File size: 20,880 Bytes
e0b6f12
 
1a943f1
f03a154
a1583b3
7209842
93d47b6
e0b6f12
a1583b3
 
 
e0b6f12
 
dbe96a7
e0b6f12
 
27f4250
9a88164
 
1a943f1
2c15ffb
 
3330689
2c15ffb
 
 
3330689
1a943f1
27f4250
1d3eed5
e0b6f12
 
 
 
 
89ff1cb
e0b6f12
27f4250
5b7f342
1a943f1
b254d56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a943f1
b254d56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82d6e3b
b254d56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f8e537
 
b254d56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82d6e3b
b254d56
 
82d6e3b
1a943f1
b254d56
 
 
 
 
 
 
 
 
 
 
1a943f1
5b7f342
 
48d3c35
5b7f342
 
 
631e1ee
 
48d3c35
631e1ee
 
 
 
 
 
 
 
 
 
48d3c35
5b7f342
 
48d3c35
5b7f342
631e1ee
 
 
5b7f342
 
791be58
5b7f342
631e1ee
5b7f342
 
 
 
 
791be58
3330689
1c90111
 
 
 
 
 
3330689
 
 
 
 
 
1c90111
 
 
f03a154
3330689
1c90111
 
3330689
1c90111
3330689
1c90111
3330689
1c90111
 
 
 
 
 
fd7c5f8
89ff1cb
1c90111
 
 
3330689
1c90111
 
 
 
 
 
3330689
 
 
 
 
 
1c90111
f03a154
1c90111
f03a154
3330689
1c90111
 
3330689
1c90111
3330689
1c90111
 
 
 
 
 
 
 
 
 
 
 
 
3330689
791be58
1c90111
3330689
e9db129
791be58
 
 
631e1ee
fd7c5f8
1c90111
2c15ffb
 
3330689
1c90111
3330689
e9db129
 
 
 
 
 
 
791be58
 
7209842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
import openai
import os
import json
import re
import logging
from typing import Tuple
from hf_utils import download_filtered_space_files

# Setup logger
logger = logging.getLogger(__name__)

def analyze_code(code: str) -> str:
    """
    Uses qwen2.5-coder-7b-instruct-awq model to analyze the given code.
    Returns the analysis as a string.
    """
    from openai import OpenAI
    client = OpenAI(api_key=os.getenv("modal_api"))
    client.base_url = os.getenv("base_url")
    system_prompt = (
        "You are a highly precise and strict JSON generator. Analyze the code given to you. "
        "Your ONLY output must be a valid JSON object with the following keys: 'strength', 'weaknesses', 'speciality', 'relevance rating'. "
        "For 'relevance rating', you MUST use ONLY one of these exact values: 'very low', 'low', 'high', 'very high'. "
        "Do NOT include any explanation, markdown, or text outside the JSON. Do NOT add any commentary, preamble, or postscript. "
        "If you cannot answer, still return a valid JSON with empty strings for each key. "
        "Example of the ONLY valid output:\n"
        "{\n  'strength': '...', \n  'weaknesses': '...', \n  'speciality': '...', \n  'relevance rating': 'high'\n}"
    )
    response = client.chat.completions.create(
        model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ",  # Updated model
        messages=[
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": code}
        ],
        max_tokens=512,
        temperature=0.4
    )
    return response.choices[0].message.content

def parse_llm_json_response(response: str):
    """
    Robust JSON parser with multiple fallback strategies for LLM responses.
    """
    logger.info(f"Attempting to parse LLM response: {response[:100]}...")
    
