Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,837 Bytes
0e31052 98ec4ab 0e31052 e9b0f2d 98ec4ab 0e31052 98ec4ab 0e31052 e9b0f2d 99d979b 0e31052 99d979b 98ec4ab 99d979b 98ec4ab 99d979b 98ec4ab 99d979b 98ec4ab 99d979b 98ec4ab e9b0f2d 98ec4ab e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 98ec4ab e9b0f2d 99d979b 98ec4ab 99d979b 98ec4ab e9b0f2d 0e31052 e9b0f2d 98ec4ab e9b0f2d 98ec4ab e9b0f2d 98ec4ab e9b0f2d 0e31052 98ec4ab 0e31052 e9b0f2d 99d979b 98ec4ab 0e31052 d08afa7 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 98ec4ab e9b0f2d 98ec4ab e9b0f2d 98ec4ab e9b0f2d 98ec4ab 0e31052 98ec4ab e9b0f2d 98ec4ab e9b0f2d 0e31052 e9b0f2d 98ec4ab e9b0f2d 98ec4ab e9b0f2d 98ec4ab e9b0f2d 0e31052 99d979b 0e31052 98ec4ab 0e31052 99d979b d08afa7 98ec4ab d08afa7 98ec4ab d08afa7 98ec4ab d08afa7 98ec4ab d08afa7 98ec4ab d08afa7 98ec4ab d08afa7 98ec4ab d08afa7 98ec4ab d08afa7 98ec4ab d08afa7 98ec4ab 0e31052 e9b0f2d 0e31052 e9b0f2d 99d979b 98ec4ab 99d979b e9b0f2d d08afa7 e9b0f2d d08afa7 e9b0f2d 98ec4ab 0e31052 e9b0f2d 0e31052 98ec4ab 99d979b 98ec4ab 0e31052 98ec4ab d08afa7 98ec4ab d08afa7 d741dd0 98ec4ab 99d979b e9b0f2d 98ec4ab 0e31052 e9b0f2d 0e31052 e9b0f2d 0e31052 e9b0f2d 98ec4ab e9b0f2d 0e31052 d08afa7 e9b0f2d 0e31052 e9b0f2d 98ec4ab e9b0f2d 98ec4ab e9b0f2d 99d979b e9b0f2d 0e31052 98ec4ab e9b0f2d 99d979b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
# beeper.py
# Beeper — Rose-based tiny GPT (inference, with runtime pentachora influence + class/topic/mood selection)
from __future__ import annotations
import math, re, inspect
from contextlib import nullcontext
from typing import Optional, Dict, Any, Iterable
import torch
import torch.nn as nn
import torch.nn.functional as F
torch.set_float32_matmul_precision("high")
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# ---- SDPA (FlashAttention) selection ----
try:
from torch.nn.attention import sdpa_kernel as _sdpa_kernel_modern
from torch.nn.attention import SDPBackend as _SDPBackend
_SDPA_SIG = inspect.signature(_sdpa_kernel_modern)
_sdpa_kernel = _sdpa_kernel_modern
except Exception:
try:
from torch.backends.cuda import sdp_kernel as _sdpa_kernel_legacy
_SDPA_SIG = inspect.signature(_sdpa_kernel_legacy)
_SDPBackend = None
_sdpa_kernel = _sdpa_kernel_legacy
except Exception:
_SDPA_SIG = None
_SDPBackend = None
_sdpa_kernel = None
def sdpa_ctx_prefer_flash():
if _sdpa_kernel is None or _SDPA_SIG is None:
return nullcontext()
params = {p.name for p in _SDPA_SIG.parameters.values()}
try:
if "backends" in params and _SDPBackend is not None:
return _sdpa_kernel(backends=[_SDPBackend.FLASH_ATTENTION, _SDPBackend.EFFICIENT_ATTENTION, _SDPBackend.MATH])
if "backend" in params and _SDPBackend is not None:
return _sdpa_kernel(backend=_SDPBackend.FLASH_ATTENTION)
if {"enable_flash","enable_math","enable_mem_efficient"} <= params:
return _sdpa_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=True)
if {"use_flash","use_math","use_mem_efficient"} <= params:
return _sdpa_kernel(use_flash=True, use_math=False, use_mem_efficient=True)
except Exception:
pass
return nullcontext()
# ---------------- Blocks ----------------
class CausalSelfAttention(nn.Module):
def __init__(self, dim: int, n_heads: int, attn_dropout: float = 0.0):
super().__init__()
assert dim % n_heads == 0
self.nh = n_heads
self.hd = dim // n_heads
self.qkv = nn.Linear(dim, 3*dim, bias=False)
self.proj = nn.Linear(dim, dim, bias=False)
self.attn_dropout = float(attn_dropout)
def forward(self, x: torch.Tensor) -> torch.Tensor:
B, T, C = x.shape
qkv = self.qkv(x)
q, k, v = qkv.chunk(3, dim=-1)
q = q.view(B, T, self.nh, self.hd).transpose(1, 2)
k = k.view(B, T, self.nh, self.hd).transpose(1, 2)
v = v.view(B, T, self.nh, self.hd).transpose(1, 2)
if x.is_cuda:
with sdpa_ctx_prefer_flash():
y = F.scaled_dot_product_attention(q, k, v, is_causal=True,
dropout_p=self.attn_dropout if self.training else 0.0)
else:
scale = 1.0 / math.sqrt(self.hd)
att = (q @ k.transpose(-2, -1)) * scale
mask = torch.triu(torch.full((1,1,T,T), float("-inf"), device=x.device), diagonal=1)
y = (att + mask).softmax(dim=-1) @ v
y = y.transpose(1, 2).contiguous().view(B, T, C)
return self.proj(y)
class MLP(nn.Module):
def __init__(self, dim: int, mlp_ratio: float = 4.0, dropout: float = 0.1):
super().__init__()
h = int(dim*mlp_ratio)
self.fc1 = nn.Linear(dim, h)
self.fc2 = nn.Linear(h, dim)
self.drop = nn.Dropout(dropout)
def forward(self, x):
x = F.gelu(self.fc1(x), approximate="tanh")
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
# --------------- Model ---------------
class BeeperRoseGPT(nn.Module):
"""
Runtime pentachora control via self.runtime_cfg:
{
"enable": bool,
"pool": "mean"|"last",
"temp": 0.10,
"coarse_alpha": float, "topic_alpha": float, "mood_alpha": float,
# NEW: selection masks (ints or lists of ints)
"coarse_select": Optional[Iterable[int]],
"topic_select": Optional[Iterable[int]],
"mood_select": Optional[Iterable[int]],
}
"""
def __init__(self, cfg: dict):
super().__init__()
V, D, Ctx = cfg["vocab_size"], cfg["dim"], cfg["context"]
H, L, MR = cfg["n_heads"], cfg["n_layers"], cfg["mlp_ratio"]
RD, AD = cfg.get("resid_dropout", 0.1), cfg.get("dropout", 0.0)
self.grad_checkpoint = bool(cfg.get("grad_checkpoint", False))
self.runtime_cfg: Dict[str, Any] = dict(cfg.get("runtime_pentachora", {}) or {})
self.vocab_size, self.context = int(V), int(Ctx)
self.token_emb = nn.Embedding(V, D)
self.pos_emb = nn.Parameter(torch.zeros(1, Ctx, D))
self.drop = nn.Dropout(RD)
self.blocks = nn.ModuleList([
nn.ModuleDict({
"norm1": nn.LayerNorm(D),
"attn": CausalSelfAttention(D, H, attn_dropout=AD),
"norm2": nn.LayerNorm(D),
"mlp": MLP(D, mlp_ratio=MR, dropout=RD),
}) for _ in range(L)
])
self.norm = nn.LayerNorm(D)
self.lm_head = nn.Linear(D, V, bias=False)
self.lm_head.weight = self.token_emb.weight
# Rose anchors (kept for compatibility)
self.rose_proj = nn.Linear(D, D, bias=False)
self.rose_anchors = nn.Parameter(torch.randn(3, D) / (D**0.5))
# Pentachora banks
self.register_buffer("pent_inited", torch.tensor(0, dtype=torch.uint8), persistent=False)
self.penta_coarse: Optional[nn.Parameter] = None # [C,5,D]
self.penta_medium: Optional[nn.Parameter] = None # [T,5,D]
self.penta_fine: Optional[nn.Parameter] = None # [M,5,D]
self.apply(self._init)
@staticmethod
def _init(m):
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight, mean=0.0, std=0.02)
if m.bias is not None: nn.init.zeros_(m.bias)
elif isinstance(m, nn.Embedding):
nn.init.normal_(m.weight, mean=0.0, std=0.02)
def ensure_pentachora(self, coarse_C: int, medium_C: int, fine_C: int, dim: int, device: torch.device):
if self.pent_inited.item() == 1:
return
def bank(C: int) -> nn.Parameter:
if C <= 0: return nn.Parameter(torch.zeros((0,5,dim), device=device))
pts = torch.randn(C, 5, dim, device=device)
pts = F.normalize(pts - pts.mean(dim=1, keepdim=True), dim=-1)
return nn.Parameter(pts)
self.penta_coarse = bank(int(coarse_C))
self.penta_medium = bank(int(medium_C))
self.penta_fine = bank(int(fine_C))
self.pent_inited.fill_(1)
def set_runtime_pentachora(self, cfg: Dict[str, Any]) -> None:
self.runtime_cfg.update(cfg or {})
def _pool_hidden(self, h: torch.Tensor, mode: str) -> torch.Tensor:
return h.mean(dim=1) if mode == "mean" else h[:, -1, :]
@staticmethod
def _normalize_indices(sel: Optional[Iterable[int]], C: int) -> Optional[torch.Tensor]:
if sel is None: return None
if isinstance(sel, int): sel = [sel]
sel = [int(x) for x in sel if 0 <= int(x) < C]
if not sel: return None
return torch.as_tensor(sel, dtype=torch.long)
@staticmethod
def _weighted_nearest_vertex_target(
pooled: torch.Tensor, # [B,D]
bank: torch.Tensor, # [C,5,D]
temp: float,
restrict_idx: Optional[torch.Tensor] = None # [K] or None
) -> torch.Tensor:
"""
If restrict_idx is given, compute target within the selected classes only.
