File size: 24,056 Bytes
1efd29f 6245b3b b138e3b f367387 bd91ae0 f84e71c 885c1f9 f367387 885c1f9 1efd29f f367387 10a33ac f367387 b138e3b 5b7f342 f367387 d27a85c f367387 5b7f342 f367387 5b7f342 f367387 5b7f342 f367387 5b7f342 3414412 f367387 5b7f342 791be58 f367387 5b7f342 f367387 1a943f1 10a33ac 3d185cb f367387 1a943f1 3414412 f367387 1a943f1 f367387 3d185cb f367387 3d185cb f367387 1a943f1 f367387 1a943f1 f367387 f84e71c f367387 885c1f9 f367387 d27a85c f367387 ac1a436 f367387 ac1a436 f367387 ac1a436 f367387 e410b86 f367387 e410b86 f367387 e410b86 f367387 e410b86 f367387 e410b86 f367387 9169bdf f367387 e410b86 f367387 e410b86 f367387 bc78434 f367387 bc78434 f367387 e410b86 2c45946 e410b86 2c45946 9169bdf 2c45946 e410b86 2c45946 9169bdf 2c45946 e410b86 2c45946 9169bdf 2c45946 e410b86 9169bdf 2c45946 9169bdf 2c45946 9169bdf 2c45946 9169bdf 2c45946 9169bdf 2c45946 9169bdf 2c45946 e410b86 2c45946 9169bdf e410b86 f367387 2c45946 4336f6d e410b86 4336f6d e410b86 f367387 e410b86 f367387 2c45946 4336f6d e410b86 4336f6d e410b86 f367387 e410b86 f367387 2c45946 4336f6d e410b86 4336f6d e410b86 f367387 e410b86 f367387 2c45946 4336f6d e410b86 4336f6d e410b86 f367387 e410b86 f367387 2c45946 4336f6d e410b86 4336f6d e410b86 f367387 e410b86 9169bdf 2c45946 9169bdf e410b86 9169bdf e410b86 9169bdf e410b86 f367387 bc78434 f367387 bc78434 f367387 bc78434 f367387 e5959c0 f367387 d27a85c f367387 3fa421f f367387 bc78434 f367387 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 |
import gradio as gr
import regex as re
import csv
import pandas as pd
from typing import Dict, List, Tuple, Optional, Any
import logging
from pathlib import Path
import os
from analyzer import (
combine_repo_files_for_llm,
analyze_combined_file,
parse_llm_json_response,
analyze_code
)
from hf_utils import download_space_repo, search_top_spaces
from chatbot_page import chat_with_user, extract_keywords_from_conversation
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Constants
CHATBOT_SYSTEM_PROMPT = (
"You are a helpful assistant. Your goal is to help the user describe their ideal open-source repo. "
"Ask questions to clarify what they want, their use case, preferred language, features, etc. "
"When the user clicks 'End Chat', analyze the conversation and return about 5 keywords for repo search. "
"Return only the keywords as a comma-separated list."
)
CHATBOT_INITIAL_MESSAGE = (
"Hello! Please tell me about your ideal Hugging Face repo. "
"What use case, preferred language, or features are you looking for?"
)
# State management
class AppState:
def __init__(self):
self.repo_ids: List[str] = []
self.current_repo_idx: int = 0
self.generated_keywords: List[str] = []
self.analysis_results: Dict[str, Dict[str, Any]] = {}
self.chat_history: List[Tuple[str, str]] = []
def reset(self):
self.__init__()
# Helper functions
def read_csv_as_text(csv_filename: str) -> pd.DataFrame:
"""Read CSV file and return as DataFrame with string dtype."""
try:
return pd.read_csv(csv_filename, dtype=str)
except Exception as e:
logger.error(f"Error reading CSV file {csv_filename}: {e}")
return pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
def write_repos_to_csv(repo_ids: List[str], csv_filename: str = "repo_ids.csv") -> None:
"""Write repo IDs to CSV file."""
try:
with open(csv_filename, mode="w", newline='', encoding="utf-8") as csvfile:
writer = csv.writer(csvfile)
writer.writerow(["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
for repo_id in repo_ids:
writer.writerow([repo_id, "", "", "", ""])
except Exception as e:
logger.error(f"Error writing to CSV file {csv_filename}: {e}")
def process_repo_input(text: str, state: AppState) -> pd.DataFrame:
"""Process input text containing repo IDs and update state."""
