File size: 15,837 Bytes
0e31052
98ec4ab
0e31052
e9b0f2d
98ec4ab
0e31052
98ec4ab
0e31052
e9b0f2d
 
 
99d979b
0e31052
 
 
99d979b
98ec4ab
99d979b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98ec4ab
99d979b
 
98ec4ab
99d979b
98ec4ab
99d979b
 
 
 
 
98ec4ab
e9b0f2d
 
 
98ec4ab
 
 
 
e9b0f2d
0e31052
e9b0f2d
0e31052
e9b0f2d
 
 
98ec4ab
e9b0f2d
 
99d979b
 
98ec4ab
 
99d979b
 
 
98ec4ab
 
e9b0f2d
 
 
 
0e31052
e9b0f2d
98ec4ab
 
 
e9b0f2d
98ec4ab
 
e9b0f2d
 
 
 
 
98ec4ab
e9b0f2d
0e31052
98ec4ab
 
 
 
 
 
 
 
 
 
 
0e31052
e9b0f2d
 
99d979b
98ec4ab
 
0e31052
d08afa7
0e31052
 
e9b0f2d
0e31052
 
e9b0f2d
 
 
 
0e31052
e9b0f2d
0e31052
98ec4ab
e9b0f2d
98ec4ab
e9b0f2d
98ec4ab
e9b0f2d
98ec4ab
0e31052
98ec4ab
e9b0f2d
98ec4ab
e9b0f2d
0e31052
 
 
e9b0f2d
98ec4ab
e9b0f2d
 
98ec4ab
e9b0f2d
 
98ec4ab
e9b0f2d
 
 
0e31052
99d979b
 
0e31052
98ec4ab
0e31052
 
 
 
 
 
99d979b
 
d08afa7
 
 
 
 
 
98ec4ab
 
 
 
 
 
 
 
d08afa7
 
98ec4ab
 
 
 
d08afa7
 
98ec4ab
d08afa7
 
98ec4ab
d08afa7
98ec4ab
 
 
 
 
 
 
 
 
d08afa7
 
98ec4ab
d08afa7
 
 
 
98ec4ab
 
 
 
d08afa7
 
98ec4ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d08afa7
98ec4ab
d08afa7
98ec4ab
0e31052
e9b0f2d
 
 
 
0e31052
e9b0f2d
 
 
99d979b
 
 
98ec4ab
99d979b
 
 
e9b0f2d
 
d08afa7
e9b0f2d
d08afa7
 
e9b0f2d
 
98ec4ab
0e31052
e9b0f2d
0e31052
98ec4ab
99d979b
98ec4ab
 
0e31052
98ec4ab
 
d08afa7
98ec4ab
 
 
d08afa7
d741dd0
98ec4ab
99d979b
e9b0f2d
 
 
 
 
 
98ec4ab
 
 
 
 
 
 
 
 
 
0e31052
 
 
 
 
 
e9b0f2d
 
 
0e31052
e9b0f2d
 
0e31052
 
e9b0f2d
98ec4ab
e9b0f2d
0e31052
d08afa7
e9b0f2d
 
 
 
 
 
0e31052
e9b0f2d
 
 
98ec4ab
e9b0f2d
 
 
 
 
 
 
98ec4ab
e9b0f2d
 
99d979b
 
 
 
 
 
 
e9b0f2d
 
 
 
0e31052
98ec4ab
e9b0f2d
99d979b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
# beeper.py
# Beeper — Rose-based tiny GPT (inference, with runtime pentachora influence + class/topic/mood selection)
from __future__ import annotations

import math, re, inspect
from contextlib import nullcontext
from typing import Optional, Dict, Any, Iterable

import torch
import torch.nn as nn
import torch.nn.functional as F

torch.set_float32_matmul_precision("high")
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True

