File size: 19,991 Bytes
16a5fbe 3d8b532 16a5fbe 3d8b532 16a5fbe 3d8b532 16a5fbe 3d8b532 16a5fbe 3d8b532 16a5fbe 3d8b532 16a5fbe 3d8b532 16a5fbe 3d8b532 16a5fbe 3d8b532 16a5fbe 3d8b532 16a5fbe 3d8b532 16a5fbe 3d8b532 16a5fbe 3d8b532 16a5fbe 3d8b532 16a5fbe 3d8b532 16a5fbe 3d8b532 16a5fbe 3d8b532 16a5fbe 3d8b532 16a5fbe 3d8b532 16a5fbe 3d8b532 16a5fbe 3d8b532 16a5fbe 3d8b532 16a5fbe 3d8b532 16a5fbe 3d8b532 16a5fbe 3d8b532 16a5fbe 3d8b532 16a5fbe 3d8b532 16a5fbe 3d8b532 16a5fbe 3d8b532 16a5fbe 3d8b532 16a5fbe 3d8b532 16a5fbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
import os
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' # Disable oneDNN to avoid numerical differences warning
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # Suppress TensorFlow logs except critical errors
import logging
logging.getLogger('tensorflow').setLevel(logging.ERROR) # Further suppress TensorFlow warnings
import altair as alt
import numpy as np
import pandas as pd
import streamlit as st
import cv2
import torch
from transformers import AutoImageProcessor, AutoModelForImageClassification
from collections import deque
import tensorflow as tf
from tensorflow.keras.models import load_model
import tempfile
import time
import urllib.request
import shutil
# Cached model loading functions
@st.cache_resource
def load_cnn_model():
try:
model = load_model('cnn_model.h5')
st.success("CNN model loaded successfully!")
return model
except Exception as e:
st.error(f"Error loading CNN model: {e}")
st.warning("Please make sure 'cnn_model.h5' is in the current directory.")
return None
@st.cache_resource
def load_vit_components():
image_processor = AutoImageProcessor.from_pretrained('Adieee5/deepfake-detection-f3net-cross', use_fast=True)
model = AutoModelForImageClassification.from_pretrained('Adieee5/deepfake-detection-f3net-cross')
return image_processor, model
@st.cache_resource
def load_face_net():
model_file = "deploy.prototxt"
weights_file = "res10_300x300_ssd_iter_140000.caffemodel"
if os.path.exists(model_file) and os.path.exists(weights_file):
return cv2.dnn.readNetFromCaffe(model_file, weights_file)
return None
@st.cache_resource
def load_haar_cascade():
cascade_path = cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'
if os.path.exists(cascade_path):
return cv2.CascadeClassifier(cascade_path)
return None
class CNNDeepfakeDetector:
def __init__(self):
self.model = load_cnn_model()
class DeepfakeDetector:
def __init__(self):
st.info("Initializing Deepfake Detector... This may take a moment.")
# Load ViT components
with st.spinner("Loading deepfake detection model..."):
self.image_processor, self.model = load_vit_components()
# Load face detection models
with st.spinner("Loading face detection model..."):
self.face_net = load_face_net()
self.use_dnn = self.face_net is not None
if self.use_dnn:
st.success("Using DNN face detector (better for close-up faces)")
else:
self.face_cascade = load_haar_cascade()
if self.face_cascade:
st.warning("Using Haar cascade face detector as fallback")
else:
st.error(f"Cascade file not found")
# Initialize CNN detector
self.cnn_detector = CNNDeepfakeDetector()
# Face tracking/smoothing parameters
self.face_history = {}
self.face_history_max_size = 10
self.face_ttl = 5
self.next_face_id = 0
self.result_buffer_size = 5
self.processing_times = deque(maxlen=30)
st.success("Models loaded successfully!")
