meet-beeper / beeper_model.py
AbstractPhil's picture
Update beeper_model.py
d741dd0 verified
raw
history blame
14.6 kB
"""
Rose Beeper Model - Inference Components
Extracted classes and utilities for model inference
"""
import os
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple, Dict, Any
from contextlib import nullcontext
import inspect
import re
from tokenizers import Tokenizer
from safetensors.torch import load_file as load_safetensors
# ============================================================================
# SDPA (Scaled Dot Product Attention) Configuration
# ============================================================================
# Version-safe SDPA context helper
try:
from torch.nn.attention import sdpa_kernel as _sdpa_kernel_modern
from torch.nn.attention import SDPBackend as _SDPBackend
_SDPA_SIG = inspect.signature(_sdpa_kernel_modern)
_sdpa_kernel = _sdpa_kernel_modern
except Exception:
try:
from torch.backends.cuda import sdp_kernel as _sdpa_kernel_legacy
_SDPA_SIG = inspect.signature(_sdpa_kernel_legacy)
_SDPBackend = None
_sdpa_kernel = _sdpa_kernel_legacy
except Exception:
_SDPA_SIG = None
_SDPBackend = None
_sdpa_kernel = None
def sdpa_ctx_prefer_flash():
"""Bias SDPA toward FlashAttention when available; no-op if unknown."""
if _sdpa_kernel is None or _SDPA_SIG is None:
return nullcontext()
params = {p.name for p in _SDPA_SIG.parameters.values()}
try:
# Modern API (PyTorch 2.3+): backends=[...]
if "backends" in params and _SDPBackend is not None:
return _sdpa_kernel(backends=[
_SDPBackend.FLASH_ATTENTION,
_SDPBackend.EFFICIENT_ATTENTION,
_SDPBackend.MATH
])
# Modern API (alt): backend=...
if "backend" in params and _SDPBackend is not None:
return _sdpa_kernel(backend=_SDPBackend.FLASH_ATTENTION)
# Legacy boolean flags (old CUDA backend)
if {"enable_flash", "enable_math", "enable_mem_efficient"} <= params:
return _sdpa_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=True)
if {"use_flash", "use_math", "use_mem_efficient"} <= params:
return _sdpa_kernel(use_flash=True, use_math=False, use_mem_efficient=True)
except Exception:
pass
return nullcontext()
# ============================================================================
# Model Components
# ============================================================================
class CausalSelfAttention(nn.Module):
"""Multi-head causal self-attention with optional FlashAttention."""
def __init__(self, dim: int, n_heads: int, attn_dropout: float = 0.0):
super().__init__()
assert dim % n_heads == 0
self.nh = n_heads
self.hd = dim // n_heads
self.qkv = nn.Linear(dim, 3 * dim, bias=False)
self.proj = nn.Linear(dim, dim, bias=False)
self.attn_dropout = attn_dropout
def forward(self, x):
B, T, C = x.shape
qkv = self.qkv(x)
q, k, v = qkv.chunk(3, dim=-1)
q = q.view(B, T, self.nh, self.hd).transpose(1, 2)
k = k.view(B, T, self.nh, self.hd).transpose(1, 2)
v = v.view(B, T, self.nh, self.hd).transpose(1, 2)
if x.is_cuda:
with sdpa_ctx_prefer_flash():
y = F.scaled_dot_product_attention(
q, k, v,
is_causal=True,
dropout_p=self.attn_dropout if self.training else 0.0,
)
else:
scale = 1.0 / math.sqrt(self.hd)
att = (q @ k.transpose(-2, -1)) * scale
mask = torch.full((1, 1, T, T), float("-inf"), device=x.device)
mask = torch.triu(mask, diagonal=1)
att = (att + mask).softmax(dim=-1)
y = att @ v
y = y.transpose(1, 2).contiguous().view(B, T, C)
return self.proj(y)
class MLP(nn.Module):
"""Feed-forward network with GELU activation."""
def __init__(self, dim, mlp_ratio=4.0, dropout=0.1):
super().__init__()
hidden = int(dim * mlp_ratio)
self.fc1 = nn.Linear(dim, hidden)
self.fc2 = nn.Linear(hidden, dim)
self.drop = nn.Dropout(dropout)
def forward(self, x):
x = self.fc1(x)
x = F.gelu(x, approximate="tanh")
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class BeeperRoseGPT(nn.Module):
"""Rose Beeper GPT model with pentachora banks for multi-level control."""
