File size: 14,899 Bytes
1efd29f
6245b3b
b138e3b
 
274a509
f367387
 
274a509
 
f3ed537
 
 
885c1f9
274a509
 
f367387
 
3c63f39
f3ed537
 
 
 
 
 
274a509
f3ed537
274a509
5b7f342
3c63f39
274a509
f367387
274a509
 
f367387
 
 
274a509
f367387
3c63f39
d27a85c
274a509
 
 
 
 
f3ed537
274a509
 
 
f367387
274a509
 
 
 
 
5b7f342
274a509
f3ed537
 
 
 
 
274a509
f3ed537
274a509
f3ed537
 
274a509
f3ed537
 
 
274a509
f3ed537
274a509
 
f3ed537
 
274a509
f367387
274a509
 
 
f3ed537
 
274a509
 
 
 
 
 
f3ed537
 
274a509
 
 
f3ed537
274a509
 
 
1a943f1
274a509
 
 
f3ed537
34139eb
 
 
 
 
 
 
 
 
 
274a509
885c1f9
f367387
274a509
 
 
f367387
274a509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c63f39
274a509
 
 
 
 
 
 
3c63f39
f3ed537
274a509
 
 
 
 
 
 
 
 
3f3847e
34139eb
3f3847e
 
 
 
274a509
3c63f39
 
274a509
 
 
 
 
 
3c63f39
274a509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34139eb
 
 
 
3c63f39
274a509
34139eb
 
 
 
 
 
 
 
 
aee35a5
34139eb
274a509
 
34139eb
274a509
f3ed537
274a509
34139eb
 
 
 
 
 
 
274a509
 
 
 
f367387
274a509
 
 
 
 
785101b
 
274a509
 
 
f3ed537
 
274a509
 
 
 
 
f367387
 
274a509
 
 
 
 
 
 
 
 
 
f367387
274a509
 
 
 
 
 
 
bc78434
f3ed537
274a509
 
 
 
 
 
 
 
d27a85c
274a509
f367387
3fa421f
f367387
 
274a509
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import gradio as gr
import regex as re
import csv
import pandas as pd
from typing import List, Dict, Tuple, Any
import logging
import os

# Import core logic from other modules, as in app_old.py
from analyzer import combine_repo_files_for_llm, analyze_combined_file, parse_llm_json_response
from hf_utils import download_space_repo, search_top_spaces
from chatbot_page import chat_with_user, extract_keywords_from_conversation

# --- Configuration ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

CSV_FILE = "repo_ids.csv"
CHATBOT_SYSTEM_PROMPT = (
    "You are a helpful assistant. Your goal is to help the user describe their ideal open-source repo. "
    "Ask questions to clarify what they want, their use case, preferred language, features, etc. "
    "When the user clicks 'End Chat', analyze the conversation and return about 5 keywords for repo search. "
    "Return only the keywords as a comma-separated list."
)
CHATBOT_INITIAL_MESSAGE = "Hello! Please tell me about your ideal Hugging Face repo. What use case, preferred language, or features are you looking for?"

# --- Helper Functions (Logic) ---

def write_repos_to_csv(repo_ids: List[str]) -> None:
    """Writes a list of repo IDs to the CSV file, overwriting the previous content."""
    try:
        with open(CSV_FILE, mode="w", newline='', encoding="utf-8") as csvfile:
            writer = csv.writer(csvfile)
            writer.writerow(["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
            for repo_id in repo_ids:
                writer.writerow([repo_id, "", "", "", ""])
        logger.info(f"Wrote {len(repo_ids)} repo IDs to {CSV_FILE}")
    except Exception as e:
        logger.error(f"Error writing to CSV: {e}")

def read_csv_to_dataframe() -> pd.DataFrame:
    """Reads the CSV file into a pandas DataFrame."""
    try:
        return pd.read_csv(CSV_FILE, dtype=str).fillna('')
    except FileNotFoundError:
        return pd.DataFrame(columns=["repo id", "strength", "weaknesses", "speciality", "relevance rating"])
    except Exception as e:
        logger.error(f"Error reading CSV: {e}")
        return pd.DataFrame()

