Spaces:
Running
on
Zero
Running
on
Zero
# beeper.py | |
# -------------------------------------------------------------------------------------------------- | |
# Beeper Full Penta Controller — Rose-based tiny GPT (inference module with runtime pentachora influence) | |
# - Decoder-only GPT with SDPA (FlashAttention path on Ampere/Hopper) | |
# - Runtime "vertex pull" uses config["runtime_pentachora"] to bias hidden states toward | |
# pentachora vertices (coarse/topic/mood) exactly like training-time behavior, but non-destructive | |
# and fully toggleable. | |
# -------------------------------------------------------------------------------------------------- | |
from __future__ import annotations | |
import math | |
import re | |
import inspect | |
from contextlib import nullcontext | |
from typing import Optional, Tuple, Dict, Any | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
# --- Prefer high-throughput matmul where possible (Ampere/Hopper) --- | |
torch.set_float32_matmul_precision("high") | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
# ---- Version-safe SDPA (FlashAttention) selection ------------------------------------------------- | |
try: | |
# PyTorch 2.3+ modern API | |
from torch.nn.attention import sdpa_kernel as _sdpa_kernel_modern | |
from torch.nn.attention import SDPBackend as _SDPBackend | |
_SDPA_SIG = inspect.signature(_sdpa_kernel_modern) | |
_sdpa_kernel = _sdpa_kernel_modern | |
except Exception: | |
try: | |
# Legacy API | |
from torch.backends.cuda import sdp_kernel as _sdpa_kernel_legacy | |
_SDPA_SIG = inspect.signature(_sdpa_kernel_legacy) | |
_SDPBackend = None | |
_sdpa_kernel = _sdpa_kernel_legacy | |
except Exception: | |
_SDPA_SIG = None | |
_SDPBackend = None | |
_sdpa_kernel = None | |
def sdpa_ctx_prefer_flash(): | |
"""Bias SDPA toward FlashAttention where possible; otherwise no-op.""" | |
if _sdpa_kernel is None or _SDPA_SIG is None: | |
return nullcontext() | |
params = {p.name for p in _SDPA_SIG.parameters.values()} | |
try: | |
if "backends" in params and _SDPBackend is not None: | |
return _sdpa_kernel(backends=[ | |
_SDPBackend.FLASH_ATTENTION, | |
_SDPBackend.EFFICIENT_ATTENTION, | |
_SDPBackend.MATH | |
]) | |
if "backend" in params and _SDPBackend is not None: | |
return _sdpa_kernel(backend=_SDPBackend.FLASH_ATTENTION) | |
if {"enable_flash", "enable_math", "enable_mem_efficient"} <= params: | |
return _sdpa_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=True) | |
if {"use_flash", "use_math", "use_mem_efficient"} <= params: | |
return _sdpa_kernel(use_flash=True, use_math=False, use_mem_efficient=True) | |
except Exception: | |
pass | |
return nullcontext() | |
# --------------------------------- Core blocks ------------------------------------------------------ | |
class CausalSelfAttention(nn.Module): | |
"""Multi-head causal self-attention using PyTorch SDPA.""" | |
def __init__(self, dim: int, n_heads: int, attn_dropout: float = 0.0): | |
super().__init__() | |
assert dim % n_heads == 0, "dim must be divisible by n_heads" | |
self.nh = int(n_heads) | |
self.hd = dim // self.nh | |
self.qkv = nn.Linear(dim, 3 * dim, bias=False) | |
self.proj = nn.Linear(dim, dim, bias=False) | |
self.attn_dropout = float(attn_dropout) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
B, T, C = x.shape | |
qkv = self.qkv(x) | |
q, k, v = qkv.chunk(3, dim=-1) | |
q = q.view(B, T, self.nh, self.hd).transpose(1, 2) # [B,H,T,D] | |
k = k.view(B, T, self.nh, self.hd).transpose(1, 2) | |
