash", "enable_math", "enable_mem_efficient"} <= params:
return _sdpa_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=True)
if {"use_flash", "use_math", "use_mem_efficient"} <= params:
return _sdpa_kernel(use_flash=True, use_math=False, use_mem_efficient=True)
except Exception:
pass
return nullcontext()
# --------------------------------- Core blocks ------------------------------------------------------
class CausalSelfAttention(nn.Module):
"""Multi-head causal self-attention using PyTorch SDPA."""
def __init__(self, dim: int, n_heads: int, attn_dropout: float = 0.0):
super().__init__()
assert dim % n_heads == 0, "dim must be divisible by n_heads"
self.nh = int(n_heads)
self.hd = dim // self.nh
self.qkv = nn.Linear(dim, 3 * dim, bias=False)
self.proj = nn.Linear(dim, dim, bias=False)
self.attn_dropout = float(attn_dropout)
def forward(self, x: torch.Tensor) -> torch.Tensor:
B, T, C = x.shape
qkv = self.qkv(x)
q, k, v = qkv.chunk(3, dim=-1)
q = q.view(B, T, self.nh, self.hd).transpose(1, 2) # [B,H,T,D]
k = k.view(B, T, self.nh, self.hd).transpose(1, 2)
v = v.view(B, T, self.nh, self.hd).transpose(1, 2)
if x.is_cuda:
with sdpa_ctx_prefer_flash():
y = F.scaled_dot_product_attention(
q, k, v,
is_causal=True,
dropout_p=self.attn_dropout if self.training else 0.0,
)
else:
scale = 1.0 / math.sqrt(self.hd)
att = (q @ k.transpose(-2, -1)) * scale
mask = torch.full((1, 1, T, T), float("-inf"), device=x.device)
mask = torch.triu(mask, diagonal=1)
att = (att + mask).softmax(dim=-1)
y = att @ v
y = y.transpose(1, 2).contiguous().view(B, T, C)
return self.proj(y)
class MLP(nn.Module):
"""GELU MLP with dropout, sized by mlp_ratio."""
def __init__(self, dim: int, mlp_ratio: float = 4.0, dropout: float = 0.1):
super().__init__()
hidden = int(dim * mlp_ratio)
self.fc1 = nn.Linear(dim, hidden)
self.fc2 = nn.Linear(hidden, dim)
self.drop = nn.Dropout(dropout)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.fc1(x)
x = F.gelu(x, approximate="tanh")
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
# --------------------------------- Beeper Model -----------------------------------------------------
class BeeperRoseGPT(nn.Module):
"""
Decoder-only GPT used by Beeper during training and inference.
Config keys used:
- vocab_size, dim, context, n_heads, n_layers, mlp_ratio
- resid_dropout, dropout, grad_checkpoint
- runtime_pentachora: {
"enable": bool,
"pool": "mean" | "last",
"temp": float, # similarity temperature (default: 0.10)
"coarse_alpha": float, # hidden blend strength for coarse bank
"topic_alpha": float, # hidden blend strength for topic bank
"mood_alpha": float # hidden blend strength for mood bank
}
Notes:
- Shares token embedding with LM head (tied weights).
- Includes Rose anchors and pentachora banks; at runtime we can apply a *non-destructive*
vertex pull to hidden states before the LM head using the above config.
