File size: 13,666 Bytes
7f3baaa a67c790 7f3baaa a67c790 7f3baaa 0c1e9f5 a67c790 0c1e9f5 a67c790 0c1e9f5 a67c790 0c1e9f5 a67c790 0c1e9f5 a67c790 0c1e9f5 a67c790 4724ce5 a67c790 b36e2f1 a67c790 7f3baaa a67c790 7f3baaa a67c790 7f3baaa 66578f6 7f3baaa 4724ce5 7f3baaa a67c790 0c1e9f5 b36e2f1 a67c790 7f3baaa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import os
import torch
import gradio as gr
from tqdm import tqdm
from PIL import Image
import torch.nn.functional as F
from torchvision import transforms as tfms
from transformers import CLIPTextModel, CLIPTokenizer, logging
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
if "mps" == torch_device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1"
# Load the autoencoder model which will be used to decode the latents into image space.
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")
# Load the tokenizer and text encoder to tokenize and encode the text.
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
# The UNet model for generating the latents.
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")
# The noise scheduler
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
style_token_dict = {'Concept':'<concept-art>', 'Realistic':'<doose-realistic>', 'Line':'<line-art>',
'Ricky':'<RickyArt>', 'Plane Scape':'<tony-diterlizzi-planescape>'}
# To the GPU we go!
vae = vae.to(torch_device)
text_encoder = text_encoder.to(torch_device)
unet = unet.to(torch_device)
token_emb_layer = text_encoder.text_model.embeddings.token_embedding
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
position_embeddings = pos_emb_layer(position_ids)
concept_art_embed = torch.load('concept-art.bin')
doose_s_realistic_art_style_embed = torch.load('doose-s-realistic-art-style.bin')
line_art_embed = torch.load('line-art.bin')
rickyart_embed = torch.load('rickyart.bin')
tony_diterlizzi_s_planescape_art_embed = torch.load('tony-diterlizzi-s-planescape-art.bin')
tokenizer.add_tokens(['<concept-art>', '<doose-realistic>', '<line-art>', '<RickyArt>', '<tony-diterlizzi-planescape>'])
token_emb_layer_with_art = torch.nn.Embedding(49413, 768)
token_emb_layer_with_art.load_state_dict({'weight': torch.cat((token_emb_layer.state_dict()['weight'],
concept_art_embed['<concept-art>'].unsqueeze(0).to(torch_device),
doose_s_realistic_art_style_embed['<doose-realistic>'].unsqueeze(0).to(torch_device),
line_art_embed['<line-art>'].unsqueeze(0).to(torch_device),
rickyart_embed['<RickyArt>'].unsqueeze(0).to(torch_device),
tony_diterlizzi_s_planescape_art_embed['<tony-diterlizzi-planescape>'].unsqueeze(0).to(torch_device)))})
token_emb_layer_with_art = token_emb_layer_with_art.to(torch_device)
grayscale_transformer = tfms.Grayscale(num_output_channels=3)
def set_timesteps(scheduler, num_inference_steps):
scheduler.set_timesteps(num_inference_steps)
scheduler.timesteps = scheduler.timesteps.to(torch.float32)
def pil_to_latent(input_im):
with torch.no_grad():
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
return 0.18215 * latent.latent_dist.sample()
def latents_to_pil(latents):
latents = (1 / 0.18215) * latents
with torch.no_grad():
image = vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def build_causal_attention_mask(bsz, seq_len, dtype):
mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype)
mask.fill_(torch.tensor(torch.finfo(dtype).min)) # fill with large negative number (acts like -inf)
mask = mask.triu_(1) # zero out the lower diagonal to enforce causality
return mask.unsqueeze(1) # add a batch dimension
def get_output_embeds(input_embeddings):
# CLIP's text model uses causal mask, so we prepare it here:
bsz, seq_len = input_embeddings.shape[:2]
causal_attention_mask = build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
# Getting the output embeddings involves calling the model with passing output_hidden_states=True
# so that it doesn't just return the pooled final predictions:
encoder_outputs = text_encoder.text_model.encoder(
inputs_embeds=input_embeddings,
attention_mask=None, # We aren't using an attention mask so that can be None
causal_attention_mask=causal_attention_mask.to(torch_device),
output_attentions=None,
output_hidden_states=True, # We want the output embs not the final output
return_dict=None,
)
# We're interested in the output hidden state only
output = encoder_outputs[0]
# There is a final layer norm we need to pass these through
output = text_encoder.text_model.final_layer_norm(output)