v = v.view(B, T, self.nh, self.hd).transpose(1, 2) | |
if x.is_cuda: | |
with sdpa_ctx_prefer_flash(): | |
y = F.scaled_dot_product_attention( | |
q, k, v, | |
is_causal=True, | |
dropout_p=self.attn_dropout if self.training else 0.0, | |
) | |
else: | |
scale = 1.0 / math.sqrt(self.hd) | |
att = (q @ k.transpose(-2, -1)) * scale | |
mask = torch.full((1, 1, T, T), float("-inf"), device=x.device) | |
mask = torch.triu(mask, diagonal=1) | |
att = (att + mask).softmax(dim=-1) | |
y = att @ v | |
y = y.transpose(1, 2).contiguous().view(B, T, C) | |
return self.proj(y) | |
class MLP(nn.Module): | |
"""GELU MLP with dropout, sized by mlp_ratio.""" | |
def __init__(self, dim: int, mlp_ratio: float = 4.0, dropout: float = 0.1): | |
super().__init__() | |
hidden = int(dim * mlp_ratio) | |
self.fc1 = nn.Linear(dim, hidden) | |
self.fc2 = nn.Linear(hidden, dim) | |
self.drop = nn.Dropout(dropout) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.fc1(x) | |
x = F.gelu(x, approximate="tanh") | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
# --------------------------------- Beeper Model ----------------------------------------------------- | |
class BeeperRoseGPT(nn.Module): | |
""" | |
Decoder-only GPT used by Beeper during training and inference. | |
Config keys used: | |
- vocab_size, dim, context, n_heads, n_layers, mlp_ratio | |
- resid_dropout, dropout, grad_checkpoint | |
- runtime_pentachora: { | |
"enable": bool, | |
"pool": "mean" | "last", | |
"temp": float, # similarity temperature (default: 0.10) | |
"coarse_alpha": float, # hidden blend strength for coarse bank | |
"topic_alpha": float, # hidden blend strength for topic bank | |
"mood_alpha": float # hidden blend strength for mood bank | |
} | |
Notes: | |
- Shares token embedding with LM head (tied weights). | |
- Includes Rose anchors and pentachora banks; at runtime we can apply a *non-destructive* | |
vertex pull to hidden states before the LM head using the above config. | |
""" | |
def __init__(self, cfg: dict): | |
super().__init__() | |
V, D, Ctx = cfg["vocab_size"], cfg["dim"], cfg["context"] | |
H, L, MR = cfg["n_heads"], cfg["n_layers"], cfg["mlp_ratio"] | |
RD, AD = cfg.get("resid_dropout", 0.1), cfg.get("dropout", 0.0) | |
self.grad_checkpoint = bool(cfg.get("grad_checkpoint", False)) | |
self.runtime_cfg: Dict[str, Any] = dict(cfg.get("runtime_pentachora", {}) or {}) | |
self.vocab_size, self.context = int(V), int(Ctx) | |
self.token_emb = nn.Embedding(V, D) | |
self.pos_emb = nn.Parameter(torch.zeros(1, Ctx, D)) | |
self.drop = nn.Dropout(RD) | |
self.blocks = nn.ModuleList([ | |
nn.ModuleDict({ | |
"norm1": nn.LayerNorm(D), | |
"attn": CausalSelfAttention(D, H, attn_dropout=AD), | |
"norm2": nn.LayerNorm(D), | |
"mlp": MLP(D, mlp_ratio=MR, dropout=RD), | |
}) | |
for _ in range(L) | |
]) | |
self.norm = nn.LayerNorm(D) | |
self.lm_head = nn.Linear(D, V, bias=False) | |
self.lm_head.weight = self.token_emb.weight # weight tying | |
# Rose projection + anchors (present in checkpoints) | |
self.rose_proj = nn.Linear(D, D, bias=False) | |
self.rose_anchors = nn.Parameter(torch.randn(3, D) / (D ** 0.5)) | |
# Pentachora banks (created lazily to match state dict) | |
self.register_buffer("pent_inited", torch.tensor(0, dtype=torch.uint8), persistent=False) | |
self.penta_coarse: Optional[nn.Parameter] = None # [C,5,D] | |
self.penta_medium: Optional[nn.Parameter] = None # [T,5,D] | |
self.penta_fine: Optional[nn.Parameter] = None # [M,5,D] | |
self.apply(self._init_weights) | |