"""
B, D = pooled.shape
if bank.size(0) == 0:
return pooled
if restrict_idx is not None:
bank = bank.index_select(0, restrict_idx.to(bank.device)) # [K,5,D]
diffs = pooled[:, None, None, :] - bank[None, :, :, :] # [B,C|K,5,D]
dists = torch.norm(diffs, dim=-1) # [B,C|K,5]
min_dists = dists.min(dim=2).values # [B,C|K]
sims = -min_dists / max(1e-8, float(temp)) # [B,C|K]
weights = F.softmax(sims, dim=-1) # [B,C|K]
nearest = bank.unsqueeze(0).gather(2, dists.argmin(dim=2)[...,None,None].expand(B, weights.size(1), 1, D)).squeeze(2) # [B,C|K,D]
target = (weights.unsqueeze(-1) * nearest).sum(dim=1) # [B,D]
return target
def _apply_runtime_vertex_pull(self, h: torch.Tensor, runtime_cfg: Dict[str, Any]) -> torch.Tensor:
if not runtime_cfg or not runtime_cfg.get("enable", False):
return h
pool_mode = str(runtime_cfg.get("pool", "mean"))
temp = float(runtime_cfg.get("temp", 0.10))
a_coarse = float(runtime_cfg.get("coarse_alpha", 0.0))
a_topic = float(runtime_cfg.get("topic_alpha", 0.0))
a_mood = float(runtime_cfg.get("mood_alpha", 0.0))
if a_coarse<=0 and a_topic<=0 and a_mood<=0:
return h
pooled = self._pool_hidden(h, pool_mode) # [B,D]
delta = None
if a_coarse>0 and getattr(self, "penta_coarse", None) is not None:
C = self.penta_coarse.size(0)
r = self._normalize_indices(runtime_cfg.get("coarse_select"), C)
tgt = self._weighted_nearest_vertex_target(pooled, self.penta_coarse, temp, r)
d = tgt - pooled
delta = a_coarse * d if delta is None else delta + a_coarse * d
if a_topic>0 and getattr(self, "penta_medium", None) is not None:
C = self.penta_medium.size(0)
r = self._normalize_indices(runtime_cfg.get("topic_select"), C)
tgt = self._weighted_nearest_vertex_target(pooled, self.penta_medium, temp, r)
d = tgt - pooled
delta = a_topic * d if delta is None else delta + a_topic * d
if a_mood>0 and getattr(self, "penta_fine", None) is not None:
C = self.penta_fine.size(0)
r = self._normalize_indices(runtime_cfg.get("mood_select"), C)
tgt = self._weighted_nearest_vertex_target(pooled, self.penta_fine, temp, r)
d = tgt - pooled
delta = a_mood * d if delta is None else delta + a_mood * d
if delta is None:
return h
return h + delta.unsqueeze(1) # broadcast across time
# ---- forward ----
def _block_forward(self, blk: nn.ModuleDict, x: torch.Tensor) -> torch.Tensor:
x = x + blk["attn"](blk["norm1"](x))
x = x + blk["mlp"](blk["norm2"](x))
return x
def backbone(self, idx: torch.Tensor) -> torch.Tensor:
B, T = idx.shape
x = self.token_emb(idx) + self.pos_emb[:, :T, :]
x = self.drop(x)
if self.grad_checkpoint and self.training:
from torch.utils.checkpoint import checkpoint
for blk in self.blocks:
x = checkpoint(lambda _x: self._block_forward(blk, _x), x) # type: ignore
else:
for blk in self.blocks:
x = self._block_forward(blk, x)
return self.norm(x)
def forward(self, idx: torch.Tensor, runtime_cfg: Optional[Dict[str, Any]] = None) -> torch.Tensor:
h = self.backbone(idx)
cfg = self.runtime_cfg if runtime_cfg is None else {**self.runtime_cfg, **(runtime_cfg or {})}
h = self._apply_runtime_vertex_pull(h, cfg)
return self.lm_head(h)
# Utilities
def hidden_states(self, idx: torch.Tensor) -> torch.Tensor:
return self.backbone(idx)
def rose_hidden_pool(self, h: torch.Tensor, mode: str = "mean") -> torch.Tensor:
return h.mean(dim=1) if mode=="mean" else h[:, -1, :]