"""
def __init__(self, cfg: dict):
super().__init__()
V, D, Ctx = cfg["vocab_size"], cfg["dim"], cfg["context"]
H, L, MR = cfg["n_heads"], cfg["n_layers"], cfg["mlp_ratio"]
RD, AD = cfg.get("resid_dropout", 0.1), cfg.get("dropout", 0.0)
self.grad_checkpoint = bool(cfg.get("grad_checkpoint", False))
self.runtime_cfg: Dict[str, Any] = dict(cfg.get("runtime_pentachora", {}) or {})
self.vocab_size, self.context = int(V), int(Ctx)
self.token_emb = nn.Embedding(V, D)
self.pos_emb = nn.Parameter(torch.zeros(1, Ctx, D))
self.drop = nn.Dropout(RD)
self.blocks = nn.ModuleList([
nn.ModuleDict({
"norm1": nn.LayerNorm(D),
"attn": CausalSelfAttention(D, H, attn_dropout=AD),
"norm2": nn.LayerNorm(D),
"mlp": MLP(D, mlp_ratio=MR, dropout=RD),
})
for _ in range(L)
])
self.norm = nn.LayerNorm(D)
self.lm_head = nn.Linear(D, V, bias=False)
self.lm_head.weight = self.token_emb.weight # weight tying
# Rose projection + anchors (present in checkpoints)
self.rose_proj = nn.Linear(D, D, bias=False)
self.rose_anchors = nn.Parameter(torch.randn(3, D) / (D ** 0.5))
# Pentachora banks (created lazily to match state dict)
self.register_buffer("pent_inited", torch.tensor(0, dtype=torch.uint8), persistent=False)
self.penta_coarse: Optional[nn.Parameter] = None # [C,5,D]
self.penta_medium: Optional[nn.Parameter] = None # [T,5,D]
self.penta_fine: Optional[nn.Parameter] = None # [M,5,D]
self.apply(self._init_weights)
@staticmethod
def _init_weights(m: nn.Module):
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight, mean=0.0, std=0.02)
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Embedding):
nn.init.normal_(m.weight, mean=0.0, std=0.02)
# ---- Pentachora creation (must match sizes in checkpoint before strict load) -------------------
def ensure_pentachora(self, coarse_C: int, medium_C: int, fine_C: int, dim: int, device: torch.device):
"""Initialize pentachora banks if not already present."""
if self.pent_inited.item() == 1:
return
def bank(C: int) -> nn.Parameter:
if C <= 0:
return nn.Parameter(torch.zeros((0, 5, dim), device=device))
pts = torch.randn(C, 5, dim, device=device)
pts = F.normalize(pts - pts.mean(dim=1, keepdim=True), dim=-1)
return nn.Parameter(pts)
self.penta_coarse = bank(int(coarse_C))
self.penta_medium = bank(int(medium_C))
self.penta_fine = bank(int(fine_C))
self.pent_inited.fill_(1)
# ---- Runtime configuration helpers -------------------------------------------------------------
def set_runtime_pentachora(self, cfg: Dict[str, Any]) -> None:
"""Update runtime pentachora behavior (enable/alphas/temp/pool)."""
self.runtime_cfg.update(cfg or {})
def _pool_hidden(self, h: torch.Tensor, mode: str) -> torch.Tensor:
return h.mean(dim=1) if mode == "mean" else h[:, -1, :]
@staticmethod
def _weighted_nearest_vertex_target(
pooled: torch.Tensor, # [B,D]
bank: torch.Tensor, # [C,5,D]
temp: float
) -> torch.Tensor:
"""
For each class (simplex) pick its nearest vertex to the pooled latent,
then compute a softmax over classes of -min_dists/temp and take the
weighted average of those nearest vertices => [B,D] target.
"""
B, D = pooled.shape
C = bank.size(0)
if C == 0:
return pooled
# distances to each vertex
diffs = pooled[:, None, None, :] - bank[None, :, :, :] # [B,C,5,D]
dists = torch.norm(diffs, dim=-1) # [B,C,5]
min_dists, min_idx = dists.min(dim=2) # [B,C], [B,C]
sims = -min_dists / max(1e-8, float(temp)) # [B,C]
weights = F.softmax(sims, dim=-1) # [B,C]
# gather nearest vertex vectors: [B,C,D]
bank_exp = bank.unsqueeze(0).expand(B, -1, -1, -1) # [B,C,5,D]
gather_idx = min_idx.unsqueeze(-1).unsqueeze(-1).expand(B, C, 1, D)
nearest = torch.gather(bank_exp, 2, gather_idx).squeeze(2) # [B,C,D]
target = (weights.unsqueeze(-1) * nearest).sum(dim=1) # [B,D]
return target
def _apply_runtime_vertex_pull(
self,
h: torch.Tensor, # [B,T,D]
runtime_cfg: Dict[str, Any]
) -> torch.Tensor:
"""
Apply non-destructive vertex pull to hidden states using banks selected by runtime_cfg.
We compute a pooled latent, a per-bank target vector, form a delta, and blend it back into h.