def _init_weights(m: nn.Module): | |
if isinstance(m, nn.Linear): | |
nn.init.normal_(m.weight, mean=0.0, std=0.02) | |
if m.bias is not None: | |
nn.init.zeros_(m.bias) | |
elif isinstance(m, nn.Embedding): | |
nn.init.normal_(m.weight, mean=0.0, std=0.02) | |
# ---- Pentachora creation (must match sizes in checkpoint before strict load) ------------------- | |
def ensure_pentachora(self, coarse_C: int, medium_C: int, fine_C: int, dim: int, device: torch.device): | |
"""Initialize pentachora banks if not already present.""" | |
if self.pent_inited.item() == 1: | |
return | |
def bank(C: int) -> nn.Parameter: | |
if C <= 0: | |
return nn.Parameter(torch.zeros((0, 5, dim), device=device)) | |
pts = torch.randn(C, 5, dim, device=device) | |
pts = F.normalize(pts - pts.mean(dim=1, keepdim=True), dim=-1) | |
return nn.Parameter(pts) | |
self.penta_coarse = bank(int(coarse_C)) | |
self.penta_medium = bank(int(medium_C)) | |
self.penta_fine = bank(int(fine_C)) | |
self.pent_inited.fill_(1) | |
# ---- Runtime configuration helpers ------------------------------------------------------------- | |
def set_runtime_pentachora(self, cfg: Dict[str, Any]) -> None: | |
"""Update runtime pentachora behavior (enable/alphas/temp/pool).""" | |
self.runtime_cfg.update(cfg or {}) | |
def _pool_hidden(self, h: torch.Tensor, mode: str) -> torch.Tensor: | |
return h.mean(dim=1) if mode == "mean" else h[:, -1, :] | |
def _weighted_nearest_vertex_target( | |
pooled: torch.Tensor, # [B,D] | |
bank: torch.Tensor, # [C,5,D] | |
temp: float | |
) -> torch.Tensor: | |
""" | |
For each class (simplex) pick its nearest vertex to the pooled latent, | |
then compute a softmax over classes of -min_dists/temp and take the | |
weighted average of those nearest vertices => [B,D] target. | |
""" | |
B, D = pooled.shape | |
C = bank.size(0) | |
if C == 0: | |
return pooled | |
# distances to each vertex | |
diffs = pooled[:, None, None, :] - bank[None, :, :, :] # [B,C,5,D] | |
dists = torch.norm(diffs, dim=-1) # [B,C,5] | |
min_dists, min_idx = dists.min(dim=2) # [B,C], [B,C] | |
sims = -min_dists / max(1e-8, float(temp)) # [B,C] | |
weights = F.softmax(sims, dim=-1) # [B,C] | |
# gather nearest vertex vectors: [B,C,D] | |
bank_exp = bank.unsqueeze(0).expand(B, -1, -1, -1) # [B,C,5,D] | |
gather_idx = min_idx.unsqueeze(-1).unsqueeze(-1).expand(B, C, 1, D) | |
nearest = torch.gather(bank_exp, 2, gather_idx).squeeze(2) # [B,C,D] | |
target = (weights.unsqueeze(-1) * nearest).sum(dim=1) # [B,D] | |
return target | |
def _apply_runtime_vertex_pull( | |
self, | |
h: torch.Tensor, # [B,T,D] | |
runtime_cfg: Dict[str, Any] | |
) -> torch.Tensor: | |
""" | |
Apply non-destructive vertex pull to hidden states using banks selected by runtime_cfg. | |
We compute a pooled latent, a per-bank target vector, form a delta, and blend it back into h. | |
""" | |
if not runtime_cfg or not runtime_cfg.get("enable", False): | |
return h | |
pool_mode = str(runtime_cfg.get("pool", "mean")) | |
temp = float(runtime_cfg.get("temp", 0.10)) | |
# Strengths per bank | |
alpha_coarse = float(runtime_cfg.get("coarse_alpha", 0.0)) | |
alpha_topic = float(runtime_cfg.get("topic_alpha", 0.0)) | |
alpha_mood = float(runtime_cfg.get("mood_alpha", 0.0)) | |
if (alpha_coarse <= 0 and alpha_topic <= 0 and alpha_mood <= 0): | |
return h | |
pooled = self._pool_hidden(h, pool_mode) # [B,D] | |
total_delta = None | |
if alpha_coarse > 0 and getattr(self, "penta_coarse", None) is not None: | |