# ---- SDPA (FlashAttention) selection ----
try:
    from torch.nn.attention import sdpa_kernel as _sdpa_kernel_modern
    from torch.nn.attention import SDPBackend as _SDPBackend
    _SDPA_SIG = inspect.signature(_sdpa_kernel_modern)
    _sdpa_kernel = _sdpa_kernel_modern
except Exception:
    try:
        from torch.backends.cuda import sdp_kernel as _sdpa_kernel_legacy
        _SDPA_SIG = inspect.signature(_sdpa_kernel_legacy)
        _SDPBackend = None
        _sdpa_kernel = _sdpa_kernel_legacy
    except Exception:
        _SDPA_SIG = None
        _SDPBackend = None
        _sdpa_kernel = None

def sdpa_ctx_prefer_flash():
    if _sdpa_kernel is None or _SDPA_SIG is None:
        return nullcontext()
    params = {p.name for p in _SDPA_SIG.parameters.values()}
    try:
        if "backends" in params and _SDPBackend is not None:
            return _sdpa_kernel(backends=[_SDPBackend.FLASH_ATTENTION, _SDPBackend.EFFICIENT_ATTENTION, _SDPBackend.MATH])
        if "backend" in params and _SDPBackend is not None:
            return _sdpa_kernel(backend=_SDPBackend.FLASH_ATTENTION)
        if {"enable_flash","enable_math","enable_mem_efficient"} <= params:
            return _sdpa_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=True)
        if {"use_flash","use_math","use_mem_efficient"} <= params:
            return _sdpa_kernel(use_flash=True, use_math=False, use_mem_efficient=True)
    except Exception:
        pass
    return nullcontext()

# ---------------- Blocks ----------------
class CausalSelfAttention(nn.Module):
    def __init__(self, dim: int, n_heads: int, attn_dropout: float = 0.0):
        super().__init__()
        assert dim % n_heads == 0
        self.nh = n_heads
        self.hd = dim // n_heads
        self.qkv = nn.Linear(dim, 3*dim, bias=False)
        self.proj = nn.Linear(dim, dim, bias=False)
        self.attn_dropout = float(attn_dropout)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        B, T, C = x.shape
        qkv = self.qkv(x)
        q, k, v = qkv.chunk(3, dim=-1)
        q = q.view(B, T, self.nh, self.hd).transpose(1, 2)
        k = k.view(B, T, self.nh, self.hd).transpose(1, 2)
        v = v.view(B, T, self.nh, self.hd).transpose(1, 2)
        if x.is_cuda:
            with sdpa_ctx_prefer_flash():
                y = F.scaled_dot_product_attention(q, k, v, is_causal=True,
                                                   dropout_p=self.attn_dropout if self.training else 0.0)
        else:
            scale = 1.0 / math.sqrt(self.hd)
            att = (q @ k.transpose(-2, -1)) * scale
            mask = torch.triu(torch.full((1,1,T,T), float("-inf"), device=x.device), diagonal=1)
            y = (att + mask).softmax(dim=-1) @ v
        y = y.transpose(1, 2).contiguous().view(B, T, C)
        return self.proj(y)

class MLP(nn.Module):
    def __init__(self, dim: int, mlp_ratio: float = 4.0, dropout: float = 0.1):
        super().__init__()
        h = int(dim*mlp_ratio)
        self.fc1 = nn.Linear(dim, h)
        self.fc2 = nn.Linear(h, dim)
        self.drop = nn.Dropout(dropout)
    def forward(self, x):
        x = F.gelu(self.fc1(x), approximate="tanh")
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x

# --------------- Model ---------------
class BeeperRoseGPT(nn.Module):
    """
    Runtime pentachora control via self.runtime_cfg:
      {
        "enable": bool,
        "pool": "mean"|"last",
        "temp": 0.10,
        "coarse_alpha": float, "topic_alpha": float, "mood_alpha": float,
        # NEW: selection masks (ints or lists of ints)
        "coarse_select": Optional[Iterable[int]],
        "topic_select":  Optional[Iterable[int]],
        "mood_select":   Optional[Iterable[int]],
      }
    """
    def __init__(self, cfg: dict):
        super().__init__()
        V, D, Ctx = cfg["vocab_size"], cfg["dim"], cfg["context"]
        H, L, MR  = cfg["n_heads"], cfg["n_layers"], cfg["mlp_ratio"]
        RD, AD    = cfg.get("resid_dropout", 0.1), cfg.get("dropout", 0.0)
        self.grad_checkpoint = bool(cfg.get("grad_checkpoint", False))
        self.runtime_cfg: Dict[str, Any] = dict(cfg.get("runtime_pentachora", {}) or {})