    # Strategy 1: Try direct JSON parsing (cleanest case)
    try:
        # Clean the response first
        cleaned = response.strip()
        result = json.loads(cleaned)
        logger.info("βœ… Direct JSON parsing successful")
        return result
    except:
        pass
    
    # Strategy 2: Extract JSON block from response
    try:
        # Find the first complete JSON object
        start = response.find('{')
        if start == -1:
            raise ValueError("No opening brace found")
        
        # Find matching closing brace
        brace_count = 0
        end = start
        for i, char in enumerate(response[start:], start):
            if char == '{':
                brace_count += 1
            elif char == '}':
                brace_count -= 1
                if brace_count == 0:
                    end = i
                    break
        
        if brace_count != 0:
            # Fallback to last closing brace
            end = response.rfind('}')
            if end == -1 or end < start:
                raise ValueError("No matching closing brace found")
        
        json_str = response[start:end+1]
        result = json.loads(json_str)
        logger.info("βœ… JSON block extraction successful")
        return result
    except Exception as e:
        logger.warning(f"JSON block extraction failed: {e}")
    
    # Strategy 3: Clean and fix common JSON issues
    try:
        # Extract JSON part
        start = response.find('{')
        end = response.rfind('}')
        if start != -1 and end != -1 and end > start:
            json_str = response[start:end+1]
            
            # Fix common issues
            # Replace single quotes with double quotes (but be careful with contractions)
            json_str = re.sub(r"(?<!\\)'([^']*)'(?=\s*[,}])", r'"\1"', json_str)
            json_str = re.sub(r"(?<!\\)'([^']*)'(?=\s*:)", r'"\1"', json_str)
            
            # Fix unescaped quotes in values
            json_str = re.sub(r':\s*"([^"]*)"([^",}]*)"', r': "\1\2"', json_str)
            
            # Remove trailing commas
            json_str = re.sub(r',(\s*[}\]])', r'\1', json_str)
            
            # Try parsing the cleaned version
            result = json.loads(json_str)
            logger.info("βœ… JSON cleaning and fixing successful")
            return result
    except Exception as e:
        logger.warning(f"JSON cleaning failed: {e}")
    
    # Strategy 4: Manual field extraction as last resort
    try:
        logger.info("Attempting manual field extraction...")
        result = {}
        
        # Extract each field using regex patterns
        patterns = {
            'strength': [
                r'"strength"\s*:\s*"([^"]*)"',
                r"'strength'\s*:\s*'([^']*)'",
                r'strength[:\s]+"([^"]*)"',
                r'strength[:\s]+\'([^\']*)\''
            ],
            'weaknesses': [
                r'"weaknesses"\s*:\s*"([^"]*)"',
                r"'weaknesses'\s*:\s*'([^']*)'",
                r'weaknesses[:\s]+"([^"]*)"',
                r'weaknesses[:\s]+\'([^\']*)\''
            ],
            'speciality': [
                r'"speciality"\s*:\s*"([^"]*)"',
                r"'speciality'\s*:\s*'([^']*)'",
                r'speciality[:\s]+"([^"]*)"',
                r'speciality[:\s]+\'([^\']*)\''
            ],
            'relevance rating': [
                r'"relevance rating"\s*:\s*"([^"]*)"',
                r"'relevance rating'\s*:\s*'([^']*)'",
                r'relevance[^:]*rating[:\s]+"([^"]*)"',
                r'relevance[^:]*rating[:\s]+\'([^\']*)\''
            ]
        }
        
        for field, field_patterns in patterns.items():
            found = False
            for pattern in field_patterns:
                match = re.search(pattern, response, re.IGNORECASE | re.DOTALL)
                if match:
                    value = match.group(1).strip()
                    # Clean up the extracted value
                    value = re.sub(r'\\+(["\'])', r'\1', value)  # Remove excessive escaping
                    value = value.replace('\\"', '"').replace("\\'", "'")
                    result[field] = value
                    found = True
                    break
            
            if not found:
                result[field] = ""
        
        # Validate relevance rating
        valid_ratings = ['very low', 'low', 'high', 'very high']
        if result.get('relevance rating', '').lower() not in [r.lower() for r in valid_ratings]:
            # Try to fix common variations
            rating = result.get('relevance rating', '').lower()
            if 'very' in rating and 'low' in rating:
                result['relevance rating'] = 'very low'
            elif 'very' in rating and 'high' in rating:
                result['relevance rating'] = 'very high'
            elif 'low' in rating:
                result['relevance rating'] = 'low'
            elif 'high' in rating:
                result['relevance rating'] = 'high'
            else:
                result['relevance rating'] = 'low'  # Default fallback
        
        logger.info("βœ… Manual field extraction successful")
        return result
        
    except Exception as e:
        logger.warning(f"Manual extraction failed: {e}")
    