if not text:
state.repo_ids = []
state.current_repo_idx = 0
return pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
repo_ids = [repo.strip() for repo in re.split(r'[\n,]+', text) if repo.strip()]
state.repo_ids = repo_ids
state.current_repo_idx = 0
write_repos_to_csv(repo_ids)
return read_csv_as_text("repo_ids.csv")
def analyze_single_repo(repo_id: str) -> Tuple[str, str, Dict[str, Any]]:
"""Analyze a single repository and return combined content, summary, and analysis results."""
try:
download_space_repo(repo_id, local_dir="repo_files")
txt_path = combine_repo_files_for_llm()
with open(txt_path, "r", encoding="utf-8") as f:
combined_content = f.read()
llm_output = analyze_combined_file(txt_path)
last_start = llm_output.rfind('{')
last_end = llm_output.rfind('}')
final_json_str = llm_output[last_start:last_end+1] if last_start != -1 and last_end != -1 and last_end > last_start else llm_output
llm_json = parse_llm_json_response(final_json_str)
if isinstance(llm_json, dict) and "error" not in llm_json:
strengths = llm_json.get("strength", "")
weaknesses = llm_json.get("weaknesses", "")
summary = f"JSON extraction: SUCCESS\n\nStrengths:\n{strengths}\n\nWeaknesses:\n{weaknesses}"
else:
summary = f"JSON extraction: FAILED\nRaw: {llm_json.get('raw', '') if isinstance(llm_json, dict) else llm_json}"
return combined_content, summary, llm_json
except Exception as e:
logger.error(f"Error analyzing repo {repo_id}: {e}")
return "", f"Error analyzing repo: {e}", {"error": str(e)}
def update_csv_with_analysis(repo_id: str, analysis_results: Dict[str, Any], csv_filename: str = "repo_ids.csv") -> pd.DataFrame:
"""Update CSV file with analysis results for a repository."""
try:
df = read_csv_as_text(csv_filename)
updated = False
for idx, row in df.iterrows():
if row["repo id"] == repo_id:
if isinstance(analysis_results, dict) and "error" not in analysis_results:
df.at[idx, "strength"] = analysis_results.get("strength", "")
df.at[idx, "weaknesses"] = analysis_results.get("weaknesses", "")
df.at[idx, "speciality"] = analysis_results.get("speciality", "")
df.at[idx, "relevance rating"] = analysis_results.get("relevance rating", "")
updated = True
break
if not updated and isinstance(analysis_results, dict) and "error" not in analysis_results:
new_row = {
"repo id": repo_id,
"strength": analysis_results.get("strength", ""),
"weaknesses": analysis_results.get("weaknesses", ""),
"speciality": analysis_results.get("speciality", ""),
"relevance rating": analysis_results.get("relevance rating", "")
}
df = pd.concat([df, pd.DataFrame([new_row])], ignore_index=True)
df.to_csv(csv_filename, index=False)
return df
except Exception as e:
logger.error(f"Error updating CSV for repo {repo_id}: {e}")
return read_csv_as_text(csv_filename)
def show_combined_repo_and_llm(state: AppState) -> Tuple[str, str, pd.DataFrame]:
"""Show combined repo content and LLM analysis for current repo."""
if not state.repo_ids:
return "No repo ID available. Please submit repo IDs first.", "", pd.DataFrame()
if state.current_repo_idx >= len(state.repo_ids):
return "All repo IDs have been processed.", "", read_csv_as_text("repo_ids.csv")
repo_id = state.repo_ids[state.current_repo_idx]
combined_content, summary, analysis_results = analyze_single_repo(repo_id)
df = update_csv_with_analysis(repo_id, analysis_results)
state.current_repo_idx += 1
return combined_content, summary, df
def keyword_search_and_update(keyword: str, state: AppState) -> pd.DataFrame:
"""Search for repos using keywords and update state."""