        self.vocab_size, self.context = int(V), int(Ctx)
        self.token_emb = nn.Embedding(V, D)
        self.pos_emb   = nn.Parameter(torch.zeros(1, Ctx, D))
        self.drop      = nn.Dropout(RD)

        self.blocks = nn.ModuleList([
            nn.ModuleDict({
                "norm1": nn.LayerNorm(D),
                "attn":  CausalSelfAttention(D, H, attn_dropout=AD),
                "norm2": nn.LayerNorm(D),
                "mlp":   MLP(D, mlp_ratio=MR, dropout=RD),
            }) for _ in range(L)
        ])
        self.norm = nn.LayerNorm(D)
        self.lm_head = nn.Linear(D, V, bias=False)
        self.lm_head.weight = self.token_emb.weight

        # Rose anchors (kept for compatibility)
        self.rose_proj    = nn.Linear(D, D, bias=False)
        self.rose_anchors = nn.Parameter(torch.randn(3, D) / (D**0.5))

        # Pentachora banks
        self.register_buffer("pent_inited", torch.tensor(0, dtype=torch.uint8), persistent=False)
        self.penta_coarse: Optional[nn.Parameter] = None  # [C,5,D]
        self.penta_medium: Optional[nn.Parameter] = None  # [T,5,D]
        self.penta_fine:   Optional[nn.Parameter] = None  # [M,5,D]

        self.apply(self._init)

    @staticmethod
    def _init(m):
        if isinstance(m, nn.Linear):
            nn.init.normal_(m.weight, mean=0.0, std=0.02)
            if m.bias is not None: nn.init.zeros_(m.bias)
        elif isinstance(m, nn.Embedding):
            nn.init.normal_(m.weight, mean=0.0, std=0.02)

    def ensure_pentachora(self, coarse_C: int, medium_C: int, fine_C: int, dim: int, device: torch.device):
        if self.pent_inited.item() == 1:
            return
        def bank(C: int) -> nn.Parameter:
            if C <= 0: return nn.Parameter(torch.zeros((0,5,dim), device=device))
            pts = torch.randn(C, 5, dim, device=device)
            pts = F.normalize(pts - pts.mean(dim=1, keepdim=True), dim=-1)
            return nn.Parameter(pts)
        self.penta_coarse = bank(int(coarse_C))
        self.penta_medium = bank(int(medium_C))
        self.penta_fine   = bank(int(fine_C))
        self.pent_inited.fill_(1)

    def set_runtime_pentachora(self, cfg: Dict[str, Any]) -> None:
        self.runtime_cfg.update(cfg or {})

    def _pool_hidden(self, h: torch.Tensor, mode: str) -> torch.Tensor:
        return h.mean(dim=1) if mode == "mean" else h[:, -1, :]

    @staticmethod
    def _normalize_indices(sel: Optional[Iterable[int]], C: int) -> Optional[torch.Tensor]:
        if sel is None: return None
        if isinstance(sel, int): sel = [sel]
        sel = [int(x) for x in sel if 0 <= int(x) < C]
        if not sel: return None
        return torch.as_tensor(sel, dtype=torch.long)

    @staticmethod
    def _weighted_nearest_vertex_target(
        pooled: torch.Tensor,     # [B,D]
        bank: torch.Tensor,       # [C,5,D]
        temp: float,
        restrict_idx: Optional[torch.Tensor] = None  # [K] or None
    ) -> torch.Tensor:
        """
        If restrict_idx is given, compute target within the selected classes only.
        """
        B, D = pooled.shape
        if bank.size(0) == 0:
            return pooled
        if restrict_idx is not None:
            bank = bank.index_select(0, restrict_idx.to(bank.device))  # [K,5,D]
        diffs = pooled[:, None, None, :] - bank[None, :, :, :]         # [B,C|K,5,D]
        dists = torch.norm(diffs, dim=-1)                               # [B,C|K,5]
        min_dists = dists.min(dim=2).values                             # [B,C|K]
        sims = -min_dists / max(1e-8, float(temp))                      # [B,C|K]
        weights = F.softmax(sims, dim=-1)                               # [B,C|K]
        nearest = bank.unsqueeze(0).gather(2, dists.argmin(dim=2)[...,None,None].expand(B, weights.size(1), 1, D)).squeeze(2)  # [B,C|K,D]
        target = (weights.unsqueeze(-1) * nearest).sum(dim=1)           # [B,D]
        return target