def analyze_and_update_single_repo(repo_id: str) -> Tuple[str, str, pd.DataFrame]:
    """
    Downloads, analyzes a single repo, updates the CSV, and returns results.
    This function combines the logic of downloading, analyzing, and updating the CSV for one repo.
    """
    try:
        logger.info(f"Starting analysis for repo: {repo_id}")
        download_space_repo(repo_id, local_dir="repo_files")
        txt_path = combine_repo_files_for_llm()
        
        with open(txt_path, "r", encoding="utf-8") as f:
            combined_content = f.read()

        llm_output = analyze_combined_file(txt_path)
        
        last_start = llm_output.rfind('{')
        last_end = llm_output.rfind('}')
        final_json_str = llm_output[last_start:last_end+1] if last_start != -1 and last_end != -1 else "{}"
        
        llm_json = parse_llm_json_response(final_json_str)
        
        summary = ""
        if isinstance(llm_json, dict) and "error" not in llm_json:
            strengths = llm_json.get("strength", "N/A")
            weaknesses = llm_json.get("weaknesses", "N/A")
            summary = f"JSON extraction: SUCCESS\n\nStrengths:\n{strengths}\n\nWeaknesses:\n{weaknesses}"
        else:
            summary = f"JSON extraction: FAILED\nRaw response might not be valid JSON."

        # Update CSV
        df = read_csv_to_dataframe()
        repo_found_in_df = False
        for idx, row in df.iterrows():
            if row["repo id"] == repo_id:
                if isinstance(llm_json, dict):
                    df.at[idx, "strength"] = llm_json.get("strength", "")
                    df.at[idx, "weaknesses"] = llm_json.get("weaknesses", "")
                    df.at[idx, "speciality"] = llm_json.get("speciality", "")
                    df.at[idx, "relevance rating"] = llm_json.get("relevance rating", "")
                repo_found_in_df = True
                break
        
        if not repo_found_in_df:
             logger.warning(f"Repo ID {repo_id} not found in CSV for updating.")

        df.to_csv(CSV_FILE, index=False)
        logger.info(f"Successfully analyzed and updated CSV for {repo_id}")
        return combined_content, summary, df

    except Exception as e:
        logger.error(f"An error occurred during analysis of {repo_id}: {e}")
        error_summary = f"Error analyzing repo: {e}"
        return "", error_summary, read_csv_to_dataframe()

# --- NEW: Helper for Chat History Conversion ---
def convert_messages_to_tuples(history: List[Dict[str, str]]) -> List[Tuple[str, str]]:
    """Converts Gradio's 'messages' format to the old 'tuple' format for compatibility."""
    tuple_history = []
    # Assumes a strict user-assistant-user-assistant turn structure.
    for i in range(0, len(history), 2):
        if i + 1 < len(history) and history[i]['role'] == 'user' and history[i+1]['role'] == 'assistant':
            tuple_history.append((history[i]['content'], history[i+1]['content']))
    return tuple_history

# --- Gradio UI ---

def create_ui() -> gr.Blocks:
    """Creates and configures the entire Gradio interface."""

    with gr.Blocks(theme=gr.themes.Soft(), title="Hugging Face Repo Analyzer") as app:
        