if not keyword:
return pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
keyword_list = [k.strip() for k in re.split(r'[\n,]+', keyword) if k.strip()]
repo_ids = []
for kw in keyword_list:
repo_ids.extend(search_top_spaces(kw, limit=5))
# Remove duplicates while preserving order
seen = set()
unique_repo_ids = []
for rid in repo_ids:
if rid not in seen:
unique_repo_ids.append(rid)
seen.add(rid)
state.repo_ids = unique_repo_ids
state.current_repo_idx = 0
write_repos_to_csv(unique_repo_ids)
return read_csv_as_text("repo_ids.csv")
# UI Components
def create_ui() -> gr.Blocks:
"""Create the Gradio interface."""
state = gr.State(AppState())
with gr.Blocks(title="Hugging Face Repo Analyzer", theme=gr.themes.Soft()) as app:
gr.Markdown("# Hugging Face Repository Analyzer")
# Navigation state
current_page = gr.State("start")
# Start Page
with gr.Group(visible=True) as start_page:
gr.Markdown("""
# Welcome to the Hugging Face Repository Analyzer!
This tool helps you analyze and understand Hugging Face repositories. You can:
- Enter repository IDs directly
- Search repositories using keywords
- Chat with an AI assistant to find the perfect repository
- Get detailed analysis of repositories
Click 'Start Analysis' to begin!
""")
with gr.Row():
start_btn = gr.Button("Start Analysis", variant="primary")
help_btn = gr.Button("View Help Guide", variant="secondary")
# Help Guide
with gr.Group(visible=False) as help_page:
gr.Markdown("""
# Help Guide
## Quick Start
1. Enter repository IDs or search by keywords
2. Start the analysis
3. Review the results
## Features
- **Repository Analysis**: Get detailed insights about repositories
- **Keyword Search**: Find repositories matching your criteria
- **AI Assistant**: Chat to find the perfect repository
- **Comparison**: Compare repositories side by side
## Keyboard Shortcuts
- `Ctrl + Enter`: Send message in chat
- `Ctrl + S`: Start new analysis
- `Ctrl + H`: Toggle help guide
""")
back_btn = gr.Button("Back to Start", variant="primary")
# Input Page
with gr.Group(visible=False) as input_page:
with gr.Row():
with gr.Column():
gr.Markdown("### Enter Repository IDs")
repo_id_input = gr.Textbox(
label="Enter repo IDs (comma or newline separated)",
lines=5,
placeholder="repo1, repo2\nrepo3"
)
submit_btn = gr.Button("Submit Repo IDs", variant="primary")
submit_status = gr.Textbox(label="Status", visible=False)
with gr.Column():
gr.Markdown("### Or Search by Keywords")
keyword_input = gr.Textbox(
label="Enter keywords to search",
lines=3,
placeholder="Enter keywords separated by commas"
)
search_btn = gr.Button("Search by Keywords", variant="primary")
search_status = gr.Textbox(label="Status", visible=False)
df_output = gr.Dataframe(
headers=["repo id", "strength", "weaknesses", "speciality", "relevance rating"],
datatype=["str", "str", "str", "str", "str"]
)
with gr.Row():
analyze_btn = gr.Button("Start Analysis", variant="primary")
analyze_status = gr.Textbox(label="Status", visible=False)
compare_btn = gr.Button("Compare Repositories", variant="secondary")
# Analysis Page
with gr.Group(visible=False) as analysis_page:
gr.Markdown("### Repository Analysis")
progress = gr.Slider(
minimum=0,
maximum=100,
value=0,
label="Analysis Progress",
interactive=False
)
with gr.Row():
with gr.Column():
content_output = gr.Textbox(label="Repository Content", lines=10)
with gr.Column():
summary_output = gr.Textbox(label="Analysis Summary", lines=10)
with gr.Row():
next_btn = gr.Button("Analyze Next Repository", variant="primary")
next_status = gr.Textbox(label="Status", visible=False)
finish_btn = gr.Button("Finish Analysis", variant="secondary")
export_btn = gr.Button("Export Results", variant="secondary")
export_status = gr.Textbox(label="Status", visible=False)
# Comparison Page
with gr.Group(visible=False) as comparison_page:
gr.Markdown("### Repository Comparison")
with gr.Row():
with gr.Column():
repo1_select = gr.Dropdown(
label="Select First Repository",
choices=[],
interactive=True
)
repo1_content = gr.Textbox(label="Repository 1 Content", lines=10)
repo1_summary = gr.Textbox(label="Repository 1 Summary", lines=10)
with gr.Column():
repo2_select = gr.Dropdown(
label="Select Second Repository",
choices=[],
interactive=True
)
repo2_content = gr.Textbox(label="Repository 2 Content", lines=10)
repo2_summary = gr.Textbox(label="Repository 2 Summary", lines=10)
compare_btn = gr.Button("Compare", variant="primary")
back_to_analysis_btn = gr.Button("Back to Analysis", variant="secondary")
# Chatbot Page
with gr.Group(visible=False) as chatbot_page:
gr.Markdown("### Chat with Assistant")
gr.Markdown("""
Tell me about your ideal repository. I'll help you find the perfect match!