def detect_faces_haar(self, frame):
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = self.face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
return [(x, y, w, h, 0.8) for (x, y, w, h) in faces]
def detect_faces_dnn(self, frame):
height, width = frame.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0))
self.face_net.setInput(blob)
detections = self.face_net.forward()
faces = []
for i in range(detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > 0.5:
box = detections[0, 0, i, 3:7] * np.array([width, height, width, height])
(x1, y1, x2, y2) = box.astype("int")
x1, y1 = max(0, x1), max(0, y1)
x2, y2 = min(width, x2), min(height, y2)
w, h = x2 - x1, y2 - y1
if w > 0 and h > 0:
faces.append((x1, y1, w, h, confidence))
return faces
def calculate_iou(self, box1, box2):
box1_x1, box1_y1, box1_w, box1_h = box1
box2_x1, box2_y1, box2_w, box2_h = box2
box1_x2, box1_y2 = box1_x1 + box1_w, box1_y1 + box1_h
box2_x2, box2_y2 = box2_x1 + box2_w, box2_y1 + box2_h
x_left = max(box1_x1, box2_x1)
y_top = max(box1_y1, box2_y1)
x_right = min(box1_x2, box2_x2)
y_bottom = min(box1_y2, box2_y2)
if x_right < x_left or y_bottom < y_top:
return 0.0
intersection_area = (x_right - x_left) * (y_bottom - y_top)
box1_area = box1_w * box1_h
box2_area = box2_w * box2_h
return intersection_area / float(box1_area + box2_area - intersection_area)
def track_faces(self, faces):
matched_faces = []
unmatched_detections = list(range(len(faces)))
if not self.face_history:
for face in faces:
face_id = self.next_face_id
self.next_face_id += 1
self.face_history[face_id] = {
'positions': deque([face[:4]], maxlen=self.face_history_max_size),
'ttl': self.face_ttl,
'label': None,
'confidence': 0.0,
'result_history': deque(maxlen=self.result_buffer_size)
}
matched_faces.append((face_id, face))
return matched_faces
for face_id in list(self.face_history.keys()):
last_pos = self.face_history[face_id]['positions'][-1]
best_match = -1
best_iou = 0.3
for i in unmatched_detections:
iou = self.calculate_iou(last_pos, faces[i][:4])
if iou > best_iou:
best_iou = iou
best_match = i
if best_match != -1:
matched_face = faces[best_match]
self.face_history[face_id]['positions'].append(matched_face[:4])
self.face_history[face_id]['ttl'] = self.face_ttl
matched_faces.append((face_id, matched_face))
unmatched_detections.remove(best_match)
else:
self.face_history[face_id]['ttl'] -= 1
if self.face_history[face_id]['ttl'] <= 0:
del self.face_history[face_id]
else:
predicted_face = (*last_pos, 0.5)
matched_faces.append((face_id, predicted_face))
for i in unmatched_detections:
face_id = self.next_face_id
self.next_face_id += 1
self.face_history[face_id] = {
'positions': deque([faces[i][:4]], maxlen=self.face_history_max_size),
'ttl': self.face_ttl,
'label': None,
'confidence': 0.0,
'result_history': deque(maxlen=self.result_buffer_size)
}
matched_faces.append((face_id, faces[i]))
return matched_faces
def smooth_face_position(self, face_id):
positions = self.face_history[face_id]['positions']
if len(positions) == 1:
return positions[0]
total_weight = 0
x, y, w, h = 0, 0, 0, 0
for i, pos in enumerate(positions):
weight = 2 ** i
total_weight += weight
x += pos[0] * weight
y += pos[1] * weight
w += pos[2] * weight
h += pos[3] * weight
return (int(x / total_weight), int(y / total_weight), int(w / total_weight), int(h / total_weight))
def update_face_classification(self, face_id, label, confidence):
self.face_history[face_id]['result_history'].append((label, confidence))
real_votes = 0
fake_votes = 0
total_confidence = 0.0
for result_label, result_conf in self.face_history[face_id]['result_history']:
if result_label == "Real":
real_votes += 1
total_confidence += result_conf
elif result_label == "Fake":
fake_votes += 1
total_confidence += result_conf
if real_votes >= fake_votes:
smoothed_label = "Real"
label_confidence = real_votes / len(self.face_history[face_id]['result_history'])
else:
smoothed_label = "Fake"
label_confidence = fake_votes / len(self.face_history[face_id]['result_history'])
avg_confidence = (total_confidence / len(self.face_history[face_id]['result_history'])) * label_confidence
self.face_history[face_id]['label'] = smoothed_label
self.face_history[face_id]['confidence'] = avg_confidence
return smoothed_label, avg_confidence
def process_video(self, video_path, stframe, status_text, progress_bar, detector_type="dnn", model_type="vit"):
use_dnn_current = detector_type == "dnn" and self.use_dnn
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
st.error(f"Error: Cannot open video source")
return
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = 250 if video_path != 0 else 0
if video_path != 0:
status_text.text(f"Video Info: {frame_width}x{frame_height}, {fps:.1f} FPS, {total_frames} frames")
else:
status_text.text(f"Webcam: {frame_width}x{frame_height}")
self.face_history = {}
self.next_face_id = 0
self.processing_times = deque(maxlen=30)
frame_count = 0
process_every_n_frames = 2
face_stats = {"Real": 0, "Fake": 0, "Unknown": 0}
while True:
start_time = time.time()
ret, frame = cap.read()
if not ret:
status_text.text("End of video reached")
break
frame_count += 1
if frame_count == 250:
st.success("Video Processed Successfully!")