        # --- State Management ---
        # Using simple, separate state objects for robustness.
        repo_ids_state = gr.State([])
        current_repo_idx_state = gr.State(0)

        gr.Markdown("# Hugging Face Repository Analyzer")

        with gr.Tabs() as tabs:
            # --- Input Tab ---
            with gr.TabItem("1. Input Repositories", id="input_tab"):
                with gr.Row():
                    with gr.Column():
                        gr.Markdown("## Enter Repository IDs")
                        repo_id_input = gr.Textbox(
                            label="Enter repo IDs (comma or newline separated)",
                            lines=8,
                            placeholder="org/repo1, org/repo2"
                        )
                        submit_repo_btn = gr.Button("Submit Repository IDs", variant="primary")
                    with gr.Column():
                        gr.Markdown("## Or Search by Keywords")
                        keyword_input = gr.Textbox(
                            label="Enter keywords to search",
                            lines=8,
                            placeholder="e.g., text generation, image classification"
                        )
                        search_btn = gr.Button("Search by Keywords", variant="primary")
                
                status_box_input = gr.Textbox(label="Status", interactive=False)

            # --- Analysis Tab ---
            with gr.TabItem("2. Analyze Repositories", id="analysis_tab"):
                gr.Markdown("## Repository Analysis")
                analyze_next_btn = gr.Button("Analyze Next Repository", variant="primary")
                status_box_analysis = gr.Textbox(label="Status", interactive=False)
                
                with gr.Row():
                    content_output = gr.Textbox(label="Repository Content", lines=20)
                    summary_output = gr.Textbox(label="Analysis Summary", lines=20)

                gr.Markdown("### Analysis Results Table")
                df_output = gr.Dataframe(headers=["repo id", "strength", "weaknesses", "speciality", "relevance rating"])

            # --- Chatbot Tab ---
            with gr.TabItem("3. Find Repos with AI", id="chatbot_tab"):
                gr.Markdown("## Chat with an Assistant to Find Repositories")
                chatbot = gr.Chatbot(
                    value=[{"role": "assistant", "content": CHATBOT_INITIAL_MESSAGE}],
                    label="Chat with Assistant",
                    height=400,
                    type="messages"
                )
                msg_input = gr.Textbox(label="Your Message", placeholder="Type your message here...", lines=2)
                with gr.Row():
                    send_btn = gr.Button("Send", variant="primary")
                    end_chat_btn = gr.Button("End Chat & Get Keywords")
                
                gr.Markdown("### Extracted Keywords")
                extracted_keywords_output = gr.Textbox(label="Keywords", interactive=False)
                use_keywords_btn = gr.Button("Use These Keywords to Search", variant="primary")
                status_box_chatbot = gr.Textbox(label="Status", interactive=False)
        
        # --- Event Handler Functions ---

        def handle_repo_id_submission(text: str) -> Tuple[List[str], int, pd.DataFrame, str, Any]:
            """Processes submitted repo IDs, updates state, and prepares for analysis."""
            if not text:
                return [], 0, pd.DataFrame(), "Status: Please enter repository IDs.", gr.update(selected="input_tab")
            
            repo_ids = list(dict.fromkeys([repo.strip() for repo in re.split(r'[\n,]+', text) if repo.strip()]))
            write_repos_to_csv(repo_ids)
            df = read_csv_to_dataframe()
            status = f"Status: {len(repo_ids)} repositories submitted. Ready for analysis."
            return repo_ids, 0, df, status, gr.update(selected="analysis_tab")

        def handle_keyword_search(keywords: str) -> Tuple[List[str], int, pd.DataFrame, str, Any]:
            """Processes submitted keywords, finds repos, updates state, and prepares for analysis."""
            if not keywords:
                return [], 0, pd.DataFrame(), "Status: Please enter keywords.", gr.update(selected="input_tab")
            
            keyword_list = [k.strip() for k in re.split(r'[\n,]+', keywords) if k.strip()]
            repo_ids = []
            for kw in keyword_list:
                repo_ids.extend(search_top_spaces(kw, limit=5))
            
            unique_repo_ids = list(dict.fromkeys(repo_ids))
            write_repos_to_csv(unique_repo_ids)
            df = read_csv_to_dataframe()
            status = f"Status: Found {len(unique_repo_ids)} repositories. Ready for analysis."
            return unique_repo_ids, 0, df, status, gr.update(selected="analysis_tab")

        def handle_analyze_next(repo_ids: List[str], current_idx: int) -> Tuple[str, str, pd.DataFrame, int, str]:
            """Analyzes the next repository in the list."""
            if not repo_ids:
                return "", "", pd.DataFrame(), 0, "Status: No repositories to analyze. Please submit repo IDs first."
            if current_idx >= len(repo_ids):
                return "", "", read_csv_to_dataframe(), current_idx, "Status: All repositories have been analyzed."
            