# ---- Loader helper ----
def prepare_model_for_state_dict(model: BeeperRoseGPT, state_dict: Dict[str, torch.Tensor], device: Optional[torch.device] = None) -> None:
device = device or next(model.parameters()).device
need = all(k in state_dict for k in ("penta_coarse","penta_medium","penta_fine"))
if not need: return
D = model.token_emb.embedding_dim
pc, pt, pm = state_dict["penta_coarse"], state_dict["penta_medium"], state_dict["penta_fine"]
ok = lambda t: (t.ndim==3 and t.size(1)==5 and t.size(2)==D)
if not (ok(pc) and ok(pt) and ok(pm)): return
model.ensure_pentachora(pc.size(0), pt.size(0), pm.size(0), dim=D, device=device)
# ---- Generation ----
def _detok(text: str) -> str:
text = re.sub(r"\s+([,.;:!?%])", r"\1", text)
text = re.sub(r"\s+([\)\]\}])", r"\1", text)
text = re.sub(r"([\(\[\{])\s+", r"\1", text)
return text
@torch.no_grad()
def generate(model: BeeperRoseGPT, tok, cfg: dict, prompt: str,
max_new_tokens: int = 120, temperature: float | None = None,
top_k: int | None = None, top_p: float | None = None,
repetition_penalty: float | None = None,
presence_penalty: float | None = None,
frequency_penalty: float | None = None,
device: Optional[torch.device] = None,
detokenize: bool = True,
runtime_cfg: Optional[Dict[str, Any]] = None) -> str:
temperature = cfg.get("temperature", 0.9) if temperature is None else float(temperature)
top_k = cfg.get("top_k", 40) if top_k is None else int(top_k)
top_p = cfg.get("top_p", 0.9) if top_p is None else float(top_p)
repetition_penalty = cfg.get("repetition_penalty", 1.10) if repetition_penalty is None else float(repetition_penalty)
presence_penalty = cfg.get("presence_penalty", 0.6) if presence_penalty is None else float(presence_penalty)
frequency_penalty = cfg.get("frequency_penalty", 0.0) if frequency_penalty is None else float(frequency_penalty)
device = device or next(model.parameters()).device
model.eval()
ids = tok.encode(prompt).ids
x = torch.tensor([ids], dtype=torch.long, device=device)
V = int(cfg["vocab_size"])
counts = torch.zeros(V, dtype=torch.int32, device=device)
for t in ids:
if 0 <= t < V: counts[t] += 1
for _ in range(int(max_new_tokens)):
logits = model(x[:, -cfg["context"]:], runtime_cfg=runtime_cfg)
logits = logits[:, -1, :]
if repetition_penalty and repetition_penalty != 1.0:
mask = counts > 0
if mask.any():
pos = logits[:, mask] > 0
logits[:, mask][pos] /= repetition_penalty
logits[:, mask][~pos] *= repetition_penalty
if presence_penalty or frequency_penalty:
pen = counts.float() * (frequency_penalty or 0.0) + (counts>0).float() * (presence_penalty or 0.0)
logits = logits - pen.unsqueeze(0)
logits = logits / max(1e-8, temperature)
if top_k and top_k > 0:
k = min(top_k, logits.size(-1))
v, ix = torch.topk(logits, k, dim=-1)
logits = torch.full_like(logits, float("-inf")).scatter(-1, ix, v)
if top_p and top_p < 1.0:
sl, si = torch.sort(logits, descending=True)
ps = F.softmax(sl, dim=-1)
cdf = torch.cumsum(ps, dim=-1)
cutoff = (cdf > top_p).float().argmax(dim=-1)
mask = torch.arange(logits.size(-1), device=device).unsqueeze(0) > cutoff.unsqueeze(-1)
sl = sl.masked_fill(mask, float("-inf"))
logits = torch.full_like(logits, float("-inf")).scatter(-1, si, sl)
probs = F.softmax(logits, dim=-1)
next_id = torch.multinomial(probs, num_samples=1)
x = torch.cat([x, next_id], dim=1)
nid = next_id.item()
if 0 <= nid < V: counts[nid] += 1
out = tok.decode(x[0].tolist())
return _detok(out) if detokenize else out
|