ERA_V2_S13 / app.py
AkashDataScience's picture
Code optimization
cebd76b
import torch
import dataset
import albumentations
from utils import get_misclassified_data
from albumentations.pytorch import ToTensorV2
from visualize import display_cifar_misclassified_data
from torchvision import transforms
import numpy as np
import gradio as gr
from PIL import Image
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
from resnet import ResNet18
import gradio as gr
cuda = torch.cuda.is_available()
device = 'cuda' if cuda else 'cpu'
model = ResNet18()
model.load_state_dict(torch.load("model.pth", map_location=torch.device(device)), strict=False)
# dataloader arguments - something you'll fetch these from cmdprmt
dataloader_args = dict(shuffle=True, batch_size=128, num_workers=4, pin_memory=True) if cuda else dict(shuffle=True, batch_size=64)
test_loader = dataset.get_test_data_loader(**dataloader_args)
classes = ('plane', 'car', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck')
# Get the misclassified data from test dataset
misclassified_data = get_misclassified_data(model, device, test_loader)
def resize_image_pil(image, new_width, new_height):
# Convert to PIL image
img = Image.fromarray(np.array(image))
# Get original size
width, height = img.size
# Calculate scale
width_scale = new_width / width
height_scale = new_height / height
scale = min(width_scale, height_scale)
# Resize
resized = img.resize((int(width*scale), int(height*scale)), Image.NEAREST)
# Crop to exact size
resized = resized.crop((0, 0, new_width, new_height))
return resized
def inference(input_img, is_grad_cam=True, transparency = 0.5, target_layer_number = -1,
top_predictions=3, is_misclassified_images=True, num_misclassified_images=10):
input_img = resize_image_pil(input_img, 32, 32)
input_img = np.array(input_img)
org_img = input_img
input_img = input_img.reshape((32, 32, 3))
transforms = albumentations.Compose(
# Normalize
[albumentations.Normalize([0.49139968, 0.48215841, 0.44653091],
[0.24703223, 0.24348513, 0.26158784]),
# Convert to tensor
ToTensorV2()])
input_img = transforms(image = input_img)['image']
input_img = input_img
input_img = input_img.unsqueeze(0)
outputs = model(input_img)
softmax = torch.nn.Softmax(dim=0)
o = softmax(outputs.flatten())
confidences = {classes[i]: float(o[i]) for i in range(10)}
_, prediction = torch.max(outputs, 1)
if is_grad_cam:
target_layers = [model.layer2[target_layer_number]]
cam = GradCAM(model=model, target_layers=target_layers)
grayscale_cam = cam(input_tensor=input_img, targets=None)
grayscale_cam = grayscale_cam[0, :]
visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency)
else:
visualization = None
# Sort the confidences dictionary based on confidence values
sorted_confidences = dict(sorted(confidences.items(), key=lambda item: item[1], reverse=True))
# Pick the top n predictions
top_n_confidences = dict(list(sorted_confidences.items())[:top_predictions])
if is_misclassified_images:
# Plot the misclassified data
misclassified_images = display_cifar_misclassified_data(misclassified_data, number_of_samples=num_misclassified_images)
else:
misclassified_images = None
return classes[prediction[0].item()], visualization, top_n_confidences, misclassified_images
title = "CIFAR10 trained on ResNet18 Model with GradCAM"
description = "A simple Gradio interface to infer on ResNet model, and get GradCAM results"
examples = [["cat.jpg", True, 0.5, -1, 3, True, 10],
["dog.jpg", True, 0.5, -1, 3, True, 10],
["bird.jpg", True, 0.5, -1, 3, True, 10],
["car.jpg", True, 0.5, -1, 3, True, 10],
["deer.jpg", True, 0.5, -1, 3, True, 10],
["frog.jpg", True, 0.5, -1, 3, True, 10],
["horse.jpg", True, 0.5, -1, 3, True, 10],
["plane.jpg", True, 0.5, -1, 3, True, 10],
["ship.jpg", True, 0.5, -1, 3, True, 10],
["truck.jpg", True, 0.5, -1, 3, True, 10]]
demo = gr.Interface(
inference,
inputs = [
gr.Image(width=256, height=256, label="Input Image"),
gr.Checkbox(label="Show GradCAM"),
gr.Slider(0, 1, value = 0.5, label="Overall Opacity of Image"),
gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?"),
gr.Slider(2, 10, value=3, step=1, label="Number of Top Classes"),
gr.Checkbox(label="Show Misclassified Images"),
gr.Slider(5, 40, value=10, step=5, label="Number of Misclassified Images")
],
outputs = [
"text",
gr.Image(width=256, height=256, label="Output"),
gr.Label(label="Top Classes"),
gr.Plot(label="Misclassified Images")
],
title = title,
description = description,
examples = examples,
)
demo.launch()