break
if video_path != 0:
progress = min(float(frame_count) / float(max(total_frames, 1)), 1.0)
progress_bar.progress(progress)
process_frame = (frame_count % process_every_n_frames == 0)
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
if process_frame:
faces = self.detect_faces_dnn(frame) if use_dnn_current else self.detect_faces_haar(frame)
tracked_faces = self.track_faces(faces)
face_images = []
face_ids = []
for face_id, (x, y, w, h, face_confidence) in tracked_faces:
if face_id in self.face_history and w > 20 and h > 20:
sx, sy, sw, sh = self.smooth_face_position(face_id)
face = frame_rgb[sy:sy+sh, sx:sx+sw]
if face.size > 0 and face.shape[0] >= 20 and face.shape[1] >= 20:
face_images.append(face)
face_ids.append(face_id)
if face_images:
if model_type == "vit":
inputs = self.image_processor(images=face_images, return_tensors="pt")
with torch.no_grad():
outputs = self.model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=1)
preds = torch.argmax(logits, dim=1)
for i, pred in enumerate(preds):
label = 'Real' if pred.item() == 1 else 'Fake'
confidence = probs[i][pred].item()
self.update_face_classification(face_ids[i], label, confidence)
elif model_type == "cnn" and self.cnn_detector.model is not None:
img_arrays = [cv2.resize(face, (128, 128)) / 255.0 for face in face_images]
img_batch = np.array(img_arrays)
predictions = self.cnn_detector.model.predict(img_batch)
for i, prediction in enumerate(predictions):
confidence = float(prediction[0])
label = 'Real' if confidence < 0.5 else 'Fake'
if label == 'Fake':
confidence = confidence
else:
confidence = 1.0 - confidence
self.update_face_classification(face_ids[i], label, confidence)
for face_id in self.face_history:
if self.face_history[face_id]['ttl'] > 0:
sx, sy, sw, sh = self.smooth_face_position(face_id)
cv2.rectangle(frame, (sx, sy), (sx+sw, sy+sh), (0, 255, 255), 2)
label = self.face_history[face_id]['label'] or "Unknown"
confidence = self.face_history[face_id]['confidence']
result_text = f"{label}: {confidence:.2f}"
text_color = (0, 255, 0) if label == "Real" else (0, 0, 255)
cv2.rectangle(frame, (sx, sy+sh), (sx+len(result_text)*11, sy+sh+25), (0, 0, 0), -1)
cv2.putText(frame, result_text, (sx, sy+sh+20),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, text_color, 2)
cv2.putText(frame, f"ID:{face_id}", (sx, sy-5),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 0), 1)
if label in face_stats:
face_stats[label] += 1
process_time = time.time() - start_time
self.processing_times.append(process_time)
avg_time = sum(self.processing_times) / len(self.processing_times)
effective_fps = 1.0 / avg_time if avg_time > 0 else 0
if video_path != 0:
progress_percent = (frame_count / total_frames) * 100 if total_frames > 0 else 0
cv2.putText(frame, f"Frame: {frame_count}/{total_frames} ({progress_percent:.1f}%)",
(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
else:
cv2.putText(frame, f"Frame: {frame_count}",
(10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
detector_name = "DNN" if use_dnn_current else "Haar Cascade"
model_name = "ViT" if model_type == "vit" else "CNN"
cv2.putText(frame, f"Detector: {detector_name} | Model: {model_name} | FPS: {effective_fps:.1f}",
(10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
cv2.putText(frame, f"Tracked faces: {len(self.face_history)}",
(10, 90), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
stframe.image(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), channels="RGB")
status_text.text(f"Real: {face_stats['Real']} | Fake: {face_stats['Fake']} | FPS: {effective_fps:.1f}")
if st.session_state.get('stop_button', False):
break
cap.release()
return face_stats
def ensure_sample_video():
sample_dir = "sample_videos"
sample_path = os.path.join(sample_dir, "Sample.mp4")
if not os.path.exists(sample_dir):
os.makedirs(sample_dir)
if not os.path.exists(sample_path):
try:
with st.spinner("Downloading sample video..."):
sample_url = "https://storage.googleapis.com/deepfake-demo/sample_deepfake.mp4"
with urllib.request.urlopen(sample_url) as response, open(sample_path, 'wb') as out_file:
shutil.copyfileobj(response, out_file)
st.success("Sample video downloaded successfully!")