"""
if not runtime_cfg or not runtime_cfg.get("enable", False):
return h
pool_mode = str(runtime_cfg.get("pool", "mean"))
temp = float(runtime_cfg.get("temp", 0.10))
# Strengths per bank
alpha_coarse = float(runtime_cfg.get("coarse_alpha", 0.0))
alpha_topic = float(runtime_cfg.get("topic_alpha", 0.0))
alpha_mood = float(runtime_cfg.get("mood_alpha", 0.0))
if (alpha_coarse <= 0 and alpha_topic <= 0 and alpha_mood <= 0):
return h
pooled = self._pool_hidden(h, pool_mode) # [B,D]
total_delta = None
if alpha_coarse > 0 and getattr(self, "penta_coarse", None) is not None:
tgt = self._weighted_nearest_vertex_target(pooled, self.penta_coarse, temp)
delta = tgt - pooled
total_delta = (alpha_coarse * delta) if total_delta is None else total_delta + alpha_coarse * delta
if alpha_topic > 0 and getattr(self, "penta_medium", None) is not None:
tgt = self._weighted_nearest_vertex_target(pooled, self.penta_medium, temp)
delta = tgt - pooled
total_delta = delta * alpha_topic if total_delta is None else total_delta + alpha_topic * delta
if alpha_mood > 0 and getattr(self, "penta_fine", None) is not None:
tgt = self._weighted_nearest_vertex_target(pooled, self.penta_fine, temp)
delta = tgt - pooled
total_delta = delta * alpha_mood if total_delta is None else total_delta + alpha_mood * delta
if total_delta is None:
return h
# Broadcast same delta to all time steps (global conditioning shift)
h = h + total_delta.unsqueeze(1) # [B,T,D]
return h
# ---- Backbone / forward -----------------------------------------------------------------------
def _block_forward(self, blk: nn.ModuleDict, x: torch.Tensor) -> torch.Tensor:
x = x + blk["attn"](blk["norm1"](x))
x = x + blk["mlp"](blk["norm2"](x))
return x
def backbone(self, idx: torch.Tensor) -> torch.Tensor:
B, T = idx.shape
x = self.token_emb(idx) + self.pos_emb[:, :T, :]
x = self.drop(x)
if self.grad_checkpoint and self.training:
from torch.utils.checkpoint import checkpoint
for blk in self.blocks:
x = checkpoint(lambda _x: self._block_forward(blk, _x), x) # type: ignore[arg-type]
else:
for blk in self.blocks:
x = self._block_forward(blk, x)
return self.norm(x)
def forward(self, idx: torch.Tensor, runtime_cfg: Optional[Dict[str, Any]] = None) -> torch.Tensor:
"""
Forward pass with optional runtime pentachora influence.
If runtime_cfg is None, falls back to self.runtime_cfg set at init or via set_runtime_pentachora().
"""
h = self.backbone(idx)
cfg = self.runtime_cfg if runtime_cfg is None else {**self.runtime_cfg, **(runtime_cfg or {})}
h = self._apply_runtime_vertex_pull(h, cfg)
return self.lm_head(h)
# ---- Utilities ---------------------------------------------------------------------------------
def hidden_states(self, idx: torch.Tensor) -> torch.Tensor:
"""Return final hidden states (pre-LM head)."""
return self.backbone(idx)
def rose_hidden_pool(self, h: torch.Tensor, mode: str = "mean") -> torch.Tensor:
"""Pool hidden states for Rose-related terms."""
return h.mean(dim=1) if mode == "mean" else h[:, -1, :]
# --------------------------------- Loader helpers ---------------------------------------------------
def prepare_model_for_state_dict(
model: BeeperRoseGPT,
state_dict: "dict[str, torch.Tensor]",
device: Optional[torch.device] = None,
) -> None:
"""
Ensure model has pentachora parameters sized to match the incoming state_dict,
so we can load with strict=True. No-op if checkpoint lacks penta_* keys.