            repo_id_to_analyze = repo_ids[current_idx]
            status = f"Status: Analyzing repository {current_idx + 1}/{len(repo_ids)}: {repo_id_to_analyze}"
            
            content, summary, df = analyze_and_update_single_repo(repo_id_to_analyze)
            
            next_idx = current_idx + 1
            if next_idx >= len(repo_ids):
                status += "\n\nFinished all analyses."

            return content, summary, df, next_idx, status

        def handle_user_message(user_message: str, history: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], str]:
            """Appends the user's message to the history, preparing for the bot's response."""
            if user_message:
                history.append({"role": "user", "content": user_message})
            return history, ""

        def handle_bot_response(history: List[Dict[str, str]]) -> List[Dict[str, str]]:
            """Generates and appends the bot's response using the compatible history format."""
            if not history or history[-1]["role"] != "user":
                return history
            
            user_message = history[-1]["content"]
            # Convert all messages *before* the last user message into tuples for the API
            tuple_history_for_api = convert_messages_to_tuples(history[:-1])
            
            response = chat_with_user(user_message, tuple_history_for_api)
            history.append({"role": "assistant", "content": response})
            return history

        def handle_end_chat(history: List[Dict[str, str]]) -> Tuple[str, str]:
            """Ends the chat and extracts keywords from the conversation."""
            if not history:
                return "", "Status: Chat is empty, nothing to analyze."
            
            # Convert the full, valid history for the extraction logic
            tuple_history = convert_messages_to_tuples(history)
            if not tuple_history:
                return "", "Status: No completed conversations to analyze."
                
            keywords_str = extract_keywords_from_conversation(tuple_history)
            status = "Status: Keywords extracted. You can now use them to search."
            return keywords_str, status

        # --- Component Event Wiring ---
        
        # Input Tab
        submit_repo_btn.click(
            fn=handle_repo_id_submission,
            inputs=[repo_id_input],
            outputs=[repo_ids_state, current_repo_idx_state, df_output, status_box_analysis, tabs]
        )
        search_btn.click(
            fn=handle_keyword_search,
            inputs=[keyword_input],
            outputs=[repo_ids_state, current_repo_idx_state, df_output, status_box_analysis, tabs]
        )
        
        # Analysis Tab
        analyze_next_btn.click(
            fn=handle_analyze_next,
            inputs=[repo_ids_state, current_repo_idx_state],
            outputs=[content_output, summary_output, df_output, current_repo_idx_state, status_box_analysis]
        )
        
        # Chatbot Tab
        msg_input.submit(
            fn=handle_user_message,
            inputs=[msg_input, chatbot],
            outputs=[chatbot, msg_input]
        ).then(
            fn=handle_bot_response,
            inputs=[chatbot],
            outputs=[chatbot]
        )
        send_btn.click(
            fn=handle_user_message,
            inputs=[msg_input, chatbot],
            outputs=[chatbot, msg_input]
        ).then(
            fn=handle_bot_response,
            inputs=[chatbot],
            outputs=[chatbot]
        )
        end_chat_btn.click(
            fn=handle_end_chat,
            inputs=[chatbot],
            outputs=[extracted_keywords_output, status_box_chatbot]
        )
        use_keywords_btn.click(
            fn=handle_keyword_search,
            inputs=[extracted_keywords_output],
            outputs=[repo_ids_state, current_repo_idx_state, df_output, status_box_analysis, tabs]
        )
        
    return app

if __name__ == "__main__":
    app = create_ui()
    app.launch(debug=True)