File size: 4,687 Bytes
c96e0d1
 
 
 
 
 
 
3ba7ae0
 
 
 
 
c96e0d1
 
78cdd85
c96e0d1
 
a0d6908
 
 
 
 
c96e0d1
a0d6908
3ba7ae0
 
 
 
a0d6908
3ba7ae0
a0d6908
c96e0d1
a0d6908
 
 
 
 
3ba7ae0
a0d6908
3ba7ae0
c96e0d1
a0d6908
 
 
c96e0d1
a0d6908
 
c96e0d1
 
 
3ba7ae0
a0d6908
 
 
78cdd85
a0d6908
c96e0d1
 
a0d6908
 
c96e0d1
a0d6908
 
 
 
 
3ba7ae0
78cdd85
a0d6908
 
 
 
 
 
 
 
3ba7ae0
 
c96e0d1
 
 
 
 
 
 
a0d6908
c96e0d1
 
a0d6908
 
c96e0d1
 
a0d6908
 
 
c96e0d1
 
 
78cdd85
 
 
 
c96e0d1
 
 
 
78cdd85
a0d6908
 
c96e0d1
 
a0d6908
c96e0d1
 
a0d6908
 
c96e0d1
 
a0d6908
c96e0d1
 
 
 
 
 
 
 
a0d6908
c96e0d1
 
78cdd85
c96e0d1
 
 
 
a0d6908
c96e0d1
78cdd85
 
3ba7ae0
78cdd85
a0d6908
78cdd85
c96e0d1
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import gradio as gr
import tensorflow as tf
import numpy as np
from PIL import Image
from huggingface_hub import hf_hub_download
import os
import pandas as pd
import logging

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Configuration
MODEL_REPO = "Ahmedhassan54/Image-Classification"
MODEL_FILE = "best_model.h5"

# Initialize model to None
model = None

def load_model():
    global model
    try:
        logger.info("โณ Downloading model...")
        model_path = hf_hub_download(
            repo_id=MODEL_REPO,
            filename=MODEL_FILE,
            cache_dir=".",
            force_download=True
        )
        logger.info(f"๐Ÿ“ Model path: {model_path}")
        
        # Verify file exists
        if not os.path.exists(model_path):
            raise FileNotFoundError(f"Model file not found at {model_path}")
            
        logger.info("๐Ÿ”„ Loading TensorFlow model...")
        model = tf.keras.models.load_model(model_path)
        logger.info("โœ… Model loaded successfully!")
        
    except Exception as e:
        logger.error(f"โŒ Model loading failed: {str(e)}")
        model = None
        raise gr.Error(f"Model loading failed. Check logs for details.")

# Load model when app starts
load_model()

def classify_image(image):
    try:
        if image is None:
            raise gr.Error("Please upload an image first")
            
        logger.info("๐Ÿ–ผ๏ธ Processing image...")
        
        # Convert to PIL Image if numpy array
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image)
            
        # Resize and normalize
        image = image.resize((150, 150))
        img_array = np.array(image) / 255.0
        if len(img_array.shape) == 3:
            img_array = np.expand_dims(img_array, axis=0)
            
        logger.info(f"๐Ÿ“Š Input shape: {img_array.shape}")
        
        if model is None:
            raise gr.Error("Model not loaded - using demo mode")
            return {"Cat": 0.5, "Dog": 0.5}, pd.DataFrame({'Class': ['Cat', 'Dog'], 'Confidence': [0.5, 0.5]})
            
        pred = model.predict(img_array, verbose=0)
        confidence = float(pred[0][0])
        logger.info(f"๐Ÿ”ฎ Prediction confidence: {confidence}")
        
        results = {
            "Cat": round(1 - confidence, 4),
            "Dog": round(confidence, 4)
        }
        
        plot_data = pd.DataFrame({
            'Class': ['Cat', 'Dog'],
            'Confidence': [1 - confidence, confidence]
        })
        
        return results, plot_data
        
    except Exception as e:
        logger.error(f"๐Ÿ’ฅ Classification error: {str(e)}")
        raise gr.Error(f"Error processing image: {str(e)}")

css = """

.gradio-container { max-width: 900px; margin: auto; }

footer { visibility: hidden; }

.progress-bar { color: #ff4d4d !important; }

"""

with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
    gr.Markdown("""

    # ๐Ÿพ Cat vs Dog Classifier ๐Ÿฆฎ

    Upload an image to classify whether it's a cat or dog

    """)
    
    with gr.Row():
        with gr.Column():
            image_input = gr.Image(label="Upload Image", type="pil")
            with gr.Row():
                submit_btn = gr.Button("Classify ๐Ÿš€", variant="primary")
                clear_btn = gr.Button("Clear ๐Ÿ—‘๏ธ")
        
        with gr.Column():
            label_output = gr.Label(label="Predictions")
            confidence_bar = gr.BarPlot(
                pd.DataFrame({'Class': ['Cat', 'Dog'], 'Confidence': [0.5, 0.5]}),
                x="Class", y="Confidence", y_lim=[0,1],
                title="Confidence Scores", width=400, height=300
            )
    
    # Examples
    gr.Examples(
        examples=[
            ["https://upload.wikimedia.org/wikipedia/commons/1/15/Cat_August_2010-4.jpg"],
            ["https://upload.wikimedia.org/wikipedia/commons/d/d9/Collage_of_Nine_Dogs.jpg"]
        ],
        inputs=image_input,
        outputs=[label_output, confidence_bar],
        fn=classify_image,
        cache_examples=True
    )
    
    # Button actions
    submit_btn.click(
        fn=classify_image,
        inputs=image_input,
        outputs=[label_output, confidence_bar],
        api_name="predict"
    )
    
    clear_btn.click(
        fn=lambda: [None, pd.DataFrame({'Class': ['Cat', 'Dog'], 'Confidence': [0.5, 0.5]})],
        inputs=None,
        outputs=[image_input, confidence_bar]
    )

if __name__ == "__main__":
    demo.launch(debug=True)