    # Strategy 5: Complete fallback with empty values
    logger.error("All JSON parsing strategies failed, returning empty structure")
    return {
        "strength": "Analysis could not be completed - please try again",
        "weaknesses": "Analysis could not be completed - please try again", 
        "speciality": "Analysis could not be completed - please try again",
        "relevance rating": "low",
        "error": f"Failed to parse LLM response after all strategies. Raw: {response[:200]}..."
    }

def combine_repo_files_for_llm(repo_dir="repo_files", output_file="combined_repo.txt"):
    """
    Combines all .py, .md, and .txt files in the given directory (recursively) into a single text file.
    Returns the path to the combined file.
    """
    combined_content = []
    seen_files = set()
    # Priority files
    priority_files = ["app.py", "README.md", "requirements.txt"]
    for pf in priority_files:
        pf_path = os.path.join(repo_dir, pf)
        if os.path.isfile(pf_path):
            try:
                with open(pf_path, "r", encoding="utf-8") as f:
                    combined_content.append(f"\n# ===== File: {pf} =====\n")
                    combined_content.append(f.read())
                seen_files.add(os.path.abspath(pf_path))
            except Exception as e:
                combined_content.append(f"\n# Could not read {pf_path}: {e}\n")
    # All other .py, .md, and .txt files
    for root, _, files in os.walk(repo_dir):
        for file in files:
            if file.endswith(".py") or file.endswith(".md") or file.endswith(".txt"):
                file_path = os.path.join(root, file)
                abs_path = os.path.abspath(file_path)
                if abs_path in seen_files:
                    continue
                try:
                    with open(file_path, "r", encoding="utf-8") as f:
                        combined_content.append(f"\n# ===== File: {file} =====\n")
                        combined_content.append(f.read())
                    seen_files.add(abs_path)
                except Exception as e:
                    combined_content.append(f"\n# Could not read {file_path}: {e}\n")
    with open(output_file, "w", encoding="utf-8") as out_f:
        out_f.write("\n".join(combined_content))
    return output_file

def analyze_code_chunk(code: str, user_requirements: str = "") -> str:
    """
    Analyzes a code chunk and returns a JSON summary for that chunk.
    """
    from openai import OpenAI
    client = OpenAI(api_key=os.getenv("modal_api"))
    client.base_url = os.getenv("base_url")
    
    # Build the user requirements section
    requirements_section = ""
    if user_requirements.strip():
        requirements_section = f"\n\nUSER REQUIREMENTS:\n{user_requirements}\n\nWhen rating relevance, consider how well this code matches the user's stated requirements."
    
    chunk_prompt = (
        "You are a highly precise and strict JSON generator. Analyze the following code chunk. "
        "Your ONLY output must be a valid JSON object with the following keys: 'strength', 'weaknesses', 'speciality', 'relevance rating'. "
        "All property names and string values MUST use double quotes (\"). Do NOT use single quotes. "
        "For 'relevance rating', you MUST use ONLY one of these exact values: 'very low', 'low', 'high', 'very high'. "
        "Do NOT include any explanation, markdown, or text outside the JSON. Do NOT add any commentary, preamble, or postscript. "
        "If you cannot answer, still return a valid JSON with empty strings for each key. "
        f"{requirements_section}"
        "Example of the ONLY valid output:\n"
        '{\n  "strength": "...", \n  "weaknesses": "...", \n  "speciality": "...", \n  "relevance rating": "high"\n}'
    )
    
    response = client.chat.completions.create(
        model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ",
        messages=[
            {"role": "system", "content": chunk_prompt},
            {"role": "user", "content": code}
        ],

        temperature=0.4
    )
    return response.choices[0].message.content

def aggregate_chunk_analyses(chunk_jsons: list, user_requirements: str = "") -> str:
    """
    Aggregates a list of chunk JSONs into a single JSON summary using the LLM.
    """
    from openai import OpenAI
    client = OpenAI(api_key=os.getenv("modal_api"))
    client.base_url = os.getenv("base_url")
    