What are you looking for? Consider:
- Your use case
- Preferred programming language
- Required features
- Any specific requirements
""")
chatbot = gr.Chatbot(
label="Chat with Assistant",
height=400,
type="messages"
)
msg = gr.Textbox(
label="Message",
placeholder="Type your message here...",
lines=2
)
with gr.Row():
send_btn = gr.Button("Send", variant="primary")
send_status = gr.Textbox(label="Status", visible=False)
end_chat_btn = gr.Button("End Chat", variant="secondary")
end_chat_status = gr.Textbox(label="Status", visible=False)
# Results Page
with gr.Group(visible=False) as results_page:
gr.Markdown("### Analysis Results")
with gr.Row():
with gr.Column():
results_df = gr.Dataframe(
headers=["repo id", "strength", "weaknesses", "speciality", "relevance rating"],
datatype=["str", "str", "str", "str", "str"]
)
with gr.Column():
gr.Markdown("### Repository Metrics")
metrics_plot = gr.Plot(label="Repository Metrics")
with gr.Row():
restart_btn = gr.Button("Start New Analysis", variant="primary")
export_btn = gr.Button("Export Results", variant="secondary")
history_btn = gr.Button("View History", variant="secondary")
# History Page
with gr.Group(visible=False) as history_page:
gr.Markdown("### Analysis History")
history_df = gr.Dataframe(
headers=["Date", "Repositories", "Keywords", "Results"],
datatype=["str", "str", "str", "str"]
)
back_to_results_btn = gr.Button("Back to Results", variant="primary")
# Navigation functions
def navigate_to(page: str) -> List[gr.update]:
"""Navigate to a specific page."""
updates = []
for p in ["start", "input", "analysis", "chatbot", "results", "help", "comparison", "history"]:
updates.append(gr.update(visible=(p == page)))
return updates
# Event handlers
start_btn.click(
fn=lambda: navigate_to("input"),
inputs=[],
outputs=[start_page, input_page, analysis_page, chatbot_page, results_page, help_page, comparison_page, history_page]
)
help_btn.click(
fn=lambda: navigate_to("help"),
inputs=[],
outputs=[start_page, input_page, analysis_page, chatbot_page, results_page, help_page, comparison_page, history_page]
)
back_btn.click(
fn=lambda: navigate_to("start"),
inputs=[],
outputs=[start_page, input_page, analysis_page, chatbot_page, results_page, help_page, comparison_page, history_page]
)
# Modified event handlers with status updates
def process_repo_input_with_status(text: str, state: AppState) -> Tuple[pd.DataFrame, str]:
"""Process repo input with status update."""
df = process_repo_input(text, state)
return df, ""
def keyword_search_with_status(keyword: str, state: AppState) -> Tuple[pd.DataFrame, str]:
"""Search keywords with status update."""
df = keyword_search_and_update(keyword, state)
return df, ""
def analyze_with_status(state: AppState) -> Tuple[str, str, pd.DataFrame, str]:
"""Analyze with status update."""
content, summary, df = show_combined_repo_and_llm(state)
return content, summary, df, ""
def send_message_with_status(user_message: str, history: List[Dict[str, str]], state: AppState) -> Tuple[List[Dict[str, str]], str, str]:
"""Send message with status update."""
if not user_message:
return history, "", ""
history.append({"role": "user", "content": user_message})
response = chat_with_user(user_message, history, CHATBOT_SYSTEM_PROMPT)
history.append({"role": "assistant", "content": response})
return history, "", ""
def end_chat_with_status(history: List[Dict[str, str]], state: AppState) -> Tuple[List[str], gr.update, str]:
"""End chat and extract keywords."""
