Spaces:
Sleeping
Sleeping
import streamlit as st | |
from document_chat import ingest_pdf, process_query_with_memory | |
from langchain.memory import ConversationBufferMemory | |
# Configure Streamlit app | |
st.set_page_config(page_title="AI Document Q&A Chatbot", layout="wide") | |
st.title("π AI-Powered Document Chatbot") | |
st.write("Upload a document and ask questions!") | |
# Upload document | |
uploaded_file = st.file_uploader("Upload a PDF", type=["pdf"]) | |
if uploaded_file: | |
file_path = "uploaded_doc.pdf" | |
with open(file_path, "wb") as f: | |
f.write(uploaded_file.getbuffer()) | |
st.success("File uploaded! Processing...") | |
ingest_pdf(file_path) | |
# Initialize memory if not exists | |
if "memory" not in st.session_state: | |
st.session_state["memory"] = ConversationBufferMemory(memory_key="chat_history", return_messages=True) | |
query = st.text_input("Ask a question:") | |
if query: | |
with st.spinner("Thinking..."): | |
response = process_query_with_memory(query, st.session_state["memory"]) | |
st.session_state["memory"].save_context({"input": query}, {"output": response}) | |
st.write(response) | |
# Show chat history | |
if st.session_state["memory"].chat_memory.messages: | |
st.subheader("Chat History") | |
for i in range(0, len(st.session_state["memory"].chat_memory.messages), 2): | |
user_message = st.session_state["memory"].chat_memory.messages[i].content | |
bot_response = st.session_state["memory"].chat_memory.messages[i + 1].content if i + 1 < len(st.session_state["memory"].chat_memory.messages) else "..." | |
st.write(f"**User:** {user_message}") | |
st.write(f"**Bot:** {bot_response}") | |