File size: 12,794 Bytes
d6d82c2 7b65e1e 91a3ee9 a95a188 7b65e1e d6d82c2 a95a188 7b65e1e d6d82c2 7b65e1e a95a188 be03516 a95a188 be03516 a95a188 d6d82c2 a95a188 7b65e1e a95a188 7b65e1e a95a188 be03516 a95a188 7b65e1e a95a188 dbe4e2f 7b65e1e a95a188 7b65e1e be03516 7b65e1e be03516 7b65e1e be03516 a95a188 7b65e1e a95a188 7b65e1e a95a188 7b65e1e a95a188 7b65e1e a95a188 7b65e1e a95a188 7b65e1e a95a188 7b65e1e a95a188 7b65e1e a95a188 91a3ee9 a95a188 91a3ee9 a95a188 91a3ee9 7b65e1e d6d82c2 91a3ee9 7b65e1e 91a3ee9 7b65e1e 91a3ee9 7b65e1e 91a3ee9 7b65e1e 91a3ee9 7b65e1e 91a3ee9 7b65e1e 91a3ee9 7b65e1e 91a3ee9 d6d82c2 7b65e1e d6d82c2 7b65e1e d6d82c2 7b65e1e d6d82c2 7b65e1e d6d82c2 7b65e1e d6d82c2 7b65e1e 91a3ee9 7b65e1e d6d82c2 7b65e1e d6d82c2 7b65e1e d6d82c2 7b65e1e d6d82c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
from fastapi import FastAPI, File, UploadFile, Form, HTTPException, Request
from fastapi.responses import HTMLResponse, JSONResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from typing import List, Optional, Dict, Any
import os
import requests
import json
import traceback
import io
# --- Configuration ---
# Determine the base directory of the main.py script
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
# Adjust paths to go one level up from backend to find templates/static
TEMPLATE_DIR = os.path.join(os.path.dirname(BASE_DIR), "templates")
STATIC_DIR = os.path.join(os.path.dirname(BASE_DIR), "static")
# Hugging Face API configurations
HF_API_URL = "https://api-inference.huggingface.co/models/t5-base"
HF_HEADERS = {"Authorization": "Bearer hf_api_key_placeholder"} # Replace with your API key or remove if using a free model
app = FastAPI()
# --- Mount Static Files and Templates ---
app.mount("/static", StaticFiles(directory=STATIC_DIR), name="static")
templates = Jinja2Templates(directory=TEMPLATE_DIR)
# --- Language mapping ---
LANGUAGE_MAP = {
"en": "English",
"fr": "French",
"es": "Spanish",
"de": "German",
"zh": "Chinese",
"ru": "Russian",
"ja": "Japanese",
"hi": "Hindi",
"pt": "Portuguese",
"tr": "Turkish",
"ko": "Korean",
"it": "Italian"
}
# --- Fallback dictionary for common phrases ---
FALLBACK_PHRASES = {
"hello": "مرحبا",
"thank you": "شكرا لك",
"goodbye": "مع السلامة",
"welcome": "أهلا وسهلا",
"yes": "نعم",
"no": "لا",
"please": "من فضلك",
"sorry": "آسف",
}
# --- Translation Function ---
def translate_text_internal(text: str, source_lang: str, target_lang: str = "ar") -> str:
"""
Translate text using Hugging Face Inference API with prompt engineering.
"""
if not text.strip():
return ""
print(f"Translation Request - Source Lang: {source_lang}, Target Lang: {target_lang}")
# For very short text, check our dictionary first
if len(text.strip()) < 20 and text.lower().strip() in FALLBACK_PHRASES:
return FALLBACK_PHRASES[text.lower().strip()]
# Get full language name if available
source_lang_name = LANGUAGE_MAP.get(source_lang, source_lang)
# Construct our prompt with instructions for eloquent Arabic translation
prompt = f"""Translate the following {source_lang_name} text into Modern Standard Arabic (Fusha).