if not history:
return [], gr.update(visible=True), ""
keywords = extract_keywords_from_conversation(history)
state.generated_keywords = keywords
return keywords, gr.update(visible=True), ""
def export_with_status(df: pd.DataFrame) -> Tuple[str, str]:
"""Export with status update."""
result = export_results(df)
return result, ""
# Update event handlers with status updates
submit_btn.click(
fn=lambda: "Processing...",
inputs=[],
outputs=[submit_status]
).then(
fn=process_repo_input_with_status,
inputs=[repo_id_input, state],
outputs=[df_output, submit_status]
)
search_btn.click(
fn=lambda: "Searching...",
inputs=[],
outputs=[search_status]
).then(
fn=keyword_search_with_status,
inputs=[keyword_input, state],
outputs=[df_output, search_status]
)
next_btn.click(
fn=lambda: "Analyzing...",
inputs=[],
outputs=[next_status]
).then(
fn=analyze_with_status,
inputs=[state],
outputs=[content_output, summary_output, df_output, next_status]
)
send_btn.click(
fn=lambda: "Sending...",
inputs=[],
outputs=[send_status]
).then(
fn=send_message_with_status,
inputs=[msg, chatbot, state],
outputs=[chatbot, msg, send_status]
)
end_chat_btn.click(
fn=lambda: "Processing...",
inputs=[],
outputs=[end_chat_status]
).then(
fn=end_chat_with_status,
inputs=[chatbot, state],
outputs=[gr.Textbox(label="Extracted Keywords"), results_page, end_chat_status]
)
export_btn.click(
fn=lambda: "Exporting...",
inputs=[],
outputs=[export_status]
).then(
fn=export_with_status,
inputs=[results_df],
outputs=[gr.Textbox(label="Export Status"), export_status]
)
restart_btn.click(
fn=lambda: (state.reset(), navigate_to("start")),
inputs=[state],
outputs=[start_page, input_page, analysis_page, chatbot_page, results_page]
)
def update_progress(current: int, total: int) -> float:
"""Update progress bar."""
return (current / total) * 100
def export_results(df: pd.DataFrame) -> str:
"""Export results to CSV."""
try:
filename = f"analysis_results_{pd.Timestamp.now().strftime('%Y%m%d_%H%M%S')}.csv"
df.to_csv(filename, index=False)
return f"Results exported to {filename}"
except Exception as e:
return f"Error exporting results: {e}"
def load_history() -> pd.DataFrame:
"""Load analysis history."""
try:
return pd.read_csv("analysis_history.csv")
except:
return pd.DataFrame(columns=["Date", "Repositories", "Keywords", "Results"])
def save_to_history(repos: List[str], keywords: List[str], results: pd.DataFrame) -> None:
"""Save current analysis to history."""
try:
history_df = load_history()
new_row = {
"Date": pd.Timestamp.now().strftime("%Y-%m-%d %H:%M:%S"),
"Repositories": ", ".join(repos),
"Keywords": ", ".join(keywords),
"Results": results.to_json()
}
history_df = pd.concat([history_df, pd.DataFrame([new_row])], ignore_index=True)
history_df.to_csv("analysis_history.csv", index=False)
except Exception as e:
logger.error(f"Error saving to history: {e}")
# Add new event handlers for new features
history_btn.click(
fn=lambda: (load_history(), navigate_to("history")),
inputs=[],
outputs=[history_df, start_page, input_page, analysis_page, chatbot_page, results_page, help_page, comparison_page, history_page]
)
back_to_results_btn.click(
fn=lambda: navigate_to("results"),
inputs=[],
outputs=[start_page, input_page, analysis_page, chatbot_page, results_page, help_page, comparison_page, history_page]
)
compare_btn.click(
fn=lambda: (update_repo_choices(state), navigate_to("comparison")),
inputs=[state],
outputs=[repo1_select, repo2_select, start_page, input_page, analysis_page, chatbot_page, results_page, help_page, comparison_page, history_page]
)
back_to_analysis_btn.click(
fn=lambda: navigate_to("analysis"),
inputs=[],
outputs=[start_page, input_page, analysis_page, chatbot_page, results_page, help_page, comparison_page, history_page]
)
return app
def update_repo_choices(state: AppState) -> Tuple[List[str], List[str]]:
"""Update repository choices for comparison."""
choices = state.repo_ids
return choices, choices
if __name__ == "__main__":
app = create_ui()
app.launch()
|