Practica1 / app.py
AdrianRevi's picture
Update app.py
fdcbdd8 verified
raw
history blame
1.07 kB
import gradio as gr
from PIL import Image
import torch
from torchvision import transforms
from transformers import AutoModelForImageClassification, AutoFeatureExtractor
# Cargar el modelo desde Hugging Face Hub
model = AutoModelForImageClassification.from_pretrained("AdrianRevi/Practica1Blindness")
extractor = AutoFeatureExtractor.from_pretrained("AdrianRevi/Practica1Blindness")
# Preprocesamiento
def predict(img: Image.Image):
inputs = extractor(images=img, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0]
labels = model.config.id2label
return {labels[i]: float(probs[i]) for i in range(len(labels))}
# Interfaz Gradio
demo = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"),
outputs=gr.Label(num_top_classes=3),
examples=["examples/20068.jpg", "examples/20084.jpg"],
title="Blindness Detection",
description="Sube una imagen del ojo para detectar el grado de ceguera.",
)
if __name__ == "__main__":
demo.launch()