ArchCoder's picture
Update README.md
9a21088 verified
---
title: Hostel Management System
emoji: 🏨
colorFrom: blue
colorTo: green
sdk: docker
app_port: 7860
pinned: false
---
# Hostel Grievance Redressal System
## Overview
The Hostel Grievance Redressal System is designed to efficiently manage and resolve grievances raised by residents. By leveraging AI/ML functionalities, the system aims to enhance communication, streamline grievance handling, and provide timely resolutions. This document outlines the implementation plans for various AI/ML features, system architecture, and usage instructions.
---
## Table of Contents
1. [System Architecture Overview](#system-architecture-overview)
2. [AI/ML Functionalities](#aiml-functionalities)
- [1. Intelligent Routing and Workflow Automation](#1-intelligent-routing-and-workflow-automation)
- [2. Advanced Sentiment and Emotional Intelligence Analysis](#2-advanced-sentiment-and-emotional-intelligence-analysis)
- [3. Multilingual Translation in Chatroom](#3-multilingual-translation-in-chatroom)
- [4. Worker Job Recommendation](#4-worker-job-recommendation)
3. [Directory Structure](#directory-structure)
4. [Conclusion](#conclusion)
5. [License](#license)
6. [Contact](#contact)
---
## System Architecture Overview
The Hostel Grievance Redressal System is built as a centralized Flask API server that hosts all AI/ML models. This architecture allows different services and applications to interact with the models by sending HTTP requests containing input data and receiving model predictions in response. Each AI/ML functionality is exposed through distinct endpoints, enabling modularity and scalability.
### Key Components
1. **Flask API Server**
- Central hub for all AI/ML models.
- RESTful API design for standardized interactions.
- Authentication and authorization mechanisms.
2. **Model Endpoints**
- `/api/intelligent-routing` - Endpoint for intelligent routing and workflow automation.
- `/api/sentiment-analysis` - Endpoint for advanced sentiment and emotional intelligence analysis.
- `/api/multilingual-translation` - Endpoint for multilingual translation in chatroom.
- `/api/job-recommendation` - Endpoint for worker job recommendation.
3. **Data Handling and Validation**
- Input validation using libraries like `pydantic` or `marshmallow`.
4. **Scalability and Deployment**
- Docker for containerization.
---
## AI/ML Functionalities
### 1. Intelligent Routing and Workflow Automation
**Purpose:** Efficiently assign grievances to the most suitable personnel or department based on various factors.
**Model Design Pipeline:**
- Data Collection: Grievance data, staff data, historical assignments.
- Data Preprocessing: Cleaning, feature engineering, encoding.
- Model Selection: Reinforcement Learning (RL) and Multi-Criteria Decision-Making (MCDM).
- Training and Evaluation: Define environment, implement reward functions, and evaluate using metrics like resolution time.
**API Endpoint:** `https://archcoder-hostel-management-and-greivance-redres-2eeefad.hf.space/api/intelligent-routing`
**Example Input:**
```json
{
"grievance_id": "G12346",
"category": "electricity",
"submission_timestamp": "2023-10-02T08:15:00Z",
"student_room_no": "204",
"hostel_name": "bh2",
"floor_number": 2,
"current_staff_status": [
{
"staff_id": "S67890",
"department": "electricity",
"current_workload": 3,
"availability_status": "Available",
"past_resolution_rate": 0.95
},
{
"staff_id": "S67891",
"department": "plumber",
"current_workload": 2,
"availability_status": "Available",
"past_resolution_rate": 0.90
}
],
"floor_metrics": {
"number_of_requests": 15,
"total_delays": 1
},
"availability_data": {
"staff_availability": [
{
"staff_id": "S67890",
"time_slot": "08:00-12:00",
"availability_status": "Available"
}
],
"student_availability": [
{
"student_id": "STU204",
"time_slot": "08:00-10:00",
"availability_status": "Unavailable"
}
]
}
}
```
**Example Output:**
```json
{
"job_id": "J12346",
"assigned_worker_id": "W67890",
"assignment_timestamp": "2023-10-02T08:16:00Z",
"expected_resolution_time": "1 hour",
"location": {
"grievance_id": "G12346",
"assigned_staff_id": "S67890",
...
}
```
---
### 2. Advanced Sentiment and Emotional Intelligence Analysis
**Purpose:** Detect complex emotional states in grievances to enhance responses from administrators.
**Model Design Pipeline:**
- Data Collection: Grievance texts and emotional labels.
- Data Preprocessing: Text cleaning, tokenization, and normalization.
- Model Selection: Transformer-based models like BERT.
**API Endpoint:** `https://archcoder-hostel-management-and-greivance-redres-2eeefad.hf.space/api/sentiment-analysis`
**Example Input:**
```json
{
"grievance_id": "G12349",
"text": "Why hasn't the maintenance team fixed the leaking roof yet?"
