File size: 7,634 Bytes
0bbd367
 
b0ad3dc
0bbd367
b0ad3dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bbd367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94c2f22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0ad3dc
0bbd367
94c2f22
0bbd367
 
 
 
 
 
94c2f22
0bbd367
 
 
b0ad3dc
 
0bbd367
 
 
 
 
94c2f22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bbd367
 
 
b0ad3dc
 
 
 
94c2f22
b0ad3dc
 
 
 
 
 
94c2f22
b0ad3dc
 
0bbd367
94c2f22
 
 
 
 
 
 
0bbd367
b0ad3dc
94c2f22
0bbd367
 
b0ad3dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bbd367
b0ad3dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bbd367
94c2f22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bbd367
 
 
94c2f22
 
 
 
 
0bbd367
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import gradio as gr
import plotly.graph_objects as go
import json

# Data for tabular models
TABULAR_MODEL_EVALS = {
    "Proteins": {
        "Nexa Bio1 (Secondary)": 0.71,
        "Porter6 (Secondary)": 0.8456,
        "DeepCNF (Secondary)": 0.85,
        "AlphaFold2 (Tertiary GDT-TS)": 0.924,
        "Nexa Bio2 (Tertiary)": 0.90,
    },
    "Astro": {
        "Nexa Astro": 0.97,
        "Baseline CNN": 0.89,
    },
    "Materials": {
        "Nexa Materials": 0.9999,
        "Random Forest Baseline": 0.92,
    },
    "QST": {
        "Nexa PIN Model": 0.80,
        "Quantum TomoNet": 0.85,
    },
    "HEP": {
        "Nexa HEP Model": 0.91,
        "CMSNet": 0.94,
    },
    "CFD": {
        "Nexa CFD Model": 0.92,
        "FlowNet": 0.89,
    },
}

# Data for LLMs
LLM_MODEL_EVALS = {
    "LLM (General OSIR)": {
        "Nexa Mistral Sci-7B": 0.61,
        "Llama-3-8B-Instruct": 0.39,
        "Mixtral-8x7B-Instruct-v0.1": 0.41,
        "Claude-3-Sonnet": 0.64,
        "GPT-4-Turbo": 0.68,
        "GPT-4o": 0.71,
    },
    "LLM (Field-Specific OSIR)": {
        "Nexa Bio Adapter": 0.66,
        "Nexa Astro Adapter": 0.70,
        "GPT-4o (Biomed)": 0.69,
        "Claude-3-Opus (Bio)": 0.67,
        "Llama-3-8B-Bio": 0.42,
        "Mixtral-8x7B-BioTune": 0.43,
    },
}

# Data for Nexa Mistral Sci-7B Evaluation (based on the provided image)
NEXA_MISTRAL_EVALS = {
    "Nexa Mistral Sci-7B": {
        "Scientific Utility": {"OSIR (General)": 7.0, "OSIR-Field (Physics)": 8.5},
        "Symbolism & Math Logic": {"OSIR (General)": 6.0, "OSIR-Field (Physics)": 7.5},
        "Citation & Structure": {"OSIR (General)": 5.5, "OSIR-Field (Physics)": 6.0},
        "Thematic Grounding": {"OSIR (General)": 7.0, "OSIR-Field (Physics)": 8.0},
        "Hypothesis Framing": {"OSIR (General)": 6.0, "OSIR-Field (Physics)": 7.0},
        "Internal Consistency": {"OSIR (General)": 9.0, "OSIR-Field (Physics)": 9.5},
        "Entropy / Novelty": {"OSIR (General)": 6.5, "OSIR-Field (Physics)": 6.0},
    }
}

# Universal plotting function with highlighted Nexa models
def plot_horizontal_bar(domain, data, highlight_keyword="Nexa", highlight_color='indigo', default_color='lightgray'):
    sorted_items = sorted(data.items(), key=lambda x: x[1], reverse=True)
    models, scores = zip(*sorted_items)
    colors = [highlight_color if highlight_keyword in model else default_color for model in models]

    fig = go.Figure()
    fig.add_trace(go.Bar(
        x=scores,
        y=models,
        orientation='h',
        marker_color=colors,
    ))

    fig.update_layout(
        title=f"Model Benchmark Scores — {domain}",
        xaxis_title="Score",
        yaxis_title="Model",
        xaxis_range=[0, 1.0],
        template="plotly_white",
        height=500,
        margin=dict(l=120, r=20, t=40, b=40),
        yaxis=dict(automargin=True),
    )
    return fig

