File size: 14,899 Bytes
1efd29f 6245b3b b138e3b 274a509 f367387 274a509 f3ed537 885c1f9 274a509 f367387 3c63f39 f3ed537 274a509 f3ed537 274a509 5b7f342 3c63f39 274a509 f367387 274a509 f367387 274a509 f367387 3c63f39 d27a85c 274a509 f3ed537 274a509 f367387 274a509 5b7f342 274a509 f3ed537 274a509 f3ed537 274a509 f3ed537 274a509 f3ed537 274a509 f3ed537 274a509 f3ed537 274a509 f367387 274a509 f3ed537 274a509 f3ed537 274a509 f3ed537 274a509 1a943f1 274a509 f3ed537 34139eb 274a509 885c1f9 f367387 274a509 f367387 274a509 3c63f39 274a509 3c63f39 f3ed537 274a509 3f3847e 34139eb 3f3847e 274a509 3c63f39 274a509 3c63f39 274a509 34139eb 3c63f39 274a509 34139eb aee35a5 34139eb 274a509 34139eb 274a509 f3ed537 274a509 34139eb 274a509 f367387 274a509 785101b 274a509 f3ed537 274a509 f367387 274a509 f367387 274a509 bc78434 f3ed537 274a509 d27a85c 274a509 f367387 3fa421f f367387 274a509 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import gradio as gr
import regex as re
import csv
import pandas as pd
from typing import List, Dict, Tuple, Any
import logging
import os
# Import core logic from other modules, as in app_old.py
from analyzer import combine_repo_files_for_llm, analyze_combined_file, parse_llm_json_response
from hf_utils import download_space_repo, search_top_spaces
from chatbot_page import chat_with_user, extract_keywords_from_conversation
# --- Configuration ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
CSV_FILE = "repo_ids.csv"
CHATBOT_SYSTEM_PROMPT = (
"You are a helpful assistant. Your goal is to help the user describe their ideal open-source repo. "
"Ask questions to clarify what they want, their use case, preferred language, features, etc. "
"When the user clicks 'End Chat', analyze the conversation and return about 5 keywords for repo search. "
"Return only the keywords as a comma-separated list."
)
CHATBOT_INITIAL_MESSAGE = "Hello! Please tell me about your ideal Hugging Face repo. What use case, preferred language, or features are you looking for?"
# --- Helper Functions (Logic) ---
def write_repos_to_csv(repo_ids: List[str]) -> None:
"""Writes a list of repo IDs to the CSV file, overwriting the previous content."""
try:
with open(CSV_FILE, mode="w", newline='', encoding="utf-8") as csvfile:
writer = csv.writer(csvfile)
writer.writerow(["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
for repo_id in repo_ids:
writer.writerow([repo_id, "", "", "", ""])
logger.info(f"Wrote {len(repo_ids)} repo IDs to {CSV_FILE}")
except Exception as e:
logger.error(f"Error writing to CSV: {e}")
def read_csv_to_dataframe() -> pd.DataFrame:
"""Reads the CSV file into a pandas DataFrame."""
try:
return pd.read_csv(CSV_FILE, dtype=str).fillna('')
except FileNotFoundError:
return pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
except Exception as e:
logger.error(f"Error reading CSV: {e}")
return pd.DataFrame()
def analyze_and_update_single_repo(repo_id: str) -> Tuple[str, str, pd.DataFrame]:
"""
Downloads, analyzes a single repo, updates the CSV, and returns results.
This function combines the logic of downloading, analyzing, and updating the CSV for one repo.
"""
try:
logger.info(f"Starting analysis for repo: {repo_id}")
download_space_repo(repo_id, local_dir="repo_files")
txt_path = combine_repo_files_for_llm()
with open(txt_path, "r", encoding="utf-8") as f:
combined_content = f.read()
llm_output = analyze_combined_file(txt_path)
last_start = llm_output.rfind('{')
last_end = llm_output.rfind('}')
final_json_str = llm_output[last_start:last_end+1] if last_start != -1 and last_end != -1 else "{}"
llm_json = parse_llm_json_response(final_json_str)
summary = ""
if isinstance(llm_json, dict) and "error" not in llm_json:
strengths = llm_json.get("strength", "N/A")
weaknesses = llm_json.get("weaknesses", "N/A")
summary = f"JSON extraction: SUCCESS\n\nStrengths:\n{strengths}\n\nWeaknesses:\n{weaknesses}"
else:
summary = f"JSON extraction: FAILED\nRaw response might not be valid JSON."