Focus on conveying the meaning elegantly using proper Balagha (Arabic eloquence).
Adapt any cultural references or idioms appropriately rather than translating literally.
Ensure the translation reads naturally to a native Arabic speaker.
Text to translate:
{text}"""
# Try multiple models in order of preference
models_to_try = [
"Helsinki-NLP/opus-mt-en-ar", # specialized English-Arabic translator
"facebook/nllb-200-distilled-600M", # multilingual model
"t5-base", # general-purpose model that can follow instructions
"google/mt5-small" # small multilingual model
]
for model in models_to_try:
try:
print(f"Attempting translation using Hugging Face model: {model}")
# Update API URL for current model
api_url = f"https://api-inference.huggingface.co/models/{model}"
# Prepare request payload based on model type
if "opus-mt" in model:
# Helsinki NMT models use direct input
payload = {"inputs": text}
elif "nllb" in model:
# NLLB models need language tags
src_lang_code = source_lang if source_lang != "auto" else "eng_Latn"
payload = {
"inputs": text,
"parameters": {
"source_lang": src_lang_code,
"target_lang": "arb_Arab"
}
}
else:
# T5 and other instruction-following models use our prompt
payload = {"inputs": prompt}
# Make the API call
response = requests.post(api_url, headers=HF_HEADERS, json=payload, timeout=30)
# Handle different response formats based on model
if response.status_code == 200:
result = response.json()
# Extract translated text based on response structure
translated_text = None
if isinstance(result, list) and len(result) > 0:
if isinstance(result[0], dict) and "generated_text" in result[0]:
translated_text = result[0]["generated_text"]
elif isinstance(result[0], dict) and "translation_text" in result[0]:
translated_text = result[0]["translation_text"]
else:
translated_text = str(result[0])
elif isinstance(result, dict) and "generated_text" in result:
translated_text = result["generated_text"]
if translated_text:
print(f"Translation successful using {model}")
# Apply post-processing
return culturally_adapt_arabic(translated_text)
else:
print(f"Unexpected response format: {response.text}")
continue # Try next model
else:
print(f"API error: {response.status_code}, {response.text}")
continue # Try next model
except Exception as e:
print(f"Error with model {model}: {e}")
continue # Try next model
# If all models failed, try LibreTranslate as a backup
try:
print("Attempting LibreTranslate API as backup")
libre_api = "https://translate.terraprint.co/translate"
payload = {
"q": text,
"source": source_lang if source_lang != "auto" else "auto",
"target": target_lang,
"format": "text"
}
response = requests.post(libre_api, json=payload, timeout=10)
if response.status_code == 200:
result = response.json()
translated_text = result.get("translatedText")
if translated_text:
return culturally_adapt_arabic(translated_text)
except Exception as e:
print(f"LibreTranslate backup failed: {e}")
# All translation attempts failed, use fallback
fallback_text = FALLBACK_PHRASES.get(text.lower().strip()) if len(text.strip()) < 20 else None
if fallback_text:
return fallback_text
else:
return "عذراً، لم نتمكن من ترجمة النص. خدمة الترجمة غير متاحة حالياً."
def culturally_adapt_arabic(text: str) -> str:
"""Apply post-processing rules to enhance Arabic translation with cultural sensitivity."""
# Replace any Latin punctuation with Arabic ones
text = text.replace('?', '؟').replace(';', '؛').replace(',', '،')
return text
# --- Helper Functions ---
async def extract_text_from_file(file: UploadFile) -> str:
"""Extracts text content from uploaded files without writing to disk."""