# Plotting function for Nexa Mistral Sci-7B Evaluation
def plot_mistral_eval(metric):
    if metric not in NEXA_MISTRAL_EVALS["Nexa Mistral Sci-7B"]:
        return None, "Invalid metric selected"
    data = NEXA_MISTRAL_EVALS["Nexa Mistral Sci-7B"][metric]
    models = list(data.keys())
    scores = list(data.values())

    fig = go.Figure()
    fig.add_trace(go.Bar(
        x=scores,
        y=models,
        orientation='h',
        marker_color=['yellow', 'orange']  # Matching the provided image colors
    ))

    fig.update_layout(
        title=f"Nexa Mistral Sci-7B Evaluation: {metric}",
        xaxis_title="Score (1-10)",
        yaxis_title="Model",
        xaxis_range=[0, 10],
        template="plotly_white",
        height=400,
        margin=dict(l=120, r=20, t=40, b=40),
        yaxis=dict(automargin=True),
        legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
    )
    return fig

# Display functions for each section
def display_tabular_eval(domain):
    if domain not in TABULAR_MODEL_EVALS:
        return None, "Invalid domain selected"
    plot = plot_horizontal_bar(domain, TABULAR_MODEL_EVALS[domain], highlight_color='indigo', default_color='lightgray')
    details = json.dumps(TABULAR_MODEL_EVALS[domain], indent=2)
    return plot, details

def display_llm_eval(domain):
    if domain not in LLM_MODEL_EVALS:
        return None, "Invalid domain selected"
    plot = plot_horizontal_bar(domain, LLM_MODEL_EVALS[domain], highlight_color='lightblue', default_color='gray')
    details = json.dumps(LLM_MODEL_EVALS[domain], indent=2)
    return plot, details

def display_mistral_eval(metric):
    plot = plot_mistral_eval(metric)
    details = json.dumps(NEXA_MISTRAL_EVALS["Nexa Mistral Sci-7B"][metric], indent=2)
    return plot, details

# Gradio interface with improved styling
with gr.Blocks(css="body {font-family: 'Inter', sans-serif; background-color: #f0f0f0; color: #333;}") as demo:
    gr.Markdown("""
    # 🔬 Nexa Evals — Scientific ML Benchmark Suite
    A comprehensive benchmarking suite comparing Nexa models against state-of-the-art models.
    """)

    with gr.Tabs():
        with gr.TabItem("Tabular Models"):
            with gr.Row():
                tabular_domain = gr.Dropdown(
                    choices=list(TABULAR_MODEL_EVALS.keys()),
                    label="Select Domain",
                    value="Proteins"
                )
                show_tabular_btn = gr.Button("Show Evaluation")
            tabular_plot = gr.Plot(label="Benchmark Plot")
            tabular_details = gr.Code(label="Raw Scores (JSON)", language="json")
            show_tabular_btn.click(
                fn=display_tabular_eval,
                inputs=tabular_domain,
                outputs=[tabular_plot, tabular_details]
            )

        with gr.TabItem("LLMs"):
            with gr.Row():
                llm_domain = gr.Dropdown(
                    choices=list(LLM_MODEL_EVALS.keys()),
                    label="Select Domain",
                    value="LLM (General OSIR)"
                )
                show_llm_btn = gr.Button("Show Evaluation")
            llm_plot = gr.Plot(label="Benchmark Plot")
            llm_details = gr.Code(label="Raw Scores (JSON)", language="json")
            show_llm_btn.click(
                fn=display_llm_eval,
                inputs=llm_domain,
                outputs=[llm_plot, llm_details]
            )

        with gr.TabItem("Nexa Mistral Sci-7B"):
            with gr.Row():
                mistral_metric = gr.Dropdown(
                    choices=list(NEXA_MISTRAL_EVALS["Nexa Mistral Sci-7B"].keys()),
                    label="Select Metric",
                    value="Scientific Utility"
                )
                show_mistral_btn = gr.Button("Show Evaluation")
            mistral_plot = gr.Plot(label="Benchmark Plot")
            mistral_details = gr.Code(label="Raw Scores (JSON)", language="json")
            show_mistral_btn.click(
                fn=display_mistral_eval,
                inputs=mistral_metric,
                outputs=[mistral_plot, mistral_details]
            )

    gr.Markdown("""
    ---
    ### ℹ️ About
    Nexa Evals provides benchmarks for tabular models, language models, and specific evaluations like Nexa Mistral Sci-7B:
    - **Tabular Models**: Evaluated on domain-specific metrics across fields like Proteins and Astro.
    - **LLMs**: Assessed using the SciEval benchmark under the OSIR initiative.
    - **Nexa Mistral Sci-7B**: Compares general (OSIR) and physics-specific (OSIR-Field) performance across multiple metrics.
    Scores are normalized where applicable (0-1 for tabular/LLMs, 1-10 for Mistral).
    """)

demo.launch()