# Update CSV
df = read_csv_to_dataframe()
repo_found_in_df = False
for idx, row in df.iterrows():
if row["repo id"] == repo_id:
if isinstance(llm_json, dict):
df.at[idx, "strength"] = llm_json.get("strength", "")
df.at[idx, "weaknesses"] = llm_json.get("weaknesses", "")
df.at[idx, "speciality"] = llm_json.get("speciality", "")
df.at[idx, "relevance rating"] = llm_json.get("relevance rating", "")
repo_found_in_df = True
break
if not repo_found_in_df:
logger.warning(f"Repo ID {repo_id} not found in CSV for updating.")
df.to_csv(CSV_FILE, index=False)
logger.info(f"Successfully analyzed and updated CSV for {repo_id}")
return combined_content, summary, df
except Exception as e:
logger.error(f"An error occurred during analysis of {repo_id}: {e}")
error_summary = f"Error analyzing repo: {e}"
return "", error_summary, read_csv_to_dataframe()
# --- NEW: Helper for Chat History Conversion ---
def convert_messages_to_tuples(history: List[Dict[str, str]]) -> List[Tuple[str, str]]:
"""Converts Gradio's 'messages' format to the old 'tuple' format for compatibility."""
tuple_history = []
# Assumes a strict user-assistant-user-assistant turn structure.
for i in range(0, len(history), 2):
if i + 1 < len(history) and history[i]['role'] == 'user' and history[i+1]['role'] == 'assistant':
tuple_history.append((history[i]['content'], history[i+1]['content']))
return tuple_history
# --- Gradio UI ---
def create_ui() -> gr.Blocks:
"""Creates and configures the entire Gradio interface."""
with gr.Blocks(theme=gr.themes.Soft(), title="Hugging Face Repo Analyzer") as app:
# --- State Management ---
# Using simple, separate state objects for robustness.
repo_ids_state = gr.State([])
current_repo_idx_state = gr.State(0)
gr.Markdown("# Hugging Face Repository Analyzer")
with gr.Tabs() as tabs:
# --- Input Tab ---
with gr.TabItem("1. Input Repositories", id="input_tab"):
with gr.Row():
with gr.Column():
gr.Markdown("## Enter Repository IDs")
repo_id_input = gr.Textbox(
label="Enter repo IDs (comma or newline separated)",
lines=8,
placeholder="org/repo1, org/repo2"
)
submit_repo_btn = gr.Button("Submit Repository IDs", variant="primary")
with gr.Column():
gr.Markdown("## Or Search by Keywords")
keyword_input = gr.Textbox(
label="Enter keywords to search",
lines=8,
placeholder="e.g., text generation, image classification"
)
search_btn = gr.Button("Search by Keywords", variant="primary")
status_box_input = gr.Textbox(label="Status", interactive=False)
# --- Analysis Tab ---
with gr.TabItem("2. Analyze Repositories", id="analysis_tab"):
gr.Markdown("## Repository Analysis")
analyze_next_btn = gr.Button("Analyze Next Repository", variant="primary")
status_box_analysis = gr.Textbox(label="Status", interactive=False)
with gr.Row():
content_output = gr.Textbox(label="Repository Content", lines=20)
summary_output = gr.Textbox(label="Analysis Summary", lines=20)
gr.Markdown("### Analysis Results Table")
df_output = gr.Dataframe(headers=["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
# --- Chatbot Tab ---
with gr.TabItem("3. Find Repos with AI", id="chatbot_tab"):
gr.Markdown("## Chat with an Assistant to Find Repositories")
chatbot = gr.Chatbot(
value=[{"role": "assistant", "content": CHATBOT_INITIAL_MESSAGE}],
label="Chat with Assistant",
height=400,
type="messages"
)
msg_input = gr.Textbox(label="Your Message", placeholder="Type your message here...", lines=2)
with gr.Row():
send_btn = gr.Button("Send", variant="primary")
end_chat_btn = gr.Button("End Chat & Get Keywords")
gr.Markdown("### Extracted Keywords")
extracted_keywords_output = gr.Textbox(label="Keywords", interactive=False)
use_keywords_btn = gr.Button("Use These Keywords to Search", variant="primary")
status_box_chatbot = gr.Textbox(label="Status", interactive=False)
# --- Event Handler Functions ---
def handle_repo_id_submission(text: str) -> Tuple[List[str], int, pd.DataFrame, str, Any]:
"""Processes submitted repo IDs, updates state, and prepares for analysis."""
if not text:
return [], 0, pd.DataFrame(), "Status: Please enter repository IDs.", gr.update(selected="input_tab")
repo_ids = list(dict.fromkeys([repo.strip() for repo in re.split(r'[\n,]+', text) if repo.strip()]))
write_repos_to_csv(repo_ids)
df = read_csv_to_dataframe()
status = f"Status: {len(repo_ids)} repositories submitted. Ready for analysis."