content = await file.read() # Read file content into memory
file_extension = os.path.splitext(file.filename)[1].lower()
extracted_text = ""
try:
if file_extension == '.txt':
# Process text file directly from bytes
try:
extracted_text = content.decode('utf-8')
except UnicodeDecodeError:
# Try other common encodings if UTF-8 fails
for encoding in ['latin-1', 'cp1252', 'utf-16']:
try:
extracted_text = content.decode(encoding)
break
except UnicodeDecodeError:
continue
elif file_extension == '.docx':
try:
import docx
from io import BytesIO
# Load DOCX from memory
doc_stream = BytesIO(content)
doc = docx.Document(doc_stream)
extracted_text = '\n'.join([para.text for para in doc.paragraphs])
except ImportError:
raise HTTPException(status_code=501, detail="DOCX processing requires 'python-docx' library, which is not installed.")
elif file_extension == '.pdf':
try:
import fitz # PyMuPDF
from io import BytesIO
# Load PDF from memory
pdf_stream = BytesIO(content)
doc = fitz.open(stream=pdf_stream, filetype="pdf")
page_texts = []
for page in doc:
page_texts.append(page.get_text())
extracted_text = "\n".join(page_texts)
doc.close()
except ImportError:
raise HTTPException(status_code=501, detail="PDF processing requires 'PyMuPDF' library, which is not installed.")
else:
raise HTTPException(status_code=400, detail=f"Unsupported file type: {file_extension}")
print(f"Extracted text length: {len(extracted_text)}")
return extracted_text
except HTTPException as e:
raise e
except Exception as e:
print(f"Error processing file {file.filename}: {e}")
traceback.print_exc()
raise HTTPException(status_code=500, detail=f"An unexpected error occurred processing the document: {e}")
# --- API Endpoints ---
@app.get("/", response_class=HTMLResponse)
async def read_root(request: Request):
"""Serves the main HTML page."""
if not os.path.exists(TEMPLATE_DIR):
raise HTTPException(status_code=500, detail=f"Template directory not found at {TEMPLATE_DIR}")
if not os.path.exists(os.path.join(TEMPLATE_DIR, "index.html")):
raise HTTPException(status_code=500, detail=f"index.html not found in {TEMPLATE_DIR}")
return templates.TemplateResponse("index.html", {"request": request})
@app.post("/translate/text")
async def translate_text_endpoint(
text: str = Form(...),
source_lang: str = Form(...),
target_lang: str = Form("ar")
):
"""Translates direct text input."""
if not text:
raise HTTPException(status_code=400, detail="No text provided for translation.")
if target_lang != "ar":
raise HTTPException(status_code=400, detail="Currently, only translation to Arabic (ar) is supported via this endpoint.")
try:
translated_text = translate_text_internal(text, source_lang, target_lang)
return JSONResponse(content={"translated_text": translated_text, "source_lang": source_lang})
except HTTPException as http_exc:
raise http_exc
except Exception as e:
print(f"Unexpected error in /translate/text: {e}")
raise HTTPException(status_code=500, detail=f"An unexpected error occurred during text translation: {e}")
@app.post("/translate/document")
async def translate_document_endpoint(
file: UploadFile = File(...),
source_lang: str = Form(...),
target_lang: str = Form("ar")
):
"""Translates text extracted from an uploaded document without saving to disk."""
if target_lang != "ar":
raise HTTPException(status_code=400, detail="Currently, only document translation to Arabic (ar) is supported.")
try:
# Extract text directly from the uploaded file
extracted_text = await extract_text_from_file(file)
if not extracted_text:
raise HTTPException(status_code=400, detail="Could not extract any text from the document.")
# Translate the extracted text
translated_text = translate_text_internal(extracted_text, source_lang, target_lang)
return JSONResponse(content={
"original_filename": file.filename,
"detected_source_lang": source_lang,
"translated_text": translated_text
})
except HTTPException as http_exc:
raise http_exc
except Exception as e:
raise HTTPException(status_code=500, detail=f"An unexpected error occurred processing the document: {e}")
# --- Run the server (for local development) ---
if __name__ == "__main__":
import uvicorn
print(f"Template Directory: {TEMPLATE_DIR}")
print(f"Static Directory: {STATIC_DIR}")
uvicorn.run("main:app", host="0.0.0.0", port=8000, reload=True)
|