    def _apply_runtime_vertex_pull(self, h: torch.Tensor, runtime_cfg: Dict[str, Any]) -> torch.Tensor:
        if not runtime_cfg or not runtime_cfg.get("enable", False):
            return h
        pool_mode = str(runtime_cfg.get("pool", "mean"))
        temp = float(runtime_cfg.get("temp", 0.10))
        a_coarse = float(runtime_cfg.get("coarse_alpha", 0.0))
        a_topic  = float(runtime_cfg.get("topic_alpha",  0.0))
        a_mood   = float(runtime_cfg.get("mood_alpha",   0.0))
        if a_coarse<=0 and a_topic<=0 and a_mood<=0:
            return h

        pooled = self._pool_hidden(h, pool_mode)  # [B,D]
        delta = None

        if a_coarse>0 and getattr(self, "penta_coarse", None) is not None:
            C = self.penta_coarse.size(0)
            r = self._normalize_indices(runtime_cfg.get("coarse_select"), C)
            tgt = self._weighted_nearest_vertex_target(pooled, self.penta_coarse, temp, r)
            d = tgt - pooled
            delta = a_coarse * d if delta is None else delta + a_coarse * d

        if a_topic>0 and getattr(self, "penta_medium", None) is not None:
            C = self.penta_medium.size(0)
            r = self._normalize_indices(runtime_cfg.get("topic_select"), C)
            tgt = self._weighted_nearest_vertex_target(pooled, self.penta_medium, temp, r)
            d = tgt - pooled
            delta = a_topic * d if delta is None else delta + a_topic * d

        if a_mood>0 and getattr(self, "penta_fine", None) is not None:
            C = self.penta_fine.size(0)
            r = self._normalize_indices(runtime_cfg.get("mood_select"), C)
            tgt = self._weighted_nearest_vertex_target(pooled, self.penta_fine, temp, r)
            d = tgt - pooled
            delta = a_mood * d if delta is None else delta + a_mood * d

        if delta is None:
            return h
        return h + delta.unsqueeze(1)  # broadcast across time

    # ---- forward ----
    def _block_forward(self, blk: nn.ModuleDict, x: torch.Tensor) -> torch.Tensor:
        x = x + blk["attn"](blk["norm1"](x))
        x = x + blk["mlp"](blk["norm2"](x))
        return x

    def backbone(self, idx: torch.Tensor) -> torch.Tensor:
        B, T = idx.shape
        x = self.token_emb(idx) + self.pos_emb[:, :T, :]
        x = self.drop(x)
        if self.grad_checkpoint and self.training:
            from torch.utils.checkpoint import checkpoint
            for blk in self.blocks:
                x = checkpoint(lambda _x: self._block_forward(blk, _x), x)  # type: ignore
        else:
            for blk in self.blocks:
                x = self._block_forward(blk, x)
        return self.norm(x)

    def forward(self, idx: torch.Tensor, runtime_cfg: Optional[Dict[str, Any]] = None) -> torch.Tensor:
        h = self.backbone(idx)
        cfg = self.runtime_cfg if runtime_cfg is None else {**self.runtime_cfg, **(runtime_cfg or {})}
        h = self._apply_runtime_vertex_pull(h, cfg)
        return self.lm_head(h)

    # Utilities
    def hidden_states(self, idx: torch.Tensor) -> torch.Tensor:
        return self.backbone(idx)
    def rose_hidden_pool(self, h: torch.Tensor, mode: str = "mean") -> torch.Tensor:
        return h.mean(dim=1) if mode=="mean" else h[:, -1, :]