}
```
**Example Output:**
```json
{
"grievance_id": "G12349",
"predicted_emotional_label": "Anger",
...
}
```
---
### 3. Multilingual Translation in Chatroom
**Purpose:** Facilitate communication between residents and workers who speak different languages.
**Model Design Pipeline:**
- Data Collection: Multilingual conversation logs and translation pairs.
- Data Preprocessing: Cleaning, tokenization, and alignment.
- Model Selection: Neural Machine Translation (NMT) models.
**API Endpoint:** `https://archcoder-hostel-management-and-greivance-redres-2eeefad.hf.space/api/multilingual-translation`
**Example Input:**
```json
{
"user_message": "toilet me paani nahi aa rha hain",
"source_language": "Hindi",
"target_language": "English"
}
```
**Example Output:**
```json
{
"translated_message": "There is no water coming in the toilet."
}
```
---
### 4. Worker Job Recommendation
**Purpose:** Optimize job assignments to workers based on various factors.
**Model Design Pipeline:**
- Data Collection: Job requests, worker profiles, historical assignments.
- Data Preprocessing: Cleaning, feature engineering, encoding.
- Model Selection: Collaborative Filtering and Decision Trees.
**API Endpoint:** `https://archcoder-hostel-management-and-greivance-redres-2eeefad.hf.space/api/job-recommendation`
**Example Input:**
```json
{
"job_id": "J12346",
"type": "Electrical",
"description": "Fan not working in room 204.",
"urgency_level": "High",
"submission_timestamp": "2023-10-02T08:15:00Z",
"hostel_name": "Hostel A",
"floor_number": 2,
"room_number": "204"
}
```
**Example Output:**
```json
{
"job_id": "J12346",
"assigned_worker_id": "W67890",
"current_timestamp": "2023-10-02T08:30:00Z",
"expected_resolution_time": "2023-10-02T10:00:00Z",
"location": {
"hostel_name": "Hostel A",
"floor_number": 2,
"room_number": "210"
}
}
```
---
# Directory Structure
```
πŸ“ config
πŸ“„ __init__.py
πŸ“„ config.py
πŸ“ docs
πŸ“„ README.md
πŸ“„ ai_plan.md
πŸ“„ data_plan.md
πŸ“„ plan.md
πŸ“ models
πŸ“ intelligent_routing
πŸ“ saved_model
πŸ“„ model.keras
πŸ“ test_data
πŸ“„ __init__.py
πŸ“„ test_data.json
πŸ“ test_results
πŸ“„ confusion_matrix.png
πŸ“„ roc_curve.png
πŸ“„ test_report.json
πŸ“ train_data
πŸ“„ __init__.py
πŸ“„ training_data.json
πŸ“„ generate_data.py
πŸ“„ model.py
πŸ“„ test_model.py
πŸ“„ train.py
πŸ“ job_recommendation
πŸ“ saved_model
πŸ“„ model.keras
πŸ“ test_data
πŸ“„ __init__.py
πŸ“„ test_data.json
πŸ“ test_results
πŸ“„ test_report.json
πŸ“ train_data
πŸ“„ __init__.py
πŸ“„ training_data.json
πŸ“„ generate_data.py
πŸ“„ model.py
πŸ“„ test.py
πŸ“„ train.py
πŸ“ multilingual_translation
πŸ“ test_data
πŸ“„ __init__.py
πŸ“„ test_data.json
πŸ“ test_results
πŸ“„ test_report.json
πŸ“ train_data
πŸ“„ __init__.py
πŸ“„ training_data.json
πŸ“„ model.py
πŸ“„ test_model.py
πŸ“ sentiment_analysis
πŸ“ test_data
πŸ“„ __init__.py
πŸ“„ test_data.json
πŸ“ test_results
πŸ“„ test_report.json
πŸ“ train_data
πŸ“„ __init__.py
πŸ“„ training_data.json
πŸ“„ model.py
πŸ“„ test_model.py
πŸ“ test_results
πŸ“„ endpoint_test_results.json
πŸ“ utils
πŸ“„ __init__.py
πŸ“„ logger.py
πŸ“„ .env
πŸ“„ .gitignore
πŸ“„ app.py
πŸ“„ readme.md
πŸ“„ requirements.txt
πŸ“„ routes.py
πŸ“„ test_endpoints.py
```
---
> To test the application, you can use the `test_endpoints.py` script, which provides a convenient way to verify the functionality of the API endpoints.
## Conclusion
Implementing these AI/ML functionalities will significantly enhance the efficiency and effectiveness of the Hostel Grievance Redressal System. By leveraging advanced technologies and integrating them within a Flask API framework, the system will provide a more responsive, empathetic, and proactive approach to managing resident grievances.
---
## License
This project is licensed under the [MIT License](LICENSE).
## Contact
For any questions or feedback, please contact [[email protected]](mailto:[email protected]).