return repo_ids, 0, df, status, gr.update(selected="analysis_tab")
def handle_keyword_search(keywords: str) -> Tuple[List[str], int, pd.DataFrame, str, Any]:
"""Processes submitted keywords, finds repos, updates state, and prepares for analysis."""
if not keywords:
return [], 0, pd.DataFrame(), "Status: Please enter keywords.", gr.update(selected="input_tab")
keyword_list = [k.strip() for k in re.split(r'[\n,]+', keywords) if k.strip()]
repo_ids = []
for kw in keyword_list:
repo_ids.extend(search_top_spaces(kw, limit=5))
unique_repo_ids = list(dict.fromkeys(repo_ids))
write_repos_to_csv(unique_repo_ids)
df = read_csv_to_dataframe()
status = f"Status: Found {len(unique_repo_ids)} repositories. Ready for analysis."
return unique_repo_ids, 0, df, status, gr.update(selected="analysis_tab")
def handle_analyze_next(repo_ids: List[str], current_idx: int) -> Tuple[str, str, pd.DataFrame, int, str]:
"""Analyzes the next repository in the list."""
if not repo_ids:
return "", "", pd.DataFrame(), 0, "Status: No repositories to analyze. Please submit repo IDs first."
if current_idx >= len(repo_ids):
return "", "", read_csv_to_dataframe(), current_idx, "Status: All repositories have been analyzed."
repo_id_to_analyze = repo_ids[current_idx]
status = f"Status: Analyzing repository {current_idx + 1}/{len(repo_ids)}: {repo_id_to_analyze}"
content, summary, df = analyze_and_update_single_repo(repo_id_to_analyze)
next_idx = current_idx + 1
if next_idx >= len(repo_ids):
status += "\n\nFinished all analyses."
return content, summary, df, next_idx, status
def handle_user_message(user_message: str, history: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], str]:
"""Appends the user's message to the history, preparing for the bot's response."""
if user_message:
history.append({"role": "user", "content": user_message})
return history, ""
def handle_bot_response(history: List[Dict[str, str]]) -> List[Dict[str, str]]:
"""Generates and appends the bot's response using the compatible history format."""
if not history or history[-1]["role"] != "user":
return history
user_message = history[-1]["content"]
# Convert all messages *before* the last user message into tuples for the API
tuple_history_for_api = convert_messages_to_tuples(history[:-1])
response = chat_with_user(user_message, tuple_history_for_api)
history.append({"role": "assistant", "content": response})
return history
def handle_end_chat(history: List[Dict[str, str]]) -> Tuple[str, str]:
"""Ends the chat and extracts keywords from the conversation."""
if not history:
return "", "Status: Chat is empty, nothing to analyze."
# Convert the full, valid history for the extraction logic
tuple_history = convert_messages_to_tuples(history)
if not tuple_history:
return "", "Status: No completed conversations to analyze."
keywords_str = extract_keywords_from_conversation(tuple_history)
status = "Status: Keywords extracted. You can now use them to search."
return keywords_str, status
# --- Component Event Wiring ---
# Input Tab
submit_repo_btn.click(
fn=handle_repo_id_submission,
inputs=[repo_id_input],
outputs=[repo_ids_state, current_repo_idx_state, df_output, status_box_analysis, tabs]
)
search_btn.click(
fn=handle_keyword_search,
inputs=[keyword_input],
outputs=[repo_ids_state, current_repo_idx_state, df_output, status_box_analysis, tabs]
)
# Analysis Tab
analyze_next_btn.click(
fn=handle_analyze_next,
inputs=[repo_ids_state, current_repo_idx_state],
outputs=[content_output, summary_output, df_output, current_repo_idx_state, status_box_analysis]
)
# Chatbot Tab
msg_input.submit(
fn=handle_user_message,
inputs=[msg_input, chatbot],
outputs=[chatbot, msg_input]
).then(
fn=handle_bot_response,
inputs=[chatbot],
outputs=[chatbot]
)
send_btn.click(
fn=handle_user_message,
inputs=[msg_input, chatbot],
outputs=[chatbot, msg_input]
).then(
fn=handle_bot_response,
inputs=[chatbot],
outputs=[chatbot]
)
end_chat_btn.click(
fn=handle_end_chat,
inputs=[chatbot],
outputs=[extracted_keywords_output, status_box_chatbot]
)
use_keywords_btn.click(
fn=handle_keyword_search,
inputs=[extracted_keywords_output],
outputs=[repo_ids_state, current_repo_idx_state, df_output, status_box_analysis, tabs]
)
return app
if __name__ == "__main__":
app = create_ui()
app.launch(debug=True)
|