# ---- Loader helper ----
def prepare_model_for_state_dict(model: BeeperRoseGPT, state_dict: Dict[str, torch.Tensor], device: Optional[torch.device] = None) -> None:
    device = device or next(model.parameters()).device
    need = all(k in state_dict for k in ("penta_coarse","penta_medium","penta_fine"))
    if not need: return
    D = model.token_emb.embedding_dim
    pc, pt, pm = state_dict["penta_coarse"], state_dict["penta_medium"], state_dict["penta_fine"]
    ok = lambda t: (t.ndim==3 and t.size(1)==5 and t.size(2)==D)
    if not (ok(pc) and ok(pt) and ok(pm)): return
    model.ensure_pentachora(pc.size(0), pt.size(0), pm.size(0), dim=D, device=device)

# ---- Generation ----
def _detok(text: str) -> str:
    text = re.sub(r"\s+([,.;:!?%])", r"\1", text)
    text = re.sub(r"\s+([\)\]\}])", r"\1", text)
    text = re.sub(r"([\(\[\{])\s+", r"\1", text)
    return text

@torch.no_grad()
def generate(model: BeeperRoseGPT, tok, cfg: dict, prompt: str,
             max_new_tokens: int = 120, temperature: float | None = None,
             top_k: int | None = None, top_p: float | None = None,
             repetition_penalty: float | None = None,
             presence_penalty: float | None = None,
             frequency_penalty: float | None = None,
             device: Optional[torch.device] = None,
             detokenize: bool = True,
             runtime_cfg: Optional[Dict[str, Any]] = None) -> str:

    temperature = cfg.get("temperature", 0.9) if temperature is None else float(temperature)
    top_k = cfg.get("top_k", 40) if top_k is None else int(top_k)
    top_p = cfg.get("top_p", 0.9) if top_p is None else float(top_p)
    repetition_penalty = cfg.get("repetition_penalty", 1.10) if repetition_penalty is None else float(repetition_penalty)
    presence_penalty = cfg.get("presence_penalty", 0.6) if presence_penalty is None else float(presence_penalty)
    frequency_penalty = cfg.get("frequency_penalty", 0.0) if frequency_penalty is None else float(frequency_penalty)

    device = device or next(model.parameters()).device
    model.eval()

    ids = tok.encode(prompt).ids
    x = torch.tensor([ids], dtype=torch.long, device=device)
    V = int(cfg["vocab_size"])
    counts = torch.zeros(V, dtype=torch.int32, device=device)
    for t in ids:
        if 0 <= t < V: counts[t] += 1

    for _ in range(int(max_new_tokens)):
        logits = model(x[:, -cfg["context"]:], runtime_cfg=runtime_cfg)
        logits = logits[:, -1, :]

        if repetition_penalty and repetition_penalty != 1.0:
            mask = counts > 0
            if mask.any():
                pos = logits[:, mask] > 0
                logits[:, mask][pos]  /= repetition_penalty
                logits[:, mask][~pos] *= repetition_penalty

        if presence_penalty or frequency_penalty:
            pen = counts.float() * (frequency_penalty or 0.0) + (counts>0).float() * (presence_penalty or 0.0)
            logits = logits - pen.unsqueeze(0)

        logits = logits / max(1e-8, temperature)

        if top_k and top_k > 0:
            k = min(top_k, logits.size(-1))
            v, ix = torch.topk(logits, k, dim=-1)
            logits = torch.full_like(logits, float("-inf")).scatter(-1, ix, v)

        if top_p and top_p < 1.0:
            sl, si = torch.sort(logits, descending=True)
            ps = F.softmax(sl, dim=-1)
            cdf = torch.cumsum(ps, dim=-1)
            cutoff = (cdf > top_p).float().argmax(dim=-1)
            mask = torch.arange(logits.size(-1), device=device).unsqueeze(0) > cutoff.unsqueeze(-1)
            sl = sl.masked_fill(mask, float("-inf"))
            logits = torch.full_like(logits, float("-inf")).scatter(-1, si, sl)

        probs = F.softmax(logits, dim=-1)
        next_id = torch.multinomial(probs, num_samples=1)
        x = torch.cat([x, next_id], dim=1)
        nid = next_id.item()
        if 0 <= nid < V: counts[nid] += 1

    out = tok.decode(x[0].tolist())
    return _detok(out) if detokenize else out