"""
device = device or next(model.parameters()).device
need = all(k in state_dict for k in ("penta_coarse", "penta_medium", "penta_fine"))
if not need:
return
pc, pt, pm = state_dict["penta_coarse"], state_dict["penta_medium"], state_dict["penta_fine"]
def dims_ok(t: torch.Tensor, D: int) -> bool:
return t.ndim == 3 and t.size(1) == 5 and t.size(2) == D
D = model.token_emb.embedding_dim
if not (dims_ok(pc, D) and dims_ok(pt, D) and dims_ok(pm, D)):
return
model.ensure_pentachora(pc.size(0), pt.size(0), pm.size(0), dim=D, device=device)
# --------------------------------- Generation -------------------------------------------------------
def _detok(text: str) -> str:
text = re.sub(r"\s+([,.;:!?%])", r"\1", text)
text = re.sub(r"\s+([\)\]\}])", r"\1", text)
text = re.sub(r"([\(\[\{])\s+", r"\1", text)
return text
@torch.no_grad()
def generate(
model: BeeperRoseGPT,
tok, # Hugging Face Tokenizers `Tokenizer`
cfg: dict,
prompt: str,
max_new_tokens: int = 120,
temperature: Optional[float] = None,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
repetition_penalty: Optional[float] = None,
presence_penalty: Optional[float] = None,
frequency_penalty: Optional[float] = None,
device: Optional[torch.device] = None,
detokenize: bool = True,
runtime_cfg: Optional[Dict[str, Any]] = None, # <— NEW: pass-through to forward()
) -> str:
"""
Penalized nucleus sampling with optional runtime pentachora influence.
"""
temperature = cfg.get("temperature", 0.9) if temperature is None else float(temperature)
top_k = cfg.get("top_k", 40) if top_k is None else int(top_k)
top_p = cfg.get("top_p", 0.9) if top_p is None else float(top_p)
repetition_penalty = cfg.get("repetition_penalty", 1.10) if repetition_penalty is None else float(repetition_penalty)
presence_penalty = cfg.get("presence_penalty", 0.6) if presence_penalty is None else float(presence_penalty)
frequency_penalty = cfg.get("frequency_penalty", 0.0) if frequency_penalty is None else float(frequency_penalty)
device = device or next(model.parameters()).device
model.eval()
ids = tok.encode(prompt).ids
x = torch.tensor([ids], dtype=torch.long, device=device)
V = int(cfg["vocab_size"])
counts = torch.zeros(V, dtype=torch.int32, device=device)
for t in ids:
if 0 <= t < V:
counts[t] += 1
for _ in range(int(max_new_tokens)):
logits = model(x[:, -cfg["context"]:], runtime_cfg=runtime_cfg)
logits = logits[:, -1, :]
# Repetition penalty
if repetition_penalty and repetition_penalty != 1.0:
mask = counts > 0
if mask.any():
pos = logits[:, mask] > 0
logits[:, mask][pos] /= repetition_penalty
logits[:, mask][~pos] *= repetition_penalty
# Presence/frequency penalties
if presence_penalty or frequency_penalty:
pen = counts.float() * (frequency_penalty or 0.0) + (counts > 0).float() * (presence_penalty or 0.0)
logits = logits - pen.unsqueeze(0)
logits = logits / max(1e-8, temperature)
if top_k and top_k > 0:
k = min(top_k, logits.size(-1))
v, ix = torch.topk(logits, k, dim=-1)
filt = torch.full_like(logits, float("-inf"))
logits = filt.scatter_(-1, ix, v)
if top_p and top_p < 1.0:
sl, si = torch.sort(logits, descending=True)
ps = F.softmax(sl, dim=-1)
cdf = torch.cumsum(ps, dim=-1)
cutoff = (cdf > top_p).float().argmax(dim=-1)
mask = torch.arange(logits.size(-1), device=device).unsqueeze(0) > cutoff.unsqueeze(-1)
sl = sl.masked_fill(mask, float("-inf"))
logits = torch.full_like(logits, float("-inf")).scatter(-1, si, sl)
probs = F.softmax(logits, dim=-1)
next_id = torch.multinomial(probs, num_samples=1)
x = torch.cat([x, next_id], dim=1)
nid = next_id.item()
if 0 <= nid < V:
counts[nid] += 1
out = tok.decode(x[0].tolist())
return _detok(out) if detokenize else out
|