    # Build the user requirements section
    requirements_section = ""
    if user_requirements.strip():
        requirements_section = f"\n\nUSER REQUIREMENTS:\n{user_requirements}\n\nWhen aggregating the relevance rating, consider how well the overall repository matches the user's stated requirements."
    
    aggregation_prompt = (
        "You are a highly precise and strict, code analyzer and JSON generator. You are given a list of JSON analyses of code chunks. "
        "Aggregate these into a SINGLE overall JSON summary with the same keys: 'strength', 'weaknesses', 'speciality', 'relevance rating'. "
        "All property names and string values MUST use double quotes (\"). Do NOT use single quotes. "
        "For 'relevance rating', you MUST use ONLY one of these exact values: 'very low', 'low', 'high', 'very high'. "
        "Summarize and combine the information from all chunks. Do NOT include any explanation, markdown, or text outside the JSON. "
        "If a key is missing in all chunks, use an empty string. "
        f"{requirements_section}"
        "Example of the ONLY valid output:\n"
        '{\n  "strength": "...", \n  "weaknesses": "...", \n  "speciality": "...", \n  "relevance rating": "high"\n}'
    )
    user_content = "Here are the chunk analyses:\n" + "\n".join(chunk_jsons)
    response = client.chat.completions.create(
        model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ",
        messages=[
            {"role": "system", "content": aggregation_prompt},
            {"role": "user", "content": user_content}
        ],
        max_tokens=512,
        temperature=0.3
    )
    return response.choices[0].message.content

def analyze_combined_file(output_file="combined_repo.txt", user_requirements: str = ""):
    """
    Reads the combined file, splits it into 500-line chunks, analyzes each chunk, and aggregates the LLM's output into a final summary.
    Now includes user requirements for better relevance rating.
    Returns the chunk JSONs (for debugging) and the aggregated analysis as a string.
    """
    try:
        with open(output_file, "r", encoding="utf-8") as f:
            lines = f.readlines()
        chunk_size = 1200
        chunk_jsons = []
        for i in range(0, len(lines), chunk_size):
            chunk = "".join(lines[i:i+chunk_size])
            analysis = analyze_code_chunk(chunk, user_requirements)
            chunk_jsons.append(analysis)
        final_summary = aggregate_chunk_analyses(chunk_jsons, user_requirements)
        debug_output = (
            "==== Chunk JSON Outputs ===="
            + "\n\n".join([f"Chunk {i+1} JSON:\n{chunk_jsons[i]}" for i in range(len(chunk_jsons))])
            + "\n\n==== Final Aggregated Summary ===="
            + f"\n{final_summary}"
        )
        return debug_output
    except Exception as e:
        return f"Error analyzing combined file: {e}"

def analyze_repo_chunk_for_context(chunk: str, repo_id: str) -> str:
    """
    Analyze a repository chunk to create conversational context for the chatbot.
    This creates summaries focused on helping users understand the repository.
    """
    try:
        from openai import OpenAI
        client = OpenAI(api_key=os.getenv("modal_api"))
        client.base_url = os.getenv("base_url")
        
        context_prompt = f"""You are analyzing a chunk of code from the repository '{repo_id}' to create a conversational summary for a chatbot assistant.

Create a concise but informative summary that helps understand:
- What this code section does
- Key functions, classes, or components
- Important features or capabilities
- How it relates to the overall repository purpose
- Any notable patterns or technologies used

Focus on information that would be useful for answering user questions about the repository.

Repository chunk:
{chunk}

Provide a clear, conversational summary in 2-3 paragraphs:"""
        
        response = client.chat.completions.create(
            model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ",
            messages=[
                {"role": "system", "content": "You are an expert code analyst creating conversational summaries for a repository assistant chatbot."},
                {"role": "user", "content": context_prompt}
            ],
            max_tokens=600,  # Increased for more detailed analysis with larger chunks
            temperature=0.3
        )
        
        return response.choices[0].message.content
    
    except Exception as e:
        logger.error(f"Error analyzing chunk for context: {e}")
        return f"Code section analysis unavailable: {e}"