tgt = self._weighted_nearest_vertex_target(pooled, self.penta_coarse, temp) | |
delta = tgt - pooled | |
total_delta = (alpha_coarse * delta) if total_delta is None else total_delta + alpha_coarse * delta | |
if alpha_topic > 0 and getattr(self, "penta_medium", None) is not None: | |
tgt = self._weighted_nearest_vertex_target(pooled, self.penta_medium, temp) | |
delta = tgt - pooled | |
total_delta = delta * alpha_topic if total_delta is None else total_delta + alpha_topic * delta | |
if alpha_mood > 0 and getattr(self, "penta_fine", None) is not None: | |
tgt = self._weighted_nearest_vertex_target(pooled, self.penta_fine, temp) | |
delta = tgt - pooled | |
total_delta = delta * alpha_mood if total_delta is None else total_delta + alpha_mood * delta | |
if total_delta is None: | |
return h | |
# Broadcast same delta to all time steps (global conditioning shift) | |
h = h + total_delta.unsqueeze(1) # [B,T,D] | |
return h | |
# ---- Backbone / forward ----------------------------------------------------------------------- | |
def _block_forward(self, blk: nn.ModuleDict, x: torch.Tensor) -> torch.Tensor: | |
x = x + blk["attn"](blk["norm1"](x)) | |
x = x + blk["mlp"](blk["norm2"](x)) | |
return x | |
def backbone(self, idx: torch.Tensor) -> torch.Tensor: | |
B, T = idx.shape | |
x = self.token_emb(idx) + self.pos_emb[:, :T, :] | |
x = self.drop(x) | |
if self.grad_checkpoint and self.training: | |
from torch.utils.checkpoint import checkpoint | |
for blk in self.blocks: | |
x = checkpoint(lambda _x: self._block_forward(blk, _x), x) # type: ignore[arg-type] | |
else: | |
for blk in self.blocks: | |
x = self._block_forward(blk, x) | |
return self.norm(x) | |
def forward(self, idx: torch.Tensor, runtime_cfg: Optional[Dict[str, Any]] = None) -> torch.Tensor: | |
""" | |
Forward pass with optional runtime pentachora influence. | |
If runtime_cfg is None, falls back to self.runtime_cfg set at init or via set_runtime_pentachora(). | |
""" | |
h = self.backbone(idx) | |
cfg = self.runtime_cfg if runtime_cfg is None else {**self.runtime_cfg, **(runtime_cfg or {})} | |
h = self._apply_runtime_vertex_pull(h, cfg) | |
return self.lm_head(h) | |
# ---- Utilities --------------------------------------------------------------------------------- | |
def hidden_states(self, idx: torch.Tensor) -> torch.Tensor: | |
"""Return final hidden states (pre-LM head).""" | |
return self.backbone(idx) | |
def rose_hidden_pool(self, h: torch.Tensor, mode: str = "mean") -> torch.Tensor: | |
"""Pool hidden states for Rose-related terms.""" | |
return h.mean(dim=1) if mode == "mean" else h[:, -1, :] | |
# --------------------------------- Loader helpers --------------------------------------------------- | |
def prepare_model_for_state_dict( | |
model: BeeperRoseGPT, | |
state_dict: "dict[str, torch.Tensor]", | |
device: Optional[torch.device] = None, | |
) -> None: | |
""" | |
Ensure model has pentachora parameters sized to match the incoming state_dict, | |
so we can load with strict=True. No-op if checkpoint lacks penta_* keys. | |
""" | |
device = device or next(model.parameters()).device | |
need = all(k in state_dict for k in ("penta_coarse", "penta_medium", "penta_fine")) | |
if not need: | |
return | |
pc, pt, pm = state_dict["penta_coarse"], state_dict["penta_medium"], state_dict["penta_fine"] | |
def dims_ok(t: torch.Tensor, D: int) -> bool: | |
return t.ndim == 3 and t.size(1) == 5 and t.size(2) == D | |
D = model.token_emb.embedding_dim | |
if not (dims_ok(pc, D) and dims_ok(pt, D) and dims_ok(pm, D)): | |