def __init__(self, cfg: dict):
super().__init__()
V, D, Ctx = cfg["vocab_size"], cfg["dim"], cfg["context"]
H, L, MR = cfg["n_heads"], cfg["n_layers"], cfg["mlp_ratio"]
RD, AD, CKPT = cfg["resid_dropout"], cfg["dropout"], cfg["grad_checkpoint"]
self.vocab_size, self.context = V, Ctx
self.token_emb = nn.Embedding(V, D)
self.pos_emb = nn.Parameter(torch.zeros(1, Ctx, D))
self.drop = nn.Dropout(RD)
self.blocks = nn.ModuleList([
nn.ModuleDict({
"norm1": nn.LayerNorm(D),
"attn": CausalSelfAttention(D, H, attn_dropout=AD),
"norm2": nn.LayerNorm(D),
"mlp": MLP(D, mlp_ratio=MR, dropout=RD),
}) for _ in range(L)
])
self.norm = nn.LayerNorm(D)
self.lm_head = nn.Linear(D, V, bias=False)
self.lm_head.weight = self.token_emb.weight
# Optional Rose projection + anchors
self.rose_proj = nn.Linear(D, D, bias=False)
self.rose_anchors = nn.Parameter(torch.randn(3, D) / (D**0.5))
# Multi-level pentachora; lazily initialized
self.register_buffer("pent_inited", torch.tensor(0, dtype=torch.uint8), persistent=False)
self.penta_coarse = None
self.penta_medium = None
self.penta_fine = None
self.apply(self._init)
self.grad_checkpoint = CKPT
@staticmethod
def _init(m):
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight, mean=0.0, std=0.02)
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Embedding):
nn.init.normal_(m.weight, mean=0.0, std=0.02)
def ensure_pentachora(self, coarse_C: int, medium_C: int, fine_C: int, dim: int, device):
"""Initialize three pentachora banks."""
if self.pent_inited.item() == 1:
return
def bank(C):
pts = []
for _ in range(int(C)):
A = torch.randn(5, dim, device=device)
A = F.normalize(A - A.mean(dim=0, keepdim=True), dim=-1)
pts.append(A)
return nn.Parameter(torch.stack(pts, dim=0))
self.penta_coarse = bank(coarse_C)
self.penta_medium = bank(medium_C)
self.penta_fine = bank(fine_C)
self.pent_inited.fill_(1)
def _block_forward(self, blk, x):
x = x + blk["attn"](blk["norm1"](x))
x = x + blk["mlp"](blk["norm2"](x))
return x
def backbone(self, idx):
B, T = idx.shape
x = self.token_emb(idx) + self.pos_emb[:, :T, :]
x = self.drop(x)
if self.grad_checkpoint and self.training:
from torch.utils.checkpoint import checkpoint
for blk in self.blocks:
x = checkpoint(lambda _x: self._block_forward(blk, _x), x)
else:
for blk in self.blocks:
x = self._block_forward(blk, x)
return self.norm(x)
def forward(self, idx):
h = self.backbone(idx)
return self.lm_head(h)
def hidden_states(self, idx):
return self.backbone(idx)
def rose_hidden_pool(self, h: torch.Tensor, mode="mean"):
return h.mean(dim=1) if mode == "mean" else h[:, -1, :]
# ============================================================================
# Model I/O Utilities
# ============================================================================
class BeeperIO:
"""Utilities for saving and loading model weights."""
@staticmethod
def clean_state(sd: dict):
"""Clean state dict keys from various wrappings."""
out = {}
for k, v in sd.items():
if k.startswith("_orig_mod."):
k = k[10:]
if k.startswith("module."):
k = k[7:]
out[k] = v
return out
@staticmethod
def load_into_model(model: nn.Module, path: str, map_location="cpu", strict: bool = False):
"""Load weights from file into model."""
ext = os.path.splitext(path)[1].lower()
if ext == ".safetensors":
sd = load_safetensors(path, device="cpu")
else:
raw = torch.load(path, map_location="cpu")
sd = raw["model"] if isinstance(raw, dict) and "model" in raw else raw
sd = BeeperIO.clean_state(sd)
result = model.load_state_dict(sd, strict=strict)
return result.missing_keys, result.unexpected_keys
# ============================================================================
# Text Generation
# ============================================================================
def _detok(text: str) -> str:
"""Clean up tokenized text spacing."""
text = re.sub(r"\s+([,.;:!?%])", r"\1", text)
text = re.sub(r"\s+([\)\]\}])", r"\1", text)
text = re.sub(r"([\(\[\{])\s+", r"\1", text)
return text
@torch.no_grad()
def generate(model: BeeperRoseGPT,
tok: Tokenizer,
cfg: dict,
prompt: str,
max_new_tokens: int = 120,
temperature: float = None,
top_k: int = None,
top_p: float = None,
repetition_penalty: float = None,
presence_penalty: float = None,
frequency_penalty: float = None,
device: Optional[torch.device] = None,
detokenize: bool = True) -> str:
"""
Generate text from a prompt using the model.