def create_repo_context_summary(repo_content: str, repo_id: str) -> str:
    """
    Create a comprehensive context summary by analyzing the repository in chunks.
    Returns a detailed summary that the chatbot can use to answer questions.
    """
    try:
        lines = repo_content.split('\n')
        chunk_size = 1200  # Increased for better context and fewer API calls
        chunk_summaries = []
        
        logger.info(f"Analyzing repository {repo_id} in chunks for chatbot context")
        
        for i in range(0, len(lines), chunk_size):
            chunk = '\n'.join(lines[i:i+chunk_size])
            if chunk.strip():  # Only analyze non-empty chunks
                summary = analyze_repo_chunk_for_context(chunk, repo_id)
                chunk_summaries.append(f"=== Section {len(chunk_summaries) + 1} ===\n{summary}")
        
        # Create final comprehensive summary
        try:
            from openai import OpenAI
            client = OpenAI(api_key=os.getenv("modal_api"))
            client.base_url = os.getenv("base_url")
            
            final_prompt = f"""Based on the following section summaries of repository '{repo_id}', create a comprehensive overview that a chatbot can use to answer user questions.

Section Summaries:
{chr(10).join(chunk_summaries)}

Create a well-structured overview covering:
1. Repository Purpose & Main Functionality
2. Key Components & Architecture
3. Important Features & Capabilities
4. Technology Stack & Dependencies
5. Usage Patterns & Examples

Make this comprehensive but conversational - it will be used by a chatbot to answer user questions about the repository."""
            
            response = client.chat.completions.create(
                model="Orion-zhen/Qwen2.5-Coder-7B-Instruct-AWQ",
                messages=[
                    {"role": "system", "content": "You are creating a comprehensive repository summary for a chatbot assistant."},
                    {"role": "user", "content": final_prompt}
                ],
                max_tokens=1500,  # Increased for more comprehensive summaries
                temperature=0.3
            )
            
            final_summary = response.choices[0].message.content
            
            # Combine everything for the chatbot context
            full_context = f"""=== REPOSITORY ANALYSIS FOR {repo_id.upper()} ===

{final_summary}

=== DETAILED SECTION SUMMARIES ===
{chr(10).join(chunk_summaries)}"""
            
            logger.info(f"Created comprehensive context summary for {repo_id}")
            return full_context
            
        except Exception as e:
            logger.error(f"Error creating final summary: {e}")
            # Fallback to just section summaries
            return f"=== REPOSITORY ANALYSIS FOR {repo_id.upper()} ===\n\n" + '\n\n'.join(chunk_summaries)
    
    except Exception as e:
        logger.error(f"Error creating repo context summary: {e}")
        return f"Repository analysis unavailable: {e}"

def handle_load_repository(repo_id: str) -> Tuple[str, str]:
    """Load a specific repository and prepare it for exploration with chunk-based analysis."""
    if not repo_id.strip():
        return "Status: Please enter a repository ID.", ""
    
    try:
        logger.info(f"Loading repository for exploration: {repo_id}")
        
        # Download and process the repository
        try:
            download_filtered_space_files(repo_id, local_dir="repo_files", file_extensions=['.py', '.md', '.txt'])
            combined_text_path = combine_repo_files_for_llm()
        
        except Exception as e:
            logger.error(f"Error downloading repository {repo_id}: {e}")
            error_status = f"❌ Error downloading repository: {e}"
            return error_status, ""
        
        with open(combined_text_path, "r", encoding="utf-8") as f:
            repo_content = f.read()
        
        status = f"βœ… Repository '{repo_id}' loaded successfully!\\nπŸ“ Files processed and ready for exploration.\\nπŸ”„ Analyzing repository in chunks for comprehensive context...\\nπŸ’¬ You can now ask questions about this repository."
        
        # Create comprehensive context summary using chunk analysis
        logger.info(f"Creating context summary for {repo_id}")
        context_summary = create_repo_context_summary(repo_content, repo_id)
        
        logger.info(f"Repository {repo_id} loaded and analyzed successfully for exploration")
        return status, context_summary
        
    except Exception as e:
        logger.error(f"Error loading repository {repo_id}: {e}")
        error_status = f"❌ Error loading repository: {e}"
        return error_status, ""