# And now they're ready!
return output
def generate_with_embs(num_inference_steps, guidance_scale, seed, text_input, text_embeddings):
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise
batch_size = 1
max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
with torch.no_grad():
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# Prep Scheduler
set_timesteps(scheduler, num_inference_steps)
# Prep latents
latents = torch.randn(
(batch_size, unet.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latents.to(torch_device)
latents = latents * scheduler.init_noise_sigma
# Loop
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
sigma = scheduler.sigmas[i]
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
with torch.no_grad():
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = scheduler.step(noise_pred, t, latents).prev_sample
return latents_to_pil(latents)[0]
def guide_loss(images, loss_type='Gayscale'):
# grayscale loss
if loss_type == 'Grayscale':
transformed_imgs = grayscale_transformer(images)
error = torch.abs(transformed_imgs - images).mean()
# brightness loss
elif loss_type == 'Bright':
transformed_imgs = tfms.functional.adjust_brightness(images, brightness_factor=3)
error = torch.abs(transformed_imgs - images).mean()
# contrast loss
elif loss_type == 'Contrast':
transformed_imgs = tfms.functional.adjust_contrast(images, contrast_factor=10)
error = torch.abs(transformed_imgs - images).mean()
# symmetry loss - Flip the image along the width
elif loss_type == "Symmetry":
flipped_image = torch.flip(images, [3])
error = F.mse_loss(images, flipped_image)
# saturation loss
elif loss_type == 'Saturation':
transformed_imgs = tfms.functional.adjust_saturation(images,saturation_factor = 10)
error = torch.abs(transformed_imgs - images).mean()
return error
def generate_with_guide_loss(num_inference_steps, guidance_scale, seed, text_input, text_embeddings, loss_type, loss_scale):
height = 512 # default height of Stable Diffusion
width = 512 # default width of Stable Diffusion
generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise
batch_size = 1
# And the uncond. input as before:
max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
with torch.no_grad():
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# Prep Scheduler
set_timesteps(scheduler, num_inference_steps)
# Prep latents
latents = torch.randn(
(batch_size, unet.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latents.to(torch_device)
latents = latents * scheduler.init_noise_sigma
# Loop
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
sigma = scheduler.sigmas[i]
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
with torch.no_grad():
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
# perform CFG
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
#### ADDITIONAL GUIDANCE ###
if i%5 == 0:
# Requires grad on the latents
latents = latents.detach().requires_grad_()
# Get the predicted x0:
latents_x0 = latents - sigma * noise_pred
# latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample
# Decode to image space
denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
# Calculate loss
loss = guide_loss(denoised_images, loss_type) * loss_scale
# Occasionally print it out
if i%5==0:
print(i, 'loss:', loss.item())
# Get gradient
cond_grad = torch.autograd.grad(loss, latents)[0]
# Modify the latents based on this gradient
latents = latents.detach() - cond_grad * sigma**2
# Now step with scheduler
latents = scheduler.step(noise_pred, t, latents).prev_sample
return latents_to_pil(latents)[0]
def inference(text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale):
prompt = text + " the style of " + style_token_dict[style]
# Tokenize
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
input_ids = text_input.input_ids.to(torch_device)
# Get token embeddings
token_embeddings = token_emb_layer_with_art(input_ids)
# Combine with pos embs
input_embeddings = token_embeddings + position_embeddings
# Feed through to get final output embs
modified_output_embeddings = get_output_embeds(input_embeddings)
# And generate an image with this:
image_embs = generate_with_embs(inference_step, guidance_scale, seed, text_input, modified_output_embeddings)
# Generate an image with guidance
image_guide = generate_with_guide_loss(inference_step, guidance_scale, seed, text_input,
modified_output_embeddings, guidance_method, loss_scale)
return image_embs, image_guide
title = "Stable Diffusion with Textual Inversion"
description = "A simple Gradio interface to infer Stable Diffusion and generate images with different art style"
examples = [["A sweet potato farm", 'Concept', 10, 4.5, 1, 'Grayscale', 100],
["Sky full of cotton candy", 'Realistic', 10, 9.5, 2, 'Bright', 200]]
demo = gr.Interface(inference,
inputs = [gr.Textbox(label="Prompt", type="text"),
gr.Dropdown(label="Style", choices=['Concept', 'Realistic', 'Line',
'Ricky', 'Plane Scape'], value="Concept"),
gr.Slider(10, 30, 10, step = 1, label="Inference steps"),
gr.Slider(1, 10, 7.5, step = 0.1, label="Guidance scale"),
gr.Slider(0, 10000, 1, step = 1, label="Seed"),
gr.Dropdown(label="Guidance method", choices=['Grayscale', 'Bright', 'Contrast',
'Symmetry', 'Saturation'], value="Grayscale"),
gr.Slider(100, 10000, 200, step = 100, label="Loss scale")],
outputs= [gr.Image(width=320, height=320, label="Generated art"),
gr.Image(width=320, height=320, label="Generated art with guidance")],
title=title,
description=description,
examples=examples)
demo.launch()
|