Args:
model: The BeeperRoseGPT model
tok: Tokenizer instance
cfg: Configuration dictionary
prompt: Input text prompt
max_new_tokens: Maximum number of tokens to generate
temperature: Sampling temperature (higher = more random)
top_k: Top-k sampling parameter
top_p: Top-p (nucleus) sampling parameter
repetition_penalty: Penalty for repeated tokens
presence_penalty: Penalty for tokens that have appeared
frequency_penalty: Penalty based on token frequency
device: Device to run on
detokenize: Whether to clean up tokenization artifacts
Returns:
Generated text string
"""
# Use defaults from config if not specified
temperature = cfg["temperature"] if temperature is None else temperature
top_k = cfg["top_k"] if top_k is None else top_k
top_p = cfg["top_p"] if top_p is None else top_p
repetition_penalty = cfg["repetition_penalty"] if repetition_penalty is None else repetition_penalty
presence_penalty = cfg["presence_penalty"] if presence_penalty is None else presence_penalty
frequency_penalty = cfg["frequency_penalty"] if frequency_penalty is None else frequency_penalty
device = device or next(model.parameters()).device
model.eval()
# Tokenize prompt
ids = tok.encode(prompt).ids
x = torch.tensor([ids], dtype=torch.long, device=device)
# Track token counts for penalties
counts = torch.zeros(cfg["vocab_size"], dtype=torch.int32, device=device)
for t in ids:
if 0 <= t < cfg["vocab_size"]:
counts[t] += 1
# Generate tokens
for _ in range(max_new_tokens):
# Get logits for next token
logits = model(x[:, -cfg["context"]:])
logits = logits[:, -1, :]
# Apply repetition penalty
if repetition_penalty and repetition_penalty != 1.0:
mask = counts > 0
if mask.any():
pos = logits[:, mask] > 0
logits[:, mask][pos] /= repetition_penalty
logits[:, mask][~pos] *= repetition_penalty
# Apply presence and frequency penalties
if presence_penalty or frequency_penalty:
pen = counts.float() * (frequency_penalty or 0.0) + (counts > 0).float() * (presence_penalty or 0.0)
logits = logits - pen.unsqueeze(0)
# Apply temperature
logits = logits / max(1e-8, temperature)
# Apply top-k sampling
if top_k and top_k > 0:
k = min(top_k, logits.size(-1))
v, ix = torch.topk(logits, k, dim=-1)
filt = torch.full_like(logits, float("-inf"))
logits = filt.scatter_(-1, ix, v)
# Apply top-p (nucleus) sampling
if top_p and top_p < 1.0:
sl, si = torch.sort(logits, descending=True)
ps = F.softmax(sl, dim=-1)
cdf = torch.cumsum(ps, dim=-1)
cutoff = (cdf > top_p).float().argmax(dim=-1)
mask = torch.arange(logits.size(-1), device=device).unsqueeze(0) > cutoff.unsqueeze(-1)
sl = sl.masked_fill(mask, float("-inf"))
logits = torch.full_like(logits, float("-inf")).scatter(-1, si, sl)
# Sample next token
probs = F.softmax(logits, dim=-1)
next_id = torch.multinomial(probs, num_samples=1)
x = torch.cat([x, next_id], dim=1)
counts[next_id.item()] += 1
# Decode output
out = tok.decode(x[0].tolist())
return _detok(out) if detokenize else out
# ============================================================================
# Default Configuration
# ============================================================================
def get_default_config():
"""Get the default configuration for the model."""
return {
"name": "Rose-Beeper",
"context": 512,
"vocab_size": 8192,
"dim": 512,
"n_layers": 6,
"n_heads": 8,
"mlp_ratio": 4.0,
"dropout": 0.0,
"resid_dropout": 0.1,
"grad_checkpoint": False,
# Generation defaults
"temperature": 0.9,
"top_k": 40,
"top_p": 0.9,
"repetition_penalty": 1.10,
"presence_penalty": 0.6,
"frequency_penalty": 0.0,
# Capoera configuration
"capoera": {
"enable": True,
"topic_bins": 512,
"mood_bins": 7,
}
}