return | |
model.ensure_pentachora(pc.size(0), pt.size(0), pm.size(0), dim=D, device=device) | |
# --------------------------------- Generation ------------------------------------------------------- | |
def _detok(text: str) -> str: | |
text = re.sub(r"\s+([,.;:!?%])", r"\1", text) | |
text = re.sub(r"\s+([\)\]\}])", r"\1", text) | |
text = re.sub(r"([\(\[\{])\s+", r"\1", text) | |
return text | |
def generate( | |
model: BeeperRoseGPT, | |
tok, # Hugging Face Tokenizers `Tokenizer` | |
cfg: dict, | |
prompt: str, | |
max_new_tokens: int = 120, | |
temperature: Optional[float] = None, | |
top_k: Optional[int] = None, | |
top_p: Optional[float] = None, | |
repetition_penalty: Optional[float] = None, | |
presence_penalty: Optional[float] = None, | |
frequency_penalty: Optional[float] = None, | |
device: Optional[torch.device] = None, | |
detokenize: bool = True, | |
runtime_cfg: Optional[Dict[str, Any]] = None, # <— NEW: pass-through to forward() | |
) -> str: | |
""" | |
Penalized nucleus sampling with optional runtime pentachora influence. | |
""" | |
temperature = cfg.get("temperature", 0.9) if temperature is None else float(temperature) | |
top_k = cfg.get("top_k", 40) if top_k is None else int(top_k) | |
top_p = cfg.get("top_p", 0.9) if top_p is None else float(top_p) | |
repetition_penalty = cfg.get("repetition_penalty", 1.10) if repetition_penalty is None else float(repetition_penalty) | |
presence_penalty = cfg.get("presence_penalty", 0.6) if presence_penalty is None else float(presence_penalty) | |
frequency_penalty = cfg.get("frequency_penalty", 0.0) if frequency_penalty is None else float(frequency_penalty) | |
device = device or next(model.parameters()).device | |
model.eval() | |
ids = tok.encode(prompt).ids | |
x = torch.tensor([ids], dtype=torch.long, device=device) | |
V = int(cfg["vocab_size"]) | |
counts = torch.zeros(V, dtype=torch.int32, device=device) | |
for t in ids: | |
if 0 <= t < V: | |
counts[t] += 1 | |
for _ in range(int(max_new_tokens)): | |
logits = model(x[:, -cfg["context"]:], runtime_cfg=runtime_cfg) | |
logits = logits[:, -1, :] | |
# Repetition penalty | |
if repetition_penalty and repetition_penalty != 1.0: | |
mask = counts > 0 | |
if mask.any(): | |
pos = logits[:, mask] > 0 | |
logits[:, mask][pos] /= repetition_penalty | |
logits[:, mask][~pos] *= repetition_penalty | |
# Presence/frequency penalties | |
if presence_penalty or frequency_penalty: | |
pen = counts.float() * (frequency_penalty or 0.0) + (counts > 0).float() * (presence_penalty or 0.0) | |
logits = logits - pen.unsqueeze(0) | |
logits = logits / max(1e-8, temperature) | |
if top_k and top_k > 0: | |
k = min(top_k, logits.size(-1)) | |
v, ix = torch.topk(logits, k, dim=-1) | |
filt = torch.full_like(logits, float("-inf")) | |
logits = filt.scatter_(-1, ix, v) | |
if top_p and top_p < 1.0: | |
sl, si = torch.sort(logits, descending=True) | |
ps = F.softmax(sl, dim=-1) | |
cdf = torch.cumsum(ps, dim=-1) | |
cutoff = (cdf > top_p).float().argmax(dim=-1) | |
mask = torch.arange(logits.size(-1), device=device).unsqueeze(0) > cutoff.unsqueeze(-1) | |
sl = sl.masked_fill(mask, float("-inf")) | |
logits = torch.full_like(logits, float("-inf")).scatter(-1, si, sl) | |
probs = F.softmax(logits, dim=-1) | |
next_id = torch.multinomial(probs, num_samples=1) | |
x = torch.cat([x, next_id], dim=1) | |
nid = next_id.item() | |
if 0 <= nid < V: | |
counts[nid] += 1 | |
out = tok.decode(x[0].tolist()) | |
return _detok(out) if detokenize else out | |