except Exception as e:
st.error(f"Failed to download sample video: {e}")
return None
return sample_path
def main():
st.set_page_config(page_title="Deepfake Detector", layout="wide")
st.title("Deepfake Detection App")
st.markdown("""
This app uses computer vision and deep learning to detect deepfake videos.
Upload a video or use your webcam to detect if faces are real or manipulated.
""")
if 'detector' not in st.session_state:
st.session_state.detector = None
if 'stop_button' not in st.session_state:
st.session_state.stop_button = False
if 'use_sample' not in st.session_state:
st.session_state.use_sample = False
if 'sample_path' not in st.session_state:
st.session_state.sample_path = None
if st.session_state.detector is None:
st.session_state.detector = DeepfakeDetector()
st.sidebar.title("Options")
input_option = st.sidebar.radio("Select Input Source", ["Upload Video", "Use Webcam", "Try Sample Video"])
detector_type = st.sidebar.selectbox("Face Detector", ["DNN (better for close-ups)", "Haar Cascade (faster)"],
index=0 if st.session_state.detector.use_dnn else 1)
detector_option = "dnn" if "DNN" in detector_type else "haar"
model_type = st.sidebar.selectbox("Deepfake Detection Model", ["Vision Transformer (ViT)", "F3 Net Model"], index=0)
model_option = "vit" if "Vision" in model_type else "cnn"
col1, col2 = st.columns([3, 1])
with col1:
video_placeholder = st.empty()
with col2:
status_text = st.empty()
progress_bar = st.empty()
st.subheader("Results")
results_area = st.empty()
if st.button("Stop Processing"):
st.session_state.stop_button = True
if input_option == "Upload Video":
uploaded_file = st.sidebar.file_uploader("Choose a video file", type=["mp4", "avi", "mov", "mkv"])
if uploaded_file is not None:
st.session_state.stop_button = False
tfile = tempfile.NamedTemporaryFile(delete=False)
tfile.write(uploaded_file.read())
video_path = tfile.name
face_stats = st.session_state.detector.process_video(video_path, video_placeholder, status_text,
progress_bar, detector_option, model_option)
results_df = {"Category": ["Real Faces", "Fake Faces"], "Count": [face_stats["Real"], face_stats["Fake"]]}
results_area.dataframe(results_df)
os.unlink(video_path)
elif input_option == "Use Webcam":
st.session_state.stop_button = False
if st.sidebar.button("Start Webcam"):
face_stats = st.session_state.detector.process_video(0, video_placeholder, status_text, progress_bar,
detector_option, model_option)
results_df = {"Category": ["Real Faces", "Fake Faces"], "Count": [face_stats["Real"], face_stats["Fake"]]}
results_area.dataframe(results_df)
elif input_option == "Try Sample Video":
st.session_state.stop_button = False
sample_path = ensure_sample_video()
if sample_path and st.sidebar.button("Process Sample Video"):
face_stats = st.session_state.detector.process_video(sample_path, video_placeholder, status_text,
progress_bar, detector_option, model_option)
results_df = {"Category": ["Real Faces", "Fake Faces"], "Count": [face_stats["Real"], face_stats["Fake"]]}
results_area.dataframe(results_df)
if __name__ == "__main__":
main() |